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Abstract: Single cell dispensing techniques mainly include limiting dilution, fluorescent-activated cell 

sorting (FACS) and microfluidic approaches. Limiting dilution process is complicated by statistical 

analysis of clonally derived cell lines. Flow cytometry and conventional microfluidic chip methods 

utilize excitation fluorescence signals for detection, potentially causing a non-negligible effect on cell 

activity. In this paper, we implement a nearly non-destructive single-cell dispensing method based on 

object detection algorithm. To realize single cell detection, we have built automated image acquisition 

system and then employed PP-YOLO neural network model as detection framework. Through 

architecture comparison and parameter optimization, we select ResNet-18vd as backbone for feature 

extraction. We train and evaluate the flow cell detection model on train and test set consisting of 4076 

and 453 annotated images respectively. Experiments show that the model inference an image of 320 × 320 

pixels at least 0.9 ms with the precision of 98.6% on a NVidia A100 GPU, achieving a good balance 

of detection speed and accuracy. 
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1. Introduction 

Recently, extensive efforts have been made to advance the development of methodologies for the 
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quantification of cellular features at single-cell resolution [1,2]. This greatly facilitates multiple fields 

of single-cell-based research, such as single-cell genomics, transcriptomics, proteomics and even drug 

evaluation [3,4]. It is reported that more than 50 monoclonal antibodies have been introduced to treat 

cancer based on new understanding of single-cell genetics and transcriptomics, generating nearly $100 

billion in economic benefits annually [5]. Therefore, an automated single-cell dispensing method that 

obtain the desired pure and viable cells for high cloning efficiency is critical. 

Several different approaches can be used to isolate cells from their populations, such as limiting 

dilution [6], FACS [7] and single-cell dispensing [8]. FACS method requires complex optical systems 

and fluorescent labeling, which usually leads to expensive manufacturing cost and inconvenient use. 

In practice, FACS uses fluorescent dyes to label cells and lasers to excite fluorescence, having an 

impact on their viability or proliferation. Limiting dilution requires complex and laborious operations, 

but is still troubled by cell recovery rates, cell clumps and the statistical analysis used to support the 

assurance of a clonally-derived cell line [6]. Recently, some scholars have employed convolution 

neural network (CNN) to imaging flow cytometry for cell classification [9,10]. Riba et al. [11] 

reported a trained CNN model deployed on a c.sight single-cell printer for real-time CHO-K1 cell 

sorting. Wang et al. [12] designed a microfluidic robot for rare cell sorting based on imaging 

identification and multi-step sorting strategy, achieving the performance of 4000 cells/s scanning speed 

and more than 90% sorting purity. It is not hard to see that using microfluidic chip to imaging cells in 

bright field to achieve single cell distribution can avoid fluorescence labeling and cell vitality damage. 

This gentle and label-free cell sorting method is important for subsequent single cell research. 

Generally, some difficulties will be encountered in dealing with images captured from 

microfluidic chip, such as low lighting condition and complex image background caused by laser 

etching traces or residual substrate fragments inside microfluidic chip, cell overlap and artefact 

occlusion brought by flow cell or sample configuration, image blurring owing to out of focal or 

mismatch between camera exposure time and the cell flow speed. In this work, we try to dispense 

single cell by image recognition technology in a label-free manner. More specifically, we focus on the 

identification of single cells with low quality images brought by the microfluidic flow environment to 

solve which cells need to be distributed. 

In this study, we employed object detection method to realize the single cell dispensing decision. 

As shown in Figure 1, the main technical process includes cell image from microfluidic channel, region 

of interest (ROI) preprocessing, single cell inference engineer based on PP-YOLO [13] and final 

sorting manipulation. 

We summarize the main potential contributions of this work as follows: 

(1) A nearly non-destructive single-cell dispensing method based on object detection algorithm 

was implemented to detect label-free cells. Isolation of single cells just by bright-field image can avoid 

the effects of fluorescent markers and laser radiation on cell viability and would help to provide 

expected samples for subsequent single cell culture or gene sequencing. 

(2) A flow cell image acquisition system was built. It was configured with CMOS camera, 

adjustable optical magnification module, supplementary light sources and microfluidic chip with 

driver module. 

(3) Flow cell object detection model based on PP-YOLO was trained and deployed. There existed 

some problems in flow single cell recognition, such as different size, irregular shape, mutual occlusion, 

stacking, jitter and low illuminance, which would affect single cell detection accuracy. We introduced PP-

YOLO method to achieve the desired tradeoff between the accuracy performance and inference efficiency. 
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Figure 1. Flow cell image detection process. 

