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Abstract: Penalized Cox regression can efficiently be used for the determination of biomarkers in 

high-dimensional genomic data related to disease prognosis. However, results of Penalized Cox 

regression is influenced by the heterogeneity of the samples who have different dependent structure 

between survival time and covariates from most individuals. These observations are called influential 

observations or outliers. A robust penalized Cox model (Reweighted Elastic Net-type maximum 

trimmed partial likelihood estimator, Rwt MTPL-EN) is proposed to improve the prediction accuracy 

and identify influential observations. A new algorithm AR-Cstep to solve Rwt MTPL-EN model is 

also proposed. This method has been validated by simulation study and application to glioma 

microarray expression data. When there were no outliers, the results of Rwt MTPL-EN were close to 

the Elastic Net (EN). When outliers existed, the results of EN were impacted by outliers. And 

whenever the censored rate was large or low, the robust Rwt MTPL-EN performed better than EN. 

and could resist the outliers in both predictors and response. In terms of outliers detection accuracy, 

Rwt MTPL-EN was much higher than EN. The outliers who “lived too long” made EN perform 

worse, but were accurately detected by Rwt MTPL-EN. Through the analysis of glioma gene 

expression data, most of the outliers identified by EN were those “failed too early”, but most of them 

were not obvious outliers according to risk estimated from omics data or clinical variables. Most of 

the outliers identified by Rwt MTPL-EN were those who “lived too long”, and most of them were 

obvious outliers according to risk estimated from omics data or clinical variables. Rwt MTPL-EN 

can be adopted to detect influential observations in high-dimensional survival data.  
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1. Introduction  

The determination of biomarkers in high-dimensional genomic data related to disease prognosis 

can be used to understand the pathogenesis of disease prognosis, so as to find new therapeutic drugs 

targeted to improve the prognosis of patients. Biomarkers can also be used to predict the patient's 

prognosis, and to provide individualized treatment for patients. So the discovery of biomarkers 

associated with prognosis has become an active research area. The study has two challenges. One is 

that the prognostic data tends to contain censored survival time; the other is the high-dimensional 

data, in which the number of variables is much higher than the sample size. The Cox proportional 

hazard model is widely used to model censored survival time, to screen for associate factors and to 

establish a prognostic prediction model, but it is not suitable for high-dimensional data. Penalized 

Cox regression can solve the problem of prognostic factors screening and prediction model 

establishment in high-dimensional data. For example, Liu, Z., M. Li, Q. Hua, Y. Li and G. Wang [1] 

used L1-penalized (i.e., LASSO-type) Cox regression to identify non-coding RNAs related to breast 

cancer prognosis. Patients were stratified based on risk scores. Shen, X. Y., X. P. Liu, C. K. Song, Y. 

J. Wang, S. Li and W. D. Hu [2] also used the LASSO-type penalized Cox proportional hazard 

regression model to finally identify two genes related to lung adenocarcinoma survival. Penalized 

Cox regression has also recently been used to identify driver genes for bladder cancer prognosis [3]. 

However, the prediction accuracy of these methods is often influenced by the heterogeneity of 

samples from cancer patients [4,5]. The main known source of the heterogeneity is genomic 

instability [6]. For example, genomic instability is a prominent source of genetic diversity within 

tumours, generating a diverse cell population that can be subject to selection in a given 

micro-environmental or therapeutic context. Some individuals have different dependent structures 

between survival time and covariates, which means that these patients may show different 

mechanisms from most individuals. Individuals with poor survival prediction by fitting Cox 

regression, “died too early” or “lived too long” as compared to the estimated survival probabilities 

for their covariate pattern composed of selected associated factors revealed by most individuals [7]. 

These observations are called influential observations or outliers. These outliers, especially long-term 

survivors have a great impact on Cox regression [8]. On the other hand, it is very important to detect 

outliers in survival data, because the analysis of individuals with long or short survival will lead to 

the identification of new prognostic factors [7,9]. Peng, S., H. Dhruv, B. Armstrong, B. Salhia, C. 

Legendre, J. Kiefer, J. Parks, S. Virk, A. E. Sloan and Q. T. Ostrom [10] compared the integrated 

genomics glioma “outliers” (patients with long-term survival and short-term survival to discover the 

molecular markers with different prognoses after standard treatment. Therefore, individualized 

treatment can avoid treatment failure caused by wrong treatment.  

So it is very important to identify outliers in survival data. On the one hand, a robust model can 

be obtained to improve the prediction accuracy of the model by removing the influence of outliers. 

On the other hand, outliers that are identified may reveal hidden information on the covariate and 

probably be worth studying further.  

Because outliers can affect parameter estimation, residual analysis cannot be directly used for 
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outlier identification, and there is a very high probability of masking, that is, the lack of 

identification of true outlier recognition [11]. Therefore, robust estimates are a prerequisite for 

distance-based outlier detection procedures [12]. For a low dimensional data, a robust estimation 

method, least trimmed square (LTS), was proposed by Rousseeuw, P. J. [11]. LTS is highly robust to 

outliers in both the response and predictors. It is effective for identifying outliers and can solve the 

problem of the masking phenomenon caused by the coexistence of multiple outliers. Farcomeni, A. 

and S. Viviani [12] proposed a robust Cox regression model based on trimming to analyze survival 

data with outliers. They fitted Cox model by trimming the individuals with small contribution to 

partial likelihood function, to obtain a robust estimation which is not affected by outliers. 

However, there are few studies on robustness in high dimensional survival analysis dealing with 

omics data. Carrasquinha, E., A. Veríssimo, M. B. Lopes and S. Vinga [9] studied the outliers in high 

dimensional survival analysis. Elastic net (EN) and LASSO were adopted to screen variables from 

high-dimensional data to low-dimensional data, and two low-dimensional robust Cox models were 

used to identify outliers. Then, rank product test and ensemble were used to combine the outliers 

identified by the two methods. The disadvantage of this method is that screening variables from 

high-dimensional data may be affected by outliers because EN and LASSO are not robust.  

For high dimensional survival analysis, a robust penalized Cox model based on trimming is 

proposed in this study. Compared with Carrasquinha, E., A. Veríssimo, M. B. Lopes and S. Vinga [9], 

we considered robustness in high-dimensional data directly, to avoid the influence of outliers on 

dimensionality reduction. 

In this article, a robust EN-type penalized Cox model based on trimming is proposed and the 

algorithm to find the solution of the model is described in section 2. In Section 3, the results of 

simulation studies and the analysis of glioma gene expression data are described. We conclude with a 

discussion in section 4 and a conclusion in section 5. 

2. Materials and methods 

2.1. Robust penalized Cox regression model based on trimming 

Assume there are n observations in the follow-up study. 𝛿𝑖 represents the outcome of object i, 

where 𝛿𝑖 = 1 represents event, and 𝛿𝑖 = 0 represents censorship. Times of n objects when they 

died or censored are denoted as 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛. Let 𝑅(𝑡𝑖) be the number of people alive at time 

𝑡𝑖, that is, the number of people at risk. 

Let us consider a penalized Cox observation model with outliers. Let I be a pure set without 

outliers, 

 

                  (1) 

 

That means individuals in pure set I are subject to Cox proportional risk model, and the outliers 

outside of I obey an unknown, unspecified risk function 𝜆𝑖(𝑡). So the outlier cannot provide useful 

information for the estimation of β. 

