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Abstract: In this study, we investigate a stochastic predator-prey model with anti-predator behavior.
We first analyze the noise-induced transition from a coexistence state to the prey-only equilibrium by
using the stochastic sensitive function technique. The critical noise intensity for the occurrence of state
switching is estimated by constructing confidence ellipses and confidence bands, respectively, for the
coexistence the equilibrium and limit cycle. We then study how to suppress the noise-induced transition
by using two different feedback control methods to stabilize the biomass at the attraction region of
the coexistence equilibrium and the coexistence limit cycle, respectively. Our research indicates that
compared with the prey population, the predators appear more vulnerable and prone to extinction in the
presence of environmental noise, but it can be prevented by taking some appropriate feedback control
strategies.

Keywords: predator-prey model; anti-predator behavior; noise-induced state switching; critical noise
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1. Introduction

In a population system, when a population preys on another population in order to survive, the
preyed species will have a sense of self-protective, and this self-protective behavior is called
anti-predation behavior. Species use a variety of methods to protect themselves, such as camouflage,
avoiding confrontation, changing body color and releasing toxins in the form of chemical defense,
and different species tend to protect themselves by using different methods [1]. But anti-predation
behavior not only refers to prey attacking relatively weak predators, as it also includes prey killing
stronger predators together, such as the phenomenon of herd defense, which occors when the prey is
in sufficient numbers, the ability of the prey to better defend or camouflage itself increases, leading to
reduced or even completely blocked predation [2–4]. For instance, Huang et al. [5] mentioned that
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when the prey species are spider mites, a possible source of disturbance is the web produced by these
mites, which reduces the predator’s walking speed and chances of catching prey. Therefore, predators
not adapted to walking on the web may also starve to death in the presence of spider mites.

Using mathematical language to describe the relationship between predator and prey can provide a
theoretical basis for problems encountered in real world. The interactions between biological
populations are often characterized by functional response functions. In the predator-prey model, the
intensity of the functional response of predators to prey is critical, as it enriches the dynamics of the
predator-prey system [6]. Many researchers have investigated predator-prey models with the Holling
type IV functional response function [7–10]. For example, Ruan and Xiao [8] studied the global
dynamics of a predator-prey model with such a non-monotonic functional response function and
proved that saddle-node bifurcation, Hopf bifurcation and B-T bifurcation would occur. Based on [8],
Tang and Xiao [11] considered the influence of anti-predator behavior and proposed the following
model with the Holling type IV functional response function:

dx
dt
= rx

(
1 −

x
k

)
−
βxy

a + x2 ,

dy
dt
=
µβxy
a + x2 − dy − ηxy,

(1.1)

where all parameters are positive. r is the intrinsic growth rate of the prey. k is the environmental
capacity. β is the capture rate of the predator. µ is the rate of conversion of prey to predator. d is
the natural death rate of the predator population. η is the anti-predator behavior rate of the prey in
response to the predator population. It is worth emphasizing that most works describe anti-predator
behavior only through functional response functions, whereas the model (1.1) not only describes the
phenomenon that the predation rate decreases with increasing prey density through the Holling IV
functional response function, but it also characterizes the phenomenon that adult prey can kill weak
predators. In [11], Tang and Xiao analyzed the existence and stability of all possible equilibria of the
predator-prey model (1.1) with anti-predator behavior, and they conducted a detailed and complete
bifurcation analysis, including saddle-node bifurcation, Hopf bifurcation, homoclinic bifurcation and
B-T bifurcation of codimension 2.

The results of the deterministic model can indeed provide us with some theoretical reference, but
the dynamics of the deterministic model depends closely on the initial value and model parameters,
which are extremely sensitive to environmental fluctuations [12–14]. Obviously, the establishment of
deterministic models is based on several identified populations, consistent patterns of behavior, and
specific environments [15]. But real life is full of randomness and unpredictability. A series of
biological and environmental factors in the ecosystem will cause population fluctuations, and
environmental uncertainty, which is influenced by factors such as the temperature, the climate, and
rainfall will lead to noise [16]. Fluctuations of the environment can even dramatically change the
dynamic behavior of the model [17]. For example, Bawa et al. [18] experimentally demonstrated that
extreme temperatures negatively affected Helicoverpa punctigera pupae. It was found that the
application of heat stress to pupae could affect Helicoverpa punctigera population dynamics by
reducing fecundity and prolonging pre-oviposition and affecting adult development. Due to heat
exposure, the parent did not produce offspring. Therefore, in order to accurately characterize the
impact of environmental fluctuations, many scholars have carried out a series of studies by
incorporating stochastic factors into deterministic models [19–24]. For instance, Liu et al. [23]
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studied a state-transition predator-prey model with anti-predator behavior and higher-order
perturbations, and they obtained the ergodic property by constructing a suitable stochastic Lyapunov
function. Zhang et al. [24] proposed a stochastic predator-prey model with habitat complexity and
prey aggregation efficiency, proved the existence, uniqueness and stochastic uniformity of the global
positive solution of the model, and found sufficient conditions for the existence of ergodic stationary
distributions. It is worth emphasizing that most of the existing literature on stochastic predator-prey
models mainly pay attention to the long-term qualitative behavior of the model and the existence of an
ergodic stationary distribution, while our work in this paper provides a quantitative analysis of how
noise affects the system.

