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Abstract: As COVID-19 continues to spread across the world and causes hundreds of millions of
infections and millions of deaths, medical institutions around the world keep facing a crisis of medical
runs and shortages of medical resources. In order to study how to effectively predict whether there are
risks of death in patients, a variety of machine learning models have been used to learn and predict
the clinical demographics and physiological indicators of COVID-19 patients in the United States of
America. The results show that the random forest model has the best performance in predicting the risk
of death in hospitalized patients with COVID-19, as the COVID-19 patients’ mean arterial pressures,
ages, C-reactive protein tests’ values, values of blood urea nitrogen and their clinical troponin values
are the most important implications for their risk of death. Healthcare organizations can use the
random forest model to predict the risks of death based on data from patients admitted to a hospital
due to COVID-19, or to stratify patients admitted to a hospital due to COVID-19 based on the five key
factors this can optimize the diagnosis and treatment process by appropriately arranging ventilators, the
intensive care unit and doctors, thus promoting the efficient use of limited medical resources during the
COVID-19 pandemic. Healthcare organizations can also establish databases of patient physiological
indicators and use similar strategies to deal with other pandemics that may occur in the future, as well
as save more lives threatened by infectious diseases. Governments and people also need to take action
to prevent possible future pandemics.

Keywords: COVID-19; death risk feature; machine learning; tree model; ensemble learning;
emergency triage strategy

1. Introduction

Since the beginning of 2020, the pandemic of COVID-19 has broken out in countries around the
world. So far, more than 600 million people have been infected with COVID-19 worldwide, of which
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more than 6.5 million have died. The dramatic increase in the number of new infections has put
healthcare facilities around the world under enormous pressure as variants of the COVID-19 virus
continue to become more contagious. The study by Gabutti et al. [1] pointed out that the difficulties
caused by repeatedly occuring conditions comparable to the early months of the COVID-19 pandemic
have put enormous pressure on health systems in almost all European countries.
Mahendradhata et al. [2] assessed the performance of the Indonesian healthcare system during the
COVID-19 pandemic. They pointed out that due to the large-scale infections, the country has
experienced medical supply shortages and severe difficulties in medical waste disposal throughout the
pandemic, while at the same time, medical workers also faced serious mental health risks because of
the pressure from their work. With the continuous emergence of new variants of COVID-19 viruses,
such as delta, and the progress of COVID-19 around the world, the mortality rate of patients with
COVID-19 has shown a declining trend; the relevant investigation report of the USA’s Centers for
Disease Control and Prevention confirmed the authenticity of this situation [3]. But, the latest
Omicron variant has caused a more severe death rate for COVID-19 patients with greater infectivity.

Notari and Torrieri [4] discussed risk factors for the spread of COVID-19 and the extent to which
these factors are important through the use of statistical analysis. Coccia [5] studied the effects of
vaccination against COVID-19. The results of the survey show that governments can reduce
confirmed cases and deaths from COVID-19 by administering an average of about 80 doses of
COVID-19 vaccine per 100 inhabitants. But due to the resurgence of the COVID-19 pandemic since
May 2021, this number has risen to 90. Benati and Coccia [6] have analyzed the relationship between
public governance and COVID-19 vaccination in 112 countries in early 2021 to assess their readiness
to respond to the pandemic crisis in a timely manner. The findings suggest that the COVID-19
vaccine doses per 100 residents are highly positively correlated with the overall governance index,
and that an increase in the overall governance index improves the expected vaccination of COVID-19
vaccine doses. But other research works show that despite higher vaccination rates in all countries
during the outbreak of COVID-19 Omicron variant, the total number of daily hospitalizations during
this period is still higher than the number of patients hospitalized during the delta variant wave [7].

Due to the simultaneous increase in the number of infections and deaths from COVID-19 caused by
the Omicron variant, there has been a new round of more serious medical runs. Hung et al. [8] believed
that the Omicron variant became the dominant COVID-19 strain, resulting in a surge in hospitalizations
and shortages of medical staff in every state in the United States of America, with major implications
for the USA healthcare system. Based on this background, it can be considered that, for medical
institutions around the world, an effective way to triage COVID-19 patients and allocate Intensive Care
Unit (ICU) beds and intensive care equipment to patients with a higher risk of death to save more lives
by using the tense first aid resources more effectively have became urgent and important issues in the
current clinical treatment of COVID-19 patients.