We proposed a penalized Cox model based on trimming (Maximum trimmed partial likelihood 

estimator, MTPL-EN). Assuming the trimmed ratio is 1 - η  (0 <η<1). The number of retained 
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observations is h = ⌊𝑛𝜂⌋  accordingly, where ⌊∙⌋ means round down. Then the maximum partial 

likelihood function of the MTPL-EN model is: 

�̂�𝑀𝑇𝑃𝐿−𝐸𝑁 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜷(𝑙𝑛𝐿 − ℎ𝜆∑ 𝑃𝛼(𝛽𝑗))
𝑝
𝑗=1   

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜷 (∑ 𝛿𝑖(𝒙𝑖𝑙
′ 𝜷 − 𝑙𝑛∑ exp(

𝑖𝑙∈𝑅(𝑡𝑖𝑙)
𝒙𝑖𝑙
′ 𝜷))ℎ

𝑖=1 − ℎ𝜆∑ 𝑃𝛼(𝛽𝑗)
𝑝
𝑗=1 ),  

𝑃𝛼(𝜷) = (1 − 𝛼)
1

2
||𝜷||

2
+ 𝛼||𝜷||

1
, 𝑖𝑙 ∈ {1,2,⋯ , 𝑛}，                       (2) 

where 𝜆 ≥ 0 is a penalty parameter, and α, which is the mixing proportion of the ridge and LASSO 

penalties, takes a value in [0, 1]. The EN tends to select groups of correlated variables. The robust 

penalized Cox regression based on trimming is to find the subset whose sample size is h, which 

corresponding regularized partial likelihood function is the maximum. The corresponding regularized 

partial likelihood estimation of the subset is denoted as ˆ MTPL-ENβ . 

Generally, the proportion of outliers is unknown in practice, and the selection of 1 - η  is higher 

than the expected proportion of outliers. However, too high trimmed proportion usually leads to 

estimated asymptotic variance inflate and the reduction of the estimation efficiency. We adopted the 

trimmed ratio 1 − 𝜂 = 0.25 in this article. In this study, after 
ˆ MTPL-ENβ was estimated, reweighted 

step was considered to detect outliers in the data. And then estimation on dataset in which outliers 

were removed again to further improve efficiency.    

2.2. Algorithm 

Maximizing (2) is equivalent to find an optimal subset with regularized maximum partial 

likelihood function in all subsets with a sample size ( ) η−= 1nh . It is impossible to search 

exhaustively because the number of all subsets (
𝑛

h ) is too large and (
𝑛

h ) increases rapidly with 

the increase of the sample size. The computational burden of finding the optimal subset by 

exhaustive method in such a huge subset is considerable. 

This kind of optimization is very common in robust statistics, and the method usually used is a 

repeated concentration-steps algorithm, which also known as the C-step algorithm [13]. In the C-step 

algorithm, it is necessary to separate the individual’s contribution to the objective function at each 

step of the iteration. But the objective function of Cox regression is the partial likelihood function, 

the contribution of the partial likelihood function corresponding to each observation is difficult to be 

decomposed from the partial likelihood function of the complete set. Because the risk set of an 

observation is related to the survival time order of other individuals. If an observation is included or 

excluded, and corresponding risk set changes accordingly. Especially for the censored individuals, its 

contribution to the likelihood function is reflected in the denominator of the partial likelihood 

function, and its contribution is also difficult to be separated. So ˆ MTPL-ENβ  cannot be solved directly 
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by C-step algorithm. Another reason why the C-step algorithm cannot be used is that, in the 

penalized regression, the regulator λ of each step in C-step algorithm needs to be re-determined. The 

objective function does not decrease with iteration, so it does not necessarily converge on a subset of 

the optimal objective function. Farcomeni, A. and S. Viviani [12] applied the acceptance-rejection 

algorithm (proposed by Chakraborty, B. and P. Chaudhuri [14]) to solve the robust Cox model based 

on trimming in low-dimensional cases. In the acceptance-rejection algorithm, at each iteration, the 

candidate samples are randomly taken from the remaining samples. So, the direction of the iteration 

is random, and it leads to the slower convergence of the algorithm. In this study, the residuals of each 

individual are used to replace each individual's contribution to the partial likelihood function. The 

algorithm used to solve ˆ MTPL-ENβ is a combination of the acceptance-rejection algorithm and the 

C-step algorithm, which is called as C-step algorithm based on acceptance-rejection step (AR-Cstep). 

2.2.1. AR-Cstep algorithm 

2.2.1.1. Deviance residual 

Therneau, T. M., P. M. Grambsch and T. R. Fleming [15] proposed martingale residuals for Cox 

model without time-dependent covariates based on counting process.  

�̂�𝑖 = 𝛿𝑖 − �̂�0(𝑡𝑖)exp(�̂�
𝑇𝑋)                           （3） 

where 𝛿𝑖 is the censoring indicator, and �̂�0(𝑡𝑖) is the baseline cumulative risk function. Martingale 

residuals can be interpreted as the difference between the number of observed events of an individual 

and the expected number of events under the Cox model, that is, the part that is not predicted by the 

model and exceeds the estimated number of events. 

Martingale residuals can reveal that, compared to other observations with the same covariate, 

observations that do not fit the model well, that is, those who live too long (�̂�𝑖 is a large negative 

value) and fail too early (�̂�𝑖 is close to 1). 

The martingale residual is asymmetric, and its range is (−∞, 1]. The martingale residual is 

transformed to approximate its normal distribution to obtain the deviance residual: 

�̂�𝑖 = 𝑠𝑖𝑔𝑛(�̂�𝑖){−2[�̂�𝑖 + 𝛿𝑖 𝑙𝑜𝑔(𝛿𝑖 − �̂�𝑖)]}
1/2

               （4） 

Deviance residuals are more symmetrical than martingale residuals. A large negative residual 

indicates that the number of observed events is less than the model’s predicted number, that is, an 

outlier that “lived too long”. And a large positive residual indicates the number of observed events is 

larger than the model’s predicted number, that is, an outlier that “died too early”, relative to other 

observations with the same covariate. Some simulation studies have shown that for “lived too long” 

type outliers, can be detected both by the deviance residuals and martingale residuals. While for 

“failed too early” type outliers, can be identified only by the deviance residuals [15,16]. 

2.2.1.2. Find regression estimates from subsamples, and get the residuals of all samples.  

In C-step algorithm, it is necessary to perform regression estimation on the subset, and then 

substitute the estimated coefficients into the complete set to obtain the contribution of each 
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individual to the criterion function. In the penalized Cox model, the baseline risk needs to be 

estimated before the residuals of all individuals are obtained based on the estimated coefficient β̂ . 

However, we found that the baseline risk is greatly affected by the outliers through simulation 

experiments, so the baseline risk needs to be estimated through subset without outliers. Then it can 

be extended to that of all individuals. 

At the k-step iteration, 𝐻𝑘 denotes the current subset containing h observations. �̂�𝐻𝑘 is the 

solution of the penalty Cox regression based on 𝐻𝑘 , and the corresponding partial likelihood 

function is recorded as 𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘). The baseline risk is estimated by 

𝐻0(𝑡) = ∑
𝑑𝑖

∑ 𝑒𝑥𝑝(𝒙𝑘
′ �̂�𝐻𝑘)𝑘∈𝑅(𝑡𝑖)

𝑖:𝑡𝑖<𝑡                     （5） 

Under �̂�𝐻𝑘, for each sample in the subset 𝐻𝑘, the baseline risk �̂�0(𝑡𝑖) is estimated according to the 

formula (5), 𝑖 ∈ 𝐻𝑘. For the samples of the remaining set 𝐶(𝐻𝑘) of the subset 𝐻𝑘, the baseline risk 

is estimated according to the following method. We assumed that the baseline risk follows the 

Weibull distribution, that is the baseline risk 𝐻0(𝑡) and survival time 𝑡 are linear after transformed 

by logarithmic transformation, 

𝑙𝑛(𝐻0(𝑡)) = 𝛽0 + 𝛽1𝑙𝑛(𝑡).                      （6） 

Using the samples of the subset 𝐻𝑘, �̂�0 and �̂�1 are estimated by linear regression (6). Then the 

survival time 𝑡𝑖of the sample in 𝐶(𝐻𝑘) is substituted to (6) to obtain the corresponding baseline 

risk �̂�0(𝑡𝑖), 𝑖 ∈ 𝐶(𝐻𝑘). In order to make the estimates of �̂�0 and �̂�1 robust, median regression is 

used here. The objective function of the usual least squares estimation is to minimizes the sum of the 

squared residuals, while the objective function of the median regression minimizes the median of the 

squared residuals, which is a robust estimate with high breakdown point [11]. 

