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Abstract: The variation of nutrient supply not only leads to the differences in the phytoplankton
biomass and primary productivity but also induces the long-term phenotypic evolution of phytoplank-
ton. It is widely accepted that marine phytoplankton follows Bergmann’s Rule and becomes smaller
with climate warming. Compared with the direct effect of increasing temperature, the indirect effect via
nutrient supply is considered to be an important and dominant factor in the reduction of phytoplankton
cell size. In this paper, a size-dependent nutrient-phytoplankton model is developed to explore the
effects of nutrient supply on the evolutionary dynamics of functional traits associated with phytoplank-
ton size. The ecological reproductive index is introduced to investigate the impacts of input nitrogen
concentration and vertical mixing rate on the persistence of phytoplankton and the distribution of cell
size. In addition, by applying the adaptive dynamics theory, we study the relationship between nutrient
input and the evolutionary dynamics of phytoplankton. The results show that input nitrogen concen-
tration and vertical mixing rate have significant effects on the cell size evolution of phytoplankton.
Specifically, cell size tends to increase with the input nutrient concentration, as does the diversity of
cell sizes. In addition, a single-peaked relationship between vertical mixing rate and cell size is ob-
served. When the vertical mixing rate is too low or too high, only small individuals are dominant in
the water column. When the vertical mixing rate is moderate, large individuals can coexist with small
individuals, so the diversity of phytoplankton is elevated. We predict that reduced intensity of nutrient
input due to climate warming will lead to a trend towards smaller cell size and will reduce the diversity
of phytoplankton.
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1. Introduction

Phytoplankton is an important functional group in the ocean and plays a central role in marine
ecosystems. As a kind of photoautotrophic microbes, phytoplankton is responsible for about half of
global primary productivity [1]. Over the past several decades, global warming has asserted significant
effects on the coastal environment and marine organisms [2]. Recently, ecologists found that marine
phytoplankton meets Bergmann’s Rule, that is, increasing temperature can lead phytoplankton cells to
become smaller [3]. Extensive studies have been carried out to explore why phytoplankton becomes
smaller with increasing temperature. It was found that an increase in physiological and metabolic rates
directly caused by increasing temperature may lead to the reduction of phytoplankton size. However,
the increased physiological and metabolic rates are not necessarily the main reason for the reduction in
phytoplankton size [4]. It has been found that reduced nutrient availability indirectly caused by climate
warming is a dominant factor for the decrease in phytoplankton cell size [5], as well as phytoplankton
biomass [4].

The availability of nutrients plays a crucial role in determining the biomass and productivity of
phytoplankton. Recently, some studies have found that the global phytoplankton biomass is declining
at a rate of approximately 1% per year in numerous ocean areas, especially in the south and equatorial
Atlantic regions [6]. Many pieces of evidence indicate that declines in phytoplankton production and
biomass are associated with nutrient limitation [4]. Owing to climate change, the sea surface temper-
atures in most oceans have increased over the past century [2], which has led to the strengthening of
the density gradient and enhancement of thermal stratification. Consequently, the vertical mixing rate
between the upper layer and the deep ocean declines, and the nutrient supply becomes limited [7].
Nutrients are gradually depleted in the mixed layer, which exerts an impact on the growth and survival
of phytoplankton.

In addition to limiting the phytoplankton growth rate, the variability of nutrient can also be a de-
terminate factor in the cell size evolution of phytoplankton. As observed in most oceans, small phy-
toplankton tends to dominate in nutrient-poor waters, while large phytoplankton is more abundant in
nutrient-rich areas [8]. In fact, cell size is a key trait of phytoplankton, and it makes a significant
difference in physiological and ecological functions. Specifically, cell size affects the growth rate [9],
sinking rate [10], nutrient quota [11], and competitive ability [12]. Also, the variation of phytoplankton
cell size has cascading consequences on higher trophic levels and even the entire marine ecosystem.
Therefore, it is necessary to explore the evolutionary adaptation of phytoplankton cell size under vary-
ing nutrient availability.

Extensive research has focused on effects of nutrient supply on long-term behavior of phytoplank-
ton [13, 14]. Recent studies have shown that the phytoplankton species may respond to the change
of nutrient supply by altering its physiological characteristics, such as the cell size or the elemen-
tal composition in the cells [15, 16]. Especially, there is an obvious trend that the mean cell size of
phytoplankton is decreasing when the nutrient becomes limiting in the mixed layer [17, 18]. Marine
ecologists have done some experimental and field studies to verify the relationship between the nutrient
supply and phytoplankton cell size. Peter and Sommer [14] performed a laboratory experiment with
three levels of nutrient limitation, and the nutrient stress is controlled by semicontinuous dilution. The
results show that the nutrient supply has a crucial effect on the cell size of phytoplankton, and the size
reduces significantly at the highest level of nutrient limitation.
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However, the experimental studies are difficult to measure and evaluate the long-term impacts quan-
titatively. The trait-based model is an analytical method to understand the relationships between envi-
ronmental factors and traits of phytoplankton [19, 20]. Moreover, the adaptive dynamics method can
be applied to the trait-based model to explore the evolutionary dynamics of the traits, which has been
studied by many researchers [21–24]. The ecological model and theoretical analysis provide a good
opportunity to reveal the dynamical mechanism of the population system [25]. In addition, the existing
studies of the trait-based nutrient-phytoplankton model show that the cell size can only be an evolution-
ary stable strategy (ESS) in a nutrient-phytoplankton model [26]. They failed to find the evolutionary
branching point, which implies the trait diversity of population. However, phytoplankton is extremely
diverse with respect to its cell size in the marine ecosystem. Therefore, it is of considerable importance
to explore whether the adaptive model admits an evolutionary branching point under varying nutrient
levels.

The enhanced stratification structure of the ocean due to climate changes reduces the vertical mix-
ing rate between the deep and the surface layers of the ocean. Hence the nutrient supply from the
deep layer to the surface layer is limited, which significantly affects the growth and reproduction of
phytoplankton. It is reasonable and important to examine the effects of the variation of nutrient supply
on the evolution of biomass and cell size of phytoplankton. To achieve this objective, we combine the
trait-based model and adaptive dynamics method to elucidate the responses of phytoplankton species
to the variation of nutrient supply. The paper is organized as follows. In the next section, a trait-based
nutrient-phytoplankton model is proposed, and some fundamental results about the ecological model
are obtained. In Section 3, we develop an evolutionary model of the phytoplankton cell size and ana-
lyze the evolutionary dynamics of the singular strategy. Some numerical simulations are carried out to
demonstrate the impacts of input nutrient concentration and vertical mixing rate on the persistence of
phytoplankton species and the evolution of cell size in Section 4. In Section 5, we conclude our results
and explain the potential biological meanings. Finally, the paper ends with the detailed proofs of our
analytical results in Section 6.

2. Ecological model and dynamics

2.1. Model formulation

To explore the effect of the nutrient supply on the population and evolutionary dynamics of marine
phytoplankton, we formulate a nutrient-phytoplankton model consisting of two state variables, includ-
ing nitrogen concentration N (fmol N · L−1) and phytoplankton density P (cells · L−1). Assume that the
ocean is composed of the mixed layer and the deep ocean (see Figure 1). The phytoplankton grows in
the mixed layer, and the nitrogen is mainly supplied from the deep ocean. Moreover, the upper layer is
assumed to be well mixed, thus the nutrient and phytoplankton are homogeneous there.

We develop a size-dependent nutrient-phytoplankton model under the following assumptions.