2. Materials and methods 

2.1. Sample preparation and digital image acquisition  

2.1.1. Sample preparation 

The sample used in our experiment was the suspension prepared by self-cultured smooth muscle 

cells and PBS buffer (PH 7.4), where the concentration was 8 × 105 cells/ml. Our microfluidic chip was 

customized design and processing, which used silicon chip as the base material, adopted the processing 

method of laser etching runner and made glass chip as the cover plate, as shown in Figure 1(c). 

2.1.2. Image acquisition system 

 

Figure 2. Image acquisition system. (a) Hardware components, (b) Imaging optical path, 

(c) Microfluidic chip. 
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The image acquisition system took CMOS camera (MV-SUF401GC-T-CL, MindVision, China) as 

the core device. It mainly contained the camera itself, illumination, 10 × Plan Apochromatic objective 

(0.25 N.A., 10.60 mm W.D., Olympus, Japan) and lens group with adjustable magnification (1~4.5 ×). 

The hardware components and principle are shown in Figure 2(a) and Figure 2(b) respectively. 

Flow cell imaging optical path was demonstrated in Figure 2(b). The light from the light source 

horizontally went into the objective lens through the beam splitters, and the 10 × objective lens (Lens 2) 

converged the light to illuminate cells that flowed through the observation area of the microfluidic chip. 

Then, the reflected light entered into camera through the objective lens and adjustable magnification 

module in order to generate an image. 

2.1.3. Region of interest 

The ROI area was determined by the design of the microfluidic chip and the volume of droplets 

dispensed from a single squeeze. After several experiments, the volume of a droplet (Vdrop) ejected 

from the microfluidic chip was about 60 pL. We assume that the observation area of the cell was 

rectangular. Given the width of the microfluidic nozzle of 40 μm and the depth (dm) of 40 μm, we 

could calculate that the other side length of the imaging area is 39.11 μm. Considering the chip was 

squeezed to cause liquid shock, the side length of the square was enlarged to 110%, i.e., 43.0, and 

rounded it to 40 μm. According to the imaging final magnification (45 ×) and pixel size (5.5 × 5.5 μm 2), 

the image resolution could be calculated to be 320 × 320 pixels, shown in Figure 3. The mathematical 

calculation of this process followed the below formula. 

 𝐻𝑅𝑂𝐼 = 1.1 √(𝑉𝑑𝑟𝑜𝑝/𝑑𝑚). (1) 

 

Figure 3. ROI area and image resolution. 

2.1.4. Dataset 

We took over 20,000 images and found the following problems. First, the exit of the microfluidic 

chip was funnel-shaped with the sides converging to the middle, and the laser etching marks made 
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the exit darker than other areas. For instance, Figure 4(a), (b) and (c) were ROI area, nozzle shift 

up 20 μm and 40 μm, respectively. Secondly, some cells flowing in the chip would stick together, 

causing images to appear with cells obscuring each other, incomplete cell outlines and missing edges, 

as shown in Figure 4(d). Finally, impurities, residual silicon slag from microfluidic chip processing 

and broken cell debris would interfere with the assay, as shown in Figure 4(e). 

 

Figure 4. Dataset from different condition. (a) ROI area, (b) Nozzle shift up 20 μm, (c) 

Nozzle shift up 40 μm, (d) Cell stick, (e) Non-cell impurity. 

We filtered and labeled 4529 images from over 20,000 images that were suitable for training (as 

shown in Figure 5). All images were RGB ones with resolution of 320 × 320 pixels. For the sake of 

diversity of the data set, we deliberately selected some chips with impurities or obvious processing 

traces for filming. Meanwhile, we added a small amount of 8 μm microspheres to the smooth muscle 

cell suspension, with the aim of enhancing the final robustness of the model. 

 

Figure 5. Image dataset marked by manual. 

Among them, the training set and validation set (90%) were utilized to train model to determine 

the network parameters of the detection model, and the test set (10%) was used to test the recognition 

rate and generalization of the trained detection model (Table 1). 
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Table 1. The number of images of various data sets. 

Training/Validation Data Test Set Total (Labeled Images) 

4076 (90%) 453 (10%) 4529 

2.2. Object detection model 

PP-YOLO is a One-stage object detector and widely used in industrial applications due to its 

good balance of speed and accuracy. It can select feature extraction network flexibly according to the 

demand and realizes end-to-end model training. Therefore, the PP-YOLO network was employed as 

the basic framework in this experiment to construct an end-to-end cell detection model. 

2.2.1. Feature extraction network 

PP-YOLO is an object detection model proposed by Baidu team in 2020 based on YOLOv3 [14] 

that balances prediction speed and accuracy. It does not focus on the improvement of backbone or the 

exploration of network structure, but uses more tricks that are reasonable flexibly, achieving a 

performance beyond YOLOv3 and YOLOv4 [15]. PP-YOLO architecture was drawn in Figure 6. 