According to the baseline risk of each individual, the deviance residual �̂�𝑖 of each individual is 

obtained according to formulas (3) and (4), 𝑖 = 1, 2,⋯ , 𝑛. The h individuals with the smallest 

absolute value of residuals are selected to form a new subset 𝐻𝑐𝑎𝑛𝑑. In order to keep the censoring 

rate of the subset the same as that of the full set, 𝐻𝑐𝑎𝑛𝑑 is composed of ℎ1 individuals with the 

smallest residuals among individuals who have an outcome, and ℎ0 individuals with the smallest 

residuals among the censored individuals. Let 𝑛 = 𝑛1 + 𝑛2 where 𝑛1 individuals have an outcome 

and survival time of 𝑛2 individuals are censored. Let ℎ1 = ⌊(𝑛1 + 1)η ⌋ and ℎ0 = ℎ − ℎ1, where ⌊.⌋ 

means round down, and 1 - η  is the trimmed rate. 

Then, the penalized Cox regression is performed on 𝐻𝑐𝑎𝑛𝑑 to get the estimate �̂�𝐻𝑐𝑎𝑛𝑑. And then 

the partial likelihood function 𝑙𝑜𝑔ℓ(�̂�𝐻𝑐𝑎𝑛𝑑,𝐻𝑐𝑎𝑛𝑑) corresponding to 𝐻𝑐𝑎𝑛𝑑 under the estimated �̂�𝐻𝑐𝑎𝑛𝑑 

is obtained. If 𝑙𝑜𝑔ℓ(�̂�𝐻𝑐𝑎𝑛𝑑,𝐻𝑐𝑎𝑛𝑑) ≥ 𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘), then 𝐻𝑘+1 = 𝐻𝑐𝑎𝑛𝑑, and then the above process is 

continued on 𝐻𝑘+1 and keep iterating. If 𝑙𝑜𝑔ℓ(�̂�𝐻cand,𝐻𝑐𝑎𝑛𝑑) < 𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘), to avoid falling into the 

local optimum, the idea of accept-reject algorithm is adopted in our study. U is a random number which 

obey Bernoulli distribution with 𝑝 = 𝑒𝜏𝑘(𝑙𝑜𝑔ℓ(�̂�𝐻cand,𝐻𝑐𝑎𝑛𝑑)−𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘)). If U = 1 then 𝐻𝑘+1 = 𝐻𝑐𝑎𝑛𝑑. 

And if U = 0, then 𝐻𝑘+1 = 𝐻𝑘. 

In order to make the algorithm reach the global optimal value, multiple initial subsets can be 
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taken. In order to ensure that the initial subset does not contain outliers, the sample size should be 

smaller. But too small a sample size will cause inaccurate estimation, especially too few samples 

with outcomes (i.e., not censored) in the subset will make it impossible to estimate the coefficient of 

the penalized Cox regression. In this study, the sample size of the initial subset was 20, and a total of 

500 subsets were selected randomly. A two-step AR-Cstep were executed on these 500 subsets. Ten 

subsets with the largest partial likelihood function from the 500 subsets after iteration were selected. 

Then the AR-Cstep algorithm was ran on 10 subsets until convergence. In the 10 convergent subsets, 

the subset with the smallest partial likelihood function is selected as the optimal subset, which is 

represented by𝐻𝑜𝑝𝑡. And a penalized Cox regression was ran on𝐻𝑜𝑝𝑡 to obtain the solution �̂�𝑜𝑝𝑡. 

Table 1. AR-Cstep Algorithm.  

k indicates the number of iterations, and r indicates that the current maximum likelihood value has 

not changed after r iterations. 

While (k<=kmax & r<=2)   

do 

�̂�𝐻𝑘 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥
𝛽
{logℓ(β,𝐻𝑘) − nλ∑𝑃𝛼

n

j=0

(β𝑗)} 

For 𝑖 ∈ 𝐻𝑘, �̂�0(𝑡𝑖) is estimated based on �̂�𝐻𝑘. 

According to ln(𝐻0(𝑡)) = 𝛽0 + 𝛽1ln(𝑡)，�̂�0 and �̂�1 are obtained through median regression. 

          For 𝑖 ∈ 𝐶(𝐻𝑘)，ln (�̂�0(𝑡𝑖)) = �̂�0 + �̂�1ln(𝑡𝑖). 

       For 𝑖 ∈ {1, 2,⋯ , 𝑛}，deviance residual �̂�𝑖 is obtained through �̂�0(𝑡𝑖) and exp(�̂�𝑇𝑋).  

        𝐻𝑐𝑎𝑛𝑑 = {𝑖1, 𝑖2, ⋯ , 𝑖ℎ0} ∪ {𝑗1, 𝑗2, ⋯ , 𝑗ℎ1}，where 

|d̂𝑖1| ≤ |d̂𝑖2| ≤ ⋯ ≤ |d̂𝑖𝑛1|, 𝑖𝑘 is the index of the individual who has an outcome. 

|d̂𝑗1| ≤ |d̂𝑗2| ≤ ⋯ ≤ |d̂𝑗𝑛0|, 𝑗𝑘 is the index of the censored individual. 

ℎ1 = ⌊(𝑛1 + 1)η ⌋，ℎ0 = ℎ − ℎ1，𝑛 = 𝑛0 + 𝑛1. 

�̂�𝐻𝑐𝑎𝑛𝑑 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥
𝛽
{logℓ(𝛽, 𝐻𝑐𝑎𝑛𝑑) − nλ∑𝑃𝛼

n

i=0

(𝛽𝑗)} 

𝑙𝑜𝑔ℓ(�̂�𝐻𝑐𝑎𝑛𝑑,𝐻𝑐𝑎𝑛𝑑) is obtained based on �̂�𝐻𝑐𝑎𝑛𝑑. 

  If 𝑙𝑜𝑔ℓ(�̂�𝐻𝑐𝑎𝑛𝑑,𝐻𝑐𝑎𝑛𝑑) ≥ 𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘)  then 

𝐻𝑘+1 = 𝐻𝑐𝑎𝑛𝑑 

If 𝑙𝑜𝑔ℓ(�̂�𝐻𝑐𝑎𝑛𝑑,𝐻𝑐𝑎𝑛𝑑) < 𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘) then  

𝑝 = 𝑒𝜏𝑘(𝑙𝑜𝑔ℓ(�̂�𝐻cand,𝐻𝑐𝑎𝑛𝑑)−𝑙𝑜𝑔ℓ(�̂�𝐻𝑘,𝐻𝑘)) 

U is a random number which obey Bernoulli distribution with p. 

  if  U=1 then  

𝐻𝑘+1 = 𝐻𝑐𝑎𝑛𝑑 

else 

𝐻𝑘+1 = 𝐻𝑘 

      end 

end 

end 
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2.2.2. Reweighted step 

In this article, we choose the subset of size h n=   η  where η=0.75. So, the trimmed rate 1-η is 

the initial guess that less than 25% of outliers contained in the data. This is a rather conservative 

estimation of proportion of outliers. There may not be so many outliers in the data. Therefore, 

reweighted step is considered to detect outliers via �̂�𝑜𝑝𝑡. Then these outliers are excluded and a new 

subset 𝐻𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is obtained. Then EN-type penalized Cox regression is applied to 𝐻𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 

to get the solution �̂�𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑. Usually, the size of 𝐻𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is larger than h, such that more 

samples can improve the performance of �̂�𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 compared to �̂�𝑜𝑝𝑡. 

In order to make the estimation of baseline risk 𝐻0(𝑡) in deviance residuals more accurate and 

not affected by outliers, 𝐻0(𝑡) was obtained on𝐻𝑜𝑝𝑡. For samples other than 𝐻𝑜𝑝𝑡, the baseline risk 

is also estimated by Eq (6).  

