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Abstract: The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on
mean field dynamics applied to individual (agent) level history of infection and recovery. Recently,
the DSA method has been shown to be an effective tool in analyzing complex non-Markovian epidemic
processes that are otherwise difficult to handle using standard methods. One of the advantages of
DSA is its representation of typical epidemic data in a simple although not explicit form that involves
solutions of certain differential equations. In this work we describe how a complex non-Markovian
DSA model may be applied to a specific data set with the help of appropriate numerical and statistical
schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.
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1. Introduction

As of October, 2022, the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has taken more than six million lives world-
wide. In response to the pandemic, scientists from all disciplines have made a concerted effort to
address the ever growing analytic challenges of prediction, intervention, and control. The mathemat-
ical tools employed range from the purely deterministic Ordinary Differential Equation (ODE)/Partial
Differential Equation (PDE) models to describe population dynamics (at the macro or ecological scale)
to fully stochastic agent-based models (at the micro scale); from physics-inspired mechanistic models,
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both stochastic and deterministic, to purely statistical approaches such as ensemble models. However,
despite the longstanding history of the discipline of mathematical epidemiology and the enormous
recent efforts, the pandemic has laid bare crucial gaps in the state-of-the-art methodology.

While the macro models are simple to interpret and easy to calibrate, the micro agent-based mod-
els provide more flexibility to model elaborate what-if scenarios. In a similar vein, the mechanistic
models provide insights into the underlying biology and epidemiology of the disease but are often out-
performed by purely statistical methods when it comes to accuracy in prediction and forecasting. We
refer the interested readers to this recent paper [1] that highlights some of the challenges and oppor-
tunities for complex agent-based models. While there is no obvious way to completely bypass such
trade-offs between these often diametrically opposed modeling approaches, the Dynamical Survival
Analysis (DSA) method [2, 3], a survival analytic statistical method derived from dynamical systems,
holds some promise. The present paper is about a likelihood-free means of performing DSA in the con-
text of non-Markovian models of infectious disease epidemiology. More specifically, we: 1) develop a
likelihood-free DSA method based on the Approximate Bayesian Computation (ABC) framework for a
non-Markovian epidemic model accounting for vaccination of susceptible individuals; and 2) propose
a computationally efficient numerical scheme for solving the mean-field semi-linear system of PDEs
based on a flow formulation. Although we illustrate the usefulness of our results through the analysis
of COVID-19 epidemic data from Ohio during the initial vaccination campaign in late 2020 and early
2021, we note that the methodology can be applied to other epidemics. In fact, variations of the DSA
methodology have been applied to analyze the foot-and-mounth disease outbreak in the United King-
dom [3], the Ebola epidemic in 2012 [4], or the recent multiple waves of the Ebola epidemic in the
Democratic Republic of Congo (DRC) [5]. Moreover, the method is quite flexible in that it can work
with various types of epidemic data, such as mass-testing data [6], repeated testing data of a closed
(campus) population [7], repeated testing and vaccination data on a large population [8].

Why non-Markov models? The standard compartmental Markovian models, which employ
Continuous Time Markov Chains (CTMCs) to keep track of counts of individuals in different com-
partments (e.g., individuals with different immunological statuses), assume the infectious period and
the contact interval [3, 9] are exponentially distributed and are thus characterized by a constant hazard
function. Because covariates such as age of infection, time since vaccination can be thought of as
proxies for biological features such as viral load, amount of antibody etc, the simplistic assumption of
a constant hazard for the contact interval and infectious period distributions almost always misrepre-
sents the underlying biology of the disease and hence, is untenable. See [3,10] for a detailed discussion
on this point. Also, see [9, Table 1 and Figure 1] for a numerical illustration of the bias in the esti-
mates of model parameters if a Markovian model is wrongly assumed when the underlying model is
non-Markovian. The implications of relaxing the constant hazard assumption appear to be important
not only for the present problem of modeling epidemics but also more generally, for developing more
realistic biological models that are relatively simple but at the same time are to much larger extent
capable of representing the biological heterogeneity (see, for instance, the discussions in [3, 11]).

A popular and analytically convenient approach to building more realistic non-Markovian models
is to make use of the general theory of measure-valued processes that keep track of not only the popu-
lation counts but also additional covariates such as individual’s age. Here the word “age” is used as an
umbrella term to refer to the physical age of the individual, the age of infection, time since vaccination
etc. While the measure-valued processes do require more mathematical sophistication than their CTMC
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counterparts, as we discuss in Section 2, the age-stratified population densities can be described by a
comparatively simple system of PDEs in the limit of a large population [3, 12–14]. In addition to being
more realistic models, the non-Markovian models have been shown (e.g., in [3] and elsewhere) to have
better predictive ability. The crux of the DSA method is to interpret this mean-field limiting system
of PDEs as describing probability distributions of transfer times (the time required to move from one
compartment to another). We shall make this notion clear in Section 2.2 and discuss the statistical
benefits of the DSA method in Section 6.

As an illustration of the ABC-based DSA method, we apply it to the COVID-19 epidemic in the
state of Ohio, USA. The method is shown to fit the real case count data well and capture nontrivial
trends. Detailed numerical results are provided in Section 5. In addition to the introduction of ABC-
DSA methodology, our second contribution in this paper is a solution method for the mean-field limiting
system of PDEs with nonlocal boundary conditions. For the sake of algorithmic implementation, we
also present it in the form of a pseudocode. An implementation in the Julia programming language is
made available for the wider community.

The rest of the paper is structured as follows: The stochastic non-Markovian epidemic model is
described in Section 2. The mean-field limit in the form of a system of PDEs and the DSA methodology
are also described in Section 2. In Section 3, we describe the main technical details of how we solve
the limiting mean-field PDE system. We describe the statistical approach to parameter inference in
Section 4, followed by numerical results in Section 5. Finally, we conclude with a brief discussion in
Section 6. For the sake of completeness, additional mathematical details, numerical results, and figures
are provided in the Appendix.