A One-stage object detector is usually composed of a feature extraction network, a neck (such as 

feature pyramid networks) and a head (for classification and localization). ResNet50-vd-dcn was 

initially chosen as the backbone network to replace Darknet53 in the YOLOv3. However, we found 

that the cell detection task using ResNet50 was too complex, wasting computational resources and 

causing slow inference in our experiments. 

 

Figure 6. Architecture of PP-YOLO. 

Officials have given multiple backbone versions of PP-YOLO, and in this study, we selected 

ResNet-18vd as backbone. ResNet_vd was first proposed in [16], and in the original ResNet [17] 

(Figure 7(a)), the first convolutional layer of Path A with stride = 2 caused 3/4 of the information to be 

lost. ResNet-vd swapped the stride of the first and second convolutional layer, as shown in Figure 7(b). 

In front of the convolution layer of Path B, a pooling layer (2 × 2, stride = 2) was added to advance 

the down sampling, which would avoid the loss of 3/4 information and reduces the number of 

parameters significantly. 
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Figure 7. ResNet tweaks. (a) ResNet, (b) ResNet-vd. 

2.2.2. Hyper parameters 

Learning rate: 

The model was iteratively optimized in the training set for 300 epochs, with batch size of 64 and 

initial learning rate of 0.02. The mathematical representation of this process was as follows: 

 𝑙𝑟𝑛𝑒𝑤 =
𝑙𝑟𝑑𝑒𝑓𝑎𝑢𝑙𝑡∗(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒𝑛𝑒𝑤∗𝐺𝑃𝑈_𝑛𝑢𝑚𝑛𝑒𝑤)

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒𝑑𝑒𝑓𝑎𝑢𝑙𝑡∗𝐺𝑃𝑈_𝑛𝑢𝑚𝑑𝑒𝑓𝑎𝑢𝑙𝑡
. (2) 

The number of training GPU and the batch size were determined by the lab equipment. In addition, 

the best model for training was evaluated by average precision IoU = 0.5:0.95. The IoU value between 

the regression box and the real box was set as the background when it was less than 0.5. To highlight 

the effectiveness of PP-YOLO-r18vd, we trained several related models simultaneously. 

Batch random resize: 

Since “batch random resize” function was turned on during training, for each time a batch of 

training images would be resized to a random size in the “target_size list”, followed the below formula: 

 𝑡𝑎𝑟𝑔𝑒𝑡𝑠𝑖𝑧𝑒 = 320 + 𝑛 ∗ 32, 𝑛 ∈ 𝑍 𝑜𝑛 [−2, 9]. (3) 

Anchor: 

In PaddleDetection, anchors could be obtained for our own dataset. Its principle was to use the k-

means clustering method to learn different anchors from the training set, but in practice, we found the 

performance was not as desired in training. Therefore, according to the characteristics of our own data 
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set, we gave a set of customized parameters. 

To sum up, the hyper parameters for PP-YOLO as listed in Tabel 2. 

Table 2. Hyper parameters for PP-YOLO. 

Hyper parameters detail 

Epoch 300 

Batch_size 64 

Learning_rate 0.02 

Target_size list 256, 288, 320, 352, 384, 416 

Anchors [10, 14], [23, 27], [37, 58], [81, 82], [135, 169] 

3. Experiment 

3.1. Experimental environment 

This experiment was conducted on the paddlepaddle deep learning framework, and we used 

PaddleDetection 2.4. Besides, NVidia A100, CUDA 11.2, TensorRT 8.2.1 and Ubuntu 18.04 operation 

system were also configured. 

3.2. Experimental strategy 

By analyzing the current task, we found that predicting the results did not require determining the 

exact anchor frame location for the cells, but only the number of cells within the picture. The output 

of non-maximum suppression (NMS) [18] was shaped as [N, 6], where N is the number of predictor 

boxes, and 6 is [class_id, score, x1, y1, x2, y2]. When the output is bbox_num, only the number of 

prediction boxes for each image is output. For example, if batch size is 2, the output is [N1, N2], which 

means the first image contains N1 prediction boxes, and the second image contains N2. The total 

number of prediction boxes is the same as the first dimension N of NMS output. In addition, the 

inference time did not include the cost of data reading and post-processing. 

3.3. Experimental results and analysis 

3.3.1. Precision 

The mean average precision (mAP) is an indicator to evaluate the accuracy of the model, which 

is the sum of the average precision of all object. However, in our task, there is only one class of 

target class in this study. Hence, mAP is the AP of a single class. The training convergence curve of 

the model is shown in the Figure 8(a). It is easy to see the loss function converges quickly, which is 

attributed to the effectiveness of the ResNet structure. Meanwhile, we can get from Figure 8(b) that 

after 200 epochs, the bbox-map stabilizes. 