The symptoms of patients infected with the new strain of COVID-19 are usually mild and limited,
but at the same time, it is undeniable that COVID-19 is still very serious and even fatal to a considerable
number of COVID-19 patients. Therefore, determining which of them are more likely to become
seriously ill or even die is important for medical institutions that treat patients with COVID-19 to
develop emergency triage strategies. This study aims to fit statistical models and machine learning
models based on the basic health conditions and vital signs data of COVID-19 patients contained in
historical data, hoping to effectively and accurately predict the death risk of COVID-19 patients who
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have just been admitted to the hospital and ultimately alleviate the impact of the COVID-19 pandemic
on medical resources to a certain extent.

2. Theoretical framework

Research on classification models is one of the main research areas of machine learning. From
logistic regression models to various new neural network models, their accuracy on various
classification tasks continues to increase. Shipe et al. [9] demonstrated through research that the
development of a logistic regression-based binary outcome prediction model can help healthcare
professionals and patients by providing patient risk stratification analysis to support tailored clinical
decisions and improve patient outcomes and quality of care. Christodoulou et al. [10] reviewed
various predictive models in clinical research. They have pointed out that typical machine learning
models such as classification trees, random forest, artificial neural networks and support vector
machines (SVMs) have no performance advantage over logistic regression for clinical
prediction models.

Shaban et al. [11] have proposed an improved K-nearest neighbor (K-NN) model i.e., an enhanced
K-nearest neighbor (EKNN) model, and they used the EKNN to construct a COVID-19 patient
detection strategy. The results showed that this strategy provided faster and more accurate results than
other techniques at the time. Singh et al. [12] have used an SVM to generate real-time predictions of
COVID-19 and explored the impact on COVID-19 identification, death, and recovery.

The random forest was officially published by Breiman [13] in the journal “Machine Learning”
in 2002; this model has been the classic representative of bagging algorithms in ensemble learning
for nearly two decades. A random forest integrates multiple trees for model fitting in the form of a
voting decision, which effectively improves the prediction performance. Khalilia et al. [14] compared
the accuracy of models such as random forests and SVMs in predicting the risk of eight diseases. It
was found that the area under the receiver operating characteristic (ROC) curve of the random forest
was larger than that of SVM, simple bagging algorithm and boosting algorithm. In addition, a random
forest has the advantage of calculating the importance of each variable in the classification process.

Ezzoddin et al. [15] used LightGBM to predict the characteristics of the extracted chest X-ray
images of COVID-19 patients. LightGBM reached 99.20 and 94.22% accuracies on the two-class
(i.e., COVID-19 and No-findings) and multi-class (i.e., COVID-19, Pneumonia and No-findings)
classification problems, respectively. XGBoost was proposed by Chen and Guestrin [16] in 2015. It is
considered to be one of the best open-source ensemble learning models, and it is widely used in data
science competitions and industry. XGBoost improves the gradient boosting decision tree (GBDT)
from the regularization of the loss function and the Taylor expansion of the error part, and it optimizes
the operating efficiency of each weak learner. The research of Li and Zhang [17] confirmed that the
classification prediction model of the XGBoost algorithm has higher accuracy, a faster calculation
speed, and high prediction accuracy when applied to orthopedic clinical data. It can deal with
complex and diverse medical data, better meet the timeliness and accuracy requirements of auxiliary
diagnosis, help reduce the workload of medical workers and realize real auxiliary medical services.

Since the beginning of the COVID-19 pandemic, many researchers have studied how to predict
whether patients with COVID-19 are at a higher risk of death based on clinical data collected at various
stages of the pandemic. Covino et al. [18] collected the clinical physiological index data of adult
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patients admitted to the hospital due to COVID-19 from March 1 to April 15, 2020, and they used
a variety of physiological scoring systems that can quickly and quantitatively evaluate the changes
of vital signs to predict the risk of admission to the ICU and death of COVID-19 patients within 48
hours and 7 days after admission. The results suggested that the early warning score can effectively
predict the risk of severe illness and death in COVID-19 patients in the context of a huge demand
for medical assessment and triage in emergency departments. Allenbach et al. [19] investigated how
logistic regression can be used to predict changes in symptoms within 14 days of hospital admission
in COVID-19 patients. Their results suggested that older age, poorer respiratory performance, higher
C-reactive protein (CRP) levels, and lower lymphocyte counts in COVID-19 patients are associated
with an increased risk of ICU admission or death. Mirri et al. [20] have proposed a new indicator
based on a hypothesis of a relationship between viral transmission and airborne particulate pollutants
such as PM2.5, PM10 and NO2. And, they have developed a machine learning model that learns data
containing new metrics to predict the spread of COVID-19.

