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Abstract: Chinese medical knowledge-based question answering (cMed-KBQA) is a vital component
of the intelligence question-answering assignment. Its purpose is to enable the model to comprehend
questions and then deduce the proper answer from the knowledge base. Previous methods solely
considered how questions and knowledge base paths were represented, disregarding their significance.
Due to entity and path sparsity, the performance of question and answer cannot be effectively enhanced.
To address this challenge, this paper presents a structured methodology for the cMed-KBQA based
on the cognitive science dual systems theory by synchronizing an observation stage (System 1) and
an expressive reasoning stage (System 2). System 1 learns the question’s representation and queries
the associated simple path. Then System 2 retrieves complicated paths for the question from the
knowledge base by using the simple path provided by System 1. Specifically, System 1 is implemented
by the entity extraction module, entity linking module, simple path retrieval module, and simple path-
matching model. Meanwhile, System 2 is performed by using the complex path retrieval module and
complex path-matching model. The public CKBQA2019 and CKBQA2020 datasets were extensively
studied to evaluate the suggested technique. Using the metric average F1-score, our model achieved
78.12% on CKBQA2019 and 86.60% on CKBQA?2020.
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1. Introduction

Chinese medical knowledge-based question answering (cMed-KBQA) is a challenging natural lan-
guage processing task that requires matching the satisfied nodes of the structured knowledge base as
factual answers to natural language questions. The knowledge base is the source of information for
cMed-KBQA. It is a directed graph with nodes representing entities and edges representing their con-
nections. Formally, it is composed of a variety of triples (S, R, O), where S is the subject (S), R is
the relation (R) and O is the object (O). The popular knowledge bases include the English-language
knowledge base (Freebase [1], DBpedia [2], Wikidata [3]) and the Chinese-language knowledge base
(Zhishi. me [4], CNDBpedia [5]). There are increasingly more studies on knowledge-based question
answering (KBQA) as domain knowledge bases grow in quantity and quality.

Since cMed-KBQA is a part of KBQA, its implementation methods are mainly based on the most
common KBQA methods. Currently, there are three ways to do KBQA: methods based on semantic
parsing, methods based on retrieving information, and methods based on deep learning. Semantic
parsing-based methods [6—10] take the question into logical forms of entities and relations. Then,
they use the logical forms to build query statements that get the final answer. Most methods use
particular query languages, such as SPARQL [11] and Cypher [12], to obtain rich logical structure
forms that can be used to make query statements of the same form. Information retrieval-based methods
[13,14] try to get the candidate paths that match the questions from the knowledge base, figure out their
semantic similarity to the questions and then output the best paths to get the final answers. This method
makes it easy to create training data and ask for answers, so it gets much attention and has significant
performance advantages. With the high growth of deep learning, many scholars are integrating deep
neural networks into the first and second approaches, calling them deep learning-based methods. These
approaches turn questions and answers into vector spaces through representation learning methods.
The method makes complicated KBQA tasks more straightforward by breaking them up into tasks
like figuring out the degree of similarity of two things, classifying them, creating a sequence, etc.
Early strategies to get question-and-answer feature vectors were mostly word embedding models like
Word2Vec [15] and GloVe [16]. With the rise of pre-trained models in the past few years, BERT
[17], XLNet [18] and GPT [19] have been able to get good results. Multiple studies have shown that
combining deep learning with KBQA tasks not only makes the task easier but it also makes it work
much better.

Natural language questions are constructed in a variety of ways. In KBQA tasks, simple questions
can be answered accurately based on a single triple, as shown on the left in Figure 1. Current research
has achieved a relatively high level of accuracy for simple questions. In contrast, complex questions
require multiple triples to bridge queries to get the correct answer, as shown on the right in Figure 1.
It is hard to distinguish and respond to complicated questions due to their complexity and irregular
forms. Also, existing deep learning-based methods only looked at how questions and knowledge base
paths were represented and extracted the subject entity [20,21] as accurately as possible, ignoring their
importance. Because of this, the question’s topic entities and the candidate paths that go with them are
not excavated in depth. In addition, no one has tried to use stage-based reasoning to answer questions
based on knowledge like a human.

For a natural language question, the manual way to answer it is in two steps: (i) figure out the
question’s structure and get what it says; and (ii) use the question’s content to analyze it in depth and
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capture the answer by querying your knowledge store. In cognitive science [22-24], this operation
is seen as a dual-process system (DPS), which says that human reasoning is based on two different
cognitive systems. System 1 is a set of implicit, unconscious and intuitive ways that our brain gets
information after we pay attention to it. Then, System 2, an explicit, conscious and controllable way of
thinking, uses the working memory to do sequential thinking, which is a slower but a uniquely human
trait [25]. From this perspective, the cMed-KBQA task can be processed based on DPS: System 1 is
in charge of quickly getting information from the question and simple paths, and System 2 uses the
knowledge base to do deep reasoning to find complex paths.
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Figure 1. Examples of cMed-KBQA task. The case on the left is based on a simple question
and the case on the right is based on a complex question. The English-language version was
obtained through Google Translate and is for reference only.

Motivated by the above theory, we propose a novel DPS architecture for the cMed-KBQA task,
as demonstrated in Figure 2. Concretely, System 1 in our DPS model consists of an entity extraction
module, entity linking module, simple path retrieval module and simple path-matching model, which
utilizes a simple path-matching model to capture the candidate simple paths in question. For System
2, we use the complex path retrieval module and the complex path-matching model to reason about
the knowledge base (PKUBASE) and find the complex paths. System 2 first executes System 1 to find
simple candidate paths; then, a complex path retrieval module is conducted to obtain enriched complex
paths from the knowledge base. During the path-matching process, we propose a mixed semantic
fusion mechanism to get helpful information from both the question and the candidate paths.

The following are the significant contributions of this paper:
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1) A unique DPS structure for the cMed-KBQA task is presented, influenced by how the human brain
works. System 1 is developed to acquire simple paths, whereas System 2 retrieves complicated
path-related information.

2) The path-matching module has been developed through the use of a mixed semantic fusion mech-
anism to capture valuable information from questions and candidate paths.

3) The experimental results on CKBQA2019 and CKBQA2020 revealed that our DPS model signif-
icantly outperforms published methods.