2. Non-markovian mass-action model

Our stochastic model is adapted from [3]. As shown in Figure 1, the model has four compartments:
Susceptible, Vaccinated, Infectious, and Removed. Individuals are in exactly one of the four com-
partments. Upon vaccination, susceptible individuals move to the V compartment. We assume only
susceptible individuals are vaccinated. Both (unvaccinated) susceptible and vaccinated individuals can
get infected, in which case they move to the I compartment. Finally, infected individuals either recover
or are removed. In either case, they move to the terminal compartment R. In addition to the counts of
individuals in the four compartments, we keep track of the age distribution. Here, the word “age” refers
to the physical age for the susceptible individuals, time since vaccination for the vaccinated individu-
als, time since infection or age of infection for the infected individuals, and finally, time since recovery
or removal for the removed individuals. The age of the removed individuals are of no interest because
the removed individuals do not contribute to the dynamics. It is possible to include other important
covariates, such as sex, comorbidity, in the model. However, for the sake of simplicity, we only keep
track of age. Suppose we have n individuals.

The age distribution of individuals in different compartments is described in terms of finite, point
measure-valued processes whose atoms are individual ages. See [3]. Such an approach has been
previously used to model age-stratified Birth-Death (BD) processes [11, 15], spatially stratified pop-
ulations [16], delays in Chemical Reaction Networks (CRNs) [17]. The instantaneous rates of jump
are assumed to depend on the individual ages. In particular, a susceptible individual of age s has an
instantaneous rate λ(t, s) of getting vaccinated at time t. Moreover, a susceptible individual is also
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Susceptible (S)

Infectious (I)

Removed (R)

Vaccinated (V)

Υ(t)

λ(t, s)

γ(s)

α(s)

(1 − α(s))Υ(t)

Figure 1. Diagrammatic representation of the non-Markovian compartmental model. At
time t, a susceptible individual with age s moves either to a vaccinated compartment
with instantaneous rate λ(t, s), or to the infectious compartment with instantaneous rate
Υ(t) B

∫ ∞
0
β(s)yI(t, s)ds. The vaccinated individuals are also subject to infection. An in-

fected individual at age s can be removed with instantaneous rate γ(s). The vaccine efficacy
α is assumed age-dependent.

subject to an infection pressure exerted by the infectious individuals. We denote the hazard function
for the probability distribution of the contact interval [3, 9] by β. Therefore, an infectious individual
of age of infection s makes an infectious contact with a susceptible or vaccinated individual at an in-
stantaneous rate β(s). The hazard function of the probability law of the infectious period is denoted by
γ. The vaccine efficacy is also assumed to depend on the age of the vaccinated individual (time since
vaccination). At age s, a vaccinated individual moves directly to the R compartment at rate unity with
probability α(s), while with probability (1 − α(s)), they are subject to the same infection pressure as
the susceptible individuals and can get infected at the same instantaneous rate, which is the population
sum total, scaled by 1/n, of the β’s evaluated at the individual ages of infection.

In the limit of a large population (n → ∞) and under suitable constraints on the hazard functions
β, γ, λ, the measure-valued processes, when appropriately scaled by n−1, can be shown to converge to
deterministic continuous measure-valued functions [3, 11, 15–17]. The densities (with respect to the
Lebesgue measure) of those limiting measure-valued functions can be then described in terms of a
system of PDEs. Let us define

• yS (t, s): The density of susceptible individuals with age s at time t;
• yV(t, s): The density of vaccinated individuals with age (of vaccination) or time since vaccination

s at time t;
• yI(t, s): The density of infectious individuals with age (of infection) or time since infection s at

time t;
• yR(t): The proportion of removed individuals.

From a practical perspective, it is important to note that the timescales for chronological age compared
to infection age are greatly separated. The age of individuals, in our application, practically differen-
tiates individuals according to their decade of life while a COVID-19 infection lasts for a few weeks.
Therefore, we only keep track of the most important covariates, such as the age of infection for the
infected individuals. The functions yS , yV , yI , yR are taken over rectangular domains that share a t-axis
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but, in general, may have different length s-axes. In particular, the quantities yS and λ are defined
over a common domain RS . The quantities yV and α are defined over a common domain RV , and the
quantities yI , γ, and β are defined over a common domain RI . When these distinctions are not needed,
we subsume these s-axes into the common interval [0,∞).

Analogous to [3], the limiting system can be described as

(∂t + ∂s) yS (t, s) = −

(
λ(t, s) +

∫ ∞

0
β(u)yI(t, u)du

)
yS (t, s), (2.1)

(∂t + ∂s) yV(t, s) = −

(
α(s) + (1 − α(s))

∫ ∞

0
β(u)yI(t, u)du

)
yV(t, s),

(∂t + ∂s) yI(t, s) = −γ(s)yI(t, s)
d
dt

yR(t) =

∫ ∞

0
(α(s)yV(t, s) + γ(s)yI(t, s)) ds, (2.2)

with initial and boundary conditions

yS (t, 0) = 0, for all t ≥ 0, (2.3)
yS (0, s) = fS (s),

yV(t, 0) =

∫ ∞

0
λ(t, s)yS (t, s)ds (2.4)

yV(0, s) = 0, for all s ≥ 0,

yI(t, 0) =

∫ ∞

0
yS (t, s)

∫ ∞

0
β(u)yI(t, u)duds +

∫ ∞

0
(1 − α(s))yV(t, s)

∫ ∞

0
β(u)yI(t, u)duds, (2.5)

yI(0, s) = ρ fI(s), ,
yR(0) = 0. (2.6)

We assume there are no vaccinated or removed individuals initially. The nonnegative functions fS and
fI describe the initial age distributions of the susceptible and the infected individuals, and satisfy∫ ∞

0
fS (s)ds = 1,

∫ ∞

0
fI(s)ds = 1.

The parameter ρ is the initial proportion of infected individuals in the population. It is worthwhile to
point out that the system is mass conserved, i.e.,∫ ∞

0
(yS (t, s) + yV(t, s) + yI(t, s)) ds = 1 + ρ − yR(t), for all t ≥ 0.

A consequence of the above conservation law is that the equation (2.2) is in fact redundant.

2.1. Continuity constraints on boundary conditions

When we seek solutions of (2.1)-(2.5) in the space of continuous functions, the explicit and im-
plicit boundary data must be assigned continuously at the origin. This criterion is not satisfied freely
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but imposes additional constraints on the equation coefficients and the initial data. We obtain these
constraints by equating the expressions for the explicit and implicit data at the origin and derive

fS (0) = 0, (2.7)
λ(0, s) = 0, for all s ≥ 0,

fI(0) =

∫ ∞

0
β(u) fI(u)du.

The last equality generally reduces the combined degrees of freedom for β and fI by one. We note also
that the above constraint on λ could be relaxed to holding over the support of fS only.