The research on the impact of environmental noise on the system has also attracted the attention of
many scholars [25–28]. For example, Zhou et al. [25] studied stationary distribution, extinction and
probability density functions for stochastic vegetation-water models in arid ecosystems, verified the
theoretical results through numerical simulation based on the data and studied the impact of random
noise on vegetation dynamics. Bashkirtseva et al. [29] proposed a novel method based on the stochastic
sensitivity function technique to construct an analytical description of the stochastic forced equilibrium
and loops of discrete-time models. Further, Yuan et al. [30] used the stochastic sensitivity function
technique to analyze the noise-induced state transition phenomenon in a non-smooth producer-grazer
model with stoichiometric constraints. They found that stochastic trajectories jump frequently between
two stochastic attractors. From a biological point of view, people often prefer species to maintain a
high biomass state to enrich the diversity and stability of ecosystems. Therefore, it is necessary to
control the sensitivity of the ecosystem to environmental noise. In order to suppress the stochastic
sensitivity of equilibrium points and limit cycles, Ryashko and Bashkirtseva [31, 32] proposed control
principles of stochastic sensitivity for equilibrium points and limit cycles respectively, and carried
out numerical simulations with examples. In this study, we used the stochastic sensitivity function
technique to respectively construct the corresponding confidence ellipses and confidence bands for
equilibrium points and limit cycles, and then estimated the critical noise intensity at the noise-induced
system state transitions. Next, different control methods were applied to stabilize the biomass at the
attraction region of the coexistence equilibrium point and the coexistence limit cycle, respectively.

The rest of this paper is structured as follows. We outline the main results of the deterministic
model (1.1) and formulate the corresponding stochastic predator-prey model with anti-predator
behavior in Section 2. In Section 3, we analyze the state transitions between the equilibrium point and
the equilibrium point (or the limit cycle and the equilibrium point) induced by noise; we also estimate
the critical thresholds for state transitions by using confidence ellipses and confidence bands,
respectively. According to the feedback control principle, we control the sensitivity between the two
equilibrium points (or the limit cycle and the equilibrium point) in Section 4. Finally, we give a brief
summary of this paper in Section 5 to conclude our study.
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2. Model formulation

2.1. Restate the main results of the deterministic model

We briefly revisit some results from [11]: the system (1.1) has two boundary equilibria E0 = (0, 0)
and Ek = (k, 0), and up to two coexisting equilibrium points Ei = (xi, yi), i = 1, 2, where

x1 =

−d +
√

A
(

cos
θ

3
−
√

3 sin
θ

3

)
3η

, y1 =
1
β

r
(
1 −

x1

k

)
(a + x2

1),

x2 =

−d +
√

A
(

cos
θ

3
+
√

3 sin
θ

3

)
3η

, y2 =
1
β

r
(
1 −

x2

k

)
(a + x2

2),

where A = d2 − 3η(ηa − µβ), B = d(ηa − µβ) − 9ηad, θ = arccos T and T =
2Ad − 3ηB

2
√

A3
. Further, we

have the following lemma.

Lemma 1. For k > x2, if there is a stable boundary equilibrium point Ek = (k, 0) , a stable node E1,
and a saddle point E2, but E1 gradually loses its stability as k increases, then a locally stable limit
cycle Γ

′

appears. In other words, the system (1.1) has two types of bistability: the coexistence of two
stable equilibrium points Ek and E1 or a stable equilibrium point Ek and a stable Γ

′

.

For the purpose of our study, in this paper, we mainly focus on the parameter domains when the
system admits bistability. Therefore, we treat the environmental capacity k as a control parameter and
fix other parameters of the model as follows:

r = 0.05, a = 0.8, µ = 0.8, β = 0.6, η = 0.01, d = 0.24. (2.1)

In this set of parameters, we take k = 1.45, and then system (1.1) has a stable coexistence equilibrium
point E1 = (0.58509, 0.05678), a saddle point E2 = (1.26925, 0.02505) and a stable boundary
equilibrium point E3 = (1.45, 0), as shown in Figure 1(a). The red dotted line Γ in the figure is the
separatrix between two domains of attraction in the first quadrant. The trajectories starting from the
interior of the separatrix finally converge to the coexistence equilibrium point E1, and the trajectories
starting from the outside of the separatrix tend to the predator extinction equilibrium point E3. That is,
depending on the initial value, the final population will tend to the coexistence equilibrium E1 or the
predator extinction equilibrium E3. When k = 1.6, as shown in Figure 1(b), the system (1.1) has a
stable boundary equilibrium point E4 = (1.6, 0) and a saddle point E2. E1 loses stability resulting in a
stable limit cycle Γ

′

. In this case, the species biomass exhibits a periodic oscillation pattern.
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(a) (b)

Figure 1. Phase plane of the system (1.1): (a) parameter settings given (2.1) and k = 1.45; (b)
parameter settings given (2.1) and k = 1.6. Here the red dotted curves Γ are the separatrices
between the two domains of attraction, and the blue solid curves are the trajectories of the
model with different initial values.

