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Abstract: Single cell dispensing techniques mainly include limiting dilution, fluorescent-activated cell
sorting (FACS) and microfluidic approaches. Limiting dilution process is complicated by statistical
analysis of clonally derived cell lines. Flow cytometry and conventional microfluidic chip methods
utilize excitation fluorescence signals for detection, potentially causing a non-negligible effect on cell
activity. In this paper, we implement a nearly non-destructive single-cell dispensing method based on
object detection algorithm. To realize single cell detection, we have built automated image acquisition
system and then employed PP-YOLO neural network model as detection framework. Through
architecture comparison and parameter optimization, we select ResNet-18vd as backbone for feature
extraction. We train and evaluate the flow cell detection model on train and test set consisting of 4076
and 453 annotated images respectively. Experiments show that the model inference an image of 320 x 320
pixels at least 0.9 ms with the precision of 98.6% on a NVidia A100 GPU, achieving a good balance
of detection speed and accuracy.
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1. Introduction

Recently, extensive efforts have been made to advance the development of methodologies for the
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quantification of cellular features at single-cell resolution [1,2]. This greatly facilitates multiple fields
of single-cell-based research, such as single-cell genomics, transcriptomics, proteomics and even drug
evaluation [3,4]. It is reported that more than 50 monoclonal antibodies have been introduced to treat
cancer based on new understanding of single-cell genetics and transcriptomics, generating nearly $100
billion in economic benefits annually [5]. Therefore, an automated single-cell dispensing method that
obtain the desired pure and viable cells for high cloning efficiency is critical.

Several different approaches can be used to isolate cells from their populations, such as limiting
dilution [6], FACS [7] and single-cell dispensing [8]. FACS method requires complex optical systems
and fluorescent labeling, which usually leads to expensive manufacturing cost and inconvenient use.
In practice, FACS uses fluorescent dyes to label cells and lasers to excite fluorescence, having an
impact on their viability or proliferation. Limiting dilution requires complex and laborious operations,
but is still troubled by cell recovery rates, cell clumps and the statistical analysis used to support the
assurance of a clonally-derived cell line [6]. Recently, some scholars have employed convolution
neural network (CNN) to imaging flow cytometry for cell classification [9,10]. Riba et al. [11]
reported a trained CNN model deployed on a c.sight single-cell printer for real-time CHO-K1 cell
sorting. Wang et al. [12] designed a microfluidic robot for rare cell sorting based on imaging
identification and multi-step sorting strategy, achieving the performance of 4000 cells/s scanning speed
and more than 90% sorting purity. It is not hard to see that using microfluidic chip to imaging cells in
bright field to achieve single cell distribution can avoid fluorescence labeling and cell vitality damage.
This gentle and label-free cell sorting method is important for subsequent single cell research.

Generally, some difficulties will be encountered in dealing with images captured from
microfluidic chip, such as low lighting condition and complex image background caused by laser
etching traces or residual substrate fragments inside microfluidic chip, cell overlap and artefact
occlusion brought by flow cell or sample configuration, image blurring owing to out of focal or
mismatch between camera exposure time and the cell flow speed. In this work, we try to dispense
single cell by image recognition technology in a label-free manner. More specifically, we focus on the
identification of single cells with low quality images brought by the microfluidic flow environment to
solve which cells need to be distributed.

In this study, we employed object detection method to realize the single cell dispensing decision.
As shown in Figure 1, the main technical process includes cell image from microfluidic channel, region
of interest (ROI) preprocessing, single cell inference engineer based on PP-YOLO [13] and final
sorting manipulation.

We summarize the main potential contributions of this work as follows:

(1) A nearly non-destructive single-cell dispensing method based on object detection algorithm
was implemented to detect label-free cells. Isolation of single cells just by bright-field image can avoid
the effects of fluorescent markers and laser radiation on cell viability and would help to provide
expected samples for subsequent single cell culture or gene sequencing.

(2) A flow cell image acquisition system was built. It was configured with CMOS camera,
adjustable optical magnification module, supplementary light sources and microfluidic chip with
driver module.

(3) Flow cell object detection model based on PP-YOLO was trained and deployed. There existed
some problems in flow single cell recognition, such as different size, irregular shape, mutual occlusion,
stacking, jitter and low illuminance, which would affect single cell detection accuracy. We introduced PP-
YOLO method to achieve the desired tradeoff between the accuracy performance and inference efficiency.
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Figure 1. Flow cell image detection process.
2. Materials and methods
2.1. Sample preparation and digital image acquisition
2.1.1. Sample preparation
The sample used in our experiment was the suspension prepared by self-cultured smooth muscle
cells and PBS buffer (PH 7.4), where the concentration was 8 X 105 cells/ml. Our microfluidic chip was
customized design and processing, which used silicon chip as the base material, adopted the processing

method of laser etching runner and made glass chip as the cover plate, as shown in Figure 1(c).

2.1.2. Image acquisition system
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Light
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Figure 2. Image acquisition system. (a) Hardware components, (b) Imaging optical path,
(c) Microfluidic chip.
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The image acquisition system took CMOS camera (MV-SUF401GC-T-CL, MindVision, China) as
the core device. It mainly contained the camera itself, illumination, 10 x Plan Apochromatic objective
(0.25 N.A., 10.60 mm W.D., Olympus, Japan) and lens group with adjustable magnification (1~4.5 x).
The hardware components and principle are shown in Figure 2(a) and Figure 2(b) respectively.