• If the phytoplankton cells are spherical, then the mean cell diameter x is applied to describe the
cell size; if the phytoplankton cells are not spherical, then the equivalent spherical diameter (ESD)
can be used to characterize the cell size.
• The exchange rate between the mixed layer and the deep ocean is proportional to the vertical

mixing rate v, but is inversely proportional to the mixed layer depth zm. The amount of input
nitrogen from the deep ocean is the product of the exchange rate v/zm and the input nitrogen

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4714–4740.



4717

concentration Nin. The water exchange also leads to some nitrogen being removed from the
mixed layer.
• The proportion of recycled nitrogen from the phytoplankton debris is denoted by r with 0 < r < 1.
• The nitrogen is absorbed and utilized by phytoplankton, which depends on the phytoplankton

nutrient quota Q(x).
• The maximum growth rate of phytoplankton follows an allometric pattern, which means that the

growth rate represented by µ(x) is a function of phytoplankton cell size.
• The nitrogen limitation on growth rate is characterized by Michaelis-Menten function g(N) with

half-saturation constant K, which is g(N) = N/(N + K).
• The losses of phytoplankton are determined by four processes, including a constant size-

independent mortality rate m, a size-dependent sinking rate s(x)/zm, a dilution rate due to the
water mixing v/zm, and intraspecific competition α(0).

Figure 1. The stratified ocean is composed of the mixed layer and the deep ocean. P is the
density of phytoplankton, N is the concentration of nitrogen in the mixed layer, Nin is the
input nitrogen concentration, and zm is the depth of mixed layer.

Based on the above assumptions, the interactions between the nitrogen and phytoplankton in the
mixed layer can be described by



dN
dt =

v
zm

(Nin − N)︸         ︷︷         ︸
nitrogen exchange

+ rmPiQ(i)︸    ︷︷    ︸
nitrogen recycling

− µ(i)g(N)PiQ(i)︸            ︷︷            ︸
uptake

,

dPi
dt = µ(i)g(N)Pi︸      ︷︷      ︸

growth

− mPi︸︷︷︸
metabolism

−
s(i) + v

zm
Pi︸     ︷︷     ︸

sinking and mixing

− α(0)P2
i ,︸  ︷︷  ︸

competitive effect

(2.1)

where i = x, y. Without loss of generality, let i = x.
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Table 1. Parameters of model (2.1) with default values and references.

Parameter Description Range Unit Reference
Nin Input nitrogen concentration 0-20 fmol N · L−1 Default
v Vertical mixing rate 0-20 m · day−1 Default
zm Mixed layer depth 20 m Default
m Mortality rate of phytoplankton 0.1 day−1 [20]
r Proportion of recycled debris 0.1 - [20]
K Half-saturation constant 2 fmol N · L−1 Default
c1 Coefficient of growth rate 0.09 µm−1 · day [20]
c2 Coefficient of growth rate 0.12 day [20]
c3 Coefficient of growth rate 0.31 µm · day [20]
β Nutrient quota coefficient 0.826 fmol N · cell−1 · µm−γ [11]
γ Nutrient quota exponent 2.31 - [11]
s0 Sinking rate coefficient 0.0024 m · day−1 · µm−2 [10]
α0 Intraspecific competition coefficient 0.15 L · (cell · day)−1 Default
δ Interspecific competition coefficient 2.4 µm−1 Default
w Strength of competition 1.08 - Default

From (2.1), we find that some ecological parameters of phytoplankton are size-dependent, such as
the growth rate µ(x), sinking rate s(x), and nutrient quota Q(x). In addition, the competitive effect
α(x− y) is also size-dependent. Note that all size-dependent functions are positive and bounded. Next,
we describe other potential properties for these size-dependent parameters.

Growth rate µ(x). It is accepted that the maximum growth rate of phytoplankton is related to its cell
size. Recent research shows that there exists a unimodal relationship between phytoplankton growth
rate and its cell size, and the growth rate reaches its peak at an intermediate cell size [9]. It means that
if the cell size is small, then the growth rate increases with the size; if the cell size is large, then the
growth rate decreases with the size [20]. Hence, µ(x) satisfies the following inequalities µ′(x) > 0, µ′′(x) < 0, small x;

µ′(x) < 0, µ′′(x) > 0, large x.
(2.2)

Nutrient quota Q(x). The nutrient quota of phytoplankton is mainly determined by the protoplasm
volume, which is approximately proportional to phytoplankton cell volume [19]. Hence, it is trivial to
find that the nutrient quota increases with phytoplankton cell size, which is Q′(x) > 0.

Sinking rate s(x). Phytoplankton cells sink at a certain rate since they are denser than the fluid
around them. It is generally accepted that the larger cells sink faster than the smaller cells, which leads
to s′(x) > 0, s′′(x) > 0.

Competitive effect α(x−y). It is common ground that large phytoplankton is more competitive than
small ones in terms of light capturing, nutrient storage, and so on. We assume that there is asymmetric
competition among the phytoplankton species. That is to say, the large species suffers little competitive
effects from small species, while the small species stands more competitive effect from large species.
Hence, we adopt α(x − y) to describe the competitive relationship, which represents the effect of cell
size x on cell size y. When x = y, define α(0) as the intraspecific competitive effect. Moreover, α(x−y)

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4714–4740.



4719

is a decreasing function of the difference in the cell sizes of competitive phytoplankton species, which
is

∂α(x − y)
∂x

< 0,
∂α(x − y)

∂y
> 0. (2.3)

Assume that the resident population can be invaded by the mutant population, and the mutant popu-
lation competes for nutrient with the resident population. If the mutant phytoplankton population with
trait y appears in the resident phytoplankton population with trait x, then we present the interactions
between the resident population and the mutant population as follows

dN
dt =

v
zm

(Nin − N) + rmPxQ(x) + rmPyQ(y) − µ(x)g(N)PxQ(x) − µ(y)g(N)PyQ(y),

dPx
dt = µ(x)g(N)Px − mPx −

s(x) + v
zm

Px − α(0)P2
x − α(x − y)PxPy,

dPy
dt = µ(y)g(N)Py − mPy −

s(y) + v
zm

Py − α(y − x)PxPy − α(0)P2
y ,

(2.4)

where Py is the density of mutant phytoplankton with trait y, α(x − y) is the competitive effect of the
mutant population Py on the resident population Px, α(y − x) is the competitive effect of the resident
population Px on the mutant population Py.

2.2. Ecological dynamics

In this subsection, we shall study some fundamental dynamics of (2.4) including the non-negativity,
boundedness, persistence, and the existence of the coexistence steady state. For simplicity, define
R3

+ := {(N, Px, Py)|N ≥ 0, Px ≥ 0, Py ≥ 0}. We begin with the positive invariance and boundedness of
system (2.4).

Theorem 2.1. The system (2.4) is positive invariant and dissipative in R3
+. More specifically, the system

has the following property

lim sup
t→∞

(
N(t) + Px(t)Q(x) + Py(t)Q(y)

)
≤ Nin.

Notes. Theorem 2.1 indicates that the full model (2.4) is biologically well defined, that is, any
solutions with non-negative initial values are non-negative and bounded for all the future time.

Define
Ω := {(N, Px, Py) ∈ R3

+ | N + PxQ(x) + PyQ(y) ≤ Nin}.

According to Theorem 2.1, we find the compact set Ω is a positively invariant set and global attracting
set for (2.4).