2.2. Stochastic model

Since the deterministic systems are inevitably affected by various environmental noises, which will
further affect or even change the original properties of the deterministic model, we use the idea of small
perturbation to incorporate the noise into the model. Thus, based on the model (1.1), we consider the
following stochastic differential equation

dx =
(
rx

(
1 −

x
k

)
−
βxy

a + x2

)
dt + σ1xdB1,

dy =
(
µβxy
a + x2 − dy − ηxy

)
dt + σ2ydB2,

(2.2)

where B1(t) and B2(t) are independent standard one-dimensional Brownian motions, which are defined
in a complete probability space (Ω,

{
Ft

}
t≥0, Prob) with a fltration

{
Ft

}
satisfying the usual normal

conditions (right continuous and increasing while F0 contains all probability-null sets). σ1 and σ2

represent noise intensities. For simplicity, we assume σ1 = σ2 = σ in our study. Next, we study the
properties of the model (2.2).

3. Analysis of noise-induced transitions

3.1. Sensitivity analysis of noise-induced transitions between attractors

As mentioned earlier, for a deterministic model, the evolution of the solution is completely
determined by the initial values and model parameters. But, for stochastic models, the behavior of
stochastic trajectories can be very complex and interesting. Next, we will explore the dynamical
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behavior of the stochastic model (2.2) in the presence of noise. Take σ = 0.004 and the initial value
(0.5851, 0.0568) near E1; the trajectory from this initial value will hover around E1 (see Figure 2).
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Figure 2. Random trajetory (a) and time series (b) of the stochastic system (2.2) for σ =
0.004 with the inital value (0.5851, 0.0568).
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Figure 3. Random trajetory (a) and time series (b) of the stochastic system (2.2) for σ =
0.0175 with the inital value (0.5851, 0.0568).

But when the noise intensity gradually increases and becomes large enough, the solution of the
stochastic model (2.2) will behave very different from the behavior shown in Figure 2. Here, we take
σ = 0.0175, and the stochastic trajectory escapes from the domain of attraction of E1 and enters the
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domain of attraction of E3. That is, in this case, the predator biomass tends to extinction while the prey
biomass increases significantly (Figure 3). These noise-induced transitions suggest that the coexistence
of the two species is disrupted and predators can be forced to extinction.

From the above analysis, it can be seen that the critical noise intensity σ∗ of the noise-induced
stochastic model (2.2) state transitioning from the coexistence state to the prey-only state is between
0.004 and 0.0175. When 0.004 < σ < σ∗, the stochastic model (2.2) has persistence; thus, the
predator and prey coexist. To further determine the critical threshold σ∗ for noise-induced model state
transitions, using the stochastic sensitive function technique in [33], we construct confidence ellipses
for the equilibrium point E1.

For the coexistence equilibrium point E1 = (x1, y1) of the deterministic model (1.1), let

F =
(

f11 f12

f21 f22

)
be the Jacobian matrix at E1 = (x1, y1), where

f11 = r −
2rx
k
−
βy

a + x2 +
2βx2y

(a + x2)2 ,

f12 = −
βx

a + x2 ,

f21 =
µβy

a + x2 −
2µβx2y

(a + x2)2 − ηy,

f22 =
µβx

a + x2 − d − ηx,

we define g11 = x, g22 = y, and G =
(

g11 0
0 g22

)
. After solving the following system of linear

equations for wi j, i, j = 1, 2, 
2 f11w11 + f12w12 + f12w21 = −g2

11,

f21w11 + ( f11 + f22)w12 + f12w22 = 0,
f21w11 + ( f11 + f22)w21 + f12w22 = 0,
f21w12 + f21w21 + 2 f22w22 = −g2

22,

we get the stochastic sensitive matrix as W =
(

w11 w12

w21 w22

)
.

Given a noise intensity σ and fiducial probability P, the confidence ellipse equation at E1 = (x1, y1)
can be obtained by applying Formula A.3 in [33] as〈

(x − x1, y − y1)T ,W−1((x − x1, y − y1)T )
〉
= 2σ2 ln

1
1 − P

. (3.1)

Applying the above method to the coexistence equilibrium point E1 = (0.58509, 0.05678), we
respectively obtain the corresponding stochastic sensitivity matrix and its inverse as

W =
(

98.4026 −0.1794
−0.1794 2.8803

)
and W−1 =

(
0.0102 0.0006
0.0006 0.3472

)
.

The confidence ellipse equation of E1 is

0.0102 · (x− 0.58509)2 + 0.0012 · (x− 0.58509)(y− 0.05678)+ 0.3472 · (y− 0.05678)2 = 2σ2 ln
1

1 − P
.
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Fixing the fiducial probability at P = 0.95, we vary the noise intensity and observe the effect of the
noise intensity on the confidence ellipse. The corresponding stochastic states and confidence ellipses
of the system (2.2) with σ = 0.00675 are shown in Figure 4(a). This figure shows that the stochastic
states are distributed around the deterministic equilibrium point E1 and have a probability of 0.95 of
lying inside the confidence ellipse.

Next, we select different noise levels σ = 0.0085, 0.0113 and 0.0135, which respectively
correspond to the small, medium and large confidence ellipses of the solid blue line in Figure 4(b).
Obviously, with the continuous increase of the noise intensity, the confidence ellipse continues to
increase and exceeds the separatrix Γ of the two attraction domains; it contains the domain of
attraction of the partial predator extinction equilibrium point E3. When the confidence ellipse is
tangent to the separatrix Γ, the corresponding noise intensity is the estimated value of the critical
noise σ∗ of the noise-induced stochastic model state transition, where σ∗ ≈ 0.0113. In Figure 3, a
typical example is that the trajectory of the system (2.2) starting near the coexistence equilibrium E1

converges to the prey-only equilibrium E3 with σ = 0.0175 > σ∗.
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Figure 4. Random states and confidence ellipses for stochastic system (2.2) with k = 1.45.
(a) Random states (blue) and equilbrium E1 (black) of the stochastic model (2.2) and
confidence ellipse (green) for σ = 0.00675. (b) Separatrix (red), equilbrium E1(black) and
confidence ellipse (blue) for σ = 0.0085 (small), σ = 0.0113 (middle) and σ = 0.0135
(large).