After obtaining the deviance residuals �̂�𝑖 of each observation, define a binary weight for the 

i-th observation as follows: 

𝑤𝑖 = {
1 𝑖𝑓|�̂�𝑖| ≤ 𝛷

−1(1 − 𝛿)

0 𝑖𝑓|�̂�𝑖| > 𝛷
−1(1 − 𝛿)

,                      (3-5) 

whereΦ(x) is the distribution function of a standard normal distribution. We set δ= 0.005 and 

Φ−1(1 − δ) = 2.57.  That means observations with residuals beyond 2.57 are regarded as 

outliers.𝐻reweightedis composed of observations that are not flagged as outliers. 

The reweighted estimator�̂�𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is the solution of the penalized Cox regression based 

on𝐻𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 , It is called Reweighted MTPL-EN (Rwt MTPL-EN). To distinguish them, the 

unweighted �̂�𝑜𝑝𝑡 is called Raw MTPL-EN. 

2.2.3. Choice of the regulator parameter and standardization of predictors 

We select  over a grid of values in the interval (0, λmax] as discussed by Breheny and Huang [14].  

�̂�𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑗∈{1,2,⋯,𝑝}

𝑛−1𝑋𝑗
′ 𝑡 

t is the survival time. In iteration step of AR-Cstep, we take a grid with steps of size 0.05λ̂max and 

α = 0.5 to reduce the computational burden. In the reweighted step, we take a grid with steps of size 

0.01 λ̂max  of  to derive the solution �̂�𝑜𝑝𝑡 and�̂�𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 . The choice of α is selected by 

cross-validation in the interval [0.1,1] with a step size of 0.1. 

It would be better to standardize predictors before applying the penalized Cox regression. 

Standardization mainly aims to eliminate the influence of dimension and quantity of a predictor. 

However, mean and standard deviation computed from all sample are not robust with outliers. In the 

algorithm described above, penalized Cox regression is applied to subsample in every iteration step 

of AR-Cstep. So, we firstly respectively compute mean and standard deviation from subsamples. 

Then we standardize all samples with this mean and standard deviation before applying penalized 

Cox regression. 
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2.3. Simulation settings 

In this section, we will compare the accuracy of elastic net, Raw MTPL-EN and Rwt MTPL-EN 

in variable selection, outlier identification and prediction by simulating whether there are outliers in 

survival data, symmetrical and asymmetric outliers, different censoring ratios, and outliers in the 

response and predictors.  

2.3.1. Simulation data generation 

The simulation data in this study is based on Bender, R., T. Augustin and M. Blettner [17]. 

Assuming that the baseline risk 𝐻0(𝑡) obeys the exponential distribution of λ = 1, the survival time 

T can be generated by the following formula, 

𝑇 =
−𝑙𝑛(𝑈)

𝑒𝑥𝑝(𝑿𝑻𝜷)
 

where U obeys the uniform distribution on [0,1]. The censoring time is generated by an exponential 

distribution with mean 𝑉𝑒𝑥𝑝(𝑿𝑻𝜷), where V obeys the uniform distribution of [𝐶𝐿, 𝐶𝑈]. And 

different values of CL and CU give rise to different censoring ratios.  

2.3.2. Simulation scenario setting 

Considering that the omics data is usually high-dimensional data, and the high group correlation 

caused by gene interaction, the following settings are made. We set the sample size n = 300, the 

number of independent variables p = 1000, where the independent variables X follows a 

p-dimensional multivariate normal distribution 𝑁(0, 𝛴𝑝). The correlation structure of the independent 

variables is assumed to be block correlation. A block includes 50 independent variables. The 

correlation structure within the block is 𝑐𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗) = 𝜌
|𝑖−𝑗|,𝑖 ≠ 𝑗，𝜌 = 0.9. There is no correlation 

between blocks. The related structure within blocks is as follows: 

𝛴 = (

𝛴𝜌 0

0 𝛴𝜌

⋯ 0
⋯ 0

⋯ ⋯
0 0

⋯ ⋯
⋯ 𝛴𝜌

) 

 

Σρ = (

1 𝜌
𝜌 1

⋯ 𝜌49

⋯ 𝜌48
⋯ ⋯
𝜌49 𝜌48

⋯ ⋯
⋯ 1

)

50×50

 

Considering that the effect of a single gene on prognosis is often low, the absolute value of the 

effect size is set between 0.3 and 0.8. The non-zero regression coefficients are set in the first 12 

block groups, and the regression coefficient of each block group is set as: 

𝜷1−50
𝑇 =( 0.3,⋯ , .0.3⏟      

5

, 0,⋯ , 0⏟  
45

), 𝜷51−100
𝑇 =( −0.4,⋯ , . −0.4⏟          

5

, 0,⋯ , 0⏟  
45

), 
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𝜷101−150
𝑇 =(0.5,⋯ , .0.5⏟      

5

,0,⋯ , 0⏟  
45

),𝜷151−200
𝑇 =(−0.6,⋯ , . −0.6⏟          

5

，0,⋯ , 0⏟  
45

)，𝜷201−250
𝑇 =(0.7,⋯ , .0.7⏟      

5

，0,⋯ , 0⏟  
45

)，

𝜷251−300
𝑇 =(−0.8,⋯ , . −0.8⏟          

5

，0,⋯ , 0⏟  
45

)，𝜷301−350
𝑇 =(0.8,⋯ , .0.8⏟      

5

，0,⋯ , 0⏟  
45

)，𝜷351−400
𝑇 =(−0.7,⋯ , . −0.7⏟          

5

，0,⋯ , 0⏟  
45

)，

𝜷401−450
𝑇 =(0.6,⋯ , .0.6⏟      

5

，0,⋯ , 0⏟  
45

)，𝜷451−500
𝑇 =(−0.5,⋯ , . −0.5⏟          

5

，0,⋯ , 0⏟  
45

)，𝜷501−550
𝑇 =(0.4,⋯ , .0.4⏟      

5

，0,⋯ , 0⏟  
45

)，

𝜷551−600
𝑇 =(-0.3,-0.3,-0.3,-0.3,-0.3，0,⋯ , 0⏟  

45

), and𝜷601−1000
𝑇  is set to the zero vector. 

Considering that the censoring rate of survival data is often large, 35% censoring rate was set, 

which was also close to 37.58% censoring rate in glioma data analysis. In addition, censoring rates of 

15%, 25% and 45% were also set to see the effect of censoring rate on the results. 

Referring to the setting of the outliers by Farcomeni, A. and S. Viviani [12], the maximum and 

minimum values of 𝑒𝑥𝑝(𝑿𝑇𝜷)  were recorded as 𝐻𝑅ℎ𝑖𝑔ℎ and 𝐻𝑅𝑙𝑜𝑤  respectively. Then, the 

observations with the proportion of ε were randomly selected from the data set, and their 

corresponding 𝑒𝑥𝑝(𝑿𝑇𝜷)  were changed to 𝑢𝑖𝐻𝑅𝑙𝑜𝑤 + (1 − 𝑢𝑖)𝐻𝑅ℎ𝑖𝑔ℎ . 𝑢𝑖  is a random number 

obeying the Bernoulli distribution with parameter p. Two cases of symmetric outliers (p = 0.5) and 

asymmetric outliers (p = 0.9 and p = 0.1) are set. Figure 1 shows the setting of outliers in the 

simulation data.  

 

Figure 1. Graphical representation of outlier settings in simulated data (scatter plot of 

logarithmic survival time and prognostic index PI). (Notes: 𝑃𝐼 = 𝑒𝑥𝑝(𝑿𝑇𝜷). Black solid 

dots: normal points with outcomes; black hollow dots: censored normal points; red solid 

triangles: outliers with outcomes; red hollow triangles: censored outliers.) 

For elastic net, the R package “glmnetUtils” is used, which is an extension of the R package 

glmnet. The parameter α can also be cross-validated. Among them, the choice of λ adopts default 

choice in the package. That is, 100 steps of equal step size on a log scale from λmin to λmax are 

generated, where λmin = 0.01 and λmax  is the minimum value of λ that makes all regression 

coefficients 0. The range of 𝛼is [0.1,1], and 10 alpha values are generated with a step size of 0.1. 