The remainder of this paper is organized as follows. Section 2 summarizes the related work of
KBQA and cMed-KBQA. Section 3 presents the detailed description of our DPS model. The experi-
mental results and discussion are depicted in Section 4. Section 5 presents the conclusion.

2. Literature review

2.1. KBOA

KBQA is a novel field of study in natural language processing that has attracted the interest of
academic researchers. There are two broad types of KBQA tasks: those that involve answering simple
questions and those that involve more complicated questions. The former can be answered by a single
triple in a given knowledge base, while the latter requires reasoning by bridging multiple triples in a
given knowledge base to obtain an answer. Apparently, the complex question-answering task is more
challenging. As a result, there is a rush of studies on KBQA tasks. Current mainstream methods for
building a knowledge base can be broken down into three types: methods based on semantic parsing,
methods based on information retrieval, and methods based on deep learning.

Semantic parsing-based methods convert the question into logical forms consisting of entities and
relations and then build query statements based on the logical forms to acquire the final answer. The
core task of semantic parsing-based methods is to comprehend natural language questions. Traditional
semantic parsing methods [8, 10, 26-29] are efficient at analyzing simple questions, while there is
still great potential for improvement on complex questions. To better comprehend complex questions,
existing methods extract the composition and logical form of the question based on dependencies [30]
and topic representations [31]. However, the resolution results are still unsatisfactory for the long-
range dependency questions. To mitigate the propagation of parsing errors, Zhu et al. [32] attempted
to enhance the parsing of the question by adding structure-aware feature encoders, and Chen et al. [33]
improved the matching between the logical form and the question by adding constraints on the query
structure to filter noisy queries. In conclusion, these techniques aim to use linguistic analysis of human
language to convert the question into a logically sound form that can be used to interpret the knowledge
base.

Information retrieval-based methods attempt to retrieve the knowledge base to acquire the candi-
date paths corresponding to the answers, calculate their semantic similarity to the questions, and then
output the optimal paths to achieve the final answers. Retrieving information relies on a high-quality
knowledge base. However, missing issues [34] are unavoidable in public knowledge. Sun et al. [35,36]
proposed forming a heterogeneous graph out of the subgraphs derived from the imperfect knowledge
base and then reasoning about this network. Xiong et al. [37] and Han et al. [38] offered to fuse ad-
ditional textual information into the entity representation to complement the knowledge. To improve
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the learned entity presentations and address insufficient knowledge base issues, Saxena et al. [39] used
pre-trained comprehension word embedding. Compared with previous methods, this group of methods
makes it easier to put end-to-end models into action and needs less language knowledge. However, the
correctness of these methods still needs further improvement.

Deep learning-based methods convert questions and answers into vector space by means of repre-
sentation learning methods, which in turn simplify sophisticated KBQA tasks into similarity calcula-
tion tasks, classification tasks, or sequence creation tasks, etc. Bordes et al. [40] trained an embedding
model to evaluate the similarity of questions and answers by computing the distance between their rep-
resentation vectors. In order to generate potential action scenes, Guo et al. [41] created a preprocessor
decoder and transformed the KBQA job into a similarity calculation task. Huang et al. [42] designed
a hybrid model to simultaneously acquire the representation of head and tail entities in vector space.
Wang et al. [43] used knowledge base encoding methods to create graph-structured question terms
in order to address the matching question for entities and relations. In addition, there are many con-
volutional neural network (CNN)-integrated methods [44,45] and long short-term memory-combined
methods [46, 47] to improve the performance of KBQA. Although these methods have sped up the
development of KBQA, their performance still requires improvement.

2.2. cMed-KBQA

Chinese KBQA (CKBQA). Recently, with the rapid development of KBQA technology, there have
been more and more CKBQA jobs. Cao et al. [48] offered a pipe approach that is referred to as DUTIR.
This method consists of four pieces, and it restricts the maximum number of hops for relational paths
to two. Using custom-built features, Zhang et al. [49] and Wang et al. [50] categorized the question
so that the appropriate approach can be taken. By combining phrase and statement semantics, Luo
et al. [51] proposed an approach dubbed FSM for the calculation of question-and-answer consistency.
Wau et al. [52] developed a training method for semantic similarity models by using the dynamic sam-
pling of negative examples to enrich the diversity of relations in the training set. The above methods
have achieved some results on CKBQA tasks. However, the research used to solve the cMed-KBQA
problem is relatively limited.

cMed-KBQA. With the publication of the Chinese medical dataset CKBQA2020, the study of
cMed-KBQA tasks have emerged progressively. Tang et al. [53] and Xiong et al. [54] have proposed a
comprehensive knowledge-based approach for answering complex questions and designing four ded-
icated similarity calculation models for handling complex cases of complex problems. Dai et al. [55]
has given a unified strategy, MIQA, that takes a holistic view of the various activities involved in op-
tion path development and uses established rules. Focusing on entity extraction, Zhang et al. [56]
constructed a SEE model based on text consistency strategies and annotation models for different di-
mensional information. In contrast to the previous work, we pay more attention to the details of hard
problems and the different paths that semantic information can be expressed and shown.

3. Proposed DPS model
This section presents the proposed DPS framework. Section 3.1 defines the cMed-KBQA problem.
Section 3.2 summarizes the main architecture. Section 3.3 presents the detailed System 1—simple path

matching. Section 3.4 depicts the comprehensive System 2—complex path matching.
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3.1. Problem statement

On the cMed-KBQA task, given a question Q = {q;,q,, ...,q,,} and a knowledge base G = {<
e, 1,1, > les,e, € Er € R}, where e, and e, respectively represent the entity subjects and objects,
r symbolizes the relationship describing their connection, and & and R are the sets of all entities
and relations, respectively. System 1 seeks to identify entities of interest and connect them to the
knowledge base to obtain the theme entities and simple path candidates P = {p{, p3, ..., p}}, (where n
is the number of simple path candidates) in the knowledge base. System 2 is responsible for locating
complex candidate paths in a question, i.e., the sequence of paths that lead from the question’s theme
entity to the knowledge base answer. System 2’s task is defined as a complex path-matching issue. The
algorithm simulates the matching score between the vector layer and the presentation of the query q
for each path p¢ in the path candidate set PC, and the path with the most excellent score is chosen as
the ultimate premise path. Specifically,

P* = argmax S (Q; P°). (3.1)

Algorithm 1 DPS algorithm based on mixed semantic fusion.