3.2. Sensitivity analysis of noise-induced transitions between the limit cycle and equilibrium point

Similarly, we explore another dynamical behavior of the stochastic model (2.2) in the presence of
noise. Take σ = 0.004 and the initial value (0.5851, 0.0378) near the limit cycle Γ

′

; the trajectory from
this initial value will hover around the limit cycle (Figure 5).

But, when the noise intensity gradually increases and becomes large enough, the solution of the
stochastic model (2.2) will behave very differently from the behavior shown in Figure 5. Here, we take
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σ = 0.03; the stochastic trajectory escapes from the domain of attraction of Γ
′

and enters the domain of
attraction of E4. In this case the predator biomass tends to extinction, while the prey biomass increases
significantly (Figure 6). That is, the model (2.2) undergoes a state transition and finally converges to
the prey-only equilibrium point E4.
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Figure 5. Random trajetory (a) and time series (b) of the stochastic system (2.2) for σ =
0.004 with the inital value (0.5851, 0.0378).
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Figure 6. Random trajetory (a) and time series (b) of the stochastic system (2.2) for σ = 0.03
with the inital value (0.5851, 0.0378).

From the above analysis, it can be seen that the critical noise intensity σ
′

of the noise-induced
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stochastic model (2.2) transitioning from the coexistence state to the prey-only state is between 0.004
and 0.03. When 0.004 < σ < σ

′

, the stochastic model (2.2) exhibits persistence, which means that
the predator and prey coexist. To further determine the critical threshold σ

′

for noise-induced model
state transitions, using the stochastic sensitive function technique in [33], we construct corresponding
confidence bands for the stochastic system (2.2).

For ease of calculation, define

F1(x, y) = rx
(
1 −

x
k
−
βxy

a + x2

)
,

F2(x, y) =
µβxy
a + x2 − dy − ηxy.

Let Γ
′

(x(t), y(t)), t ∈ [0,T ], where T is the period, and denote the limit cycle of a deterministic
model. According to the principle of confidence bands in [33], we can write

F(t) =
(

f11(t) f12(t)
f21(t) f22(t)

)
,G(t) =

(
g11(t) 0

0 g22(t)

)
, S (t) = G(t)G(t)T ,

where

f11(t) =
(
r −

2rx
k
−
βy

a + x2 +
2βx2y

(a + x2)2

)∣∣∣∣∣
Γ
′
,

f12(t) =
(
−
βx

a + x2

)∣∣∣∣∣
Γ
′
,

f21(t) =
(
µβy

a + x2 −
2µβx2y

(a + x2)2 − ηy
)∣∣∣∣∣
Γ
′
,

f22(t) =
(
µβx

a + x2 − d − ηx
)∣∣∣∣∣
Γ
′
,

g11(t) = x|Γ′ ,

g22(t) = y|Γ′ .

We know that the random sensitive function µ(t) satisfies the following boundary value
problem [33]:

µ̇ = a(t)µ + b(t), µ(0) = µ(T ),

where
a(t) = 2 f11(t)p2

1(t) + 2( f12(t) + f21(t))p1(t)p2(t) + 2 f22(t)p2
2(t),

b(t) = g11(t)p2
1(t) + g22(t)p2

2(t).

Here,

p1(t) =
F2(x, y)√

F2
1(x, y) + F2

2(x, y)

∣∣∣∣∣
Γ
′
,

p2(t) = −
F1(x, y)√

F2
1(x, y) + F2

2(x, y)

∣∣∣∣∣
Γ
′
,

are the components of the vector function p(t) = (p1(t), p2(t))T orthogonal to the vector
(F1(x, y), F2(x, y))T . According to A.5 in [33], the boundary Γ

′

1,2(t) of the confidence band can be
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obtained as
Γ
′

1(t) = Γ
′

(t) + σk
√

2µ(t)p(t),

Γ
′

2(t) = Γ
′

(t) − σk
√

2µ(t)p(t),

where the parameter k = er f −1(P), P is the fiducial probability, and er f (x) =
2
√
π

∫ x

0
e−t2dt is the

error function.
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Figure 7. Random states and confidence bands for stochastic system (2.2) with k = 1.6.
(a) Random states (blue) of the stochastic model (2.2) around Γ

′

(red) and the confidence
band (green) for σ = 0.004. (b) Separatrix (red dashed), limit cycie Γ

′

(blue) and outer
boundary (green dashed) of the confidence belt for σ = 0.005 (small), σ = 0.0094 (middle)
and σ = 0.018 (large).