Before exploring the dynamics of the full model (2.4), we investigate the global dynamics of the
nutrient-phytoplankton model (2.1), containing one phytoplankton species with fixed cell size x. A
threshold value for the trait-based nutrient-phytoplankton model (2.1) is introduced, which is the eco-
logical reproductive index

Rx
0 =

µ(x)g(Nin)

m +
s(x)+v

zm

. (2.5)
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Rx
0 represents the average amount of newborn phytoplankton produced by one unit of population Px

during the life expectancy [27]. It is a key indicator to evaluate whether phytoplankton species can sur-
vive in a given environment or not. Next, we apply the ecological reproductive index of phytoplankton
Rx

0 to characterize the global dynamics of (2.1).
It is not difficult to find that (2.1) may have two equilibria. Note that the phytoplankton-free equi-

librium E0(Nin, 0) always exists, while the positive equilibrium E∗(N∗x , P
∗
x) exists if and only if there

exist positive constants N∗x and P∗x satisfying the following algebra equations
v
zm

(
Nin − N∗x

)
+ rmP∗xQ(x) − µ(x)g(N∗x)P∗xQ(x) = 0,

µ(x)g(N∗x) − m −
s(x) + v

zm
− α(0)P∗x = 0.

(2.6)

Theorem 2.2. If Rx
0 < 1, then system (2.1) has a unique equilibrium E0 and it is globally asymptotically

stable; if Rx
0 > 1, then E0 is unstable and there exists a unique positive equilibrium E∗ being globally

asymptotically stable.

Notes. By the dynamical systems theory, the equilibrium being globally asymptotically stable
means an orbit with an arbitrary initial point in the domain will tend toward the equilibrium point.
From Theorem 2.2, we find that phytoplankton-free equilibrium E0(Nin, 0) is globally asymptotically
stable if the growth rate of the phytoplankton is smaller than its loss rate due to mortality, sinking, and
dilution, i.e. µ(x)g(Nin) < m + (s(x) + v)/zm, which means the phytoplankton cannot survive in the
environment. The positive equilibrium E∗(N∗x , P

∗
x) to be globally asymptotically stable requires that the

growth rate of phytoplankton is larger than its loss rate, i.e. µ(x)g(Nin) > m + (s(x) + v)/zm, then the
phytoplankton species can reproduce and exist in the water column.

Next, we explore the persistence and coexistence steady state of the full model (2.4), which reduces
to the single-species model (2.1) when Px = 0 or Py = 0. It is not hard to find that system (2.4) has
three boundary equilibria

Ē0(Nin, 0, 0), E1(N∗x , P
∗
x, 0), E2(N∗y , 0, P

∗
y),

where (N∗i , P
∗
i ), i = x, y is the interior equilibrium of the single-species model (2.1).

Notice that Rx
0 = µ(x)g(Nin)/ (m + (s(x) + v)/zm). For convenience, we define the following ecolog-

ical reproductive indexes

Ry
0 =

µ(y)g(Nin)

m +
s(y)+v

zm

, Rx
1 =

µ(x)g(N∗y )

m +
s(x)+v

zm
+ α(x − y)P∗y

, Ry
1 =

µ(y)g(N∗x)

m +
s(y)+v

zm
+ α(y − x)P∗x

.

We claim that Ri
0 > Ri

1 for i = x, y. It can be obtained from (2.6). Multiplying the second equation of
(2.6) by P∗xQ(x) and adding the first equation of (2.6), we have

v
zm

(
Nin − N∗x

)
= (1 − r)mP∗xQ(x) +

s(x) + v
zm

P∗xQ(x) + α(0)P∗2x Q(x).

It is easy to find that the right-hand side of the above equation is greater than 0, thus we have Nin > N∗x .
Since g(N) is a increasing function of N, then g(Nin) > g(N∗x). It follows that Ry

0 > Ry
1. Similarly, we

can get Rx
0 > Rx

1.
We have the following theorem about the persistence and permanence of the full model (2.4).
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Theorem 2.3. The nutrient N in the full model (2.4) is persistent. In addition, population Py is persis-
tent if

• Rx
0 > 1 and Ry

1 > 1; or
• Rx

0 < 1 and Ry
0 > 1.

Similarly, we have following conditions when population Px is persistent

• Ry
0 > 1 and Rx

1 > 1; or
• Ry

0 < 1 and Rx
0 > 1.

Moreover, if min{Rx
1,R

y
1} > 1, then system (2.4) is permanent and has at least one positive steady state

solution Ẽ∗(Ñ∗, P̃∗x, P̃
∗
y).

Notes. A species is persistent which means the species is bounded and is larger than a positive
constant for quite a long time. Theorem 2.3 describes the possible competitive outcomes for phyto-
plankton species Px and Py. Note that the ecological reproductive indexes of phytoplankton play a
decisive role in the extinction or persistence of species. Ri

0 describes the reproductive capacity of the
single species Pi without competitor, while Ri

1 indicates the reproductive capacity of population Pi un-
der the competition of population P j, where i, j = x, y. The population Py persists in the following two
scenarios.

(1) If the population Px does not exist in the environment, i.e. Rx
0 < 1, then it requires that the growth

rate of phytoplankton Py is larger than its loss rate due to mortality, sinking, and dilution, which
is µ(y)g(Nin) > m + (s(y) + v)/zm.

(2) If the population Px exists in the environment, i.e. Rx
0 > 1, then it requires that the growth

rate of phytoplankton Py is larger than its total loss rate due to mortality, sinking, dilution, and
interspecific competition with Px, which is µ(y)g(N∗x) > m + (s(y) + v)/zm + α(y − x)P∗x.

The persistence for population Px is in the same case. Moreover, if we have min{Rx
1,R

y
1} > 1, then both

phytoplankton species Px and Py can survive and coexist. That is to say, the system (2.4) is permanent.

3. Evolutionary model and dynamics

3.1. Evolutionary model

Assume that the phytoplankton cell size is an evolving trait, and the resident population can be in-
vaded by the mutant population. We apply the adaptive dynamics theory [28,29] to track the evolution
of cell size. In this framework, evolutionary change is assumed to be much slower than ecological dy-
namics, thus evolutionary dynamics are considered when the resident population has reached a steady
state.

Before introducing the evolutionary model, we first established the fitness function of the mutant
population, which plays an important role in determining whether the mutant population can invade or
not. The invasion of the mutant population can be reflected by the stability of equilibrium E1(N∗x , P

∗
x, 0)

of the full model (2.4). If E1 is stable, then the mutant population cannot invade the resident population,
and they would be extinct eventually. Otherwise, if E1 is unstable, then it implies that the mutant
population can invade the resident population, and the mutant population and the resident population
can coexist in the environment. The stability of E1 can be determined by the following Jacobian matrix
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JE1 =


−

v
zm
− µ(x)g′(N∗x)P∗xQ(x) rmQ(x) − µ(x)g(N∗x)Q(x) rmQ(y) − µ(y)g(N∗x)Q(y)

µ(x)g′(N∗x)P(x) −α(0)P∗x −α(x − y)P∗x

0 0 µ(y)g(N∗x) − m −
s(y) + v

zm
− α(y − x)P∗x

 .
Note that the submatrix of JE1 consisting of the first two rows and the first two columns has the same

form as JE∗ , which is given in Section 6. From Theorem 2.2, we know that the eigenvalues of this
submatrix have negative real parts provided by Rx

0 > 1. Hence, the stability of E1 is determined by the
third eigenvalue of JE1 , which is

λ = µ(y)g(N∗x) − m −
s(y) + v

z
− α(y − x)P∗x.

If λ is negative, then E1 is asymptotically stable, which implies that the mutant population is extinct.
If λ is positive, then the mutant population can persist in the environment.

