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Abstract: The effective reproduction number, Rt, is a vital epidemic parameter utilized to judge
whether an epidemic is shrinking, growing, or holding steady. The main goal of this paper is to estimate
the combined Rt and time-dependent vaccination rate for COVID-19 in the USA and India after the
vaccination campaign started. Accounting for the impact of vaccination into a discrete-time stochastic
augmented SVEIR (Susceptible-Vaccinated-Exposed-Infectious-Recovered) model, we estimate the
time-dependent effective reproduction number (Rt) and vaccination rate (ξt) for COVID-19 by using a
low pass filter and the Extended Kalman Filter (EKF) approach for the period February 15, 2021 to
August 22, 2022 in India and December 13, 2020 to August 16, 2022 in the USA. The estimated Rt

and ξt show spikes and serrations with the data. Our forecasting scenario represents the situation by
December 31, 2022 that the new daily cases and deaths are decreasing for the USA and India. We also
noticed that for the current vaccination rate, Rt would remain greater than one by December 31, 2022.
Our results are beneficial for the policymakers to track the status of the effective reproduction number,
whether it is greater or less than one. As restrictions in these countries ease, it is still important to
maintain safety and preventive measures.

Keywords: COVID-19; SVEIR model; effective reproduction number; time-dependent vaccination
rate

1. Introduction

A disease outbreak (COVID-19) of an uncommon pneumonia triggered by a new coronavirus,
SARS-CoV-2, appeared in Wuhan, China, in December 2019 [1], has instigated at least 631,989,826
confirmed cases, with 6,578,767 deaths in nearly 230 nations and territories by October 21, 2022 [2].
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The COVID-19 crisis was acknowledged as a pandemic by the World Health Organization (WHO)
on March 11, 2020. The earliest case and death in India were reported on January 30, 2020 and
March 13, 2020, respectively [3]. In the early outbreak, pharmaceutical interventions, for instance,
drugs and vaccination, were unavailable, thereafter controlling the pandemic greatly depends only on
non-pharmaceutical interventions, such as lockdown, maintaining social distancing, contact tracing,
testing, using face masks, etc [4–7]. However, in India, the vaccination campaign with a single and
double dose was started on January 15, 2021 and February 13, 2021, respectively. The double-dose
vaccination campaign started on December 13, 2020 in the USA [8].

The estimation of the reproduction number of a disease is particularly important in modeling the
transmission of infection as well as notifying and assessing control policies [9, 10]. On the other
hand, the instantaneous (or effective) reproduction number Rt exposes the limit of disease spread with
the impact of an intervention or population immunity. Public health officials and policymakers use
Rt to evaluate the efficacy of control measures and several other factors that influenced the disease
transmission at certain points of time and to update policy accordingly. Rt estimates could be exercised
to evaluate the effectiveness of control measures or as a near real-time indicator of epidemic progress.
For these intents, estimates need to be precise and accurately signify uncertainties, and for near real-
time scrutinizing, they also need to be timely. Consequently, Rt estimation is crucial for assessing
the achievement of public measures. However, Rt estimation from available data offers numerous
challenges, with crucial inferences for the interpretation of the course of the epidemic [11,12]. Though,
the parameter assumptions and model structure makes the estimation of Rt sensitive [11]. Poor quality
or unavailability of data, on the other hand, often impedes the utilization of several estimation methods,
for instance, serial intervals of a disease that are typically required for the estimation of Rt [12–15].

Specific hypotheses and data estimates are required for computing the exact value of Rt. Several
methods are used to estimate the effective reproduction number and time-dependent rate in the litera-
ture. Cazelles et al. [16] utilized stochastic models for the transmission dynamics of a disease coupled
with particle Markov Chain Monte Carlo Algorithm and estimated the time-dependent transmission
rate. Nishiura et al. [17] discussed a likelihood-based method for the estimation of Rt from the data of
early epidemic growth. Bettencourt and Ribeiro [18] estimated R0 and Rt by using the compartmen-
tal Susceptible-Infectious-Recovered (SIR) model and incidence data of H5N1 influenza in humans.
Pollicott et al. [19] and Kong et al. [20] introduced an inverse method for epidemic models that ex-
tract the time-dependent transmission rate from the incidence or prevalence data. Wang et al. [21, 22]
developed an inverse method and estimated the time-dependent transmission rate and death rate using
a generalized boosting model (GBM) and a mechanistic ordinary differential equation (ODE) model.
Hasan et al. [23] developed a novel method to estimate the effective reproduction number based on the
Kalman filter and a low pass filter method. The authors used a simple SIRD (Susceptible-Infectious-
Recovered-Dead) model and augmented the model into a discrete-time stochastic model. This method
is quite beneficial since it does not require serial intervals, which forms the process easier without
falling the estimation quality.