In Figure 7(a), σ = 0.004, P = 0.95, the red line is the deterministic limit cycle Γ
′

, the blue points
are the stochastic state of the stochastic model (2.2) and the two green dotted lines are the boundaries
of the confidence band. Obviously, the stochastic state oscillates around the deterministic limit cycle
Γ
′

, and their probability within the confidence band interval is 0.95.
In fact, judging whether the model has a state transition only requires attention to the outer boundary

of the confidence band. As shown in Figure 7(b), the blue solid line is the deterministic limit cycle
Γ
′

, the red dashed line is the separatrix between the domains of attraction of the limit cycle Γ
′

and
the predator extinction equilibrium point E4 and the green dashed lines are the outer boundaries of the
confidence band corresponding to σ = 0.005 (small), σ = 0.0094 (middle) and σ = 0.018 (large) with
P = 0.95. It can be seen in the Figure 7(b) that, with the continuous increase of noise intensity, the outer
boundary of the confidence band continues to increase to exceed the separatrix Γ of the two attractive
domains, and it contains the domain of attraction of the partial predator extinction equilibrium point E4.
When the outer boundary of the confidence band is tangent to the separatrix Γ, the corresponding noise
intensity is the estimated value σ

′

of the critical noise of noise-induced transitions from coexistence
limit cycles to the extinction equilibrium point. Here σ

′

≈ 0.0094. The case of σ = 0.03 > σ
′

in
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Figure 6 validates our conclusion.

4. Feedback control of noise-induced system from coexistence to extinction

After the analysis in Section 3, we find that there are two situations in which predator extinction
occurs. As shown in Figure 3, when the noise intensity σ = 0.0175, the trajectory of the uncontrolled
system (2.2) will escape from the attraction domain of the coexistence equilibrium point E1, and
eventually converge to the prey-only equilibrium point E3. And, in Figure 6, when the noise intensity
σ = 0.03, the trajectory of the uncontrolled stochastic model (2.2) starting from the attraction domain
of the coexistence limit cycle Γ

′

will also pass through the separatrix of the two attraction domains,
eventually tending toward the predator extinction equilibrium point E4. But from a biological point of
view, people often prefer species to maintain a high biomass state to enrich the diversity and stability
of ecosystems. Therefore, we will study the sensitivity control problem of the equilibrium point or
limit cycle next.

4.1. Sensitivity control of the coexistence equilibrium point

From the analysis in Section 3.1, it can be seen that the critical threshold for the state transition of
the noise-induced system from the coexistence equilibrium point E1 to the predator extinction
equilibrium point E3 is σ∗ ≈ 0.0113. When σ = 0.0175 > σ∗, the trajectory starting from the vicinity
of the equilibrium point E1 finally converges to the prey-only equilibrium point E3. In order to avoid
the noise-induced state transition of the population from the coexistence equilibrium point E1 to the
predator extinction equilibrium point E3, we introduce a feedback control strategy to make the
corresponding confidence ellipse smaller and completely within the domain of attraction of the
coexistence equilibrium point E1. We consider the following model with controls:

dx =
(
rx

(
1 −

x
k

)
−
βxy

a + x2 + u1(x, y)
)
dt + σxdB1,

dy =
(
µβxy
a + x2 − dy − ηxy + u2(x, y)

)
dt + σydB2,

(4.1)

where (u1(x, y), u2(x, y))T is the control factor and has the following linear form(
u1(x, y)
u2(x, y)

)
=

(
k11 k12

k21 k22

) (
x − x̄
y − ȳ

)
:= K

(
x − x̄
y − ȳ

)
.

Here, K is the feedback matrix, and (x̄, ȳ) is the locally stable equilibrium point E1 of the system (1.1).
Next, we will examine the following three control strategies:

(1)u1(x, y) , 0, u2(x, y) , 0,
(2)u1(x, y) , 0, u2(x, y) = 0,
(3)u1(x, y) = 0, u2(x, y) , 0.

According to the control method in [31], we note that for stochastic systems with added controls

dx = f (x, u(x))dt + ϵσ(x, u(x))dω(t),
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where f (x, u(x)) is a sufficiently smooth vector function, ϵ is the scalar parameter of perturbation
intensity, σ(x, u(x)) is a sufficiently smooth n × n matrix function characterizing the state and control,
and ω(t) is an n-dimensional Wiener process.

Further, the system can be simplified as

dz = (A + BK)zdt + ϵGdω,

A =
∂ f
∂x

(x̄, 0), B =
∂ f
∂u

(x̄, 0),G = σ(x̄, 0),K =
∂u
∂x

(x̄).

The aim of the control is to provide an assigned stochastic sensitivity matrix W by choosing a
suitable feedback matrix K, where K satisfies Reλi(A + BK) < 0. The matrix W is the solution of the
equation

(A + BK)W +W(A + BK)T + S = 0, S = GGT .

If the rank B = n, then for the selected assigned positive definite matrix W, the feedback matrix K is

K = −B−1
(1
2

S W−1 + A
)
. (4.2)

If the rank B < n, the matrix W satisfies the equation

P2(S + AW +WAT )P2 = 0, P1 = BB+, P2 = I − P1, (4.3)

where B+ is the generalized inverse of B. Then the feedback matrix K is

K = B+(S + AW +WAT )
(1
2

P1 − I
)
W−1. (4.4)

We take the parameters in (2.1), k = 1.45, P = 0.95 and the same noise intensity σ = 0.0175 as

that applied in Figure 3. When we apply Strategy 1), the matrix B =
(

1 0
0 1

)
; then, we respectively

choose the stochastic sensitive matrix and its inverse as

W =
(

35 −3
−3 0.5

)
, W−1 =

(
0.0588 0.3529
0.3529 4.1176

)
,

which is a symmetric positive definite matrix. Because rankB = 2, the feedback matrix is known
from (4.2) as