Based on the facts mentioned above, we obtain that the sign of λ plays a critical role in determining
the fate of mutant phytoplankton species. Therefore, we define the fitness function for the mutant
population Py as follows

fx(y) := λ = µ(y)g(N∗x) − m −
s(y) + v

zm
− α(y − x)P∗x, (3.1)

where fx(y) is the long-term exponential growth rate of Py. It reveals the destiny of the mutant pop-
ulation. If fx(y) > 0, then the mutant population can invade and appear in the resident population.
Otherwise, the mutant population cannot invade the resident population and become extinct.

In the adaptive dynamics framework, another important function is the local fitness gradient, which
decides the direction of evolution. The local fitness gradient D(x) is defined by

D(x) =
∂ fx(y)
∂y

∣∣∣∣∣
y=x

= µ′(x)g(N∗x) −
s′(x)
zm
− α′y(0)P∗x, (3.2)

where α′y(0) =
∂α(y−x)
∂y

∣∣∣∣
y=x

. We assume that the variation of the cell size is random and small such that

the trait y is very close to x. Hence, by linear approximation of the fitness function, we yield

fx(y) = fx(x) + D(x)(y − x).

Substituting y = x into (3.1), we have fx(x) = 0 by the second equation of (2.6). Hence, the sign of
fx(y) is determined by the sign of D(x) and the difference between x and y. If D(x) > 0, then the mutant
with trait larger than x can replace the resident phytoplankton; if D(x) < 0, then the mutant with trait
smaller than x can take over the resident population.

Next, we formulate the evolutionary model for the phytoplankton species and explore the adaptive
dynamics of the cell size x. According to the adaptive dynamics theory, the mutation rate of a pheno-
typic trait is proportional to the probability that a newborn individual in the resident is a mutant, the
variance of mutation distribution, the resident population density, and the local fitness gradient. Hence,
the evolutionary model for the cell size x is described as

dx
dt

=
1
2
θσ2P∗x(x)D(x), (3.3)
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where θ is the probability that a newborn individual in the resident is a mutant, σ2 is the variance of
mutation distribution, P∗x(x) is the density of resident phytoplankton at steady state, and D(x) is the
local fitness gradient.

It is interesting to find that the adaptive model (3.3), a one-dimensional differential equation, can
describe competitive effects among phytoplankton species of all cell sizes and reveal the evolutionary
dynamics of multi-species systems.

3.2. Evolutionary dynamics

The evolutionarily singular strategy x∗ is one of the most important studies of evolutionary dynam-
ics, which is defined as D(x∗) = 0. In our case, the condition for evolutionarily singular strategy x∗ is
given by

D(x∗) = µ′(x∗)g(N∗x(x∗)) −
s′(x∗)

zm
− α′y(0)P∗x(x∗) = 0. (3.4)

By calculating the equation (3.4), we can obtain the value of the evolutionarily singular strategy x∗.
Next, we focus on what the phytoplankton species go through after reaching the evolutionarily sin-

gular strategy x∗. The strategy may be evolutionarily stable, which means that the new mutant species
can no longer invade the resident species; or undergo diversification, which implies that the mutant
species can coexist with the resident species in the environment. This depends on the evolutionary
stability or convergence stability of the evolutionarily singular strategy, which is defined as follows.

Evolutionarily stable strategy. The evolutionarily singular strategy is called an evolutionarily
stable strategy if there are no mutants nearby x∗ can invade, which is determined by the following
inequality

∂2 fx(y)
∂y2

∣∣∣∣∣∣
y=x=x∗

< 0. (3.5)

Convergence stable strategy. The evolutionarily singular strategy is known as convergence stable
strategy if mutants nearby x∗ can be invaded by trait being even more close to x∗, which can be derived
from the following inequality

dD(x)
dx

∣∣∣∣∣
x=x∗

=
∂2 fx(y)
∂x∂y

+
∂2 fx(y)
∂y2

∣∣∣∣∣∣
y=x=x∗

< 0. (3.6)

According to the above definitions, we can further classify the evolutionarily singular strategy.
Continuously stable strategy. If the singular strategy is both evolutionarily stable and convergence

stable, then it is said to be a continuously stable strategy (CSS). The fitness function has a maximum
at CSS. It implies the endpoint of evolution, and the specific strategy prevents invasion by others.

Evolutionary branching point. If the singular strategy is convergence stable but lacks evolutionary
stability, then it is an evolutionary branching point. The evolutionary branching point can lead to
speciation, and the mutant population can coexist with the resident population.

Repellor. If the singular strategy lacks convergence stability, then we refer to the strategy as a
repellor.

In our case, we have

∂2 fx(y)
∂y2

∣∣∣∣∣∣
y=x=x∗

= µ′′(x∗)g(N∗x(x∗)) −
s′′(x∗)

zm
− α′′yy(0)P∗x(x∗), (3.7)
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dD(x)
dx

∣∣∣∣∣
x=x∗

= µ′′(x∗)g(N∗x(x∗)) + µ′(x∗)g′(N∗x(x∗)) −
s′′(x∗)

zm
− α′y(0)P∗

′

x (x∗), (3.8)

where α′′yy(0) =
∂2α(y−x)
∂y2

∣∣∣∣
y=x=x∗

, g′(N∗x(x∗)) =
dg(N∗x)

dN∗x
dN∗x
dx

∣∣∣∣∣
x=x∗

, P∗
′

x (x∗) =
dP∗x
dx

∣∣∣∣∣
x=x∗

.

Theorem 3.1. Assume that Rx
0 > 1. For the evolutionarily singular strategy x∗, one has

(i) if both (3.7) and (3.8) are negative, then x∗ is a CSS;
(ii) if (3.7) is positive and (3.8) is negative, then x∗ is an evolutionary branching point;

(iii) if (3.8) is positive, then x∗ is a repellor.

Notes. Theorem 3.1 provides the sufficient conditions for the evolutionarily singular strategy to be
a CSS or an evolutionary branching point or a repellor, which is determined by the growth rate µ(x),
sinking rate s(x), and the competitive effect α(x − y). The biological meaning of CSS is the endpoint
of the evolution process, which implies the phytoplankton with this strategy cannot be invaded by
other phytoplankton species. CSS represents the most competitive cell size of phytoplankton species
in the environment. At the evolutionary branching point, the cell size has the potential for adaptive
diversification, which causes the phytoplankton to split into two species with different cell sizes. A
repellor lacks convergence stability and thus is unattainable in the evolution process.

Many theoretical ecologists have applied the eco-evolutionary model, including both ecological and
evolutionary changes, to study the ecological and evolutionary dynamics of population. In this paper,
an eco-evolutionary model can be established based on the ecological model (2.1) and the evolutionary
model (3.3), which is given by

dN
dt

∣∣∣∣∣
y=x

=
v
zm

(Nin − N) + rmPxQ(x) − µ(x)g(N)PxQ(x),

dPx

dt

∣∣∣∣∣
y=x

= µ(x)g(N)Px − mPx −
s(x) + v

zm
Px − α(0)P2

x,

dx
dt

∣∣∣∣∣
y=x

=
1
2
θσ2PxD(x).

(3.9)

Note that the eco-evolutionary model (3.9) exists a positive equilibrium Ê(N∗x , P
∗
x, x
∗) when Rx

0 > 1.
The stability of the equilibrium Ê(N∗x , P

∗
x, x
∗) can be ensured by the dynamics of evolutionary models.

We have the following proposition.

Proposition 3.1. The following two expressions are equivalent.

(i) The equilibrium Ê(N∗x , P
∗
x, x
∗) of the eco-evolutionary model (3.9) is locally asymptotically stable.

(ii) The evolutionarily singular strategy x∗ of (3.3) is convergence stable.