In this paper, we estimate the time-dependent effective reproduction number and vaccination rate
using the method developed by Hasan et al. [23] for COVID-19 in the USA and India. We use an aug-
mented SVEIR model and the data of daily new cases, cumulative cases, daily new deaths, cumulative
deaths, and fully vaccinated individuals concerning COVID-19.
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2. A discrete-time stochastic augmented SVEIR model

We estimate the effective reproduction number, Rt, and time-dependent vaccination rate, denoted
by ξt, by using a simple compartmental SVEIR model. Figure 1 shows the scheme of the model.
Let us denote S ,V, E, I, and R respectively as susceptible, vaccinated, exposed (not yet infectious),
active/confirmed, and recovered compartment. Let N = S + V + E + I + R, where N denotes the total
population.

Figure 1. Scheme of the SVEIR model (2.1).

In the model (2.1), the susceptible individuals are vaccinated at rate ξt, which is time-dependent.
βt signifies the average number of contacts per individual per unit time and is time-dependent due to
interventions. Since the vaccine is imperfect, vaccinated individuals can also get the infection, but
at a reduced rate, σβt, where 1 − σ characterizes the vaccine efficacy. The immunity acquired by
vaccination wanes with time, and vaccinated individuals can become susceptible again at a rate φ. a
stands for the transition rate of exposed individuals becoming infectious, α denotes the recovery rate
of infectious individuals, and δ is the disease-induced death rate. γ represents the antibody waning
rate since the immunity acquired by infection also wanes with time. Hence, the model is written in the
following non-linear ordinary differential equations:

dS
dt

= −
S
N
βtI + γR − ξtS + φV,

dV
dt

= −
V
N
σβtI + ξtS − φV,

dE
dt

= βtI
(S
N

+ σ
V
N

)
− aE,

dI
dt

= aE − (α + δ)I,

dR
dt

= αI − γR.

(2.1)

To use the method [23], we also need some more information about the Case Fatality Rate (CFR)
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and the average infectious time, Ti, and

α =
1 −CFR

Ti
, δ =

CFR
Ti

. (2.2)

For COVID-19, we consider Ti = 14 [21], however it may vary from 1.5 to 30 days amongst distinct
diseased persons [24]. CFR is assumed to be 1%.

Covaxin and Covishield, two COVID-19 vaccines were advanced and being utilized in India. Bhat-
nagar et al. [25] studied that the vaccine efficacy of full (two doses) vaccination was 71% (95% CI:
57-81%) with Covaxin/BBV152 and with covishield/AZD1222, it was 85% (95% CI: 79-89%). The
vaccine efficacy was highest at 94% (95% CI: 86-97%) for 6-8 weeks between two doses of Covishield
and 93% (95% CI: 34-99%) of Covaxin. In the USA, the COVID-19 mRNA vaccines BNT162b2
(Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been completely permitted
by the Food and Drug Administration (FDA) for individuals aged 18 years and older and individu-
als aged 16 years and older, respectively [26]. In clinical trials, mRNA based COVID-19 vaccines,
BNT162b2 (Pfizer Inc, New York, USA; BioNTech Manufacturing GmbH, Mainz, Germany; Comir-
naty) and mRNA-1273 (Moderna Inc, Cambridge, USA; Spikevax) were greatly effectual (95% and
94%, respectively) against symptomatic COVID-19 infection [27]. In our estimation, vaccine efficacy
is to be assumed 95% and 85% for the USA and India, respectively.

To compute the effective reproduction number, Rt, we can still apply the next generation matrix
method [28, 29]. According to Lemma 1 in [30], we define

F =

(
0 βt( S

N + σV
N )

0 0

)
, V =

(
a 0
−a a + δ

)
.