Input: A question Q;, a SPARQL sentence S; and an answer q;.
Output: System 1 parameter «, System 2 parameter 3
1: for number of training interactions of each epoch do

2: Produce the question Q; based on the entity extraction and entity linking to get the topic entity
set E,.

3: Produce the topic entity set E, based on the simple path retrieval.

4: Train System 1 based on the candidate’s simple path and SPARQL sentence in the dataset.
5: Produce the BCE loss to constrain the model for training.

6: end for

7: return System 1 parameter «

8: for number of training interactions of each epoch do

9: Produce the question Q; based on System 1 (with parameter «) to get the simple path set P;.
10: Produce the simple path set P, based on the complex path retrieval.
11: Train System 2 based on the candidate’s simple path and SPARQL sentence in the dataset.
12: Produce the BCE loss to constrain the model for training.

13: end for

14: return System 2 parameter 8

3.2. Overall architecture

To mitigate entity and path sparsity in existing approaches, the proposed DPS framework via a
mixed semantic fusion mechanism acquires as much valuable information about candidate paths as
possible. As illustrated on the left of Figure 2, the DPS model includes System 1 (simple path match-
ing) and System 2 (complex path matching). System 1 includes an entity extraction module, an entity
linking module, a simple path retrieval module and a simple path-matching model, i.e., four essential
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components. For System 1, we obtain its optimal network parameters through training, laying the
foundation for the prediction of simple paths in the next step. For System 2, we first employ the trained
System 1 to capture simple candidate paths. Second, we apply the complex path-retrieval module and
complex path-matching model to reason on a knowledge base (PKUBASE) to retrieve the complex
paths. Lastly, we use the trained Systems 1 and 2 to determine the answer to a question. The DPS
algorithm based on mixed semantic fusion is summarized in Algorithm 1.

Question @ @

A v

Entity Extraction Entity Extraction
Entity Linking : Entity Linking

' |

[ Simple Path Retrieval ]—‘1 T—‘ Simple Path Retrieval ]

Buiyore|n yred sjdwis : T walsAs

Simple Path —
Matching Model NN System 1
(parameters)

System 2
(parameters)
Build SPARQL
Query Sentence

A [ PKUBASE

[ Complex Path Retrieval ]—‘—

\
|
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
]
]
|
|
|
|

/

Training Mode : Inference Mode

Figure 2. Architecture of the proposed DPS framework for the cMed-KBQA task. The left
is a training mode, while the right is the inference mode.

3.3. Simple path matching (System 1)

System 1 is an observation module that aims to extract the topic entities of the question and query
the corresponding simple paths from the knowledge base. It is made up of four important parts: an
entity extraction module, an entity linking module, a simple path retrieval module, and a simple path-
matching model.
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3.3.1. Entity extraction

Entity extraction is an essential component of cMed-KBQA tasks. To capture the subject set E,
that corresponds to the question Q, the initial phase is questioning utterance segmentation. The goal of
this step is to detect all entities as much as possible. The entity extraction task is implemented via two
methods. In the first method, questions are segmented by using Jieba *, which appends the dictionary
of dataset mentions. PkuSeg ' is applied in the second way to separate questions. Finally, we use the
combined set of the two types of subscripts described previously as the mentioned set of questions.

3.3.2. Entity linking

The subject is the entity most concerned about in the question. The entity linking enumerates all
the candidate entities in the knowledge base according to the mentioned set; then, it performs entity
disambiguation and links them back to the knowledge base, which outputs topic entities to the down-
stream tasks. After obtaining the mentioned set of questions, the most challenging problem of entity
linking is connecting the mention to the relevant entity in the knowledge base in an effective manner.
Here, candidate topic entities are obtained by using exact matching [54]. We use an entity candidate
set to identify mentions accurately, and then we add the entity that has been precisely identified to the
subject set E,. Finally, the satisfied entities are appended to the topic entity set E,.

Strategy

ZEA FEEX 655 L EAR

Elderly Citizens Over 65

Example

Figure 3. Simple-path query strategy. The red circle represents the input entity, while the
green circle represents the output entity. The English-language version was obtained through
Google Translate and is for reference only.

3.3.3. Simple path retrieval

We consider the production of candidate paths to be an item tree method of searching because it is
based on the findings of subject extraction. Given the identified topic entity set, the candidate paths are
recalled by drawing circles around the topic entities. The paths from the topic entities to the answer
entities are generated as the basis for ranking the answers. The particular rules for retrieving candidate
paths can be seen in Figure 3.

*https://github.com/fxsjy/jieba
Thttps://github.com/lancopku/PKUSeg-python
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Figure 4. Architecture of the simple path-matching model.

3.3.4. simple path-matching model

As we have already said, we can get the possible paths by using a simple path query method. It is
noticed that the many ways people use language that makes it hard for a trained model to understand
the high-level differences between a question and a path. We made a simple path-matching model
based on mixed semantic fusion from multiple foci to combine the features of question-and-path pairs
and then figure out their degree of similarity. The architecture of the simple path-matching model is
shown in Figure 4, and it consists of a word embedding layer, a contextual fusion layer, a triple-scale
CNN layer and a simple path prediction layer. Below, we describe each part in detail.

Word embedding layer. A suitable keyword representation is critical to the cMed-KBQA task. As
shown in Figure 4, in light of the peculiarities of the Chinese language, the embedding layer that we
use is a modified version of MacBERT [57] with comparable settings. When encoding question and
path sequences with MacBERT, it is necessary for us to insert two special characters ([CLS] and [SEP])
at the start and finish of the sequence. Formally, the connection between the question Q = {q,...,q,,}
and the simple path P° = {p%,...,p}} is represented as QP° = {q,q}, ..., Gy Gyt PS5 -+ PSP, s

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4912-4939.



4921

where ¢ denotes [CLS] and q,,,, and p’_ | indicate [SEP]. The tokenized question and simple path are
fed into the MacBERT encoder to produce QP?

emb* :

QP = MacBERT(QP°) = [Ej,E],... .ES,... ,E} E} (3.2)

+n+1]

where E? € R? is the context-aware representation for the i-th token and d is the dimension of the
vector.