Notes. Proposition 3.1 suggests that the equilibrium of (3.3) and the equilibrium of the eco-
evolutionary model (3.9) have the same stability. Therefore, to a certain extent, these two systems
can be referred to be equivalent. In this paper, we adopt a more concise approach to studying the evo-
lution of phytoplankton phenotypic traits by separating the ecological time scale from the evolutionary
time scale. This is because the turnover of phytoplankton is very fast, a few hours or days, while evo-
lution is a long-time behavior. Thus, we assume that the ecological and evolutionary time scales can
be separable.
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4. Applications

In this section, we illustrate numerically the effects of environmental drivers on the ecological and
evolutionary dynamics of phytoplankton. First, we need to determine the mathematical formula for
size-dependent ecological parameters including the growth rate µ(x), nutrient quota Q(x), sinking rate
s(x), and competitive effect α(x − y). Many researchers have studied the correlations between phy-
toplankton cell size and the ecological processes and apply functions of cell size x to describe these
relationships.

Considering the growth rate µ(x), Pu et al. [20] adopted the following formula to describe the size-
dependent relationship, which reads

µ(x) =
x

c1x2 + c2x + c3
, (4.1)

where growth-dependent coefficients c1, c2, c3 are selected to satisfy the condition (2.2).
Regarding Q(x), Litchman et al. [11] employed an exponential function to explain the relationship

between the nutrient quota and phytoplankton cell size, which is

Q(x) = βxγ, (4.2)

where β is the nutrient quota coefficient and γ is the nutrient quota exponent.
For spherical phytoplankton cells, the sinking rate s(x) can be given by the Stokes equation [10]. It

assumes that the sinking rate is proportional to the square of the spherical diameter, which reads

s(x) = s0x2, (4.3)

where s0 is the sinking rate coefficient, and it is related to the density and viscosity coefficient of the
water.

The asymmetric competition between phytoplankton species is characterized by the following
concave-convex function

α(x − y) = α0

(
1 −

1
1 + w exp{−δ(x − y)}

)
, (4.4)

where α0 and k are intraspecific and interspecific competition coefficients, w is the strength of compe-
tition.

The default values for the parameters are listed in Table 1.

4.1. Numerical investigation of the ecological dynamics

Based on the analytical results, we know that the persistence and the existence of coexistence steady
state of (2.4) is highly dependent on nutrient-related parameters. Thus, some numerical results are
carried out to study their effects on phytoplankton dynamics.

In the following numerical simulations, we apply equations (4.1)-(4.4) to describe the size-
dependent relationships. We next explore the effects of input nitrogen concentration Nin and the vertical
mixing rate v on the distribution of cell size and persistence of phytoplankton species.
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The cell size distribution of viable phytoplankton varies with environmental conditions. From Theo-
rem 2.2, the survival of a single phytoplankton population is determined by the ecological reproductive
index Rx

0. By calculating Rx
0, we can obtain the cell size range of viable phytoplankton. As shown in

Figure 2, the cell size range of viable phytoplankton becomes larger as the input nitrogen concentration
Nin increases, while the cell size range of viable phytoplankton becomes smaller as the vertical mixing
rate v rises. This is due to the fact that the survival of phytoplankton is determined by its growth rate
and loss rate. As Nin increases, it provides enough nutrients to increase the growth rate of phytoplank-
ton, while an increase in the vertical mixing rate v leads to a large loss rate of phytoplankton. Thus,
phytoplankton species with a wider range of cell size can survive as the input nitrogen concentration
Nin increases, whereas only phytoplankton with medium cell sizes can persist with an increase in the
vertical mixing rate v.
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Figure 2. Effect of nutrient input on the range of cell size x, where xmin is the minimum cell
size of phytoplankton that can survive in the environment, xmax is the maximum cell size of
phytoplankton that can survive in the environment. (a) Effect of input nitrogen concentration
Nin. (b) Effect of the vertical mixing rate v. Here, v = 3 in (a), Nin = 10 in (b). Other
parameters can be founded in Table 1.

We explore the effects of nutrient input on the persistence of two competitive phytoplankton species.
From Theorem 2.3, the persistence of phytoplankton species Px and Py is determined by the values of
ecological reproductive indexes Rx

0, Rx
1, Ry

0 and Ry
1, which depend on the parameters related to nutrient

input. Figure 3 shows the effects of the input nitrogen concentration Nin and the vertical mixing rate v
on the ecological reproductive indexes. Here we set the cell sizes of the two phytoplankton species to
x = 2 and y = 3, respectively.

The effect of nitrogen input concentration Nin is shown in Figure 3 (a) when the vertical mixing rate
v = 3. Rx

0, Rx
1, and Ry

0 increase rapidly to 1, and then Ry
1 slowly reaches 1. After that, Rx

1 drops slightly
less than 1. The corresponding dynamics change from the extinction of two species to the persistence
of Px to the coexistence of Px and Py to the persistence of Py (see Figure 4 (a)). For the nitrogen input
concentration Nin, we have the following results.

• When the input nutrient concentration is very low, it is not sufficient to support the survival of
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phytoplankton, and thus both species become extinct.
• When the nutrient increases to a certain level such that Rx

1 > 1, the small phytoplankton species
Px can survive in the environment.
• When the input nutrient concentration becomes adequate, both phytoplankton species Px and Py

can coexist in the water column.
• As the nutrient concentration continues to increase, the large phytoplankton species Py dominates

the competition and persists in the environment.

In general, small phytoplankton dominates the water column when the nutrient is limited due to its
advantages in nutrient absorption and uptake, while large phytoplankton begins to dominate the com-
petition when the nutrient is adequate.

We then investigate the effect of the vertical mixing rate v on the persistence of phytoplankton when
input nitrogen concentration is fixed Nin = 9. Figure 3 (b) shows that the vertical mixing rate v changes
Rx

1 and Ry
1 a lot, as does the persistence of phytoplankton species Px and Py (see Figure 4 (b)). For the

vertical mixing rate v, we have the following results.

• When v is relatively low (v ∈ (0.17, 0.83)) or relatively high (v ∈ (4.47, 18.66)), all the ecological
reproductive indexes are all greater than 1, which means two phytoplankton species can coexist.
• When v is extremely low (v < 0.83) or high (v > 18.66), the small phytoplankton Px dominates

the environment and the large phytoplankton Py cannot survive.
• When v takes an intermediate value (v ∈ (0.83, 4.47)), the large phytoplankton Py dominates the

environment and the small phytoplankton Px cannot survive.

It implies that a too low or too fast mixing rate is not conducive to the survival of large phytoplankton.
This may be due to the fact that when the mixing rate is small, the nutrient input is insufficient to
support the survival of large phytoplankton. When the mixing rate is fast, large phytoplankton would
be rapidly lost from the mixed layer. When the nutrients are sufficient and the mixing rate is not too
high, large individual phytoplankton begins to dominate in the water column.
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Figure 3. Effect of nutrient input on the ecological reproductive indexes Rx
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Effect of input nitrogen concentration Nin. (b) Effect of the vertical mixing rate v. Here,
x = 2, y = 3, and v = 3 in (a), Nin = 9 in (b).
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Figure 4. Effect of nutrient input on the persistence of population Px and Py. (a) Effect of
input nitrogen concentration Nin. (b) Effect of the vertical mixing rate v. Here, x = 2, y = 3,
and v = 3 in (a), Nin = 9 in (b).