Following [28, 29], the effective reproduction number is defined as the spectral radius of the next
generation matrix (FV−1), i.e.,

Rt = ρ(FV−1) =
βt

α + δ

(S (t)
N

+ σ
V(t)
N

)
≈

βt

α + δ
. (2.3)

The approximation is under the assumption that government intervention is taken at an early stage so
that S (t) + σV(t) ≈ N. This is the case especially for the emerging diseases.

We further augment the SVEIR model (2.1) by considering the following seven equations:

dC
dt

= aE, (2.4)

dD
dt

= aE − D, (2.5)

dCD
dt

= δI, (2.6)

dDD
dt

= δI − DD, (2.7)

dP
dt

= ξtS , (2.8)

dRt

dt
= 0, (2.9)
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dξt

dt
= 0, (2.10)

where the first equation takes into account the cumulative cases (C), second equation provides the daily
number of new cases (D), third equation gives cumulative deaths (CD), fourth equation offers the daily
number of new deaths (DD), fifth equation produces the cumulative number of vaccinated individuals
(P), the sixth and seventh equations say that the effective reproduction number (Rt) and vaccination
rate (ξt) are assumed to be piecewise constant functions with one day time interval jump.

Further, by discretization and applying the forward Euler method, the discrete-time augmented
SVEIR model is given as follows:

S (l + 1) = S (l)
(
1 − ∆tξt(l) −

(a + δ)∆t
N

Rt(l)I(l)
)

+ γ∆tR(l) + φ∆tV(l),

V(l + 1) = V(l)
(
1 − φ∆t −

(a + δ)σ∆t
N

Rt(l)I(l)
)

+ ∆tξt(l)S (l),

E(l + 1) = E(l)(1 − a∆t) +
(a + δ)∆t

N
Rt(l)I(l)(S (l) + σV(l),

I(l + 1) = I(l)(1 − (a + δ)∆t) + a∆E(l),
R(l + 1) = R(l)(1 − γ∆t) + α∆tI(l),
C(l + 1) = C(l) + a∆tE(l),
D(l + 1) = D(l)(1 − ∆t) + a∆tE(l),

CD(l + 1) = CD(l) + δ∆tI(l),
DD(l + 1) = DD(l)(1 − ∆t) + δ∆tI(l),

P(l + 1) = P(l) + ∆tξt(l)S (l),
Rt(l + 1) = Rt(l),
ξt(l + 1) = ξt(l).

(2.11)

We estimate the basic reproduction number, Rt, by using the cumulative cases, new daily cases,
cumulative deaths and new daily deaths, and vaccination rate, ξt, by using the full (with two doses)
vaccination data. The data has been collected from the World Health Organization (WHO) website
https://covid19.who.int/ and https://ourworldindata.org/coronavirus on a daily ba-
sis. Since the frequency of the data could be once a day which is low, then by utilizing a modified
Akima cubic Hermite interpolation, the new reported data could be interpolated and it fits with ∆t time
steps. The ∆t time step is taken as 0.01 in our simulation, i.e., 100 times discretization within one day
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time interval. For simplicity, we outline the augmented state vector as follows:

y(l + 1) =



S (l + 1)
V(l + 1)
E(l + 1)
I(l + 1)
R(l + 1)
C(l + 1)
D(l + 1)

CD(l + 1)
DD(l + 1)
P(l + 1)
Rt(l + 1)
ξt(l + 1)



, (2.12)

and the discrete time augmented SVEIR model (2.11) can be rewritten in the following form:

y(l + 1) = g(y(l)) + v(l), (2.13)

where g is the nonlinear expression of the equations in the right-hand side of the augmented SVEIR
model (2.11) and v denotes the uncertainty to the inaccuracies in the model owing to interpretation
in the modeling. The uncertainty is supposed to be a zero mean Gaussian white noise with known
covariance QF . It is to make the computation simple since the real epidemic data generally follow
Gamma distribution. QF , in practice, could be taken as a tuning parameter for the EKF. Hence, the
model becomes in the form of a discrete-time stochastic augmented SVEIR model.