Contextual fusion layer. It is common practice to utilize recurrent neural networks (RNNs) to
model data that contain sequential information, despite the fact that standard RNN models are vulnera-
ble to vanishing and bursting gradients. To overcome this obstacle, we utilized the prevalent moderately
effective gated recurrent unit (GRU) model to further encode question and path features. To obtain the
joint feature, the join embedding sequence QPS, , € R+ is fed into a GRU:

QP]‘eat = GRU([ES, Ef, ey Ei, .. ES ES

m+n+1

D=IG;.G},....G>,....G3.G> .1, (3.3)

where QP},,, € RP*™m*d b represents the batch-size, m + n denotes the length of a sequence and d is
the dimension of the vector. To get the contextual information, we add the embeddings and features of
the sequence, as follows:

QP .. _Llnear(QPemb)+Qmet =[C;.Ci,....C,....C3.C .1 (3.4)

Triple-scale CNN layer. CNNs are often used in the natural language processing field to learn
the unique parts of phrases by rolling the convolutional kernel over the text. However, the length of
many Chinese words and sentences varies. So, it might not be possible to get the characteristics of
a variable-length phrase by using a convolutional kernel of a specific size. A single-scale CNN is
insufficient, particularly for encoding at the word level. Therefore, to describe the sequence samples,
we use different scales of convolutional kernels to pull out characteristics of phrases with different
lengths. Triple-scale CNNs have the potential to pick up a wide range of details at the character, word
or phrase level. Given the kernel size of a set of convolutional filters S = {S;, S,, ..., S;}, (t € {1,2,3}), S;
indicates a convolutional filter. The outputted feature maps are produced through convolution, which
can be expressed as follows:

M GELU(WS (QPcontext) + bgi)’ (35)

where Wg" denotes the training parameters, GELU is an activation function, and bg" indicates the bias
of each convolutional filter. Mg" is the output feature of each convolutional filter.

Simple path prediction layer. To map Mg" to the sentence space of the same dimension, we use
the max pooling operation. This method not only extracts useful features from each dimension of
Mg", but it also reduces computational costs. The dimension mapping operation corresponding to each
dimension is as follows:

P}’ = MaxPooling(My"), (3.6)
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where Pg" represents sequence features. Lastly, we concatenate them from ¢ scales to produce the final
semantic representations:

D}, = Concat(Py', P, ..., Py, (3.7)

where Concat() is a concatenation operation.

Finally, we employ a dense layer to calculate the question-and-path pair similarity scores and then
choose the path with the highest score as the best option. In addition, to optimize the model’s perfor-
mance during training, we use binary cross entropy as the loss function.

Strategy Example
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Figure 5. A complicated path query strategy: (1) The red circle represents the input entity.
(2) The green circle donates the output entity. (3) The grey circle symbolizes the middle
entity. The English-language version was obtained through Google Translate and is for ref-
erence only.

3.4. Complex path matching (System 2)

System 2 is a module for expressive reasoning. It looks at all of the simple paths of the entities in
the topic and finds the ones that match the utterance. It contains a complex path retrieval module and
a complex path-matching model.
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3.4.1. Complex path retrieval

Based on the Section 3.3.2 processing, we obtained the mentioned set of questions. First, System 1
is used to predict the simple candidate paths and select the top K as the simple paths, as described in
Section 3.3.4. Next, based on the predicted paths, we use the complex path query strategy to make the
SPARQL query (e.g., select distinct ?r from PKUBASE where {{{} {} ?v . ?v ?r ?x .}} limit 100) that
goes with them. The search is then extended to find the multi-hop paths that best match the utterance.
The specific query strategy is shown in Figure 5.
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Figure 6. Architecture of the complex path-matching model.

3.4.2. Complex path-matching model

To capture the best path more precisely, we have designed the complex path-matching model, as
shown in Figure 6, which consists of a word embedding layer, a semantic self-attention fusion layer, a
multi-scale CNN layer and a complex path prediction layer. System 2 aims to obtain the optimal path
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from the candidate complex paths selected in Section 3.4.1.

Word embedding layer. Similar to System 1, We employ MacBERT [57] with shared parame-
ters as the embedding layer. We need to add two special characters ([CLS] and [SEP]) at the begin-
ning and end of the sequence when encoding the question sequence and complex path sequence with
MacBERT. Formally, the connection between the question Q = {q,,...,q,,} and the complex path
P¢ = {p¢,...,pS} can be represented as QP = {qy.qy, . - ., Gy Qs 1> P - - - - PS. PS, |}, Where g, de-
notes [CLS] and q,,,, ;andp¢_ | represent [SEP]. The tokenized question and complex path are fed into
the MacBERT encoder to get QP¢

emb* :

QP¢ . = MacBERT(QP°) = [ES,ES,...,ES,... ,EC,ES (3.8)
emb 1 m

+n+l]

Semantic self-attention fusion layer. Unlike System 1, System 2 must analyze longer sequences
of information and more sophisticated semantic levels. In order to obtain a more valuable text repre-
sentation, System 2 first introduces a self-attention mechanism to calculate a correlation with the text
sequence itself and then uses the internal representation of the text sequence to obtain a more mean-
ingful text representation. First, we use different linear transformations to encode the joint sequence
embedding QP¢ , to get the Q°, K€, and V¢ values that the attention mechanism needs. Next, the
self-attention ATTC is obtained through a form of self-attention calculation. Finally, The joint se-
quence embedding QPemb and self-attention ATTC are calculated by using a dot product to obtain a
new sequence representation. The specific calculation is as follows:

Q€ = Linear1(QP ), (3.9)
K¢ L1near2(QPemb (3.10)
V¢ = Linear3 (QPemb (3.11)
CKEYT
ATTC = softmax (Q(T)) V¢, (3.12)
k
QP¢, = QPS,, © ATTC. (3.13)

In addition, we used the current GRU model, which is pretty good at encoding questions and path
properties. The self-attention embedding sequence QPS, is fed into a GRU to obtain the joint features

QPfeat.