2.2. DSA perspective of the mean-field PDEs

Before describing how we solve the limiting mean-field PDE system in the next section, let us briefly
discuss how DSA interprets the limiting PDEs as probabilistic quantities.

The DSA method [2, 3, 5–8, 18, 19] combines classical dynamical systems theory and survival anal-
ysis to interpret the mean-field limits of scaled population counts or densities as characterizing proba-
bility laws of transfer times between compartments. In the Markovian model, this interpretation boils
down to treating the mean-field ODEs as satisfying a time inhomogeneous Chapman–Kolmogorov equa-
tion for the marginal probability law of a Markov chain on the state space {S,V, I,R} describing the
time-evolving status of a single individual embedded in an infinitely large population. See [3, Section
3.4] for the standard Susceptible-Infected-Recovered (SIR) model example. In the non-Markovian case,
we construct a Markov process on the state space {S,V, I,R}×[0,∞) to keep track of the time-evolving
status as well as the age information of an individual embedded in an infinitely large population. As
such, DSA interprets the mean-field limiting PDEs as describing the transition kernel for the Markov
process. The transition kernel could be used to simulate individual trajectories.

Note that the individual-based Markov process (or chain in the Markovian case) is entirely charac-
terized by the mean-field limiting PDEs (or ODEs in the Markovian case) describing population-level
densities (or counts). It is precisely in this sense that DSA turns an ecological model into an agent-based
model! Moreover, this agent-based description gives us the following probability measures

µS (t, A) =

∫
A

yS (t, s)ds

1 + ρ
, µV(t, A) =

∫
A

yV(t, s)ds

1 + ρ
, µI(t, A) =

∫
A

yI(t, s)ds

1 + ρ
, (2.8)

for Borel subsets A of [0,∞). Here, the quantity µS (t, A) describes the probability of a randomly
chosen individual with age in the set A ⊂ [0,∞) to be in the S compartment at time t. The other
probability measures are interpreted in a similar fashion. Based on a random sample of infection,
vaccination and/or recovery times, which are allowed to be censored, truncated or even aggregated
over time or individuals, the above probability measures (and the transition kernel) can be used to
write an individual-based product-form likelihood function, called the DSA-likelihood. See [3, Section
3.3] for an explicit example of the DSA-likelihood. The DSA-likelihood can be used for likelihood-
based approaches to parameter inference, such as Maximum Likelihood Estimate (MLE), or Bayesian
methods employing Markov Chain Monte Carlo (MCMC) techniques. In this paper, we focus on an
alternative likelihood-free approach based on the ABC method, which we describe in Section 5. In the
next section, we describe how we solve the mean-field limiting PDE system.
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3. Solving the limiting PDE system

For the remainder of the paper, we will make a simplifying assumption that the initial data fS and fI

are compactly supported. This assumption holds in almost all practical cases of interest. For example
individuals are of bounded age, and infection lasts for at most a bounded length of time. Moreover, by a
suitable enlargement of the rectangular domains of yS , yV , and yI , respectively RS , RV , and RI , we may
also assume without loss of generality that the solutions stay compactly supported in their domains for
the time horizon simulated. This follows from the method of characteristics used in Section 3.1 and the
forcing terms on the right-hand side of (2.1) which determine exponential solutions. For concreteness,
let us write RS = [0,T ] × [0, LS ], RV = [0,T ] × [0, LV], and RI = [0,T ] × [0, LI].

3.1. Solution method

The governing equations, (2.1)-(2.5), constitute a semilinear PDE system of nonlocal conservation
laws. Similar equations of McKendrick-von Foerster type have been studied extensively, such as in [20]
by semigroups and in [21] by integral equations. The latter also presents numerical constructions. Here
we give an alternative solution method that accommodates our particular set of nonlocal boundary
conditions.

Solutions in the domain interior are naturally suited for construction by the method of character-
istics. For more details on this construction, we refer readers to standard references, such as [22, Ch
3] and [23, Ch 7]. In order to handle the nonlocal and implicit boundary conditions (2.4)-(2.5), we
exploit a special feature of this system that remarkably depends on the nonlocal character of the im-
plicit boundary terms. Specifically, we differentiate the implicit boundary conditions in t and recover a
governing flow for them, which only depends on the solution and not on the solution’s derivatives. For
example, consider differentiating (2.4):

∂tyV(t, 0) =

∫ LS

0
(∂tλyS + λ∂tyS ) ds =

∫ LS

0

(
∂tλyS + λ

(
−∂syS − λyS − yS

∫ LI

0
β(u)yI(t, u)du

))
ds

= −
[
λyS

]
(t, s)

∣∣∣LS

s=0
+

∫ LS

0

[
(∂tλ + ∂sλ) yS

]
(t, s)ds −

∫ LS

0

[
λ2yS

]
(t, s)ds

−

(∫ LS

0

[
λyS

]
(t, s)ds

) (∫ LI

0

[
βyI

]
(t, s)ds

)
.

In the second equality, we have substituted for ∂tyS using the yS equation of (2.1), and in the third
equality, we performed an integration by parts. Continuing we may use the compactly supported initial
data to conclude that the boundary term at s = LS is vanishing and substitute (2.3) into the boundary
term at s = 0. For the particular case of yV , we see both these terms are vanishing. A similar argument
works for ∂tyI(t, 0). Below we present the resulting evolution equations for the solution’s boundary
values. Of course, yS (t, 0) ≡ 0 by (2.3), so we need only consider the remaining two:

∂tyV(t, 0) =

∫ LS

0
yS (∂t + ∂s)λds −

∫ LS

0
λ2yS ds −

(∫ LS

0
λyS ds

) (∫ LI

0
βyIds

)
, (3.1)

∂tyI(t, 0) =

(∫ LI

0
βyIds

) [
−

∫ LS

0
λyS ds −

(∫ LS

0
yS ds

) (∫ LI

0
βyIds

)
−

∫ LV

0
yV(∂t + ∂s)αds
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+
[(

1 − α(t, 0)
)
yV(t, 0)

]
−

∫ LV

0
(1 − α)αyVds −

(∫ LV

0
(1 − α)2 yVds

) (∫ LI

0
βyIds

)]
+

(∫ LS

0
yS ds +

∫ LV

0
(1 − α)yVds

) (∫ LI

0
yI(∂t + ∂s)βds + β(0)yI(t, 0) −

∫ LI

0
βγyIds

)
.