New daily cases, cumulative cases, new daily deaths, cumulative deaths, and cumulative vaccinated
individuals can be incorporated into the model including the ensuing output vector

x(l + 1) = Cy(l) + z(l), (2.14)

where z signifies uncertainties owing to the incorrect testing outcomes. It is also supposed the uncer-
tainties to be a zero mean Gaussian white noise with known covariance RF . Similar to QF , RF could
also be taken as a tuning parameter. Ensuing the convenient data, the measurement/data matrix C is
considered to be

C =


0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0


. (2.15)

A two-stage filtering approach: We use a two-stage filtering approach for the estimation of the time-
dependent effective reproduction number, Rt, and vaccination rate, ξt. This method consists a low-pass
filter and the EKF. The EKF is an expansion of Kalman filter (KF) for nonlinear systems. The KF is
centered on Bayesian estimation and is an optimal linear filter. The EKF is established based on the
linearization of the non-linear system around its estimate. Because of this linearization, the stability
and optimality of the EKF cannot be ensured. However, the EKF may provide a fairly good estimation
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if the non-linearity is not very extreme. In the estimation process, the state variables, Rt and ξt are
estimated by using the EKF under uncertainties in the number of new reported cases which could be a
consequence of the delays in reporting.

Let ŷ(l) be a vector state, estimated by the EKF. Operating the first-order Taylor series expansion to
g at ŷ(l), which yields

g(y(l)) = g(ŷ(l)) + Jg(ŷ(l))(y(l) − ŷ(l)). (2.16)

Here Jg(ŷ(l)) denotes the Jacobian matrix of g, specified by

Jg(ŷ(l)) =



J11(ŷ(l)) φ∆t 0 J14(ŷ(l)) γ∆t 0 0 0 0 0 J111(ŷ(l)) −Ŝ (l)∆t
ξ̂t(l)∆t J22(ŷ(l)) 0 J24(ŷ(l)) 0 0 0 0 0 0 J211(ŷ(l)) Ŝ (l)∆t

J31(ŷ(l)) J32(ŷ(l)) 1 − a∆t J34(ŷ(l)) 0 0 0 0 0 0 J311(ŷ(l)) 0
0 0 a∆t 1 − (a + δ)∆t 0 0 0 0 0 0 0 0
0 0 0 α∆t 1 − γ∆t 0 0 0 0 0 0 0
0 0 a∆t 0 0 1 0 0 0 0 0 0
0 0 a∆t 0 0 0 1 − ∆t 0 0 0 0 0
0 0 0 δ∆t 0 0 0 1 0 0 0 0
0 0 0 δ∆t 0 0 0 0 1 − ∆t 0 0 0

ξ̂t(l)∆t 0 0 0 0 0 0 0 0 1 0 Ŝ (l)∆t
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



, (2.17)

with

J11(ŷ(l)) = 1 − ξ̂(l)∆t −
(a + δ)∆t

N
Î(l)R̂t(l),

J14(ŷ(l)) = −
(a + δ)∆t

N
Ŝ (l)R̂t(l),

J111(ŷ(l)) = −
(a + δ)∆t

N
Ŝ (l)Î(l),

J22(ŷ(l)) = 1 − φ∆t −
(a + δ)σ∆t

N
Î(l)R̂t(l),

J24(ŷ(l)) = −
(a + δ)σ∆t

N
V̂(l)R̂t(l),

J211(ŷ(l)) = −
(a + δ)σ∆t

N
V̂(l)Î(l),

J31(ŷ(l)) =
(a + δ)∆t

N
Î(l)R̂t(l),

J32(ŷ(l)) =
(a + δ)σ∆t

N
Î(l)R̂t(l),

J34(ŷ(l)) =
(a + δ)∆t

N
(Ŝ (l) + σV̂(l))R̂t(l),

J311(ŷ(l)) =
(a + δ)∆t

N
(Ŝ (l) + σV̂(l))Î(l).

The EKF contains two stages: forecast and update. The model (2.11) is utilized to forecast the upcom-
ing state and covariance and upgrade them after attaining measurement/new data. The EKF could be
pondered as one of the straightforward dynamic Bayesian networks. EKF recursively computes the es-
timate of correct state values over time utilizing a mathematical process model and next measurements
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while recursive Bayesian estimation computes estimates of an unidentified probability density function
over time utilizing a mathematical process model and incoming new data [31]. Let ŷ(m|n) signifies the
estimation of y at time m considering observations up to and together with the time n ≤ m. The Kalman
filter algorithm is given as follows.
Forecast:

ŷ(l + 1|l) = g(ŷ(l|l)),
p(l + 1|l) = Jg(ŷ(l|l))p(l|l)Jg(ŷ(l|l))T + QF(l).