QP = GRU(QP,) = [G{,GY.....G,,...,G,, Gy, .1 ], (3.14)

where QP¢ ear € ROxtmmxd b is the batch size, m + n is the sequence length, and d is the vector dimen-
sion. To get contextual information on the sequence, we add the following embeddings and features to
the sequence joint features:

QPC()I’IZ‘EXI‘ = Llnear(QPemb) + QPfeat [CC, CC, . CC

m>*

I O O § (3.15)
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Multi-scale CNN layer. Because complex paths can go in many different directions, we use finer
combinations of convolutions to get more useful semantic information. As shown in Figure 6, we use
five different scales of convolutional kernels to capture the semantic information of complex paths.
Given the kernel size of a set of convolutional filters S = {S1,S,, ..., S}, (t € {1, 2, 3,4,5}), S; indicates
a convolutional filter. The outputted feature maps are produced through convolution, which can be
expressed as follows:

M}/ = GELU(W(QPS,,....) + b2, (Si € {S1, S5, ..., S/}, (3.16)
where Wif denotes the training parameters, GELU is an activation function, b‘z" indicates the bias of
each convolutional filter, 7 represents the number of convolutional filters and Mf:" is the output feature
of each convolutional filter.

Complex path prediction layer. We use the max pooling operation to map M‘z" to the sentence
space of the same dimension. This method extracts not only valuable features from each dimension of
M‘Z”, but it also reduces computational costs. The dimension mapping operation corresponding to each
dimension is as follows:

P“z" = MaxPooling(M“z"), (S; € {S1,S2, ..., SiD), (3.17)

where P‘Z” represents sequence features. Finally, we concatenate them from ¢ scales to generate the
final semantic representations:

D{, = Concat(Py., Pe, ..., P, (S; € {S1,Ss, ... Si)), (3.18)

where Concat() is a concatenation operation.

Finally, we use a dense layer to calculate the similarity score between the question and the path and
select the path with the highest score. We use binary-cross-entropy as a loss function to optimize the
parameters of the model during the learning phase.

4. Experimental results

In this section, we first discuss the settings of the experiments we used to test our method. Then, we
present the experimental results and analysis in detail. Experimental settings are introduced in Section
4.1, and then extensive comparisons with state-of-the-art methods are presented in Section 4.2. Finally,
Section 4.3 further discusses the proposed DPS model.

4.1. Experimental settings

To provide the visualization of the proposed method details, we describe the datasets used in this
paper, evaluation metrics and configuration of the experiments in this section.
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4.1.1. Datasets

To demonstrate the performance of the DPS model, several studies were carried out on a cMed-
KBQA dataset—CKBQA?2020 #. To validate the generalization performance of the DPS model, we
further performed experimental comparative analysis on the publicly available dataset CKBQA2019
3. The two hand-labeled datasets are available publicly thanks to the China Conference on Knowl-
edge Graph and Semantic Computing KBQA tasks. Every data case consists of a question, a query
language expression (SPARQL) and the responses to that inquiry. In addition, we utilize the Chinese
knowledge base PKUBASE !, which has about 66,000,000 triplets, 25,000,000 entities and 410,000
relations in the trials. The PKUBASE provides three files: pkubase-triples containing the main triples
of the knowledge base; pkubase-types containing the category triples of each entity; and pkubase-
mention2ent, which can be used to assist in entity linking by containing the priority of each entity to a
certain alias. The details of CKBQA2019 and CKBQA?2020 are presented below.

e CKBQAZ2019: The dataset was published by the CCKS2019 CKBQA task, and it consists of
a knowledge base, a mention-entity file and three question-and-answer pair files. Among them,
Hundsun Technologies Inc. offers about 1000 question-answer pairs in the finance industry, while
the Computer Technology Research Institute of Peking University offers about 3000 open-domain
question-answer pairs. The distribution of question-answer pairs is as follows: the training set has
2298, and the development and test sets have 766.

e CKBQAZ2020: The dataset was released by the CCKS2020 COVID-19 question-answering Task.
It contains nearly 50% complex questions with multi-hop relations. Unlike the CCKS2019 CK-
BQA task, this task introduces data about COVID-19. The medical data and the composition of
the provided files are the same as in CCKS2019, but its question-answer pair distribution differs,
e.g., the training set has 4000, and the development and test sets have 1529.

4.1.2. Evaluation metrics

In our experiments, we employ precision, recall and an average F1 score to evaluate the model. Let
Q represent the question set, A; represents the model’s projected response set for the ith question and
G, represents the ground-truth set for the ith question. The essential formulas for computation are as
follows:

[0l
1 A, NG,
Precision (P) = — P, P, = , 4.1)
0] Z A
Recall (R) ! %R R = AiNGi (4.2)
eca = — is i = 5 .
0 & Gil
FLGE) - 1 izp,& “43)
YRV T 0 S P+ Ry '

*http://www.sigkg.cn/ccks2020
Shttp://www.sigkg.cn/ccks2019
lﬂhttps ://github.com/pkumod/gAnswer/tree/pkubase
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10l
1 A, NG;
Precision (P) = — P;, P, = , (4.4)
0l Zl.zl Al

10|
1 A; N G;
Recall (R) = — R;, R; = , 4.5
®) =15 2 G >
|0l
1 2P;R;
Fy (F,) = il 4.
1 (Fp) 0] P+R (4.6)

4.1.3. Implementation details

In our work, all experiments were conducted by using the Pytorch library [58] on a local workstation
with an Ubuntu 18.04 operating system. The proposed framework was implemented by using Python
3.7 with an NVIDIA GeForce GTX 3090 GPU with 24 GB of memory. Adam was our optimizer in
the Systems 1 and 2 training steps to reduce training loss. The batch size was set to 4, the learning rate
was set to 2e — 5 and the maximum length of model input strings was set to 64. The training process
included 100 epochs for the DPS model. In addition, we terminated it early when the certification set’s
F1 score exceeded its maximum value. In System 1, the multi-scale CNN architecture was equipped
with size (1, 2, 3) filters with 300 feature maps; in System 2, there was size (1, 2, 3, 4, 5) filters with
300 feature maps. The parameter K was set to 10.

4.2. Comparisons with state-of-the-art approaches

In this section, we focus on the performance demonstration of the proposed method compared with
the currently published methods. It contains a detailed introduction of the compared methods and a
comparative analysis of the performance metrics of different methods.