Note that in (3.1), it is understood that all integrands are evaluated at (t, s) and integrated in s. In our
particular application, we also have (∂t + ∂s)α = ∂sα and similarly for the hazard function β. We have
chosen to present (3.1) in generality to highlight the underlying structure of (2.1)-(2.5). Note also, the
validity of the equations (3.1) depends on the compact support of the initial data. Otherwise, these flow
equations would need to contain additional boundary terms at the right-end points of the s-axes.

Our solution method of (2.1)-(2.5) now consists of coupling (2.1) in the interior domain together
with the alternative flow formulation (3.1) of the implicit boundary conditions at the [s = 0] boundary.
The explicit boundary data assigned at [t = 0] in (2.3)-(2.5) becomes this system’s initial data. For
the benefit of readers mostly interested in applications, we defer a rigorous analysis of this alternative
formulation and its equivalence with the original one to Appendix A.1. Also, in this investigation, we
assume equation coefficients in classical function spaces and classical notions of solvability. Future
work may investigate deeper questions of equivalence between the original and flow formulations
when equation coefficients and the solution belong to suitably identified Sobolev spaces. For more
information on the distinctions between classical solutions and weak solutions in Sobolev spaces, we
refer again to [22,23]. We present a numerical demonstration of this method approximating the implicit
boundary conditions, (2.4)-(2.5), in Appendix A.2.

3.2. Numerical implementation

For numerically approximating (2.1) and (3.1), we take a semi-discrete approach where we dis-
cretize the space axis, s, into a number of uniform intervals whose intersection points are called nodes.
The number of nodes determines the mesh resolution. We then approximate each component of the
true solution – yS , yV , and yI – by its own nodal basis expansion

y(t, s) ≈
n∑

i=1

yi(t)φi(s).

The {φi(s)}i functions are piecewise linear, C0 basis splines determined by a given mesh resolution.
Each basis spline is associated with an s-axis node, si, and is defined by taking the value 1 at that node
and 0 at all others. At each t-level, we thus approximate the true solution with a linear, interpolant
spline whose value at (t, si) is given by yi(t). Integrals of the true solution and its derived quantities are
approximated by taking integrals of their corresponding linear, interpolant splines by trapezoidal rule.

The {yi(t)}i evolve according to the flows of (2.1) and (3.1). We initialize at the t = 0 level by
projecting the initial data onto the interpolant basis. This is accomplished by sampling those functions
at the nodes. We then use an explicit Euler scheme to extend the solution up to the next time step,
t + ∆t along the boundary axis where the implicit data is prescribed according to the ODEs of (3.1).
This determines the first value y1(t + ∆t) at the node s = 0. For the remaining nodal values, each
of their nodes originate along a characteristic from either the previous t-level or within that part of
the boundary axis that was previously approximated in computing y1. We now evolve each of those
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originating, solution values by the method of characteristics along the ODEs that correspond to (2.1)
by a second explicit Euler scheme to obtain the remaining {yi(t + ∆t)}ni=2. By iterating this process, we
construct a numerical approximation over the desired time interval for simulation.

In practice, we use an adaptive Euler step to improve solution accuracy. We specify tolerances
atol and rtol, which are respectively the absolute and the relative tolerances set by the user. The solver
approximates the solution using a single Euler step of size ∆t and two consecutive smaller Euler steps of
size ∆t/2. The solver then checks if at each node the difference between the two Euler approximations
satisfies either the atol or rtol thresholds. It does this similarly for the values of the nonlocal integrals.
It accepts the step if all quantities meet this criterion, or else it halves the step size and repeats this
process. Note that in evaluating the absolute error, we take the magnitude difference in the Euler
solutions and then scale by the length of their s-axes. This is done because, in general, yS , yV , and yI

are defined on s-axes of different lengths, while probability densities vary inversely with the length of
their domain. By this adjustment, we normalize the errors in yS , yV , and yI to a common scale.

Below we also provide a pseudocode of the algorithm described in this section.

Pseudocode 1. Numerical solver for (2.1) and (3.1)

1. Initialize the solution at t = 0 by storing values of the initial data at the nodes,
2. Propagate from y1(t) to y1(t + ∆t) by taking an explicit Euler step of size ∆t along (3.1),
3. Propagate from {yi(t)}ni=1 and y1(t +∆t) to {yi(t + ∆t)}ni=2 by taking Euler steps of size at most

√
2∆t

along the characteristics of (2.1),
4. Repeat Steps 2-3 for two consecutive Euler steps with ∆t = ∆t/2,
5. If the y-nodal values and integral quantities computed by the single and two-half Euler steps

satisfy either of the absolute and relative error thresholds, atol and rtol, then accept the Step 4
solution at t + ∆t by storing its nodals and continue with ∆t = 2∆t. Otherwise, repeat steps 2-4
with ∆t = ∆t/2.

Code availability

We provide an implementation of the algorithms described in this paper in the Julia programming
language along with jupyter notebooks and html at [24]. Additional information on Julia may be found
at [25].

4. Model parameters

For the vaccine efficacy, α, we begin with a function that linearly increases from 0 to a maximum
of αeff over a period of αL days. After αL, it was taken to be constant. For the contact interval and
infectious period hazard functions, β and γ, we choose Weibull distributions as the Weibull distribution
has been shown to be a flexible choice in modelling epidemics [3]. Therefore, we have

α(s) B
min(s, αL)

αL
× αeff , s ≥ 0,

β(s) B
βα
βθ

(
s
βθ

)βα−1

, s ≥ 0,

γ(s) B
γα
γθ

(
s
γθ

)γα−1

, s ≥ 0.
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Further, we smoothed α by a moving integral average to ensure its derivative was everywhere classical.
We took the density for the initial infected population, fI , to be approximately uniform over a period of
fourteen days subject to the further requirement that it should be compactly supported and continuous.
For this purpose, fI was constant up to day 13.25 and then linearly decayed to 0 by day 13.75. As with
α, we smoothed fI by an integral moving average.

We inferred the parameters in (2.1)-(2.5) using COVID-19 epidemic data for the US state of
Ohio, [26], during the time period Nov 15, 2020- Jan 15, 2021. We directly estimated the hazard
rate for vaccination for this same time period from the Ohio Department of Health (ODH) and Centers
for Disease Control and Prevention (CDC) data, [26, 27], using b-splines. We also directly estimated
the density for the initial susceptible population, fS , consistent with US census information on age
distributions in Ohio, [28].