K = −B−1
(1
2

S W−1 + A
)
=

(
−0.0078 0.2469
−0.0096 −0.0066

)
.
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Then, the confidence ellipses of the uncontrolled system (2.2) and the controlled system (4.1) at
the equilibrium point E1 are as indicated by the green line and the blue line in Figure 8(a),
respectively. Obviously, the confidence ellipse controlled by Strategy 1) is completely within the
domain of attraction of the coexistence equilibrium point E1. It can be seen in Figure 8(b) that the
corresponding time series is maintained around high biomass. Unlike the extinction situation shown
in Figure 3, the stochastic model after adopting the control strategy 1) avoids the extinction
of predators.
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Figure 8. Confidence ellipses and time series for system (4.1) with control strategy 1).
(a) Separatrix (red dotted line) and confidence ellipse (green) of the stochastic model (2.2)
without control and with the control strategy 1) (blue) and (b) the time series after adopting
the control strategy 1).

When we apply Strategy 2), the matrix B =
(

1 0
0 0

)
; because rankB = 1 < 2, according to

P1 = BB+ and P2 = I − P1, we have

P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
.

We can respectively assign the stochastic sensitive matrix and its inverse as

W =
(

3 −0.1790836
−0.1790836 1

)
, W−1 =

(
0.3369 0.0603
0.0603 1.0108

)
,

satisfying (4.3); according to (4.4), the feedback matrix K can be known as

K = B+(S + AW +WAT )
(1
2

P1 − I
)
W−1 =

(
−0.0570 0.2697

0 0

)
.
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Then, the confidence ellipses of the uncontrolled system (2.2) and the controlled system (4.1) at
the equilibrium point E1 are shown as the green line and the blue line in Figure 9(a), respectively.
Obviously, the confidence ellipse of the system being controlled by Strategy 2) becomes smaller and
completely lies within the attraction domain of the equilibrium point E1. Similarly, it can also be
seen in Figure 9(b) that the corresponding time series is maintained around high biomass. Unlike the
extinction situation shown in Figure 3, the stochastic model after adopting the control strategy 2) avoids
the extinction of predators.
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Figure 9. Confidence ellipses and time series for system (4.1) with control strategy 2).
(a) Separatrix (red dotted line) and confidence ellipse (green) of the stochastic model (2.2)
without control and the system (4.1) with the controll strategy 2) (blue) and (b) time series
after adopting the control strategy 2).

When we apply Strategy 3), the matrix B =
(

0 0
0 1

)
; because rankB = 1 < 2, according to

P1 = BB+ and P2 = I − P1, we have

P1 =

(
0 0
0 1

)
, P2 =

(
1 0
0 0

)
.

We can respectively assign the stochastic sensitive matrix and its inverse as

W =
(

40 0.25761521
0.25761521 1

)
, W−1 =

(
0.0250 −0.0065
−0.0065 1.0017

)
,

satisfying (4.3); then, according to (4.4), the feedback matrix K can be known as

K = B+(S + AW +WAT )
(1
2

P1 − I
)
W−1 =

(
0 0

−0.0013 −0.0036

)
.
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The confidence ellipse corresponding to the controlled system (4.1) is shown in Figure 10(a).
Similar to the results of adopting Strategy 2), the confidence ellipse becomes smaller and completely
lies within the attraction domain of the equilibrium point E1. It can also be seen in Figure 10(b) that
the corresponding time series is maintained around high biomass. Unlike the extinction situation
shown in Figure 3, the stochastic model after adopting the control strategy 3) avoids the extinction
of predators.
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Figure 10. Confidence ellipses and time series for system (4.1) with control strategy 3). (a)
Separatrix (red dotted line), confidence ellipse (green) of the stochastic model (2.2) without
control and the system (4.1) with the control strategy 3) (blue) and (b) the time series after
adopting the control strategy 3).

4.2. Sensitivity control of coexistence limit cycles

According to the previous analysis, it can be seen that the critical noise intensity for the state
transition of the noise-induced system from the stable limit cycle Γ

′

to the predator extinction
equilibrium point E4 is σ

′

≈ 0.0094. Here σ = 0.03 > σ
′

; the trajectory starting from the vicinity of
the limit cycle Γ

′

finally converges to the predator extinction equilibrium point E4. To avoid
noise-induced transitions from coexistence to extinction, we introduce a feedback control strategy to
keep the solution of the system (2.2) in an oscillatory state, and then we consider the following
control model similar to model (4.1):

dx =
(
rx

(
1 −

x
k

)
−
βxy

a + x2 + u3(x, y)
)
dt + σxdB1,

dy =
(
µβxy
a + x2 − dy − ηxy + u4(x, y)

)
dt + σydB2,

(4.5)

where we take the parameters in (2.1), k = 1.6, P = 0.95, and the same noise intensity σ = 0.03 as that
applied in Figure 6. u3(x, y), u4(x, y) represent the control function.
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According to the control principle in [32], consider a stochastic control system

dx = f (x, u(x))dt + εσ(x, u(x))dω(t),

where x is the n-dimensional state variable, u is the r-dimensional control function vector,
f (x, u), σ(x, u) is the vector function, ω(t) is the n-dimensional Wiener process, and ε is the noise
intensity. Assuming ε = 0, u = 0, the system has a T-periodic solution x = ξ(t), and the phase diagram
trajectory is γ. The feedback control function u(x) satisfies the following conditions:

(a) u(x) is sufficiently smooth and u|γ = 0;
(b) The deterministic system is

dx = f (x, u(x))dt,

and the solution x = ξ(t) is exponentially stable in the neighborhood Γ of the cycle γ. Our aim is to
control the stochastic sensitive function W, which satisfies the equation

Ẇ = F(t, u)W +WFT (t, u) + P(t)S (t)P(t), (4.6)

F(t, u) =
∂ f
∂x

(ξ(t), 0) +
∂ f
∂u

(ξ(t), 0)
∂u
∂x

(ξ(t)), S (t) = σ(ξ(t), 0)σT (ξ(t), 0), P(t) = pT (t)p(t),

where p(t) is the normalized orthogonal vector at point ξ(t). It can be seen that controlling u changes

only F(t, u), and in fact, the result depends only on the value of the derivative
∂u
∂x

. Therefore, further
consider the Taylor expansion of u(x) at point γ

u(x) = u(γ) +
∂u
∂x

(γ)(x − γ) + O(∥x − γ∥3).

For γ = γ(x), using property (a), we get

u(x) =
∂u
∂x

(γ) △ (x) + O(∥ △ (x)∥3),

where △(x) = x − γ(x). It can be approximated as

u1(x) = Φ(γ(x)) △ (x),

where Φ(γ(x)) is the feedback matrix coefficient; denote K(t) = Φ(ξ(t)) and t(x) = ξ−1(γ(x)); then,
we have

u = K(t(x)) △ (x). (4.7)

Therefore, the feedback matrix K(t) completely determines the ability of the regulator u = K(t(x))△
(x) to synthesize W(t).
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When controlling for the stochastic sensitivity function of 2D-cycles, let the sensitivity function be
µ, and it is the solution of the following boundary value problem

µ̇ = a(t)µ + b(t), µ(0) = µ(T ), (4.8)

a(t) = pT (t)(FT (t, u) + F(t, u))p(t), b(t) = pT (t)S (t)p(t).

Further, it can be seen that

a(t) = a0(t) + a1(t),
a0(t) = 2qT (t)p(t),
a1(t) = 2βT (t)k(t),

(4.9)

where

q(t) = A(t)p(t), β(t) = B(t)p(t), A(t) = [
∂ f
∂x

(ξ(t), 0)]T ,

B(t) = [
∂ f
∂u

(ξ(t), 0)]T , k(t) =
∂u
∂x

(ξ(t))p(t) = K(t)p(t).

According to (4.7), and given △ = P△, P = pT p, k = K p, we know that

u = k(t(x))pT (t(x)) △ (x). (4.10)

Then, change the feedback k(t) to construct different stochastic sensitivity functions for the limit
cycle. Denote µ̄(t) as an assignment sensitivity function; then, a cycle γ is completely stochastic
controllable if and only if β(t) , 0, ∀t ∈ [0,T ], and the relationship between µ̄(t) and the control
parameter k(t) is

βT (t)k(t) =
ā1(t)

2
, (4.11)

where

ā1(t) =
˙̄µ(t) − a0(t)µ̄(t) − b(t)

µ̄(t)
.

Next, notice the additional optimality criteria

∥k(t)∥2 → min .

Then the corresponding optimal control has a unique solution

k̄(t) =
ā1(t)β(t)

2βT (t)β(t)
=

( ˙̄µ(t) − a0(t)µ̄(t) − b(t))β(t)
2µ̄(t)βT (t)β(t)

, (4.12)
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and the corresponding Lyapunov exponent λ of the system can be simplified as

λ = −
1

2T

∫ T

0

b(t)
µ̄(t)

dt.

Therefore, for any µ̄(t) > 0, we have λ < 0. That is to say, the selected sensitive function need only
satisfy µ̄(t) > 0.

To avoid the extinction of predators, we exploit the limit cycle sensitivity control principle for the

system (4.5) and assign the matrix B =
(

1 0
0 1

)
and β(t) ≡ p(t). It then follows from (4.11) that

k̄(t) =
ā1(t)p(t)

2
, (4.13)

which can be simplified to the following form

u3 =
ā1(t(x, y))

2
(x − ξ1(t(x, y))), u4 =

ā1(t(x, y))
2

(y − ξ2(t(x, y))), (4.14)

where ā1(t) is a scalar function of µ̄(t) taking the following form:

ā1(t) =
˙̄µ(t) − a0(t)µ̄(t) − b(t)

µ̄(t)
,

where

a0(t) =
2 f11 f 2

2 − ( f12 + f21) f1 f2 + 2 f22 f 2
1

f 2
1 + f 2

2

, b(t) =
f 2
2

f 2
1 + f 2

2

,

f1 = rξ1
(
1 −
ξ1
k

)
−
βξ1ξ2

a + ξ2
1

, f2 =
µβξ1ξ2

a + ξ2
1

− dξ2 − ηξ1ξ2,

f11 = r −
2rξ1

k
−
βξ2

a + ξ2
1

+
2βξ2

1ξ2

(a + ξ2
1)2
, f12 = −

βξ1

a + ξ2
1

,

f21 =
µβξ2

a + ξ2
1

−
2µβξ2

1ξ2

(a + ξ2
1)2
− ηξ2, f22 =

µβξ1

a + ξ2
1 − d − ηξ1

,

and ξ1(t), ξ2(t) are the coordinates of the T periodic vector function ξ(t) = (ξ1(t), ξ2(t))T of the
deterministic limit cycle Γ