4.2.1. Baseline methods

To validate the effectiveness of the DPS model, we compared our method to various baselines in the
literature.

e DUTIR [48] offers a pipelined model for recognizing entities and their attributes, linking and
filtering entities, matching and bridging text for questions and validating the performance of lan-
guage models that have already been trained to answer knowledge-based questions.

e CNNWR [49] builds an integration system with a path similarity model, a relationship similarity
model, a rule similarity model, and some strategic rules.

e FSM [51] makes a CKBQA system that combines multiple semantic similarities, and all of the
system’s parts fully integrate the semantic features of questions and answers.

¢ Pathselection [52] designs a technique based on the dynamic filtering of negative cases to enrich
the training set’s relations. In order to combat the growth of candidate paths, classification and
beam search strategies are contrasted.
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e MIQA [55] demonstrates a combined methodology that considers all tasks in candidate path
generation and uses linguistic resemblance and re-ranking algorithms to determine the optimal
route.

e SEE [56] constructs a framework based on a pre-trained model, which includes denotation recog-
nition, entity linking, candidate answer generation and answer ranking.

e ARTEMIS [50] suggests a pipeline method based on feature fusion, which consists of six parts:
mention recognition, entity linking, question classification, path generation, path ranking, and
answer retrieval, and it uses multiple feature fusion strategies to recall answers more accurately
from the knowledge base.

4.2.2. Performance comparison

To comprehensively investigate the proposed DPS model, it is contrasted with contemporary pro-
cedures under the settings defined in Section 4.2.1. Table 1 summarizes the achievements of several
solutions on CKBQA2019 and CKBQA2020.

Results on the CKBQA2019 dataset. The dataset used in our experiments, CKBQA, is a compe-
tition dataset. To show the effectiveness of the proposed method, we compare the experimental results
with the winning method in the competition. For the fairness of the comparison, we used the average
F1 value used in the competition as the evaluation indicator. The trial conclusions are depicted in the
upper part of Table 1. Like our DPS model, the top three teams (DUTIR, CNNWR, and FSM) also used
the pre-trained model BERT. Their method utilized the most prevalent BERT model, but we employed
the MacBERT model, which was reflected in the performance of the reading comprehension task. In
addition, their method requires executing the named entity recognition model before recognizing topic
entities, whereas our model focuses on path matching. It can be seen in Table 1 that ESI-L and ESI-D-
B approaches are also superior because they employ model fusion methodologies and recognize topic
entities more effectively. In contrast, our method focuses on obtaining the paths of the questions and
is more detailed and efficient at capturing the semantic information of the questions. The results show
that our DPS model achieved a 78.12% average F1 score on CKBQA2019, outperforming the best
model ESI-D-B (76.11%). And its inference speed was 1.9 s. The inference speed is measured by
the number of samples processed per second during inference. It implies that our model enhances its
performance level effectively.

Results on the CKBQA2020 dataset. The CKBQA2020 dataset is also a competition dataset.
Like with CKBQA2019, we employed the average F1 value as the evaluation metric and compared the
experimental results with the winning method in the competition. Among the baselines, MIQA and
SEE use human-created patterns to construct correlations, and subsequently, sorting algorithms are
used to estimate the meaningful rating. ARTEMIS first categorizes issues as easy or difficult and then
designs various complicated-question-solving strategies. As shown in the bottom half of the results
in Table 1, the performance of the aforementioned baselines is highly dependent on the scope of the
manually generated rules or the reliability of question categorization, resulting in mediocre outcomes
in question answering. Furthermore, the data indicate that the DPS obtained an average F1 score of
86.60% on CKBQA2020, which is 0.53% better than the best model. And its inference speed was 2 s.
The inference speed is measured by the number of samples processed per second during inference. It
indicates that the DPS model has some enhancement effects on answering the questions.
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Table 1. Evaluation results for the public dataset. The benchmark results were extracted
from the original journals. It highlights the top performance in bold.

Index Models Average F1 (%)
1 DUTIR (2019) [48] 67.68
2 CNNWR (2019) [49] 73.08
3 FSM (2019) [51] 73.54
4 Pathselection (2021) [52] 73.09
CKBQA2019 5 Fusion-model (ESI-L) (2020) [53] 74.68
6 Fusion-model2 (ESI-D-B) (2021) [54] 76.11
7 DPS (ours) 78.12
8 MIQA (2020) [55] 85.08
9 SEE (2020) [56] 85.47
CKBQA2020 10 ARTEMIS (2020) [50] 86.07
11 DPS (ours) 86.60

4.3. Discussion of the proposed DPS model

In this section, we discuss the experimental results of the proposed approach, mainly from three
perspectives: ablation study, parameter analysis and case study.

4.3.1. Ablation study

In the DPS model shown in Figure 2, Systems 1 and 2 have been designed to learn a semantic repre-
sentation of the candidate path. To investigate the effectiveness of each module, we further conducted a
group of experiments on CKBQA2019 and CKBQA2020 datasets. The experimental results are given
in Table 2. For consistency, when the experimental conditions and instrumentation matched those in
Section 4.1.3, we replicated the MacBERT model.

To test the effects of various variables on the DPS model, we introduced Systems 1 and 2 for the ex-
periment separately. Quantitative precision, recall and average F1 score comparisons on CKBQA2019
and CKBQA?2020 datasets are presented in Table 2. We observe that the fusion System 1 achieved bet-
ter performance than the MacBERT-only model on two public datasets. On the CKBQA2019 dataset,
the fusion System 1 obtained favourable results with a precision of 76.72%, a recall of 77.47% and an
average F1 score of 76.58%. Compared to the CKBQA2019 dataset, the fusion System 1 performed
better on the CKBQA2020 dataset. It is apparent that the fusion System 1 obtained better results with
a precision of 85.29%, a recall of 85.77% and an average F1 score of 84.96%, which were 1.64, 2.01
and 1.89% higher than the MacBERT-only model on the CKBQA?2020 dataset. System 2 yielded sig-
nificantly superior results over System 1 alone, with a 0.64% increase in precision, a 0.47% increase
in recall and a 0.58% increase in average F1 score. The distribution of performance improvements on
the CKBQA2019 dataset remained consistent with the CKBQA2020 dataset. The results showed that:
1) System 1 enhanced the efficiency of the DPS model, verifying that the vital meaning of questions
and simple candidate paths can be effectively learned by using a hybrid semantic fusion mechanism; 2)
System 2 considerably enhanced the model’s performance, suggesting that the rich, complicated paths
enable the model to gather more valuable question-related information.
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Table 2. Evaluation of each module on the CKBQA2019 and CKBQA?2020 datasets with
average F1 score.