4.1. Empirical estimates

4.1.1. The distribution for the initial susceptible population, fS

Figure 2 shows an empirical density for age distributions in the state of Ohio partitioned into ten
year age groups. This data suggested a simple piecewise linear characterization of fS , which is also
shown. Additionally, we normalize fS so that it integrates to one.

Figure 2. An empirical density for the age distributions in Ohio partitioned into ten year
brackets. From this we extracted a probability density curve, fS . Later we additionally make
this density decay to 0 at the origin consistent with (2.7).

4.1.2. The hazard rate for time to vaccination λ

Figure 3 shows the empirical, cumulative vaccination doses given in Ohio from Nov 15th, 2020 -
Jan 15th, 2021 (top panel) broken down by age group. These age-breakdowns were estimated from
the vaccination counts provided by the ODH and the CDC, [26, 27]. We observe that vaccine rollout
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did not begin until Dec 15th. It also shows the derived empirical estimates of the hazard rate for
vaccination, λ, from this data (bottom two panels). In order to do this, we measured an empirical
survival function for vaccination using the cumulative vaccine doses curves and the age demography
in Ohio and then applied to these values the negative ln-transformation. These data points were then
fit by least squares with C2 cubic splines, and their pointwise derivatives corresponded to the desired
vaccination hazard rate. For more information on computing with splines, we refer to [29]. These
several curves, parameterized in t, were combined into a single λ(t, s) function by using smoothed
linear transitions in the age-variable s across age-groups.

The shape of the hazard function λ corresponding to vaccination depends largely on the government
decisions to prioritize vaccination of certain vulnerable population ahead of the rest rather than the
underlying biology of the disease. Recall that, by assumption, there are no vaccinated individuals
initially, which is in agreement with the chosen time window for our numerical example. However,
modifications can be made in a straightforward fashion should a pre-vaccinated population needs to be
incorporated in the model. The parameter estimation method according to the DSA method described
below will still work because the DSA method works with the notion of an effective population size,
rather than the actual population size of a region.

4.2. Estimation by Approximate Bayesian Computation

The remaining model parameters were not explicitly given by data, and we used instead an ABC
scheme to estimate their values. The goal of Bayesian inference is to obtain samples from the posterior
distribution of the parameters, which is proportional to a prior distribution on the parameters times
the likelihood of the data given the parameters. However, in many cases, it is difficult or expensive
to compute or even sample from the posterior. In particular, many methods for sampling from the
posterior require computing the likelihood, which may itself be intractable.

ABC provides a method to approximate posterior samples without computing the likelihood. The
simplest way to perform ABC is the rejection sampling method, which goes as follows: First, one pro-
poses a vector of parameters from the joint prior. Next, one simulates data (or some summary statistic
thereof) from the model using this vector of parameters. Finally, one compares this simulated data
to the observed data using some distance metric and either accepts the proposed vector of parameters
as a sample from an approximation of the posterior or rejects it depending on how close it is to the
observed data. What is sufficiently close for acceptance may be determined by an absolute threshold
or by retaining some proportion of the best samples. The intuition is that a vector of parameters with
higher likelihood will more often produce simulated data that is close to the empirical data, and so
ABC approximates the usual acceptance procedure based on the likelihood ratio that is often used in
MCMC. For a more thorough discussion of ABC, we direct the reader to [30, 31].

We proposed the vector of parameters (βα, γα, γθ, ρ, αeff) by drawing each quantity independently
from a uniform prior with the bounds given in Table 1. We then accepted it if the associated infectious
period was less than three weeks with 99.9% probability and if the mean contact interval was less than
the mean infectious period. The parameter αL was fixed to be two weeks. The parameter βθ was not
proposed, and hence, does not have a prior, since its value was determined from the other parameters.
This followed from the last constraint in (2.7). In fact, for the particular pairing of a Weibull distribution
for the contact interval and a uniform distribution for the initial infected, it follows from a little algebra
that (2.7) implies βθ is the length of the support of fI and independent of the other parameters.
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Figure 3. (Top) Cumulative vaccine doses administered in Ohio. (Bottom left) From the
cumulative vaccine doses and the Ohio population’s age distribution, we log transformed the
empirical vaccine survival function. The empirical data is shown as dots. These points were
then fit by least-squares cubic splines joined together with C2 smoothness which are also
shown. The slopes of these curves represent the vaccine hazard rate. (Bottom right) The
nonparametric hazard rates, computed as the derivatives of the spline curves in the adjacent
panel, are shown.
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We then used the PDE model to generate a predicted incidence trajectory for the Nov 15, 2020 - Jan
15, 2021 time period and compared the predicted trajectory to the empirical trajectory using the root
mean square error (Root Mean Square Error (RMSE)). Note that the prevalence at time t is given by
n
∫ ∞

0
yI(t, s)ds, where n is the total population size. We generated 5000 ABC sample trajectories in this

fashion and retained the 10% of sample trajectories with the lowest RMSE. The results are shown in
Figure 4.

5. Numerical results and their biological interpretation

Here we demonstrate how the PDE-DSA model can be used in conjunction with with the ABC method
to infer model parameters from epidemic data. As discussed in Section 4.2, the ABC method does not
require an explicit likelihood but instead uses a computable error between synthetic and true data values
to assess the quality of proposed parameter values. Aggregate population-level counts of infection
are prototypical data that would be used with DSA, and so we apply this approach to daily reported
incidence supplied by the ODH during the period of Nov 15, 2020, - Jan 15, 2021. This period
encompassed the epidemic wave promoted by the rise of the COVID-19 α-variant [32] as well as the
start of vaccine roll-out in Ohio. Therefore, it allowed us to study non-standard dynamics without
having to adjust for multiple strains of the virus or the long-term effect of vaccination.

The primary parameters of interest were the contact interval characterized by β and the infectious
period characterized by γ, along with estimate of the initial amount of infection ρ. The vaccine efficacy
parameter αeff , while also relevant, would not be identifiable due to still low rate of vaccine administra-
tion during the time window of interest. Figure 4 shows the model predictions together with the ODH
reported daily incidence. The best fit obtained across all 5000 ABC samples captures the nontrivial
empirical trends. Table 1 lists the model parameters with their best fit values and the ABC posterior
credible intervals. The posterior distributions correspond to the parameter values that produced trajec-
tories within the shaded bands of Figure 4. In Figure 5, we see that the mean time before transmission
was approximately estimated to be between (12.25, 13.0) days while the mean time to recovery was
approximately estimated to be between (12.25, 15.0) days. These estimates are in line with estimates
from similar studies reported in the literature [3].