Estiri et al. [21] developed an end-to-end machine learning framework for prediction based on data
from COVID-19 patients’ past medical records, implementing iterative sequential representation
mining, features and model selection for the prediction of patient-level hospitalizations, ICU
admissions, mechanical ventilation needs and death risk. They believed that a history of previous
neurological disease, cardiovascular disease (CVD), other chronic diseases, diabetes and chronic
kidney disease plays a major role in whether patients with COVID-19 are at risk of death. And
features with the greatest weight in predicting whether a COVID-19 patient will be admitted to the
ICU was healthcare utilization events, including previous complex hospitalization episodes,
hospitalization procedures and hospitalization medications. Yadaw et al. [22] collected data on 3841
patients treated at Mount Sinai Health System from March 9 to April 6, 2020, and they developed a
COVID-19 mortality prediction model based on patient age, minimum oxygen saturation over the
course of their medical encounter, and type of patient encounter (inpatient vs outpatient and telehealth
visits). They achieved a high degree of accuracy with this model and believe that the model may help
to guide the management and prognosis of patients affected by the disease in a clinical setting.
Altschul et al. [23] have proposed a novel severity score specifically for COVID-19 to help predict
disease severity and mortality. They believed this developed and validated novel COVID-19 severity
score will aid physicians in predicting mortality during surge periods. Wang et al. [24] developed a
predictive model incorporating patient data such as age, SpO2, body temperature and mean arterial
pressure (MAP) based on data from the Altschul et al. [23] study. This model had good accuracy and
may help with the early identification of COVID-19 patients with a high probability of death
on admission.

Zhang et al. [25] proposed a new reliability estimation model based on the marshall-holguin binary
Weibull distribution, which is called the multicomponent stress-strength model. The authors evaluated
their proposed model through the use of simulation datasets and Monte Carlo simulations. The
simulation results showed that this method performs well in terms of relative deviation, mean squared
error and frequency coverage probability. Wang et al. [26] proposed a Bayesian semiparametric
method to obtain the estimation of parameters and density distribution for both the cure probability
and the survival distribution of the uncured patients in an accelerated failure time mixture cure;
model; its performance was comparable to that of the fully parametric method according to the results
of comprehensive simulation studies. The proposed approach was also adopted for the analysis of
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colorectal cancer clinical trial data. Zhuang et al. [27] presented a novel progressive-stress accelerated
life testing model with group effects under progressive censoring. The proposed model was compared
the traditional models without group effects in simulation studies; the results showed that the
proposed model can detect group-to-group variation and reduce biases. An elaborate investigation of
COVID-19 data for Weibull distribution under indeterminacy using time truncated repetitive sampling
plan [28]. The results showed that the proposed repetitive sampling plan is more economical than the
existing sampling plan.

Caillon et al. [29] studied the data of COVID-19 patients in Wuhan Seventh Hospital, and they
believed that the high systolic blood pressure of patients was the cause and important comorbidity
factor of end-organ damage; it was identified as covariate in both the mortality and survival prediction
models. Blagosklonny [30] proposed that COVID-19 is not fatal in early life, but the mortality rate
increases exponentially with age. It was the strongest predictor of mortality in elderly patients.
Wang et al. [31] have collected and analyzed clinical and laboratory data on admission for non-severe
adult COVID-19 patients in Changsha, China. The analysis results have proved that CRP may be a
valuable marker for predicting the likelihood of exacerbation in non-severe adult COVID-19 patients.
Ok et al. [32] have investigated 139 patients with COVID-19 at Siirt State Hospital. They believed
that the blood urea nitrogen / creatinine ratio is an independent predictor of COVID-19 patient
severity and survival. Routine evaluation of the ratio can help to identify high-risk cases with
COVID-19. Lippi et al. [33] conducted a meta-analysis of clinical data from COVID-19 patients in
Wuhan on March 4, 2020, and they found that clinical troponin levels in patients with severe
COVID-19 infection increased significantly compared to COVID-19 patients with milder symptoms.
Therefore, they believed that initial measurements of heart injury biomarkers immediately after a
COVID-19 patient’s hospitalization, as well as longitudinal monitoring during hospitalization, may
help to identify subsets of patients who may have heart injury and thus predict the progress of
COVID-19 patients toward a worse clinical situation.