In order to compare the inference performance of the model, we conducted the speed test (s-

FP32, s-FP16) did contain or not contain the data reading and post-processing (NMS) cost 

respectively. All tests were accelerated by TensorRT. 

As can be seen from Figure 9(a) and Table 3, the AP of PP-YOLO _r18vd was 0.986 and 0.938 
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when IoU = 0.5 and IoU = 0.75, respectively. It was the same as the other models in the control group. 

 

Figure 8. Training process. (a) Loss, (b) mAP. 

 

Figure 9. Model performance. (a) Precision, (b) Inference time. 

Table 3. Precision. 

Model IoU(0.5:0.95) IoU(0.5) IoU(0.75) 

PP-YOLO_r18vd 0.788 0.986 0.938 

PP-YOLOE_crn_s [19] 0.805 0.990 0.940 

PicoDet_s [20] 0.804 0.989 0.935 

PP-YOLO_mbv3_s 0.775 0.988 0.936 
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3.3.2. Inference time 

To compare the inference efficiency advantage of PP-YOLO_r18vd, we trained several models 

with different parameters for a deeper exploration of inference deployment. We tested the inference 

time of a single image on the exported model. As shown in Figure 9(b) and Table 4, we found PP-

YOLO_r18vd object detection model was the best one, only costing 0.9 ms. With the help of TensorRT 

inference acceleration library and FP16 data quantification, the model could infer an image of 320×320 

pixels at 6.5 ms. This means that, using PP-YOLO_r18vd to infer a picture and output the visualization 

results, the inference efficiency of 153 frame per second (FPS) can be achieved uing TensorRT in GPU 

computing mode. 

Table 4. Inference time. 

Model No Preprocess + No Postprocess Preprocess + Postprocess 

FP32(ms) FP16(ms) FP32(ms) FP16(ms) 

PP-YOLO_r18vd 1.2 0.9 7.4 6.5 

PP-YOLOE_crn_s 2.1 1.6 8.4 8.4 

PicoDet_s 2 2.2 7.8 7.2 

PP-YOLO_mbv3_s 22 1.9 13.3 12.7 

3.3.3. Analysis 

From Table 3, we can see that PP-YOLO_r18vd had a certain gap in accuracy compared with 

PP-YOLOE_crn_s and PicoDet_s. At IoU = 0.5:0.95, the accuracy is about 1.7% lower. In practice, 

we generally set the threshold value to 0.5, and then the detection accuracy of PP-YOLO_r18vd was 

about 1.4% lower. 

When the slight difference of detection accuracy is acceptable, we paid more attention to whether 

the predicting speed of model meets our application requirements. PP-YOLO_r18vd had excellent 

performance in pure inference time without data reading and post-process cost. When the data type 

was set to FP16, it took 0.7 ms (+77.8%) less than PP-YOLOE and 1.3 ms (+144%) less than PicoDet. 

PP-YOLO also had advantages in measuring the total inference time. When the data type was set to 

FP16, it cost 1.9 ms (+29.2%) less than PP-YOLOE and 0.7 ms (+10.8%) less than PicoDet. 

Due to the small difference in accuracy but a large speed advantage, PP-YOLO was selected as 

the detection model in this work. We tried to compare the mainstream feature extraction backbone 

between mobilenet_v3_small and resnet_18vd. Experimental results showed that resnet_18vd had an 

absolute advantage whether in accuracy or speed. 

3.3.4. Cell detection result 

Figure10 shows some inference results of PP-YOLO_r18vd for our flow single cell detection 

task. It can be found that the model was robust enough to deal with flow cell recognition in 

microfluidic scenarios, such as complex background, blurred target boundary, mutual stacking and 

large brightness change. 
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Figure 10. Detection results. 

4. Conclusions 

This study implements a machine vision based single-cell partitioning method that enables end-

to-end real-time detection separation. Experiments show that PP-YOLO_r18vd has relatively good 

time performance in flow cell detection task, and its detection accuracy can meet our requirements. 

Due to experimental conditions, the dataset is not enough in cell types, so that the model may not 

generalize to all cell assignments. Aim to this problem, if more cell types are added on the basis of 

existing dataset, the more robustness of the model will be improved. In terms of inference speed, we 

believe that there is still a lot of room for improvement. In the future, we may further reduce the size 

of the feature extraction network, remove unnecessary preprocessing, and remove post-processing. As 

well, we can try to convert the current RGB image to grayscale and reduce the size even further. 
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