Note that the contact interval distribution and the infectious periods can be thought of as proxies
for the viral load after infection. Therefore, one can gain some qualitative insights into the biology of
the disease from the shape of the estimated contact intervals and the infectious periods. For instance,
for the α-variant of the SARS-CoV-2 virus in Ohio, the infectious individuals seem to have attained
the highest viral load no later than (12.25, 13.0) days after infection. Also, they appear to carry an
amount of viral load large enough to infect others (with a significantly high probability) only for a
short duration of a few days (when the density of the contact interval distribution is high) after which
the viral load remains low (below a threshold) and decays slowly as suggested by the long tail of
the infectious period. This description, we believe, is more truthful to the underlying biology of the
disease than what we could obtain from the traditional CTMC-based Markov models in which the hazard
functions corresponding to the contact intervals and the infectious periods would be assumed constant
(regardless of the time since infection, and thereby, viral load).

In the second panel of Figure 5, we give the posterior distribution for the reproduction number R.
This quantity is computed using the formula R =

∫ ∞
0

S γ(s)β(s)ds as in [2], where S γ(s) is the survival
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Figure 4. The PDE model fit to the ODH daily incidence data as calibrated by ABC. A seven
day moving average of the ODH data is shown as a dashed orange line. The solid blue line
corresponds to the model’s best fit observed across 5000 ABC samples, while the blue band
represents the best 10% of all ABC sampled trajectories as measured by the RMSE between
the model prediction and empirical incidence.

Figure 5. (Left) Posterior distribution of the mean contact interval compared with the poste-
rior distribution for the mean infectious period. (Right) Posterior distribution for R.

function of the probability distribution characterized by the hazard rate γ. Note that this formula
ignores vaccination, and therefore, is an upper bound on the true reproduction number. The model
estimated a mean of R = 1.28 with a 95% credible interval of (0.89, 1.94), which is consistent with
other studies of reproduction numbers associated with the COVID-19.
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Table 1. Model parameters used to fit the ODH daily case data from Nov 15, 2020 - Jan 15,
2021. We additionally report their assigned ABC priors, best fit values, and ABC posterior
credible intervals from the numerical simulations presented in Section 5. The ABC posteriors
were obtained by conditioning 5000 ABC samples to the best 10% of observed RMSE between
the ODH daily incidence and model prediction. The priors for β and γ are listed with *
since, in addition to these uniform ranges, we further conditioned on parameters where the
infectious period lasted no more than 21 days with 99.9% probability and where the mean
contact interval was less than the mean infectious period. Moreover, a prior for βθ is not given
since (2.7) determines βθ = βθ(βα, fI). The narrow posterior of βθ was expected as reasoned
in Section 4.2.

Parameter Unit Description
Value/

Prior
Best
Fit

ABC Posterior
95% Credible Interval

Contact interval
βα – Weibull shape parameter (5, 20)∗ 5.24 (5.06, 9.55)
βθ day Weibull scale parameter – 13.5038 (13.5036, 13.5076)

Infectious period
γα – Weibull shape parameter (2, 8)∗ 6.05 (4.98, 7.94)
γθ day Weibull scale parameter (1, 18)∗ 13.6 (13.43, 15.03)

Starting infection

ρ %

mass of the initial
infected population

relative the size of the
susceptible population

(0.1, 5) 4.48 (0.79, 4.95)

Vaccine

αL day
time for vaccine to achieve

full efficacy
14 – –

αeff % vaccine blocking efficacy (70, 100) 97.0 (70.7, 99.2)

6. Discussion

The COVID-19 pandemic has spurred the development of a cottage industry of ever-more elaborate
mathematical models of epidemic dynamics that have been applied to empirical data across the world
with varying degree of success [33–37]. Since most of the current and historic COVID-19 data have
been available in aggregate, the models tend to focus on aggregate behavior which may sometimes lead
to erroneous insights [38]. The DSA method discussed here offers a different modeling approach and in
particular accounts more fully that a typical compartmental model for the heterogeneity of individual
behaviors.

Indeed, even since its introduction in [2] on the eve of an outbreak of the global COVID-19 pan-
demic, the DSA approach has been shown to be a viable way of analyzing epidemic data in order to
predict epidemic progression, evaluate the long term effects of public health policies (testing, vac-
cination, lock downs, etc.) and individual-level decisions (masking, social distancing, vaccine hesi-
tancy) [5–8, 18]. As it was argued in [2], the DSA method has several advantages over more traditional
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approaches to analyzing data in SIR-type epidemic curves. Perhaps the most important one is that the
method does not require the knowledge of the full curve trajectory or the size of the total susceptible
population. Indeed, such quantities are rarely known in practice and often require ad-hoc adjustments
leading to severely biased analysis [9]. In fact, the DSA method can estimate an effective population
size based on a discount estimator [3, Section 3.5]. Therefore, not only do we not need the size of the
total susceptible population, but also can we ignore the size of the removed population.

In this work we discuss a relatively simple yet powerful non-Markovian extension of the original
DSA method formulation introduced in [2] accounting for vaccination. The idea is to transform the non-
Markovian system into a measure-valued Markovian system for which a significant body of literature
has been developed over the years. In particular, our work is inspired by works such as [11, 15, 16].
This extension allows one to take into account the additional heterogeneity of the transmission patterns
due to both the changes in infectiousness over the individuals’ infectious periods and the changes in
immunity over the individuals’ periods of vaccine-derived protection. However, the practical price to
pay for these modeling improvements is that a more elaborate numerical scheme is required to evaluate
the DSA model along with its increased computational cost to fit empirical data. Here we have chosen
to apply a likelihood-free ABC approach, which allows us to avoid the large numerical overhead usually
associated with DSA likelihood-based methods [3]. This is accomplished by pregenerating parameter
samples and then running simulations in parallel using modern multi-core capabilities. This capacity
of ABC for parallel processing helps also mitigate the computational burden of a non-Markovian DSA,
namely evaluating its nonlocal and implicit boundary conditions and associated flow formulation of
(3.1). As seen from the numerical examples in Section 5, using ABC we were able to fit the highly
irregular model of Ohio COVID-19 epidemic with proper accounting for various sources of uncertainty
in all of the relevant model parameters.