Update:

x̂(l + 1) = x(l + 1) −Cŷ(l + 1|l),
K(l + 1) = p(l + 1|l)CT (Cp(l + 1|l)CT + RF(l))−1,

ŷ(l + 1|l + 1) = ŷ(l + 1|l) + K(l + 1)x̂(l + 1),
p(l + 1|l + 1) = (I − K(l + 1)C)p(l + 1|l),

where p(l|l) signifies a posteriori estimate covariance matrix. In the step, “update”, a low pass filter
approach concerning a rational transfer function is utilized to detach short term fluctuation at time step
l, and is specified by

x̂(l) =
1
xn

(ŷ(l) + ŷ(l − 1) + · · · + ŷ(l − xn + 1)), (2.18)

where xn is a window length along the data. We take xn = 3/∆t for our case.
To ensure the estimation quality, we compute a Relative Root Mean Square Error (RRMSE) between

the reported and estimated cases. The RRMSE is expressed by

RRMS E =
1

Od

Od∑
i=1

||Yi − Ŷi||
2

||Yi||
2 , (2.19)

where Od denotes the total number of observed time in days and Y ∈ {C,D,CD,DD, P}.
We illustrate the observed and estimated numbers of COVID-19 cases in India in Figure 2 and

obtained a good agreement between the data and estimated numbers. We also plot the reported
and estimated number of fully vaccinated individuals in Figure 3. In the estimation procedure,
the observation and process covariance matrices are chosen as tuning parameters and are taken as
RF = diag(100 10 5 1 1) and QF = diag(100 10 10 10 5 5 5 5 5 0.5 0.5 0.5), respectively. These tuning
parameters are attained from error and trial and adopted such that RRMSE between the reported and
estimated data are adequately small. For our case, the RRMSEs are given in Table 2. Here, we notice
that the obtained RRMSEs are sufficiently small. The error could be reduced more by choosing distinct
values of RF and QF .

For the USA, the observed and estimated COVID-19 and vaccinated cases are plotted in Fig-
ure 6 and 7, respectively. The observation and process covariance matrices are chosen as RF =

diag(1000 100 50 10 10) and QF = diag(100 10 10 10 5 5 5 5 5 0.5 0.5 0.5), respectively. The
RRMSEs for the USA are also given in Table 2, which are relatively smaller than India.

We finally plot the time-dependent effective reproduction number Rt and vaccination rate ξt for India
in Figure 4 and 5, respectively, and for the USA in Figure 8 and 9, respectively. We do not take average
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out of the new cases data, but consider the likelihood estimation of a new case at one day to depend
also on the estimation of the previous three days. The estimated curves of Rt and ξt for the USA and
India are also showing spikes and serrations with data.

We also provide the short-term forecast for India from August 23, 2022 to December 31, 2022.
The forecasting scenario is shown in Figures 2, 3, 4, and 5 in green colored curves. With the current
scenario, the prediction shows that the new daily cases and deaths are steadily decreasing in India.
However, the effective reproduction number will be greater than one by December 31, 2022.

The predictions for the USA from August 17, 2022 to December 31, 2022 are also provided in
Figures 6, 7, 8 and 9 in green colored curves. These results also show that the number of new daily
cases and deaths is decreasing. From Figure 8, we observe that the effective reproduction number will
be greater than one by December 31, 2022.

Table 1. Numerical values of model parameters.

Parameters Numerical values for
India

Source Numerical values for
the USA

Source

1 − σ 0.85 [25] 0.95 [27]
ξt Figure 5 Estimated Figure 9 Estimated
φ 1/180 day−1 [32] 1/180 day−1 [32]
a 1/2 day−1 [21] 1/2 day−1 [21]
α 0.0627 1−CFR

Ti
0.0627 1−CFR

Ti

γ 1/180 day−1 [32] 1/180 day−1 [32]
δ 1.8534e-06 CFR

Ti
9.2978e-06 CFR

Ti

Rt Figure 4 Estimated Figure 8 Estimated

Table 2. RRMSE between the reported and estimated data for the USA and India.