For MTPL-EN, the trimmed rate is set to 25%.  
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Simulation scenario 1: n = 300, p = 1000, ε = 10%, censoring ratio 35%, Four cases are set: 

(1) No outliers. 

(2) Symmetric outliers, that is, outliers that “lived too long” relative to the prognosis index and 

outliers that “failed too early” relative to the prognosis index each account for 50%. 

(3) Asymmetric outliers, that is, outliers that “lived too long” account for 90%.  

(4) Asymmetric outliers, that is, outliers that “failed too early” account for 90%. 

Simulation scenario 2: n = 300, p = 1000, ε = 10%, symmetrical outliers. Four cases are set: 

(1) Censored rate was 15%. 

(2) Censored rate was 25%. 

(3) Censored rate was 35%. 

(4) Censored rate was 45%. 

Simulation Scenario 3: It was mainly to see the impact on the performance of the elastic net and 

MTPL-EN when outliers deviate from the main data in the response, or when the deviation also 

occurs in the predictors. n = 300, p = 1000, ε = 10%, symmetrical outliers, censoring ratio 35%. 

Case A: 10% individuals are randomly selected, with a 50% probability of min (h (t)), which is 

the minimum value of the risk function, and a 50% probability of max (h (t)), which is the maximum 

value of the risk function.  

Case B: Others are the same as case A, but there is a 50% probability that the outliers are min (h 

(t)) / exp (15) and a 50% probability is max (h (t)) * exp (15).  

Case C: Others are the same as A, and the independent variables of the outliers are set to follow 

the independent N (3,1) distribution.  

Case D: Others are the same as B, and the independent variables of the outliers are set to follow 

independent N (3,1) distributions.  

In case B compared with case A, we can see that the survival time of the outlier that “lived too 

long” is longer, and that of the outlier that “died too early” is shorter. Compared with case A, in case 

C, the outliers are shifted to the right. Compared to case A, in case D, outliers are shifted to the right 

and deviates also farther from the main data in the response. Graphical representation is shown in 

Figure S1 in the supplementary file. 

Training data and test data were generated according to the above sampling schemes. Training 

data were generated to fit the model and evaluate the accuracy of variables selection and outlier 

detection. And test data were generated to evaluate the prediction of the model. The test data were 

generated without outliers. For each setting, we calculated the average of the performance measures 

over 100 simulation replicates implemented in R software. Codes is available on Github 

(https://github.com/hwsun2000/MTPL-EN). 

3. Results 

3.1. Simulation results 

3.1.1. Results of scenario 1 

Figure 2 shows the performance of EN, Raw MTPL-EN, and Rwt MTPL-EN when there were 

no outliers, and when there were 10% outliers in the data.  

Here we used two indicators Sn (sensitivity) and FPR (false positive rate) in the screening 
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test[18]. The outliers to be identified is regarded as patients to be detected in the screening test. Sn 

represents the proportion of truly outliers among outliers that identified. FPR represents the 

proportion of normal samples that are determined to be outliers. A detailed description of the 

indicators is provided in the supplementary file. PSR (Positive Selection Rate) indicates the 

proportion of real disease-related biomarkers that are screened out, and FDR (False Discovery Rate) 

indicates the proportion of biomarkers screened out that are not related to the disease. We used a 

comprehensive indicator GM [19,20], which is the geometric mean of (PSR and (1−FDR)) to 

measure the accuracy of variable selection. High PSRs and low FDRs will give high GMs, which 

indicates high accuracy of variable selection. A detailed description of the indicators is provided in 

the supplementary file. 

When there were no outliers, EN performed best. From both the accuracy of variable selection 

and the log-likelihood function, the results of Rwt MTPL-EN were close to EN. It showed that Rwt 

MTPL-EN didn’t lose much efficiency for datasets without outliers. 

 

Figure 2. Comparison of results between EN and MTPL-EN under scenario 1  

(n = 300, p = 1000). 
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When there are outliers, the estimation of EN is affected by outliers. Compared with the absence 

of outliers, the FDR changes little, but its PSR is reduced by about 60%, indicating that EN will miss 

a significant percentage of non-zero variables. The performance of MTPL-EN is better than EN. 

Compared with the case the absence of outliers, the FDR of Rwt MTPL-EN remains basically 

unchanged, and the PSR exceeds 50%. From the perspective of the comprehensive indicator GM, it 

shows that the accuracy of Rwt MTPL-EN in variables selection remained stable. 

As far as the accuracy of outlier identification is concerned, 25% of samples were considered as 

outliers by Raw MTPL-EN, which is higher than the percentage of outliers actually set in the 

simulation experiment. So, its FPR was high with 18%. For Rwt MTPL-EN, outliers were further 

identified the through the reweighted step, so that the number of outliers was less than that in Raw 

MTPL-EN. And its FPR was less than 7%. The sensitivity is higher than EN (Sn, 0.75 vs 0.42), see 

Figure 2. Taken together, detected outliers was the least by EN and has the smallest FPR, but its 

sensitivity is also the lowest. The outliers identified by Rwt MTPL-EN has its FPR less than 7%, and 

its sensitivity reached more than 70%. 

According to the log likelihood function, when there were outliers, the log-likelihood function 

of MTPL-EN were much larger than that of EN. Log-likelihood function of of Rwt MTPL-EN were 

higher than that of Raw MTPL-EN and EN, indicating that Rwt MTPL-EN had the highest 

prediction accuracy when there were outliers. 

As can be seen from Figure 2, compared with the case of symmetric outliers, En behaved 

differently under asymmetric outliers. When 90% of the outliers were outliers that “lived too long” 

relative to their prognosis index, the accuracy of the variable selection of EN was worse (GM 0.28 vs 

0.29), and the ability to identify outliers becomes worse (Sn 0.24 vs 0.42, FPR 0.03 vs 0.003). 

However, the accuracy of variables selection of Rwt MTPL-EN was improved (GM, 0.43 vs 0.39) 

and the ability of outliers identification was also improved (Sn 0.94 vs 0.75, FPR 0.07 vs 0.07). 

When 90% of outliers were samples that “died too early” relative to their prognosis index, the 

impact on EN was smaller than that of symmetrical outliers. The accuracy of variable selection was 

higher (GM 0.40 vs 0.28) and the ability of outliers identification remains almost unchanged (Sn 0.51 

vs 0.42, FPR 0.001 vs 0.003). The effect on the robust Rwt MTPL-EN was similar to that of the 

symmetrical outliers. The accuracy of variable selection remains was improved (GM 0.44 vs 0.39), 

and the ability to identify outliers decreases (Sn 0.66 vs 0.75, FPR 0.03 vs 0.07). 

Compared to the outliers that “failed too early”, the outliers that “lived too long” made EN 

perform worse. It was easy for Rwt MTPL EN to identify outliers that “lived too long”, and the 

performance of variable selection is not affected by outliers.  

In short, when there were no outliers, the results of MTPL-EN were close to EN. When there 

were 10% outliers, the accuracy of variable selection and prediction of MTPL-EN were higher than 

those of EN. More outliers were identified by Rwt MTPL-EN and its FPRs were within 7%. 

Compared to outliers “failed too early”, outliers that “lived too long” made EN perform worse. And 

it was easier for Rwt MTPL-EN to identify outliers that “lived too long”. In any case, the 

performance of Rwt MTPL-EN remained stable under outliers. 

3.1.2. Simulation Scenario 2 

As can be seen from Figure 3, when the censored ratio was 15% and 25%, the accuracy of 

variable selection of Rwt MTPN-EN is higher than that when the censored ratio is 35%. And the 
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accuracy of outlier identification is also improved.  

When the censored ratio is 45%, the accuracy of variable selection and outlier identification 

decreases. But EN was lower than Rwt MTPN-EN on the accuracy of variable selection, outlier 

identification or prediction. There is a large gap in the ability to identify outliers between EN and 

Rwt MTPN-EN. When the censoring ratio is 45%, the sensitivity of outliers detection of EN is 0.370, 

and the FPR is 0.007. The sensitivity of Rwt MTL-EN is 0.748, and the FPR is 0.088. This showed 

that whenever the censored rate was large or low, using Rwt MTL-EN could identify outliers 

accurately. 