3. Materials and methods

3.1. Sample and data

The data come from the study of Altschul et al. [23], they have shared their data on
https://figshare.com/s/79827c396af7df42b3d7 .

Data were collected from 4711 patients who visited hospitals from March 1 to April 16 and were
tested positive for SARS-CoV-2 RNA through the use of a real-time reverse transcriptase-polymerase
chain reaction assay. Patients evaluated in the emergency room but not admitted, or those that died
in the emergency room, were excluded from the analysis. Most patients had only one admission,
and the research only considered the last hospitalization for those that had multiple admissions during
this period [23].

Some of the variables included in the dataset are: length of hospital stay (LOS), myocardial
infraction, peripheral vascular disease, congestive heart failure, CVD, dementia, chronic obstructive
pulmonary disease, diabetes mellitus simple, diabetes mellitus complicated, oxygen saturation
(OsSats), MAP, in mmHg (MAP), D-dimer, in mg/ml (Ddimer), platelets, in k per mm3 (Plts),
international normalized ratio (INR), blood urea nitrogen, in mg/dL (BUN), alanine aminotransferase,
in U/L (AST), white blood cells, in per mm3 (WBC) and interleukin-6, in pg/ml (IL-6).
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3.2. Measures of variables

A brief analysis of the basic demographic information of the selected patients is required first.
Figure 1 shows histograms of the patients’ ethnic groups and age data. The patients were mainly
African and Latino Americans, with a relatively small number of white and Asian patients. The vast
majority of patients were over 60 years of age. The number of patients in the 41 to 60 age group was
only about half the number of patients over 60 years old, and a very small number of patients were
under the age of 40. Figure 2 shows that the vast majority of patients stayed in the hospital for less
than 10 days, a small number of patients stayed in the hospital between 10 and 20 days, very few
patients stayed in the hospital for more than 20 days and the longest patient stay in hospital was for
about 50 days. In addition, 1148 of the 4711 patients included in the data eventually died, and 3563
patients survived.

Figure 1. Ethnicity-age distribution of patients.

Figure 2. Numbers of days of hospital stay for patients.
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Consider that there are some numerical variables and categorical variables of patients’ physiological
indicators in the data, such as troponin values and categorical variables such as troponin > 0.1. In order
to avoid the correlation between variables and make the model adapt to the original physiological index
data, only the numerical variables of these tests were selected to construct the classification model when
building the model.

Because the proportions of different ethnic groups in the data were very different, the variables
related to the patient ethnic groups were not included in the final models. Considering that there were
some missing values in the data, and that all missing values in the original data were 0, all data points
with a value of 0 in continuous variables were considered as missing values. In order to ensure data
quality, variables with more than 1000 missing data points, such as ddimer, glucose, IL6, ferritin and
procalcitonin, were included in the final model. Scikit-learn’s Iterative Imputer, K-NN Imputer and
the means imputation method were used to deal with the missing values of data. Then, the standard
deviations of all variables were calculated; the results are showed in Table 1.

Table 1. Standard deviation resulting from the missing value imputation method.

Variable Iterative imputer K-NN imputer Mean imputer Original data
LOS 6.7489 6.7912 6.7384 6.9964
OsSats 8.1218 8.0724 8.0423 8.1888
Temp 4.1045 4.3043 4.1030 4.1713
MAP 16.5238 16.4947 16.4064 16.8071
Ddimer 5.1079 5.0681 4.9588 5.6648
Plts 106.0403 106.0664 105.7438 107.8595
INR 0.9250 0.9478 0.9216 0.9750
BUN 30.8830 29.7391 29.4149 31.5075
Creatinine 2.6093 2.6124 2.6071 2.6614
Sodium 7.3665 7.3600 7.3400 7.5310
AST 203.9396 205.5382 203.7963 210.7321
ALT 108.6025 108.6529 108.4927 111.5664
WBC 7.1725 7.1703 7.1603 7.3003
Lympho 4.8558 4.8563 4.8556 4.9505
CrctProtein 10.4019 10.2527 10.0813 11.1736
Troponin 0.2688 0.2680 0.2673 0.2876

From Table 1, all methods have made their standard deviations smaller than the original data’s.
Although the means imputation method caused the smallest standard deviations, too much data with
the same value in some variables may cause the classifier to have difficulty learning the data. For the
other two methods, K-NN Imputer was able to reduce the standard deviation of the data even more, so
it was chosen as the final missing value imputation method.