The joint effects of input nitrogen concentration Nin and the vertical mixing rate v on phytoplank-
ton persistence are illustrated in Figure 5. There are four competitive outcomes of two phytoplankton
species, including extinction, persistence of Px, persistence of Px and coexistence of Px and Py. Fig-
ure 5 shows the extinction or persistence of phytoplankton species with x = 2 and y = 3 by varying
both Nin and v from 0 to 20, where the black region marked with Ē0 represents extinction; the green
region marked with E1 represents persistence of Px; the blue region marked with E2 represents persis-
tence of Py; and the red region marked with Ẽ∗ represents coexistence of Px and Py. First, we look at
the effect of Nin.

• When Nin is small, the nutrient is insufficient to support phytoplankton growth.
• As Nin increases, small individuals gradually dominate in the water column.
• When Nin is large enough, large individuals can coexist with small individuals.
• When Nin increases further, large individuals begin to dominate in the environment.

This suggests that small individuals dominate in the environment when nutrient is limited, while large
individuals gradually begin to dominate the competition under adequate nutrient supply.

The vertical mixing rate v has an interesting and complex effect on the dynamics of phytoplankton,
and it depends on the input nitrogen concentration Nin.

• When Nin is small, a moderate v allows small phytoplankton to survive, while too high or too low
mixing rate leads to phytoplankton extinction.
• When Nin takes intermediate value, a moderate v favors the coexistence of both populations, while

only small individuals Px can survive under too high or too low mixing rate.
• When Nin is very abundant, a moderate v is beneficial to the survival of large phytoplankton Py,

and too fast or too low v enables the coexistence of large phytoplankton and small phytoplankton.

In brief, the input nitrogen concentration Nin and the vertical mixing rate v have significant effects on
the phytoplankton dynamics.
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Figure 5. Bifurcation diagram of Nin versus v for the extinction and persistence of phyto-
plankton species when x = 2, y = 3. The black region marked with Ē0 represents extinction;
the green region marked with E1 represents persistence of Px; the blue region marked with
E2 represents persistence of Py; and the red region marked with Ẽ∗ represents coexistence of
Px and Py.

Figure 6. Bifurcation diagram of x versus y for the persistence of phytoplankton species
when Nin = 10, v = 3. The green region marked with E1 represents persistence of Px; the
blue region marked with E2 represents persistence of Py; and the red region marked with Ẽ∗

represents coexistence of Px and Py.
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In addition to environmental influences on the persistence of phytoplankton, cell sizes can also af-
fect the survival of phytoplankton. Figure 6 demonstrates the effect of cell sizes on the persistence of
phytoplankton with Nin = 10, v = 3. The numerical result shows symmetry. When one of the phy-
toplankton cell sizes is very small, the larger individual prevails; when one of the phytoplankton cell
sizes is very large, the smaller phytoplankton individual prevails. In addition, phytoplankton coexis-
tence is mostly distributed in areas with large differences in cell sizes between the two species. This
validates the ecological niche theory, which represents the ecological niches of species incline to differ
in some respects, as interspecific competition minimizes their overlap.

4.2. Numerical investigation of the evolutionary dynamics

In this subsection, we numerically demonstrate the effects of nutrient input on the evolutionary
dynamics of marine phytoplankton, such as the variation of cell size and trait diversity. We concentrate
on how the optimal cell size x∗ of phytoplankton varies with the input nitrogen concentration Nin and
the vertical mixing rate v.

From Figure 7 (a), we find that the evolutionarily singular strategy x∗ increases monotonically with
the input nitrogen concentration Nin. It means that the cell size of phytoplankton increases with the
nutrient concentration of deep ocean brought about by the upwelling and water mixing. In other words,
the cell sizes of phytoplankton species in eutrophic waters are generally larger than that in oligotrophic
waters. It is consistent with the ecological phenomena and observations in the ocean [8]. It is observed
that the marine ecosystem in nutrient-rich areas is predominated by large phytoplankton species, while
small phytoplankton species tend to dominate in nutrient-depleted waters.
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Figure 7. Bifurcation diagram for nutrient input parameters. Black lines mean the CSS,
while red lines mean evolutionary branching point. (a) Input nutrient concentration Nin in-
duced evolutionary variation in the evolutionarily singular strategy when the vertical mixing
rate v = 3. (b) Vertical mixing rate Nin induced evolutionary variation in the evolutionarily
singular strategy when the input nitrogen concentration Nin = 12.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4714–4740.



4731

The input nutrient concentration not only changes the optimal cell size of phytoplankton but also
alters the stabilities of the evolutionarily singular strategy. In other words, it can affect the trait diversity
of phytoplankton species. As shown in Figure 7 (a), the black line indicates that the evolutionarily
singular strategy x∗ is a CSS and the red line indicates that the evolutionarily singular strategy x∗ is
an evolutionary branching point. It implies that there exists a threshold N∗in, when the input nitrogen
concentration Nin is less than N∗in, x∗ is a CSS; when the input nitrogen concentration Nin is large than
N∗in, x∗ is an evolutionary branching point. The pairwise invasibility plot is a useful tool to numerically
illustrate the stability of evolutionarily singular strategy, as shown in Figure 8. Fix the vertical mixing
rate v = 3, we find that x∗1 is a CSS when Nin = 8 (Nin < N∗in) and x∗2 is an evolutionary branching point
when Nin = 15 (Nin > N∗in). Hence, abundant nutrient supply is in favor of maintaining the high trait
diversity of phytoplankton. This fact is in accord with the previous study, where it is found that there is
a positive relationship between the nutrient supply and phytoplankton community structure [30]. The
increasing supply allows the survival of phytoplankton having a large cell size and does not decrease
the phytoplankton with a small cell size. Thus, it leads to the coexistence of small phytoplankton and
large phytoplankton and promotes the trait diversity of phytoplankton species.
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Figure 8. Pairwise invasibility plots for input nitrogen concentration Nin. The fitness is pos-
itive in the grey parts marked with ’+’, whereas the fitness is negative in the white areas
marked with ’-’. Arrows show the direction of selection. The vertical line through x∗1 lies
within the region marked with ’-’ and corresponds to mutants with sx(y) < 0, which indicates
that the mutants cannot invade the residents. The vertical line through x∗2 is located in the re-
gion marked with ’+’ and corresponds to mutants with sx(y) > 0, which indicates potentially
invasive mutants. Hence, the black dot marked with x∗1 is a CSS, and the red dot marked with
x∗2 is an evolutionary branching point. Here, Nin = 8 in (a), Nin = 15 in (b). The vertical
mixing rate v = 10.

There is a nonmonotonic relationship between the evolutionarily singular strategy x∗ and the vertical
mixing rate v as illustrated in Figure 7 (b). As the vertical mixing rate increases, the cell size presents
a unimodal trend with respect to v. When the vertical mixing rate is at a low level, the phytoplankton
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can evolve into large individuals with the increase in the mixing rate. This may be due to the fact that
an increase in the mixing rate of the water brings more nutrients to support large phytoplankton growth
in the upper layer. On the contrary, a drop in the vertical mixing rate can result in a decline in the cell
size of phytoplankton. This explains the experimental results, that is, the cell size of phytoplankton
decreases when the nutrient supply is becoming limited [14]. However, when the mixing rate is at a
high level, the size of the phytoplankton starts to decrease as the mixing rate continues to increase.
Smaller individuals have a greater survival advantage than larger individuals when the mixing rate is
high. Thus, it means that a moderate mixing rate promotes a competitive advantage for large cells,
while a low or high mixing rate reduces the optimal cell size of phytoplankton.