 

Figure 3. Comparison of results between EN and MTPL-EN under different censoring 

proportions (n = 300, p = 1000). 

3.1.3. Simulation scenario 3 

As can be seen from Figure 4 that, in case B, when outliers deviate in the response farther, 

outlier detection results of Rwt MTPL-EN were better than that of Case A (Sn 0.83 vs 0.75, FPR 0.07 

vs 0.07). The PSR and FDR of variable selection of Rwt MTL-EN and EN changed little. The 
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prediction accuracy of EN was lower than that in case A (Log-likelihood, -876 vs -804). Rwt 

MTL-EN performed better than EN in terms of outlier detection, variables selection and prediction.  

In case C, when outliers also deviated in the predictors compared to case A, outliers detection 

accuracy of EN decreased (Sn 0.344 vs 0.417, FPR 0.001 vs 0.003). Variables selection accuracy of 

EN changed (PSR 0.578 vs 0.261, FDR 0.806 vs 0.563). That is due to the number of variables 

selected by EN increased from 47.9 to 185.6 on average, which is much larger than 60, the number 

of true non-zero variables. The number of variables selected by Rwt MTPL-EN changed little, and 

the outlier identification and log-likelihood functions also remained stable. 

 

 

Figure 4. Comparison of the results between EN and MTPL-EN when there were 

outliers in the response or (and) predictors (n = 300, p = 1000). 

In case D, when outliers deviate in the response farther than case C, the results of EN, Raw 

MTL-EN and Rwt MTL-EN were similar to that in case C. 

As can be seen from above simulation experiments, the results of EN were impacted by outliers. 

However, outlier detection accuracy of Rwt MTPL-EN was much higher than that of EN. The 

prediction and variables selection accuracy were higher than EN, which showed that Rwt MTPL-EN 
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could resist the outliers in both predictors and response. 

In addition, we simulated the situations when the trimmed ratio 1-η was 5%, 15%, 25%, and 

35%, respectively. The results are shown in Figure S2 of the supplementary materials. As can be seen 

from Figure S2, since the proportion of outliers is 10%, Rwt MTPL-EN had little difference in the 

accuracy of outliers detection and variable selection when the trimmed ratio 1-η is 15%, 25% and 

35%. But when the trimmed ratio was 35%, the prediction accuracy was slightly lower. When the 

trimmed ratio was 5%, the sensitivity of outliers detection decreased. So Rwt MTPL-EN remained 

stable when the trimmed ratio was higher than the outlier ratio. However, when the proportion of 

trimmed samples was much higher than that of outliers, the accuracy of outliers detection and 

variable selection remained stable, but the accuracy of prediction decreased slightly. When the 

trimmed ratio was lower than the outlier ratio, the accuracy of outlier detection was affected. In 

practice, the percentage of outliers is usually less than 25%, so we recommend a trimmed ratio of 25% 

to make it larger than the percentage of outliers, so that the result is not affected by outliers. If, based 

on practical experience, the percentage of outliers in the data is likely to exceed 25%, the trimmed 

ratio should be increased. 

We also simulated situations of different sample sizes n = 300 and 500, and different dimensions 

p = 600 and 1000, as shown in Figure S3 of the supplementary material. The accuracy of variable 

selection and outlier detection was the best when n = 500 and p = 600, and the accuracy decreased 

when the sample size n decreased or the dimension p increased. 

3.2. Results of the analysis on a TNBC dataset 

3.2.1. Glioma gene expression dataset 

Example data were obtained from gene microarray expression data of 301 patients with glioma 

in China (CGGA, http://www.cgga.org.cn/), and 298 patients were analyzed after removing 3 

patients with missing survival time. Rwt MTPL-EN and EN were used to screen the genes that affect 

the prognosis of gliomas, and to detect the possible outliers. The results of the two methods were 

compared. The parameter setting of two methods were the same as that of simulation evaluation. 

The median survival time of the data set was 38.3 months, and the range was 0.7~158.7 months, 

and the censored rate was 37.58%. There were 116 cases of glioma WHO II, 66 cases of III, 126 

cases of IV, and 3 cases of missing WHO classification. The clinical variables include TCGA subtype, 

PRS type, histological type, grade, gender, age, radiation status, chemotherapy status, IDH mutation 

status, 1p19q co deletion status and so on. Gene expression microarray expression profiles were 

analyzed on an Agilent Whole Human Genome Array. There were 19,416 genes in the gene 

expression data.  

3.2.2. Application of EN to glioma dataset 

In this study, EN and Rwt MTPL-EN were applied to glioma gene expression dataset (n = 298, 

p = 19416). The parameter setting was the same as that set in the simulation study. 

Eighty-seven genes were identified by EN, which are listed in supplementary file. 

As can be seen from Table 2 and Figures 5 and 6 that, there were 12 outliers identified by EN, 

and only one outlier was that “lived too long” relative to the prognosis index estimated by EN. The 
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remaining 11 were all outliers that “died too early” relative to the prognostic index estimated by EN. 

As shown in Figure 5, 11 outliers were also the dead individuals with the shortest survival time in all 

samples. 

Table 2. outliers identified by EN and their corresponding values on clinical variables. 

ID Time(day) Status Residual PI** WHO grade 
Histological 

type 
Age 

IDH 

mutation 

CGGA_444 225 1 2.02 -0.33 IV GBM 70 Wildtype 

CGGA_640* 3922 0 -2.66 0.64 IV GBM 55 Wildtype 

CGGA_649 147 1 1.99 0.64 IV GBM 58 Wildtype 

CGGA_713 27 1 2.22 2.06 IV GBM 35 Wildtype 

CGGA_764 67 1 2.36 1.33 IV GBM 50 Wildtype 

CGGA_346 104 1 2.21 0.81 IV GBM 45 Wildtype 

CGGA_1011 109 1 2.18 0.73 IV GBM 46 Wildtype 

CGGA_662 284 1 2.29 -1.39 II O 59 Mutant 

CGGA_1059 21 1 2.71 1.51 II rA 54 Mutant 

CGGA_406 90 1 2.06 1.48 III rAA 24 Mutant 

CGGA_719 101 1 2.44 0.41 IV sGBM 51 Wildtype 

CGGA_1068 68 1 2.15 1.51 IV sGBM 29 Mutant 

*：Outliers that “lived too long” relative to prognosis index that estimated by EN. **：𝑃𝐼 = 𝒙𝒊
′𝜷𝐸𝑁. 

 

Figure 5. Scatter plot of the prognostic index PI estimated by EN and survival time. 

(Note: black solid dots: normal points with outcomes; black hollow dots: censored normal points; red 

solid triangles: outliers with outcomes; red hollows: censored outliers, 𝑃𝐼 = 𝒙𝒊
′𝜷𝐸𝑁) 
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Figure 6. Deviance residuals corresponding to the model estimated by EN. (Note: black 

hollow dots: normal points; red hollow triangles: outliers) 

However, from Figure 5, most of the outliers who “failed too early” had PI greater than 0. And 

even 5 outliers whose PI were greater than 1, which showed a relatively high risk of death estimated 

from gene expression data, and their survival times were relatively short. So, it is not appropriate to 

consider them as “outliers” estimated from gene expression data. From Table 2, according to the 

clinical characteristics of the outliers, 8 of the 11 individuals were classified as grade IV by WHO. In 

terms of age, six individuals were over 50 years old, and eight were over 40 years old. From the 

perspective of histological types, 8 are glioblastomas (GBM or sGBM) with poor prognosis. From 

the IDH mutation, 7 are wild-type with poor prognosis. So, for most of the outliers that "failed too 

early”, their illness was also serious, and it was also unreasonable to identify them as outliers from 

their clinical characteristic data. 