A. Acronyms

ABC Approximate Bayesian Computation

BD Birth-Death

CDC Centers for Disease Control and Prevention

CRN Chemical Reaction Network

CTMC Continuous Time Markov Chain

DSA Dynamical Survival Analysis

MCMC Markov Chain Monte Carlo

MLE Maximum Likelihood Estimate

ODE Ordinary Differential Equation

ODH Ohio Department of Health

PDE Partial Differential Equation

RMSE Root Mean Square Error
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A. Appendix

A.1. Analysis of the coupled flow system (2.1) and (3.1)

In this section, we begin by assuming the equation coefficients α, β, γ, and λ are continuous and
that α, β, and λ also have directional derivatives along characteristics which are continuous as well.
We then also assume that the initial data fS and fI are continuous, compactly supported, and satisfying
the compatibility conditions (2.7). As observed in Remark 2 below, we will also come to require that
coefficients are bounded.

A.1.1. Structure conditions

First we truncate the domains of the integrals in (2.1) to span their respective R’s which we now
index from 1 to 3. These R’s share a common t-axis but have different s-axes respectively spanning
[0, Li]. Thus, we initially solve a separate problem than (2.1) where instead of integrals over [0,∞)
we have finite domains. However, because of the compactness of our initial data, this problem will be
equivalent to the original formulation a posteriori. Letting y = (yS , yV , yI) and C(R) stand for the set of
continuous functions on the domain R, we now rewrite (2.1) in the form

(∂t + ∂s) yS = −Λ1
[
y
]
, (A.1)

(∂t + ∂s) yV = −Λ2
[
y
]
,

(∂t + ∂s) yI = −Λ3
[
y
]
,

for functionals Λi :
∏3

j=1 C
(
R j

)
→ C (Ri). Moreover, for positive quantities C1 and L1, the Λi satisfy

boundedness and Lipschitz conditions∥∥∥Λi
[
y
]∥∥∥
∞
≤ C1

(
‖λ‖∞ , ‖α‖∞ , ‖γ‖∞ , LI , ‖y‖∞

)
, (A.2)∥∥∥Λi

[
y1

]
− Λi

[
y2

]∥∥∥
∞
≤ L1

(
‖α‖∞ , ‖β‖∞ , LI , ‖y1‖∞ , ‖y2‖∞

)
‖y1 − y2‖∞ . (A.3)

The boundary flow kernels in (3.1) are more elaborate but they satisfy similar structure conditions. The
key point is that the flow equations are algebraic combinations of functionals which themselves satisfy
boundedness and Lipschitz conditions. We may rewrite (3.1) as

∂tyV(t, 0) = Γ2
[
y
]
, (A.4)

∂tyI(t, 0) = Γ3
[
y
]
,

for functionals Γi :
∏3

j=1 C
(
R j

)
→ C ([0,T ]). Their boundedness and Lipschitz conditions are∥∥∥Γi

[
y
]∥∥∥
∞
≤ C2

(∥∥∥Dχλ
∥∥∥
∞
,
∥∥∥Dχα

∥∥∥
∞
,
∥∥∥Dχβ

∥∥∥
∞
, ‖γ‖∞ , LS , LV , LI , ‖y‖∞

)
, (A.5)∥∥∥Γi

[
y1

]
− Γi

[
y2

]∥∥∥
∞
≤ L2

(∥∥∥Dχλ
∥∥∥
∞
,
∥∥∥Dχα

∥∥∥
∞
,
∥∥∥Dχβ

∥∥∥
∞
, ‖γ‖∞ , LS , LV , LI , ‖y1‖∞ , ‖y2‖∞

)
‖y1 − y2‖∞ .

(A.6)

Above we let
∥∥∥Dχ f

∥∥∥
∞

stand for the max supremum norm of both f and (∂t + ∂s) f .

Remark 1. Without loss of generality, we may assume C1, C2, L1, and L2 are increasing functions of
their arguments.
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Remark 2. The argument dependence of the Lipschitz constants in (A.2)-(A.3) and (A.5)-(A.6) on
norms of the equation coefficients quantifies boundedness assumptions needed on equation coefficients
for the Lipschitz assumptions to hold.

Remark 3. Hereafter, we will abbreviate a constant’s dependence on equation coefficients or geometry
as data. So C1 = C1(data, ‖y‖∞). Similar holds for C2, L1, and L2.

A.1.2. A fixed point characterization of (A.1) and (A.4)

Mimicking the standard approach in ODEs, we now recast the solution of (A.1) and (A.4) as a fixed
point for an integral equation. To that end, let τ∗ = min(s, t) and define
FT :

∏3
j=1 C

(
R j

)
→

∏3
j=1 C

(
R j

)
by

FT
[
y
]
(t, s) =


fS (s − τ∗) +

∫ τ∗

0
Λ1

[
y
] (

t − τ∗ + χ, s − τ∗ + χ
)
dχ∫ (t−τ∗)

0
Γ2

[
y
]
(θ) dθ +

∫ τ∗

0
Λ2

[
y
] (

t − τ∗ + χ, s − τ∗ + χ
)
dχ

fI(s − τ∗) +
∫ (t−τ∗)

0
Γ3

[
y
]
(θ) dθ +

∫ τ∗

0
Λ3

[
y
] (

t − τ∗ + χ, s − τ∗ + χ
)
dχ

. (A.7)

Then a fixed point of FT is a classical solution of (2.1) and (3.1) with the initial conditions matching
the prescribed explicit boundary data.

Lemma 1. Let Fh :
∏3

j=1 C
(
R̄ j

)
→

∏3
j=1 C

(
R̄ j

)
where R̄i has the same s-axis as Ri but in the t-axis

only spans [0, h]. Then ∃M, c, h all strictly positive and c < 1 which depend only on the data so that

1. The restriction Fh : B̄M(0)→ B̄M(0) and so is bounded on a Banach space,
2. For y1, y2 ∈ B̄M(0), ‖Fh(y1) − Fh(y2)‖∞ ≤ c ‖y1 − y2‖∞, and so Fh is a contraction mapping.

Proof : For the first part, begin by picking an M larger than twice the supremum norm of fS and
fI which we label ‖ f ‖∞ for brevity. From the sup bounds (A.2) and (A.5), we see that on B̄M(0)
the vector functionals Λ,Γ are bounded in terms of this constant M. We may now pick h so that
h max(‖Λ‖∞ , ‖Γ‖∞) < ‖ f ‖∞ /3. Now examining the sums in (A.7), we see these can be no more than
5
3 ‖ f ‖∞ < M owing to the integral domains having length O(h).