Comparing Figure 9 (a), (b) and (c), one observes that x∗1 is a CSS when v = 0.5, x∗2 is an evolu-
tionary branching point when v = 2.5, and x∗3 is a CSS when v = 10. It means that a moderate vertical
mixing rate can promote the trait diversity of phytoplankton species, while a low or high vertical mix-
ing rate is beneficial to maintain the evolutionary stability of the evolutionarily singular strategy. When
the mixing rate is low, large phytoplankton cells cannot survive due to too poor nutrient conditions;
when the mixing rate is high, large cells are removed from the mixing layer by the vertical mixing.
Thus, small phytoplankton is more competitive at a low mixing rate or high mixing rate. This finding
is in accordance with the ecological observation that moderate water mixing can enhance the diversity
of phytoplankton [31]. Hence, the diversity of phytoplankton species is high in areas where the water
mixing is intermediate, but only a few phytoplankton species dominate in the oceans where the water
exchange is slow or intense.
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Figure 9. Pairwise invasibility plots for the vertical mixing rate v. The fitness is positive in
the grey parts marked with ’+’, whereas the fitness is negative in the white areas marked with
’-’. Arrows show the direction of selection. The vertical line through x∗1 lies within the region
marked with ’-’ and corresponds to mutants with sx(y) < 0, which indicates that the mutants
cannot invade the residents. The case of x∗3 is the same as the x∗1. The vertical line through x∗2
is located in the region marked with ’+’ and corresponds to mutants with sx(y) > 0, which
indicates potentially invasive mutants. The black dots marked with x∗1 and x∗3 are CSS. The
red dot marked with x∗2 is an evolutionary branching point. Here, v = 0.5 in (a), v = 2.5 in
(b), and v = 10 in (c). The input nitrogen concentration Nin = 12.
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5. Discussion and conclusion

In this paper, we develop a dynamic model based on nutrient competition to explore the effects of
nutrient supply on phytoplankton cell size evolution. The analysis shows that the nutrient supply, in-
cluding the input nitrogen concentration and the vertical mixing rate, play major roles in the population
and evolutionary dynamics of phytoplankton. We obtain that increasing input nitrogen concentration
leads to larger cell size and a high level of diversity, while there is a unimodal relationship between
cell size and vertical mixing rate, with a moderate vertical mixing rate promoting large cell size and
trait diversity. It is noteworthy that when the vertical mixing rate is at a low level, the optimal cell size
decreases sharply with decreasing water mixing. Thus, a decrease in the input nutrient concentration
or a slowdown in the vertical mixing rate can result in the evolution of phytoplankton toward smaller
cell size and less trait diversity.

Our results are consistent with ecological phenomena and observations [17]. It is well known that, in
nutrient-enriched waters such as Peruvian upwelling, the phytoplankton population has the following
features, such as high biomass and large cell size. While in nutrient-poor waters, for example, the
ocean areas near the subarctic North Pacific, there are low phytoplankton diversities, and the small
phytoplankton cells tend to dominate there. The reason for this phenomenon is that, in the case of
poor-nutrient status, small cells have an advantage in growth rate, while large individuals have high
nutrient requirements, and insufficient nutrients cannot support the survival of large cells. Therefore,
natural selection tends to select small cells. As the nutrient supply increases, the nutrient in the mixed
layer becomes abundant, and it no longer restricts the growth of large cells. Thus, large cells can
coexist with small cells, so the trait diversity in nutrient-rich areas is high.

We find that the evolutionary model based on the single-species model admits evolutionary branch-
ing points when some parameter conditions are satisfied. The biological meaning of the evolutionary
branching point is trait diversity, which means that more than one species can survive in the envi-
ronment. In this paper, the size-dependent competition between phytoplankton species is taken into
consideration in our model. Since the phytoplankton species compete for light and nutrients in the
mixed layer, the competitive effect can be size-dependent. The results show that the competition can
promote cell size diversity and the coexistence of marine phytoplankton with multiple cell sizes. Our
current findings extend prior work on the evolutionary dynamics of phytoplankton.

The framework proposed in this paper can be used to predict the cell size evolution of marine
phytoplankton under climate change. As we all know, climate change has significant impacts on the
marine environment, especially limiting the nutrient supply from the deep ocean. The variation in
the marine environment can be reflected by related parameters in our model, for example, a reduction
in nutrient availability can be described by a decrease in input nutrient concentration or a slowdown
in the vertical mixing rate. From the theoretical and numerical analysis, we obtain that decreasing
input nitrogen concentration and slower water mixing may lead to phytoplankton evolving to smaller
cell sizes and less species diversity. Therefore, we predict that marine phytoplankton will evolve into
smaller cells and have less trait diversity in the future.

However, some limitations are worth noting. We only consider the interactions between nitrogen
and phytoplankton and ignore the influence of higher trophic levels. For simplicity, the impact of pre-
dation by higher trophic levels (e.g., zooplankton) is included in the mortality rate of phytoplankton.
However, due to the cascade effect to or from high trophic levels, the change in biomass and cell size of
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phytoplankton can have a significant impact on the zooplankton. Therefore, future research should in-
troduce the zooplankton population into the nutrient-phytoplankton model and explore the coevolution
of phytoplankton and zooplankton. In addition, we only consider the effect of the variation of nutrient
supply in our model. In fact, temperature also has an important effect on phytoplankton evolution,
and rising temperature can indirectly or directly affect the evolutionary behavior of phytoplankton cell
size. It has been shown that increasing temperature will indirectly change the nutrient supply, while
the rising temperature will directly change the growth rate of phytoplankton, making phytoplankton
with faster generation times. Therefore, it will be of great significance to study the combined effects
between altered nutrient supply and changed temperature on the size evolution of phytoplankton.

6. Some mathematical proofs

Proof of Theorem 2.1.

Proof. For any given initial value
(
N(t0), Px(t0), Py(t0)

)
∈ R3

+, we obtain

Px(t) = Px(t0) exp
{∫ t

t0

(
µ(x)g(N(τ)) − m −

s(x) + v
zm

− α(0)Px(τ) − α(x − y)Py(τ)
)

dτ
}
≥ 0

for all t ∈ [t0,+∞).
Similarly, we get

Py(t) = Py(t0) exp
{∫ t

t0

(
µ(y)g(N(τ)) − m −

s(y) + v
zm

− α(y − x)Px(τ) − α(0)Py(τ)
)

dτ
}
≥ 0

for all t ∈ [t0,+∞).
Next, we prove N(t) is non-negative when t ≥ t0. If N(t0) = 0, then N(t) > 0 based on the change

rate of nitrogen dN/dt > 0. Next, we consider N(t0) > 0. If the statement is not true, then there would
exist a t1 > t0 such that N(t1) = 0 and N(t) ≥ 0 for t ∈ (t0, t1). Given that N(t0) > 0, it implies dN/dt ≤ 0
when t = t1. From the first equation of (2.4), we derive

dN
dt

∣∣∣∣∣
N=0

=
v
zm

Nin + rmPxQ(x) + rmPyQ(y) > 0,

which is a contradiction. Therefore, N(t) ≥ 0 for t ≥ t0.
We are now in the position to prove (2.4) is dissipative. Let

V(t) = N(t) + Px(t)Q(x) + PyQ(y).

From (2.4), we have

dV
dt

=
dN
dt

+ Q(x)
dPx

dt
+ Q(y)

dPy

dt
≤

v
zm

(Nin − V(t)).

It is easy to find that limt→∞ V(t) ≤ Nin. Hence, the system (2.4) is dissipative. The proof is complete.
�
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Proof of Theorem 2.2.

Proof. First we consider the case when Rx
0 < 1. The Jacobian matrix of (2.1) evaluated at E0 is

JE0 =


−

v
zm

rmQ(x) − µ(x)g(Nin)Q(x)

0 µ(x)g(Nin) − m −
s(x) + v

zm

 .
The two eigenvalues of JE0 are

λ11 = −
v
zm
, λ12 = µ(x)g(Nin) − m −

s(x) + v
zm

.