′

.
Next, we consider the two parameter control cases of the system (4.5). For the first one, σ = 0.03

and µ̄ = 0.8, the phase diagram of the system (4.5) is shown in Figure 11(a). The red dotted line in this
figure is the separatrix of the attraction domain between the deterministic limit cycle Γ

′

and the predator
extinction equilibrium point E4. The green solid line is the deterministic limit cycle Γ

′

. The blue line
is the trajectory starting from (0.836, 0.06) near the limit cycle after control. Obviously, the controlled
stochastic trajectory oscillates near the deterministic limit cycle Γ

′

, and the controlled trajectory is
completely inside the attraction domain of the coexistence limit cycle Γ

′

; its corresponding time series
is shown in Figure 11(b). At this time, the solution of the system (4.5) remains oscillatory and the
controlled model (4.5) avoids the occurrence of the predator extinction phenomenon in Figure 6.
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Figure 11. Trajectory of controlled system (4.5) and corresponding time series. (a)
Separatrix (red dotted line), deterministic limit cycle Γ

′

(green) and random trajectories
(blue), and (b) the time series of the controlled system (4.5) with σ = 0.03, µ̄ = 0.8.
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Figure 12. Trajectory of controlled system (4.5) and corresponding time series. (a)
Separatrix (red dotted line), deterministic limit cycle Γ

′

(green), random trajectories (blue)
and (b) the time series of the controlled system (4.5) with σ = 0.03, µ̄ = 0.03.

Similarly, when σ = 0.03, µ̄ = 0.03, the phase diagram of the system (4.5) is as shown in
Figure 12(a). The red dotted line is the separatrix between the two attracting domains, the green solid
line is the deterministic limit cycle Γ

′

, and the blue line is a controlled random trajectory starting from
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(0.836, 0.06) near Γ
′

. Obviously, the controlled stochastic trajectory hovers near Γ
′

, but the oscillation
amplitude is smaller than that for σ = 0.03, µ̄ = 0.8; the controlled trajectories are all located inside
the attraction domain of the deterministic limit cycle Γ

′

. The solution of the system (4.5) remains
oscillatory, and its corresponding time series is shown in Figure 12(b). The controlled model (4.5)
avoids the occurrence of the predator extinction phenomenon that can be seen in Figure 6.

According to the two different control results, unlike the predator extinction case shown in
Figure 6, both control strategies can keep the solution of the system oscillating. It can also be seen in
Figures 11(a) and 12(a) that the control sensitivity can avoid the occurrence of predator extinction,
and that, with the decrease of the selected sensitivity function, the magnitude of population
fluctuations is reduced.

5. Discussion

In this paper, our focus was on noise-induced transitions from the coexistence state to predator
extinction for a stochastic predator-prey model with anti-predator behavior. The corresponding
deterministic model has two different bistable states under two different sets of parameters. When
k = 1.45, as shown in Figure 1(a), the system (1.1) has a stable coexistence equilibrium point
E1 = (0.58509, 0.05678), a saddle point E2 = (1.26925, 0.02505) and a stable boundary equilibrium
point E3 = (1.45, 0). At this time, the system (1.1) has a bistable point between E1 and E3, the stable
manifold of E2 is the separatrix between the two domains of attraction. When k = 1.6, as shown in
Figure 1(b), the system (1.1) has a stable boundary equilibrium point E4 = (1.6, 0), a saddle point E2.
At this time, E1 is unstable, and there is a stable limit cycle Γ

′

, the red dotted line Γ in the figure is the
separatrix of two domains of attraction. Obviously, there will be a coexistence area and a predator
extinction area in both cases. We found that when the system is affected by a certain degree of
environmental noise, the trajectory starting from the coexistence area will cross the separatrix and
eventually converges to the predator extinction equilibrium. This is shown in Figures 3 and 6.

In order to estimate the critical threshold of the system state switching under the influence of
environmental noise, we used the stochastic sensitive function technique to construct corresponding
confidence ellipses or confidence bands for the two cases, respectively. Then, when the confidence
ellipse (or the outer boundary of the confidence band) is tangent to the separatrix of two attraction
domains, the noise intensity is the estimated value of the critical threshold for the state transition from
coexistence to extinction.

When the environmental noise continues to increase, the confidence ellipse and the outer boundary
of the confidence band will also become larger, gradually increasing to exceed the separatrix of the
two attracting domains and contain part of the attracting domain of the predator extinction equilibrium
point. But from a biological point of view, people often prefer species to maintain a high biomass
state to enrich the diversity and stability of ecosystems. In order to avoid the occurrence of population
extinction, we used two different feedback control methods to control the two situations respectively,
and the “solution” of the controlled model was maintained around high biomass.

We mainly used the stochastic sensitivity function technique to find the critical threshold for
noise-induced state switching, so as to maintain the biomass near high biomass levels, and we applied
two different control strategies to the stochastic model. The system studied in this paper is a
two-dimensional predator-prey system, so whether the stochastic sensitive function technique and
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feedback control technology used in this paper are suitable for a high-dimensional food chain system
still needs further research.
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