3.3. Models and data analysis procedure

The goal of this study was to build a machine learning classification model to make effective risk
prediction for COVID-19 patients by learning the collected physiological index data of patients, and
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the target variable of the model is whether the patient dies or not.

1) Introduction of models

– Logistic regression
The logistic regression model is one of the classic statistical models; it is often used in the
field of medicine. The first step in building a logistic regression model is to establish the
associated class of logistic regression as the entry point for the relevant parameter settings
of the logistic regression model, and then we need to define the training method. Next, we
need to define the training method. Set the data learned by logistic regression, the number of
iterations trained and the iteration steps, initialization weights and the proportion of samples
calculated for each iteration. The following conditional probabilities are used to learn the
classification of data:

P(Y = 1|x)=
exp(w · x + b)

1 + exp(w · x + b)
(3.1)

P(Y = 0|x) =
1

1 + exp(w · x + b)
(3.2)

The second step is to use stochastic gradient descent in the logistic regression class used
by the model to optimize. This logistic regression class inherits the statistical generalized
regression class in principle, and its main parts include gradient updating, gradient descent
initialization and other methods. The loss function used in the gradient calculation is

J (θ)=
1
2

n∑
i=1

(
hθ(x(t)) − yt)

)2
(3.3)

The third step needs to use the method of maximum likelihood estimation in statistics to
calculate the parameters according to the training of the logistic regression model. Because
we assume that each sample of the data is independent of each other, we assume that the
probability of all samples occurring is equal to the product of their respective probability of
occurrence. Then the likelihood function for n independent samples is

L (θ) =
n∏

i=1

f (x; θ) =
n∏

i=1

[
hθ(x)y(i)

(
1 − hθ(x)1−y(i)

)]
(3.4)

The fourth step is to learn the logistic regression model by using the inheritance generalized
regression class method. First of all, we need to add the bias to the sample, initialize the
weight, optimize the calculation weight and select the optimal weight. In the process of
optimizing the weights, the solution of the weights needs to be carried out by using the
gradient descent method. The gradient calculation is a calculation method that calls the
logical gradient class, and it uses the least squares method to calculate the gradient value and
loss value of the sample. Using logistic regression classes for weight updates, the updated
rules are

w j := w j + η

n∑
i=1

(y(i) − ϕ(z(i)))x(i)
j (3.5)
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After the logistic regression model is trained, we can use the logistic regression model class
to save various parameters, including feature weight vectors and biases.

– K-NN
K-NN is a classic supervised learning model. People first use K-NN to learn the data from
the training set. For the data of the test dataset, K-NN will determine the classifications of the
data of the test dataset based on the votes of the K training set datasets closest to the data of
the test set. K-NN typically uses Euclidean distance to calculate the distance between data;
a distance of two N-dimensional data points x and y will be computed as:

d(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2 + · + (xn − yn)2 (3.6)

– Centroid displacement-based K-nearest neighbors (CDNN)
In the case of K-NN, its majority vote can be a problem if the distances between the test
instance and its nearest neighbors vary widely. To overcome this problem, Nguyen et
al. [34] have proposed CDNN algorithm. In the case of CDNN, the nearest neighbors are
grouped into separated sets of the same class label. Then, the centroids of each set and the
displacement of centroids will be calculated if the test instance x is inserted into the set. The
test instance is then assigned to the set in which the centroid displacement is minimum.
CDNN addresses the simple voting issue in the classic K-NN algorithm. CDNN is adaptive
to noise and class distributions, and it allows for the correct class label to be assigned to the
test instance without extended tuning of the parameter K for the dataset.