Indicator Important Materials CKBQA2019 CKBQA2020
MacBERT System 1 System 2 Precision (%) Recall (%) Average F1 (%) Precision (%) Recall (%) Average F1 (%)
1 v 76.69 77.23 76.25 83.65 83.76 83.07
2 v v 76.72 77.47 76.58 85.29 85.77 84.96
3 v v 77.28 78.98 77.88 85.93 86.24 85.54
4 v v v 78.27 79.74 78.12 86.98 87.10 86.60

Finally, we incorporated Systems 1 and 2 into the benchmark MacBERT model for the best results.
As shown in Table 2, the DPS model obtained competing results on the cMed-KBQA task. On the
CKBQA2019 dataset, the DPS model achieved good performance with a precision of 78.27%, a recall
of 79.74% and an average F1 score of 78.12%. Compared to the CKBQA2019 dataset, the DPS model
achieved better performance with a precision of 86.98%, a recall of 87.10%, and an average F1 score
of 86.60%. Notably, the CKBQA task improved when System 1 and System 2 were used together. The
considerable performance improvement indicates that our approach can be practical enough to learn
semantic information about questions and simple paths. In addition, it can acquire more complex paths
and learn deeper semantic information. Thus, our proposed method provides more valuable semantic
information for improving the performance of CKBQA models.

87.0+
e Test(%)
86.5 ’\
g 8.0/ .
i
s 855 \
q) O
o *
g
Z 850 /0
84.5 *
84.04—— : : : :
6 8 10 12 14

TopK

Figure 7. Performance of the DPS model with different top-k predicted paths on the CK-
BQA2020 test dataset.

4.3.2. Parameters analysis

As the proposed method is about candidate paths and stops entity and path sparsity in pipeline
methods, the number of candidate paths needs to be set to an appropriate value. We conducted extensive
experiments on CCKS2020 to verify the impact of taking values of K in the first K candidate paths. In
our research, K is a critical indicator for selection of the predicted path, as it determines the similarity
of questions and candidate paths. As K decreases, the DPS network becomes more selective, reducing
the number of possible routes to only a handful of the most important ones. Instead, many random
connections are made when K is large. Consequently, the DPS framework requires a fair value for
the parameter K. Thus, we used an integer of 2 to define K between the numbers 6 and 14. Figure
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7 illustrates that the overall performance tendency changes with the parameter K. Our DPS model’s
efficiency increaseed with growing K, reaching a peak at K = 10. When the parameter K was greater
than 10, the accuracy of the proposed methodology dropped significantly due to unnecessary data.
According to the findings, setting K to 10 is the best parameter choice for cMed-KBQA tasks. The
average F1 score of the proposed model was 86.60%. A value of 10 was chosen to serve as the default
for the parameter K in each experiment.

4.3.3. Error analysis

The effective and comprehensive simple paths are critical to improving the performance of the DPS
model. In this section, we provide a brief analysis of the performance of the simple path-matching
model (System 1). During the training, we set the number of epochs to 100 and stopped training when
the accuracy did not beat the best metric five times in a row. As shown in Figure 8, the training loss
rapidly decreased to a plateau as the training iterations increased. It proves that the convergence in
System 1 is relatively good. As the loss values slowly stopped going up, System 1’s accuracy reached
80 and 90% on the CKBQA2019 and CKBQA2020 datasets, respectively. Also, on the CKBQA2020
dataset, System 1 performed better than on the CKBQA2019 dataset. We guess that this is because
the CKBQA?2020 dataset has more data and the model can learn more from it. Overall, the ability of
System 1 to predict gives some clues about how well the cMed-KBQA task will be done.
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Figure 8. BCE loss of the simple path-matching model (System 1) with different numbers
of epochs on the CKBQA2019 and CKBQA2020 dataset.
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4.3.4. Case study of cMed-KBQA task

Question: 244 N SR EIE L5 S EMAT AR A2
Question: What is the test for acute respiratory distress syndrome in the elderly?

v

Tokens: [N G PE" "IFRF A LEAAE" - R MR FIE SR A AE" - R ]
Tokens: [“elderly","acute","respiratory distress syndrome",...,"acute respiratory distress syndrome",...,"examination™ ]

¥

(2 Entity_CAndidates: "%4E": [£4F, hahEAE4, \"E4E
VL R A, S, R R L A
(MR FB 5 A, IR EEA L AN, .. ]+, " T
W 5 A E" [V VR 45 A A\, b N
WA, AR A (EFFERY,. ], "2
G\ PR NR IR I 2 A VAR N P VR 2 i 4
BV, 2N AR AE, ] A A
R,

E ntity_ C andidates: "E Iderly": [E Iderly, Electric Elderly Car, \
“elderly\",...], “acute™: [\"acute\", Acute,...], “respiratory Distress
Syndrome": [respiratory Distress Syndrome, \"respiratory Distress
Syndrome\",... ],..., "acute Respiratory Distress Syndrome™: [\"acute
Respiratory Distress Syndrome\",acute Respiratory Distress Syndrome,
Acute Respiratory Distress Syndrome_ (Medical Encyclopedia),...],...,
"Acute Respiratory Distress Syndrome In The Elderly": [\"Acute
Respiratory Distress Syndrome In The Elderly\", Acute Respiratory
Distress Syndrome In The Elderly, ...],"Check ": [\"check\", Check...]

v

4 Simple_path_candidates: "&4E": [{£4, KA} {E4F,
M A HEF B {EE AT B [\
PR, ROFRERY \ S\ RFAEY, - LB A A R,
Y, R E NSRS A R [N
SMERPIR LR AAE, Y (2T AN B LR
BAE B A A, LEFEN B R BB SRS E, I
PN, -, A [\ E\, B {E 0B
A\ Biva e A, By {aa, BB AE, B
wReAE, EHY, -]

Simple_path_candidates: "Elderly": [{Elderly, type}, {Elderly,
Chinese name}{elderly, phonetic}, {elderly, foreign name}, ...,
1" Acute™: [{\"acute\",Symptoms}, {\"Acute\",Characteristics}, ...,
{Acute,examination}, {Acute, Type}, ...] ..., "Senior ARDS":
[{Senior ARDS , type},{senior acute respiratory distress syndrome,
involving  examination},...,{senior acute respiratory  distress
syndrome, involving disease}],..., "examination": [{\"examination\",
purpose}, {purpose, step}, {\"check\", prevention}..., {check,
purpose}, {check, step}, {check, prevention}, {check, role}], ...]