Cases RRMSE for the USA RRMSE for India
Cumulative cases (C) 1.0876e-05 7.0211e-08
Daily new cases (D) 1.9846e-04 8.5272e-05

Cumulative deaths (CD) 4.5707e-06 2.5711e-08
Daily deaths (DD) 0.0012 0.0125

Vaccinated individuals (P) 6.1981e-04 0.1259
Total RRMSE 0.0021 0.1385

3. Discussion

Several mathematical models and approaches have been evolved and utilized to estimate various
types of time-dependent rates and reproduction numbers. Estimating the time-dependent vaccination
rate with the effective reproduction number for COVID-19 progress is essential for making public
health decisions to regulate the pandemic. We here estimate the time-dependent effective reproduction
number Rt and vaccination rate ξt based on model (2.11) with respect to the COVID-19 data in the
USA and India by using a low pass filter approach and EKF developed by Hasan et al. [23]. Our
estimated Rt and ξt chase the dynamics of the model, showing the spikes and serrations with data. The
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Figure 2. Comparison between estimated and reported cases of cumulative cases (C), daily
new cases (D), cumulative deaths (CD), and daily new deaths (DD) of COVID-19 during
February 15, 2021 to August 22, 2022 in India. The green colored curve shows the prediction
from August 23, 2022 to December 31, 2022.
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Figure 3. Comparison between estimated and reported cases of full vaccinated individuals
(P) of COVID-19 during February 15, 2021 to August 22, 2022 in India. The green colored
curve shows the prediction from August 23, 2022 to December 31, 2022.
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Figure 4. Estimated time-dependent effective reproduction number (Rt) for COVID-19 in
India. The green colored curve shows the prediction from August 23, 2022 to December 31,
2022.

Figure 5. Estimated time-dependent vaccination rate (ξt) for COVID-19 in India. The green
colored curve shows the prediction from August 23, 2022 to December 31, 2022.
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Figure 6. Comparison between estimated and reported cases of cumulative cases (C), daily
new cases (D), cumulative deaths (CD), and daily new deaths (DD) of COVID-19 during
December 13, 2020 to August 16, 2022 in the USA. The green colored curve shows the
prediction from August 17, 2022 to December 31, 2022.
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Figure 7. Comparison between estimated and reported cases of full vaccinated individuals
(P) of COVID-19 during December 13, 2020 to August 16, 2022 in the USA. The green
colored curve shows the prediction from August 17, 2022 to December 31, 2022.
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Figure 8. Estimated time-dependent effective reproduction number (Rt) for COVID-19 in
the USA. The green colored curve shows the prediction from August 17, 2022 to December
31, 2022.

Figure 9. Estimated time-dependent vaccination rate (ξt) for COVID-19 in the USA. The
green colored curve shows the prediction from August 17, 2022 to December 31, 2022.
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prediction results show that the new daily cases and deaths are decreasing in the USA and India. We
observed that the effective reproduction number would be greater than one by December 31, 2022 in
both countries. Which implies that it is still necessary to maintain safety and preventive measures to
control COVID-19. Our results are beneficial for the policy/health makers to track the status of the
effective reproduction number that whether it is greater or less than one.

The inverse method, given by Pollicott et al. [19] and Kong et al. [20], needs an explicit formula to
estimate the time-dependent rates. In comparison, the method we used in this work is more straight-
forward and has various advantages. From the modeling perspective, the time-dependent effective re-
production number and vaccination rate follow the dynamics according to the data. This method does
not need serial intervals’ information. In this case, the provided time series data have drastic changes
or instead do not have many changes. The resulting time-dependent rates show the same serrations and
spikes. Consequently, the latest information could be elaborated from the data dynamics.

Various rates in epidemiological models for contagious diseases vary significantly over time. It
is further feasible to estimate other time-dependent rates, such as immunity waning rate and vaccine
efficacy, that decrease over time. The model we utilized in this work could also be applied to COVID-
19 transmission dynamics in any other country, specifically when vaccination is employed. We have
not considered reporting ratio in our model, however, by considering it, time-varying estimates of
COVID-19 infection will be observed in future. Using an extended multi-strain SVEIR model (includ-
ing multiple infectious compartments with different strains), estimation of the strain-specific effective
reproduction number will be addressed in the future.
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