– SVM
The SVM is also a classic statistical learning model. The basic model of a SVM is a linear
classifier with the maximum interval defined on the feature space, and the requirement for
the maximum interval makes it different from the perceptron model. SVMs also include
kernel tricks, which makes it essentially a nonlinear classifier. The learning strategy of SVMs
is interval maximization, which can be formalized as a problem solving convex quadratic
programming. In this way, the SVM is the optimal algorithm for solving convex quadratic
programming [35].
For linearly separable training datasets, the SVM learns by maximizing the interval or
equivalently solving the corresponding convex quadratic programming problem, and the
resulting separated hyperplane is

w∗ · x + b∗ = 0 (3.7)

the corresponding classification decision function:

f (x) = sign(w∗ · x + b∗) (3.8)

Such an SVM is called a linear separable SVM.
For the training dataset of nonlinear classification, an SVM learns through the use of kernel
function and soft interval optimization, or convex quadratic programming, and the resulting
classification decision function is
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f (x) = sign(
N∑

i=1

a∗i yiK(x, xi) + b∗) (3.9)

Such an SVM is called a nonlinear SVM.
– Random forest

The random forest is a typical sample of bagging algorithms in ensemble learning. The weak
classifiers that construct the random forest algorithm are decision trees; a random forest
constructs n different sample datasets by randomly sampling the data, and it establishes n
decision tree models corresponding to these n datasets as its weak classifiers. After running
these weak classifiers for learning, the random forest votes according to the prediction results
of all weak classifiers to get the final prediction result. As an effective ensemble learning
model, a random forest can also efficiently process high-dimensional data and data containing
missing values.

– LightGBM
LightGBM was proposed by Ke et al. [36]. Its internal decision tree uses a leaf-wise growth
strategy and sets the max depth parameter to prevent overfitting. LightGBM also uses the
histogram algorithm. According to the data binning strategy, the nodes of the decision tree
can improve the calculation speed when splitting. The two learning methods of support
feature parallelism and data parallelism further reduce the computational cost. In addition,
the gradient-based one-side sampling and exclusive feature bundling algorithms included in
LightGBM have both contributed to improving the classification accuracy.

– XGBoost
XGBoost model is a very powerful ensemble learning model which was proposed by Chen
and Guestrin [16]. Compared with GBDT, XGBoost optimizes the operation efficiency of
the algorithm through the parallel selection algorithm, and it also adds a regularization part
to the loss, which has better generalization ability.

2) Hyperparameter tuning
For machine learning models, they usually have a lot of hyperparameters that need to be
determined when the models learn data. In order to make machine learning models perform
better, Grid SearchCV was used to help models determine the values of the hyperparameters.

3) Division of dataset
In machine learning tasks, researchers often divide all data into training datasets and test datasets,
so that the models learn from the data from the training datasets and predict the test datasets
to analyze the performance of the model. In this study, in order to control the occurrence of
overfitting and underfitting, 50, 60, 70 and 80% of the data were set as the training dataset,
respectively, and the effect of model learning was compared.

4) Sample balancing processing
From the exploratory data analysis in the previous part, it can be found that the classification
variable of the data set—the patient died has a problem of category imbalance. Since the number
of dead patients is far less than the number of surviving patients, the models may not be able to
effectively learn better classification rules from the data. To eliminate this problem, the SMOTE
algorithm was used for oversampling before using the models for learning. SMOTE is an effective
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oversampling algorithm which can effectively deal with the imbalance of data categories and
avoid the overfitting problem caused by traditional oversampling methods [37]. So, SMOTE was
used to oversample the training dataset before using models to learn the training dataset.

5) Data scaling
Due to the different medical tests contained in the data, the numerical sizes of the continuous
variables in the data varied greatly. Regarding the models used to fit the data such as logistic
regression, K-NN and the SVM, differences between the numerical sizes of variables will caused
some models to consider larger arrays of variables, although these variables may not be more
important. The RobustScaler algorithm was used to do the work of data scaling. Algorithms such
as z-score normalization may cause data to easily lose outliers, while the RobustScaler method has
stronger parameter adjustment capabilities for data centralization and data scaling robustness [38].
RobustScaler applied robust statistics on outliers to scale features, its function is

x
′

=
x − xmedian

IQR
(3.10)

In the function, IQR is the quartile range of the data.
6) Model evaluation

The performance of machine learning models often requires researchers to analyze by
calculating multiple indicators of the model. Model prediction accuracy is one of the most
important indicators, and it intuitively shows the accuracy of the model in terms of predicting
test data sets; the area under curve (AUC) is defined as the area under the ROC curve. As a
commonly used indicator to measure the performance of machine learning classification models,
the machine learning classification models with higher AUC values are better; the
Kolmogorov-Smirnov (KS) statistic was proposed by A.N. Kolmogorov and N.V. Smirnov. As a
standard to measure models’ differentiations, the larger the value of this indicator, the stronger
the risk ranking ability of the model. KS statistics can also be understood as the ability to
distinguish between right and wrong categories. The larger its value, the more effectively it can
give correct prediction results when the model is used for classification prediction. The KS
statistic is calculated from the empirical cumulative distribution function, which is defined as