3.2.3. Results of Rwt MTPL-EN applied to glioma dataset 

As can be seen from Table 3, EN identified 87 genes and 12 outliers. Its log-likelihood 

functions was −833.4, and the C index was 0.842. The AUC corresponding to the median survival 

time was 1164 days was 0.793. Rwt MTPL-EN screened 56 genes and identified 18 abnormal points, 

and the corresponding prediction index was lower than EN. However, for a subset with 18 outliers 

removed, the log-likelihood, C-index, and AUC of Rwt MTPL-EN were all higher than those of EN.  

As can be seen from Table 4, Figures 7 and 8, the number of outliers identified by Rwt 

MTPL-EN was 18, of which 3 were outliers that are “failed too early” relative to the prognosis index 

estimated by Rwt MTPL-EN. There are 15 outliers that “lived too long”. Of the 15 outliers that 

“lived too long”, 13 had prognostic indices greater than 0, 10 were greater than 1, and 5 were greater 

than 2. Among them, the absolute value of 8 residuals were greater than 4, indicating that most 

outliers who "lived too long" had a higher risk of death estimated from gene expression data. This 

means that there were different correlation patterns between the prognosis and covariate values in 
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these outliers from that in most individuals. According to the clinical characteristics, three of the 15 

outliers that “lived too long” were classified as IV and 6 were on level III. In terms of IDH mutation 

types, there were 9 wild types with poor prognosis. This means that most of the 15 individuals who 

“lived too long” were obviously outliers with high risk but “lived too long”. 

Table 3. Number of genes, outliers, prediction estimated by EN and Rwt MTPL-EN. 

Methods Genes  Outliers  Log-likelihood Log-likelihood 

(subset*) 

C-index C-index 

(subset*) 

AUC# AUC# 

(subset*) 

EN 87 12 -833.4 -781.3 0.831 0.842 0.793 0.800 

Rwt MTPL-EN 56 18 -850.2 -768.8 0.785 0.851 0.773 0.803 

* Subset refers to the subset after removing 18 outliers identified by Rwt MTPL-EN; #: ROC curve corresponding 

to a median survival time of 1164 days. 

Table 4. Outliers identified by Rwt MTPL-EN and corresponding values in clinical variables. 

ID Time(day) status devres PI** WHO grade Histology Age IDH_mutation 

CGGA_11* 155 1 2.86 0.98 IV GBM 57 Wildtype 

CGGA_225 1741 1 -4.48 2.33 IV GBM 32 Wildtype 

CGGA_640 3922 0 -14.20 3.10 IV GBM 55 Wildtype 

CGGA_365 3593 0 -3.05 0.15 II A 32 Mutant 

CGGA_331 1638 1 -3.38 1.99 III AA 27 Wildtype 

CGGA_352 4304 0 -3.69 0.26 III AA 18 Wildtype 

CGGA_393 2190 1 -3.43 1.58 III AOA 65 Mutant 

CGGA_438 686 1 -2.81 3.06 III AOA 53 Mutant 

CGGA_577 3901 0 -4.91 0.98 III AA 38 Wildtype 

CGGA_275 4387 0 -6.59 1.39 II O 43 Wildtype 

CGGA_323 4338 0 -4.99 0.86 II O 48 Wildtype 

CGGA_484 4116 0 -2.86 -0.18 II O 32 Mutant 

CGGA_868 3640 0 -14.75 3.29 II O 37 Mutant 

CGGA_523 4063 0 -5.13 1.01 II OA 61 Mutant 

CGGA_541 4047 0 -2.73 -0.25 II A 36 Wildtype 

CGGA_662* 284 1 2.79 -2.41 II O 59 Mutant 

CGGA_1059* 21 1 2.68 1.86 II rA 54 Mutant 

CGGA_474 2029 0 -6.70 2.60 III AO NA Wildtype 

*: Outliers that “died too early” relative to prognosis index that estimated by Rwt MTPL-EN. **：𝑃𝐼 =

𝒙𝒊
′𝜷𝑀𝑇𝑃𝐿−𝐸𝑁. 
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Figure 7. Scatter plot of the prognostic index PI estimated by Rwt MTPL-EN and 

survival time. (Note: black solid dots: normal points with outcomes; black hollow dots: censored 

normal points; red solid triangles: outliers with outcomes; red hollows: censored outliers, 𝑃𝐼 =

𝒙𝒊
′𝜷𝑀𝑇𝑃𝐿−𝐸𝑁) 

 

Figure 8. Deviance residuals corresponding to the model estimated by Rwt MTPL-EN. 

(Note: black hollow dots: normal points; red hollow triangles: outliers) 

Among 3 outliers that “failed too early” identified by Rwt MTPL-EN, the survival time of 

CGGA was 21 days and their outcomes were death, but the prognosis index were very low, only 

−2.41. According to the covariate value of the individuals, they should have longer survival times. 

This showed that there were different correlation patterns between the survival time and covariates of 

these individuals. The other two outliers that “failed too early”, CGGA_1059 and CGGA_11, had 

shorter survival time, which were 21 days and 155 days respectively. However, their prognostic 

indexes were higher, 0.98 and 1.86 respectively, indicating that they were not obvious outliers.  

Except for CGGA_640, EN did not identify other outliers that “lived too long”. As shown in the 

results of simulation experiments, outliers that “live too long” were hardly detected by EN but 
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accurately detected by Rwt MTPL-EN. In addition, the outliers that “lived too long” had a greater 

impact on the accuracy of variable selected by EN than outliers that “failed too early”. Outliers that 

“lived too long” were easily identified by Rwt MTPL-EN, so that their influence on performance of 

EN could be removed. 

 

Figure 9. Fifty six Genes identified by Rwt MTPL-EN and their coefficients. 

(Red dots: genes related to gliomas have been reported in the literature) 

 

As can be seen from Figure 9 and Table S5 in supplementary file, Rwt MTPL-EN identified 56 

genes, 19 of which have been reported in the literature to be related to the prognosis or occurrence of 

glioma. For example, HSPB11 (Cheng, W., M. Li, Y. Jiang, C. Zhang, J. Cai, K. Wang and A. Wu 

[21]), DIO2 (Bunevicius, A., E. R. Laws, A. Saudargiene, A. Tamasauskas, G. Iervasi, V. Deltuva, T. 

R. Smith and R. Bunevicius [22]), PTPRE (Carvalho, D., A. Mackay, L. Bjerke, R. G. Grundy, C. 

Lopes, R. M. Reis and C. Jones [23]), HOXC8 (Sibin, M., S. Harshitha, K. Narasingarao, I. B. 

Dhananjaya, P. S. Dhaval and G. Chetan [24]), TMPO (Zhang, L., G. Wang, S. Chen, J. Ding, S. Ju, 

H. Cao and H. Tian [25]), ADAMDEC1 [26], ARL6 [27], ATOH8 [28], Gpr17 [29], HOXA3 [30], 

HOXC13 [31], KAT2A [32], PDCD5 [33], POLL [34], PPARA [35], PSMC3IP [36], PSTPIP1 [37], 

RRP7B [38], Sell [39]. 

EN identified 87 genes, of which 22 were reported to be related to gliomas, see Table S4. 

Among them, 28 genes overlapped with those by Rwt MTPL-COX, which was shown in Table S5. 

Of these 28 genes, 9 genes have been reported in the literature to be related to gliomas. However, 

there are still 10 reported genes (HSPB11, PTPRE, PSMC3IP, GT198, PPARA, PDCD5, TMPO, 

ARL6, ATOH8, RRP7B) that were not screened by EN. Among them, we divided patients into two 

groups according to whether the expression value of ARL6 was greater than 0, and compared the 

survival curves of the two groups. In all samples, the p value of the survival curve comparison 

between the two groups is 3 × 10−5. However, the p value of the survival curves of the two groups 

in the subset without outliers is 3 × 10−7 as shown in Figure S4 in the supplementary file. This 

suggests that the presence of outliers leads to the underestimation of the effect of ALR6 on the 

prognosis of gliomas. 