For the second part, we may now use that y1, y2 are supremum bound by M to reduce the dependence
of the Lipschitz constants in (A.3) and (A.6) to just the data. But now we conclude in the usual manner
by seeing that the integral domains in (A.7) have length O(h) and so, by further reduction in h, we
make the product of h with those Lipschitz constants suitably underneath a threshold c < 1.

Corollary 1. For initial data ( fS , 0, fI) and an M strictly larger than the supremum norm of the f ’s,
then over a time span h = h(data,M), the coupled flow equations (2.1) and (3.1) have a unique bounded
solution in the space

∏3
j=1 C

(
R̄ j

)
. This solution may be further taken to be bounded by M over the time

span h.

Proof : This follows from the last lemma and the uniqueness of fixed points for contraction map-
pings in Banach space.

Remark 4. When instead the initial data has a nonzero density fV for the vaccinated compartment, the
same arguments and conclusions hold just with M now also larger than that component’s supremum
norm.
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Remark 5. Since the size of h is in a monotone decreasing relationship with M but otherwise depends
on data which are fixed, we see that so long as an a priori global bound can be derived for solutions
of (2.1) and (3.1), then they will persist globally and be unique. This follows by the usual iteration of
extending the solution by patches [kh, (k + 1)h] along the t-axis.

A.1.3. On the equivalence of (2.1) and (3.1) with the original formulation (2.1) and (2.3)-(2.5)

It remains to show that fixed points of (A.7) coincide at the t-axis with their intended implicit
boundary values (2.3)-(2.5). The technical concern is that while (A.7) is sufficient to imply a fixed point
solution is differentiable along characteristics, it does not imply a priori that a solution is differentiable
along either the t-direction or s-direction individually. Recall in motivating (3.1), we treated the ∂s and
∂t derivatives separately. Nevertheless, we show here fixed point solutions do take the intended implicit
boundary data. For further examples on the uses of difference quotients and summation by parts in the
theory of PDEs, we refer to standard references such as [39].

For the fixed point solution y of (A.7), Let us notate φV(t) =
∫ LS

0
λ(t, s)yS (t, s)ds. We aim to show

φV(t) = yV(t, 0). We will also notate ∆v f (t, s) = f (t + v1, s + v2) − f (t, s), which is the finite difference
of the function f along the vector v. We may now compute

∆he1φV(t) =

∫ LS

0

(
∆he1λ(t, s)yS (t + h, s) + λ(t, s)∆he1yS (t, s)

)
ds

=

∫ LS

0

(
∆he1λ(t, s)yS (t + h, s) + λ(t, s)∆he1+he2yS (t, s) − λ(t, s)∆he2yS (t + h, s)

)
ds.

We next apply summation by parts to the last term:

−

∫ LS

0
λ(t, s)∆he2yS (t + h, s)ds = −

∫ LS

0
λ(t, s)yS (t + h, s + h)ds +

∫ LS

0
λ(t, s)yS (t + h, s)ds

= −

∫ LS

h
λ(t, s − h)yS (t + h, s)ds +

∫ LS

0
λ(t, s)yS (t + h, s)ds

= −

∫ LS

h
∆−he2λ(t, s)yS (t + h, s)ds +

∫ h

0
λ(t, s)yS (t + h, s)ds.

If we now combine these equations, divide by h, and then pass to the limit as h → 0, we obtain from
the regularity of all terms involved that

∂tφV(t) =

∫ LS

0

(
yS (t, s) (∂t + ∂s) λ(t, s) + λ(t, s) (∂t + ∂s) yS

)
ds + λ(t, 0)yS (t, 0)

=

∫ LS

0

(
(∂t + ∂s) λ(t, s)yS (t, s) + λ(t, s)

(
−λ(t, s) −

∫ LI

0
β(u)yI(t, u)du

)
yS (t, s)

)
ds.

Notice in the last equality that we have used directional derivatives of the solution along characteristics
are classical and given by (2.1). Also, we used that yS (t, 0) = 0 by (2.3). Upon inspection, we see this
is exactly the flow equation for the boundary data of yV in (3.1). It now follows from the uniqueness
of solutions for ODEs that φV(t) and yV(t, 0) must coincide. These arguments may be repeated for the yI

solution to show its intended implicit boundary data also evolves according to the flow of (3.1).
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A.2. Demonstrating numerical convergence of the implicit boundary conditions

In Figure 6 we demonstrate the PDE numerical solution better satisfying the implicit boundary con-
ditions as the mesh resolution and ode integrator tolerances become increasingly fine. For the figure
legend, we note that nnd is the number of mesh nodes along the s-axis while atol and rtol are respec-
tively the adaptive Euler schemes absolute and relative tolerances for refining the step. Recall that,

Figure 6. Convergence demonstrations of the PDE DSA solver at the implicit boundary axis
as the mesh resolution and ode solver tolerances become increasingly fine when using the best
fit parameters obtained by ABC in Figure 4 and Table 1 of the main body. (Top) The absolute
error, scaled by the domain length, between the solution’s value evaluated at the boundary
where implicit data is prescribed and the implicit integral quantity which it is supposed to
equal. These are respectively the left and right hand sides of (2.4)-(2.5). The left panel is for
yV , and the right panel is for yI . (Bottom) Similar as the above panels but for the relative error
as measured by the magnitude error divided by the solution value at that boundary point.
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since the magnitude of a probability density varies inversely with the length of its domain, the absolute
errors shown are for the solution density multiplied by the size of its domain. In this sense, the absolute
error reported is for the solution density if it were first rescaled to a density on the unit interval.

We observe a slight early increase in the relative error of yV’s implicit boundary data as resolutions
become increasingly fine. We expect this is due to the true magnitude of yV becoming increasingly
small, which thus leads to division by a smaller number.

A.3. Parameter posteriors

Figure 7. Posterior distributions for ABC estimated model parameters. The best 10% of all
5000 ABC samples were kept. The parameter descriptions are given in Table 1 of the main
body; however, we give the means, µ, and standard deviations, σ, for the contact interval and
infectious period rather than their shape and scale parameters. This amounts to an equivalent
parameterization of the two-parameter Weibull distributions.
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