KS = Max{|cum(bad rate) − cum(good rate)|} (3.11)

The learning curve is another common way to evaluate model performance in machine learning.
The learning curve is similar to the human learning curve, which can be explained as the
prediction ability of the model as the data of model learning increases. The learning curve is
often used to analyze whether the machine learning model has the problem of over-fitting or
under-fitting.

After the data set was divided and scaled and the sample balancing of the training dataset was
completed, the models were used to fit the training dataset. Then, the performances of the models on
the test data set were evaluated based on the accuracy, AUC value and KS statistic value. Finally, the
learning curve of the best-performing model was drawn.
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4. Results and discussion

After learning the training data set, the computing results for various performance indicators
predicted by the model selected in this study on the test data set were as shown in Tables 2–5.

Table 2. Performance of classification models with 50% training set.

Model Accuracy AUC KS
Logistic Regression 0.7449 0.7987 0.4698
K-NN 0.7436 0.7148 0.3811
CDNN 0.7008 0.7026 0.4052
SVM 0.7610 0.5021 0.0054
Random Forest 0.8154 0.8383 0.5279
LightGBM 0.8183 0.8296 0.4946
XGBoost 0.8217 0.8338 0.5048

Table 3. Performance of classification models with 60% training set.

Model Accuracy AUC KS
Logistic Regression 0.7480 0.7983 0.4613
K-NN 0.7434 0.7033 0.3552
CDNN 0.7183 0.7059 0.4118
SVM 0.7533 0.5022 0.0067
Random Forest 0.8207 0.8317 0.5049
LightGBM 0.8111 0.8178 0.4826
XGBoost 0.8175 0.8300 0.4897

Table 4. Performance of classification models with 70% training set.

Model Accuracy AUC KS
Logistic Regression 0.7405 0.7887 0.4411
K-NN 0.7411 0.7116 0.3845
CDNN 0.7058 0.6978 0.3956
SVM 0.7504 0.7285 0.4051
Random Forest 0.8147 0.8261 0.4967
LightGBM 0.8190 0.8108 0.4725
XGBoost 0.8140 0.8211 0.4839

By observing the performance indicators of the above models on the test dataset, it can be found that,
ensemble learning models are better than other models. First, K-NN Imputer was used to supplement
the missing values of the original data, and then the random number seed was set to 933 and 50% of the
data was selected. The data were oversampled by using the SMOTE method, and the oversampled data
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were used as the test data set. The other 50% of the original data supplemented with missing values
was set as the test dataset. Using the random forest model with the hyperparameters max depth = 15
and n estimators = 150 to learn this training dataset, the resulting model would get a better area under
the ROC curve on the test dataset, around 0.84.

Table 5. Performance of classification models with 80% training set.

Model Accuracy AUC KS
Logistic Regression 0.7349 0.7919 0.4465
K-NN 0.7434 0.7033 0.3552
CDNN 0.7137 0.7270 0.7270
SVM 0.7338 0.7901 0.4433
Random Forest 0.8229 0.8298 0.5085
LightGBM 0.8134 0.8197 0.4898
XGBoost 0.8176 0.8248 0.4800

4.1. Performance analysis of random forest model

In order to better analyze the performance of the model, the KS curve and learning curve of the
random forest model were drawn as respectively shown in Figures 3 and 4.

Figure 3. Random forest’s KS curve.

The KS curve shows that the true positive rate is not large enough. Maybe more data need to be
added to the model to fit the data better. The learning curve randomly extracts data sets of different
sizes through cross validation to test the performance of the model. In Figure 4, the training score
curve is always close to the level of 1; the validation score curve fluctuates between 0.82 and 0.83,
but there are large distances from the training score curve, which indicates that the model needs more
training samples to improve its performance.
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Figure 4. Random forest’s learning curve.