It is easy to find that λ11 < 0, and λ12 < 0 holds true if and only if Rx
0 < 1. Thus, when Rx

0 < 1, all
the eigenvalues of JE0 have negative real parts, so E0 is locally asymptotically stable. In addition, E0

is the unique equilibrium of (2.1) when Rx
0 < 1. From Theorem 2.1, we know that (2.1) is dissipative.

By Poincaré-Bendixson criterion, (2.1) has no closed orbit. Thus, E0 is globally asymptotically stable.
When Rx

0 > 1, we have λ12 > 0. It implies that one eigenvalue of JE0 has positive real part, so E0 is
unstable.

Next, we explore the existence and stability of E∗. Rearranging the algebra equations of (2.6), we
can obtain that E∗ exists if the two curves defined by N1(P) and N2(P) have intersection in R2

+, where
the two curves are described by

N1(P) = Nin −
[(1 − r)mzm + s(x) + v]Q(x)

v
P −

zmα(0)Q(x)
v

P2,

N2(P) = −K +
µ(x)zmK

µ(x)zm − (mzm + s(x) + v + zmα(0)P)
.

(6.1)

From (6.1), we find N1(P) is a downward-opening parabola and its axis of symmetry is P = −((1 −
r)mzm + s(x) + v)/(2zmα(0)) < 0. Moreover, N1(0) = Nin > 0. Hence, N1(P) decreases with P in
R2

+. In addition, we know that N2(P) is an increasing hyperbola, and its vertical asymptote is P =

(µ(x)zm − mzm − s(x) − v)/(α(0)zm) > 0. Also, limP→∞ N2(P) = −K < 0. It follows that N2(P)
increases with P in R2

+. Thus, N1(P) and N2(P) have a unique interior intersection in R2
+ if and only if

N1(0) > N2(0) > 0, which is equivalent to Rx
0 > 1. Therefore, there exists a unique positive equilibrium

E∗ of (2.1) provided that Rx
0 > 1.

The stability of E∗ can be derived from the Jacobian matrix of (2.1) evaluated at E∗

JE∗ =

− v
zm
− µ(x)g′(N∗x)P∗xQ(x) rmQ(x) − µ(x)g(N∗x)Q(x)

µ(x)g′(N∗x)P∗x −α(0)P∗x

 .
The trace of JE∗ is

tr(JE∗) = −
v
zm
− µ(x)g′(N∗x)P∗xQ(x) − α(0)P∗x < 0.
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The determinant of JE∗ is given by

det(JE∗) = α(0)P∗x

(
v
zm

+ µ(x)g′(N∗x)P∗xQ(x)
)
− µ(x)g′(N∗x)P∗x

(
rmQ(x) − µ(x)g(N∗x)Q(x)

)
=

v
zm
α(0)P∗x + µ(x)g′(N∗x)P∗xQ(x)

(
α(0)P∗x − rm + µ(x)g(N∗x)

)
=

v
zm
α(0)P∗x + µ(x)g′(N∗x)P∗xQ(x)

(
(1 − r)m +

s(x) + v
zm

+ 2α(0)P∗x

)
> 0.

It follows that all the eigenvalues of JE∗ have negative real parts, so E∗ is locally asymptotically stable.
The global stability of E∗ can be derived from the Bendixson-Dulac criterion. Let

F1(N, Px) =
v
zm

(Nin − N) + rmPxQ(x) − µ(x)g(N)PxQ(x),

F2(N, Px) = µ(x)g(N)Px − mPx −
s(x) + v

zm
Px − α(0)P2

x.

Choosing a Dulac function B(N, Px) = 1/Px, we yield

∂(BF1)
∂N

+
∂(BF2)
∂Px

= −
v

zmPx
− µ(x)g′(N)Q(x) − α(0) < 0.

By the Bendixson-Dulac criterion, (2.1) has no closed orbit in the plane. Therefore, E∗ is globally
asymptotically stable. The proof is complete. �

Proof of Theorem 2.3.

Proof. According to the proof of Theorem 2.1, we have for any ε > 0

µ(x)g(N)PxQ(x) + µ(y)g(N)PyQ(y) ≤
NinN

K
+ ε

for time t large enough. Therefore, for time t large time, we have

dN
dt
≥

v
zm

(Nin − N) −
NinN

K
− ε.

Choose ε = vNin/(2zm), then we have

dN
dt
≥

vNin

2zm
−

(
v
zm

+
Nin

K

)
N,

which implies that

lim inf
t→∞

N(t) ≥
vKNin

2(vK + zmNin)
.

Therefore, the nutrient N is persistent.
Notice that the ω-limit set of the N −Px subsystem of the full model (2.4) when Py = 0 is E0(Nin, 0)

if Rx
0 < 1, while the ω-limit set is E∗(N∗x , P

∗
x) if Rx

0 > 1. Thus according to Theorem 2.5 [32], we can
conclude species Py is persistent in R3

+ if one of the following cases hold.
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(1) In the case that Rx
0 < 1, we have the subsystem N-Px converges to E0 globally from Theorem 2.2.

Thus,
dPy

Pydt

∣∣∣∣∣∣
E0

= µ(y)g(Nin) − m −
s(y) + v

zm
> 0⇔ Ry

0 =
µ(y)g(Nin)

m +
s(y)+v

zm

> 1.

(2) In the case that Rx
0 > 1, we have the subsystem N-Px converges to E∗ globally from Theorem 2.2.

Thus,

dPy

Pydt

∣∣∣∣∣∣
E∗x

= µ(y)g(N∗x) − m −
s(y) + v

zm
− α(y − x)P∗x > 0⇔ Ry

1 =
µ(y)g(N∗x)

m +
s(y)+v

zm
+ α(x − y)P∗x

> 1.

Similarly, we are able to show that species P∗x is persistent if Ry
0 > 1 and Rx

1 > 1; or Ry
0 < 1 and

Rx
0 > 1.

Note that Ri
0 > Ri

1 for i = x, y, therefore, if both species Px and Py are persistent, then it requires
that min{Rx

1,R
y
1} > 1.

Because N is always persistent. Therefore, the full model (2.4) is permanent if min{Rx
1,R

y
1} > 1.

According to the fix point theorem, we can conclude that the full system has at least one interior
equilibrium point under the condition that min{Rx

1,R
y
1} > 1. �

Proof of Proposition 3.1.

Proof. The stability of Ê of (3.9) can be derived from the Jacobian matrix

JÊ =


−

v
zm
− µ(x)g′(N∗x)P∗xQ(x∗) rmQ(x∗) − µ(x∗)g(N∗x)Q(x∗) rmP∗xQ′(x∗) − g(N∗x)P∗x (µ′(x∗)Q(x∗) − µ(x∗)Q′(x∗))

µ(x)g′(N∗x)P∗x −α(0)P∗x µ′(x∗)g(N∗x)P∗x −
s′(x)
zm

P∗x

0 0 1
2θσ

2P∗xD′(x∗)

 .
The equilibrium Ê(N∗x , P

∗
x, x
∗) is locally asymptotically stable provided that all the eigenvalues of JÊ

have negative real parts. It is equivalent to the eigenvalues of the submatrix of JÊ, which consists of the
first two rows and the first two columns, have negative real parts and the third eigenvalue 1

2θσ
2P∗xD′(x∗)

is negative. From Theorem 2.2, we know that the eigenvalues of the submatrix have negative real parts.
Thus, the equilibrium Ê(N∗x , P

∗
x, x
∗) is locally asymptotically stable if and only if D′(x∗) < 0. This

completes the proof. �
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