!

(6]

Simple path model predict: "2k IR 2 16 25 A fE:
SR IR F I SR A AL, W Sy, {PERT I i 25
G, WA A}, {SEMREFE LA, K
Y, o ], "B AN SR E B RS AE [{BEAN
RPERPIRE B LR A, W R}, {E NSRRI A
HBEZREAE, WRGEY, {ZFEANSHETRFIBLEEE,
KAY, -]

Simple path model predict: "Acute Respiratory Distress Syndrome":
[{Acute Respiratory Distress Syndrome, involves disease}, {Acute
Respiratory Distress Syndrome, involves examination}, {Acute
Respiratory Distress Syndrome, type}, ....],..., “Elderly Acute
Respiratory Distress Syndrome": [{Elderly Acute Respiratory Distress
Syndrome, involving disease}, {Elderly Acute Respiratory Distress
Syndrome, involving examination}, {Elderly Acute Respiratory
Distress Syndrome, types}, ...,]]

¥

6 Complex_path_candidates: "1hle": [{2 1t FFIR 218 23
GAE, W R}, { AR E G LR EAE, Wk A Y,
{RVEMFIR F B LA E, Y, (B F N B IR Eia
CEOIE, ¥ Rk}, ], 0, "2hle": [{Z4FE N SR

Complex_path_candidates: "1hle": [{Acute Respiratory Distress
Syndrome, involves disease}, {Acute Respiratory Distress
Syndrome, involves examination}, {Acute Respiratory Distress
Syndrome, type}, {Acute Respiratory Distress Syndromein the
elderly, involves examination}, ...,],..., "2hle™: [[{Elderly Acute
indicators}, {Elderly Acute

AEGEAL, BRI, 1845}, {EFNBHERR AL ﬁ::g:ggg DlijsitsrtggsssSin?gr?emei’nvoIving examination}, {Elderly
ERETE, &&ﬁﬁ W RKEY, (SN IERFREE Acute Respiratory Distress Syndrome, involved diseases,
SEEAE, W R, R84y, -+11 types},...]]

v

Complex path model predict: {ZZ 44 A\ 2L S8 LA, ¥ R E}
Complex path model predict: {Elderly Acute Respiratory Distress Syndrome, involving examination}

Build SparQL: "select 2x where { <Z4F N SEMIR FB LEAE> < KA AE> 2Y .}
Build SparQL.: "select ?x where { <Elderly Acute Respiratory Distress Syndrome> <involving examination> ?y.}"

Answer: "Bl ifi %5 K"

Figure 9. A case study of cMed-KBQA via our proposed DPS. The English-language version

Answer: "Arterial Partial Pressure Of Oxygen"

was obtained through Google Translate and is for reference only.
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To demonstrate the working mechanism of our suggested DPS model, a case study of the cMed-
KBQA task is presented in Figure 9. When asked the question “What is the test for acute respiratory
distress syndrome in the elderly?”, the correct reasoning path is the {Elderly Acute Respiratory Dis-
tress Syndrome, involving examination}. To accurately answer the above questions, a dual-processing
system is required for matching reasoning. A case study of answer reasoning using our proposed DPS
is shown in Figure 9.

For the question “What is the test for acute respiratory distress syndrome in the elderly?”. In the
first stage, our model obtained the tokens (“elderly”, "acute”, “respiratory distress syndrome”...., “acute
respiratory distress syndrome”, ..., and “examination”) of the question by both Jieba and PkuSeg. We
then connected the knowledge base to query the corresponding candidate entities and candidate paths
(as shown in Parts 3 and 4 of Figure 9). Next, we employed System 1 for simple path prediction
(as shown in part 5 of Figure 9). In the second stage, based on the paths predicted by System 1, we
connected the knowledge base to query its associated candidate complex paths (as shown in Part 6
of Figure 9). Subsequently, we utilized System 2 to predict our best path {Elderly Acute Respiratory
Distress Syndrome, involving examination}. Finally, we built a SPARQL query statement based on
the best path to obtain the answer ”Arterial Partial Pressure Of Oxygen” through the query knowledge
base.

During the training stages of Systems 1 and 2, our model applied a multi-scale CNN mechanism to
acquire more valuable information. The DPS model incorporating the DPS can obtain more accurate
answers.

5. Conclusions, limitations, and future research

In this paper, we have proposed a practical framework with a DPS for the cMed-KBQA task and
achieved significant improvement on the CKBQA2019 and CKBQA?2020 datasets when compared
with previous methods. Specifically, System 1 of the DPS model consists of an entity extraction mod-
ule, an entity linking module, a simple path retrieval module and a simple path-matching model; it
utilizes a simple path-matching model to capture the candidate simple paths in question. For System
2, we applied the complex path retrieval module and complex path-matching model to reason on a
knowledge base (PKUBASE) to retrieve the complex paths. System 2 first executes System 1 to find
candidate simple paths; then, a complex path retrieval module is conducted to obtain enriched com-
plex paths from the knowledge base. For the path matching, we proposed a mixed semantic fusion
mechanism to capture valuable information from both the question and the candidate path. Experi-
ments showed that our methodology outperforms the other methods presented in previous papers when
implemented on DPSs.

As an important branch of intelligent question answering, research related to cMed-KBQA not only
improves the utilization of medical information resources, but it also provides medical practitioners
with a huge space and many choices. In addition, the development of a medical intelligent question-
answering system has also led to changes in the traditional disease-centric service concept of medical
information search, with the concept of human-centered services becoming more and more practical.
Although the proposed approach improved the performance on cMed-KBQA tasks, there are some lim-
itations in its practical applications, such as how to realize the end-to-end question-answering system
and achieve an accuracy rate that can be practically applied.
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For future work, we will first explore end-to-end ways to improve the performance of models and
the effectiveness of real-world applications, avoiding the improper propagation of subtasks in pipeline
approaches. Second, we would like to explore diverse paths through the use of multiplex relational
attention networks [59, 60] and graph neural networks [61] combined with semantic attention.
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