4.2. Analysis of important features

As a powerful ensemble learning model, random forests can calculate the importance of each
variable in the data to the whole model while learning the data. The sum of the importance of all
variables was 1. The larger the value, the higher its importance for classification prediction. In the
random forest model, the five variables with high importance to the final classification results (the
importance level is greater than 0.05) were found to be the MAP in mmHg (MAP) of the COVID-19
patients at admission, the ages of the COVID-19 patients (Age), the COVID-19 patients’ CRP test
values in mg/L (CrctProtein), the COVID-19 patients’ blood urea nitrogen in mg/dL (BUN) and the
COVID-19 patients’ clinical troponin value in ng/mL (troponin).

In order to verify whether there was a significant difference between the data of these features of the
dead COVID-19 patients and the alive COVID-19 patients, a two-sample T-test was conducted on the
data of the above characteristics of the dead patients and the surviving patients. The results are shown
in Table 6.

Table 6. Two sample T-test of mortality risk features of COVID-19 patients.

Feature Mean of dead patients Mean of alive patients
MAP∗∗∗1,2 75.2601 89.1829
Age∗∗∗3 71.9547 60.6034
CrctProtein∗∗∗4 16.9394 10.6453
BUN∗∗∗5 44.0581 26.4724
Troponin∗∗∗6 0.1140 0.0422

1 *** means the p-value of two-sample T-test less than 0.001.
2 MAP means MAP in mmHg.
3 Age means ages of patients.
4 CrctProtein means CRP tests’ values in mg/L.
5 BUN means blood urea nitrogen in mg/dL.
6 Troponin means clinical Troponin values in ng/mL.
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It can be seen in Table 6 that, except for diabetes mellitus, all P values from the two-sample T-
test are smaller than 0.001; this means that there were significant differences in the data of the other
five physiological indicators of COVID-19 patients who died and lived. Based on the above scholars’
research or meta-analysis [29–33], it can be concluded that the five important factors in a random forest
model can be used to predict whether COVID-19 patients have a risk of death.

5. Conclusions

5.1. Suggestion

Regarding the results of the analysis above, here are some suggestions to for healthcare
organizations.

Firstly, healthcare organizations can collect data on the same physiological indicators of patients
admitted to hospital with COVID-19 as the study [23] says, and use the random forest model built in
this study to predict the risk of death in patients admitted to the hospital. At the same time, healthcare
organizations can also determine which patients are more likely to get sicker or even die based on the
data of five physiological indicators closely related to whether patients admitted to the hospital due
to COVID-19 die, i.e., MAP, ages of patients, CRP test values, mean blood urea nitrogen and clinical
troponin values of COVID-19 patients.

After completing an analysis of the risk of severe illness and death in patients admitted to the
hospital with COVID-19, healthcare organizations can more effectively schedule limited medical
resources. For example, ICU wards, ventilators and more experienced healthcare workers should be
prioritized for COVID-19 admissions who are more likely to get sicker or die.

Second, healthcare organizations can take action to store and even share their patients’
physiological indicator data while protecting their privacy. In the future, if people have to face the
next COVID-19 pandemic or other infectious disease pandemic, healthcare organizations can build
machine learning models based on stored and collected physiological indicator data of admitted
patients. With high-performance models, healthcare organizations can also effectively predict a
patient’s risk of exacerbation or death, and allocate limited medical resources more specifically, as
they did for the COVID-19 patients mentioned earlier.

Moreover, governments should also take action to help healthcare organizations build shared
databases of citizens’ physiological indicator data while protecting their privacy; or, they should
expand the coverage of health insurance for older people to meet the next COVID-19 pandemic or
other infectious disease pandemic.

Finally, people should also do more scientific physical exercise in their daily lives to enhance their
resistance. At the same time, people should also have medical examinations at reasonable intervals. If
there are abnormalities in physiological indicator data in physical examination results, people should
consult doctors in time and improve the health problems associated with abnormal physiological
indicators through treatment or other means.

5.2. Outlook

The AUC value of the random forest has been improved compared with the AUC values of the
previous models in the relevant studies [23, 24]. But this prediction still has space for improvement;
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for instance, adding more data on COVID-19 admissions to the training dataset may make the model
more generalizable, with higher prediction accuracy and AUC values.

Since widespread COVID-19 vaccination efforts around the world are already working, the impact
of COVID-19 vaccinations on exacerbated deaths in COVID-19 patients can be analyzed by including
data on COVID-19 vaccination patients. The risk of death for COVID-19 patients who have been
vaccinated against COVID-19 will also be able to be effectively predicted.
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