Although other genes identified by Rwt MTPL-EN were not reported to be associated with 

gliomas, there are reports in the literature related to the occurrence or prognosis of brain diseases or 

other tumors. For example, TBC1D5 [40], APITD1(Han, S. J., K. Begum, C. E. Foulds, R. A. 
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Hamilton, S. Bailey, A. Malovannaya, D. Chan, J. Qin and B. W. O'Malley [41]), CCDC34 [42], 

CKS2 [43], KIAA0141 [44] and USP34 [45]. As potential genes related to the prognosis of glioma, 

they provide reference information for the next experimental verification. 

Through the analysis of the glioma gene expression data, only 28 genes selected by Rwt 

MTPL-EN and EN were coincident, indicating that there were samples in this data that have a 

greater impact on the estimation of EN. The dependence structure of these patients’ survival time and 

covariates is different from that of other patients, that is to say, they “died too early” or “lived too 

long” relative to the model’s estimated risk of death. After removing the outliers, the prediction 

accuracy of Rwt MTPL-EN was higher than that of EN. In terms of identified outliers, most of 

outliers identified by EN were those “failed too early”, but most of them were not obvious outliers 

according to their PI and clinical variables. And only one outlier that “lived too long” was identified, 

indicating that the sensitivity in identifying outliers that “lived too long” was low. Most of outliers 

that identified by Rwt MTPL-EN were those “lived too long”, and most of them were obvious 

outliers from their clinical characteristics and prognostic index. And through simulation experiments, 

it can be known that outliers that “lived too long” had a greater impact on the accuracy of variable 

selection of EN. Rwt MTPL-EN had advantages in identifying outliers that “lived too long”. So, their 

influence on the estimation of EN can be removed by Rwt MTPL-EN.  

4. Discussion 

It is a great challenge to find biomarkers related to prognosis from high-dimensional genomic 

data, and to be able to resist the influence of noise and heterogeneity of samples in the experimental 

process, to obtain robust estimation. In this article, a robust penalized Cox model based on maximum 

trimmed partial likelihood estimation was established, and an AR-Cstep algorithm combining 

Metropolis-type acceptance-rejection algorithm and C-step algorithm was proposed to solve the 

estimation of MPTL-EN. By simulating high-dimensional datasets with outliers, the robust 

MPTL-EN performed better than non-robust EN-type penalized Cox regression in variable selection, 

outlier detection, and prediction. Moreover, Rwt MTPL-EN is better than Raw MTPL-EN. When 

outliers in response deviated farther, the number of vairables selected by EN became less. When the 

outliers in predictors also occurs, the number of vairables selected by EN was far greater than the 

number of real non-zero variables. Both situations made the accuracy of variables selection of EN 

decrease. However, Rwt MTPL-EN remains stable under various conditions, which indicates that the 

Rwt MTPL-EN can resist outliers in the reponse and predictors. According to the analysis of glioma 

gene expression data, the variables selected by Rwt MTPL-EN were different from those of EN, and 

a higher proportion of genes related to glioma had been identified by Rwt MTPL-EN. After 

removing outliers, prediction accuracy of Rwt MTPL-EN was higher than that of EN, and more 

outliers that “lived too long” relative to the prognosis index were identified. 

The robust penalized Cox model based on trimming directly selected variables for 

high-dimensional dataset. Compared with robust estimation after reduced dimensions from high 

dimensions, it avoided the influence of outliers on the accuracy of dimensionality reduction. 

Compared with the residual analysis, it avoided the influence of “masking” and “swamping” on the 

estimation. Compared with other robust methods such as Huber’s loss function and Tukey’s loss 

function, it could resist the outliers in the response and the predictors.  

The AR-Cstep algorithm, which combined the acceptance-rejection and C-step algorithm, can 
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solve the problem that the C-step algorithm does not converge because the penalty parameter 

changes during the iteration. In order to achieve the maximum of the trimmed likelihood function, 

and to avoid falling into local optimum, the metropolis-type probabilistic acceptance rejection 

algorithm was combined. This improvement can make the AR-Cstep algorithm generalized to other 

robust penalized regression models, such as robust Adaptive LASSO, Group LASSO, SCAD, MCP 

and so on. The improved AR-Cstep algorithm based on residuals no longer relies on separating 

individual contributions from the model's likelihood function, but instead used residuals to measure 

the individual contributions. This idea can also be generalized to solve the robust problem of similar 

models. Such as robust Cox regression in low-dimensional situations, conditional logistic regression, 

and so on. In the likelihood function of these models, it is difficult to separate the individual's 

contribution to the objective function, so AR-Cstep algorithm based on residuals can be used. 

In this paper, it is found that the outliers that “lived too long” and “failed too early” had 

different effects on EN, and outliers that “lived too long” had a greater impact on the estimation of 

EN. This is also the case in Cox regression. Valsecchi M et al. [8] explained why long-term survivors 

have a greater impact on Cox regression, which is also applicable to penalized Cox regression. First, 

long-term survivors are part of many risk sets (all individuals who fail before them). Secondly, the 

risk set of early failure individuals is usually very large, but the individuals who fail at the end of the 

study correspond to very small risk sets. The risk sets of the two groups with different exposure 

states were similar at the beginning. But over time, as the individual failure rate of the high-risk 

group is higher than that of the low-risk group, the comparison of the risk set size between the two 

groups will change accordingly. In the end, the risk sets of the two groups are highly unbalanced, and 

the risk set of the high-risk group may be only one or two individuals. So, removing or adding such 

an individual will have a great impact on the estimation of the hazard ratio. 

Subsequent analysis methods of identified outliers need to be explored in combination with the 

application. Peng S et al. [10] compared the integrated genomics of long-term survival and 

short-term survival glioma patients to discover the molecular markers with different prognoses after 

standard treatment. Therefore, individualized treatment can avoid treatment failure caused by wrong 

treatment. According to Burrell, R. A., N. McGranahan, J. Bartek and C. Swanton [6], phenotypic 

heterogeneity is not determined solely through genetic distinctions between subclones, but also 

through stochastic events in gene expression and protein stability, epigenetic divergence and 

micro-environmental fluctuations. There is a crucial need to understand mechanisms driving 

genomic instability so that therapeutic approaches to limit cancer diversity, adaptation and drug 

resistance can be developed. 

In practice, when the penalized Cox model is used to screen prognostic biomarkers, it is often 

impossible to know whether there are outliers in the data. So, both robust and non-robust models can 

be used to fit the data. If the results of the variable selection of the two models are similar, it means 

that the non-robust model is not affected by outliers, and there are no outliers in the data. In this case, 

a non-robust model can be used because the efficiency of the non-robust model is higher. However, 

If the results of the two models are quite different, it means that there are some individuals who are 

not suitable for the model and the penalized Cox regression model estimation is incorrect. At this 

time, the robust Cox model is more suitable for this data. 

In this article, we assumed that the pure data without outliers satisfied the proportional risk 

assumption of Cox model. Time dependent covariates often needs to be specified according to 

practical experience, which requires a better understanding of the impact of associated biomarkers on 
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prognosis. If we are at the stage of extensive screening of related biomarkers from high-dimensional 

data, and the actual problems are not well understood, the proportional risk model can be as a 

preliminary choice. Whether the variable is related to the prognosis is estimated firstly, and then 

whether the influence of the variable changes with time is determined by a more sophisticated model. 

5. Conclusions 

The robust penalized Cox model based on trimming Rwt MTPL-EN established in this paper can 

select variables more accurately than the non-robust EN model when outliers exist. It can resist 

outliers both in response and predictors. Rwt MTPL-EN can identify outliers more accurately, 

especially in identifying outliers that “lived too long”, while outliers that “lived too long” had a 

greater impact on the accuracy of variables selection in EN. The AR-Cstep algorithm established in 

this article solves the problem that the C-step algorithm does not converge due to the change of the 

penalty parameters of penalized regression. It no longer depends on separating the individual 

contributions from the likelihood function of the model. This improvement allows the AR-Cstep 

algorithm to be generalized to more models. 
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