Flow cell imaging optical path was demonstrated in Figure 2(b). The light from the light source
horizontally went into the objective lens through the beam splitters, and the 10 x objective lens (Lens 2)
converged the light to illuminate cells that flowed through the observation area of the microfluidic chip.
Then, the reflected light entered into camera through the objective lens and adjustable magnification
module in order to generate an image.

2.1.3. Region of interest

The ROI area was determined by the design of the microfluidic chip and the volume of droplets
dispensed from a single squeeze. After several experiments, the volume of a droplet (Varp) ejected
from the microfluidic chip was about 60 pL. We assume that the observation area of the cell was
rectangular. Given the width of the microfluidic nozzle of 40 pm and the depth (dm) of 40 um, we
could calculate that the other side length of the imaging area is 39.11 um. Considering the chip was
squeezed to cause liquid shock, the side length of the square was enlarged to 110%, i.e., 43.0, and
rounded it to 40 um. According to the imaging final magnification (45 x) and pixel size (5.5 x 5.5 um?),
the image resolution could be calculated to be 320 x 320 pixels, shown in Figure 3. The mathematical
calculation of this process followed the below formula.

Hgor = 1.1 (Vdrop/dm)- (1)

320x320

40x40pm

Figure 3. ROI area and image resolution.
2.14. Dataset

We took over 20,000 images and found the following problems. First, the exit of the microfluidic
chip was funnel-shaped with the sides converging to the middle, and the laser etching marks made
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the exit darker than other areas. For instance, Figure 4(a), (b) and (c) were ROI area, nozzle shift
up 20 um and 40 pum, respectively. Secondly, some cells flowing in the chip would stick together,
causing images to appear with cells obscuring each other, incomplete cell outlines and missing edges,
as shown in Figure 4(d). Finally, impurities, residual silicon slag from microfluidic chip processing
and broken cell debris would interfere with the assay, as shown in Figure 4(e).

Figure 4. Dataset from different condition. (a) ROI area, (b) Nozzle shift up 20 pm, (c)
Nozzle shift up 40 pm, (d) Cell stick, (e) Non-cell impurity.

We filtered and labeled 4529 images from over 20,000 images that were suitable for training (as
shown in Figure 5). All images were RGB ones with resolution of 320 x 320 pixels. For the sake of
diversity of the data set, we deliberately selected some chips with impurities or obvious processing
traces for filming. Meanwhile, we added a small amount of 8 um microspheres to the smooth muscle
cell suspension, with the aim of enhancing the final robustness of the model.

Figure 5. Image dataset marked by manual.

Among them, the training set and validation set (90%) were utilized to train model to determine
the network parameters of the detection model, and the test set (10%) was used to test the recognition
rate and generalization of the trained detection model (Table 1).
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Table 1. The number of images of various data sets.

Training/Validation Data Test Set Total (Labeled Images)

4076 (90%) 453 (10%) 4529

2.2. Object detection model

PP-YOLO is a One-stage object detector and widely used in industrial applications due to its
good balance of speed and accuracy. It can select feature extraction network flexibly according to the
demand and realizes end-to-end model training. Therefore, the PP-YOLO network was employed as
the basic framework in this experiment to construct an end-to-end cell detection model.

2.2.1. Feature extraction network

PP-YOLO is an object detection model proposed by Baidu team in 2020 based on YOLOV3 [14]
that balances prediction speed and accuracy. It does not focus on the improvement of backbone or the
exploration of network structure, but uses more tricks that are reasonable flexibly, achieving a
performance beyond YOLOv3 and YOLOvV4 [15]. PP-YOLO architecture was drawn in Figure 6.

A One-stage object detector is usually composed of a feature extraction network, a neck (such as
feature pyramid networks) and a head (for classification and localization). ResNet50-vd-den was
initially chosen as the backbone network to replace Darknet53 in the YOLOv3. However, we found
that the cell detection task using ResNet50 was too complex, wasting computational resources and
causing slow inference in our experiments.

Backbone FPN Feature Pyramid
. Head — Yl{(::;o
-> Head > 1’12;0
Head > Yli::;o

Figure 6. Architecture of PP-YOLO.

Officials have given multiple backbone versions of PP-YOLO, and in this study, we selected
ResNet-18vd as backbone. ResNet vd was first proposed in [16], and in the original ResNet [17]
(Figure 7(a)), the first convolutional layer of Path A with stride = 2 caused 3/4 of the information to be
lost. ResNet-vd swapped the stride of the first and second convolutional layer, as shown in Figure 7(b).
In front of the convolution layer of Path B, a pooling layer (2 x 2, stride = 2) was added to advance
the down sampling, which would avoid the loss of 3/4 information and reduces the number of
parameters significantly.
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Figure 7. ResNet tweaks. (a) ResNet, (b) ResNet-vd.

2.2.2. Hyper parameters

Learning rate:

The model was iteratively optimized in the training set for 300 epochs, with batch size of 64 and
initial learning rate of 0.02. The mathematical representation of this process was as follows:

Irgefauir*(batch_sizeney*GPU_numpyey)
rew = .

2)

batch_sizegefquit*GPU_numgesqult

The number of training GPU and the batch size were determined by the lab equipment. In addition,
the best model for training was evaluated by average precision [oU = 0.5:0.95. The IoU value between
the regression box and the real box was set as the background when it was less than 0.5. To highlight
the effectiveness of PP-YOLO-r18vd, we trained several related models simultaneously.

Batch random resize:

Since “batch random resize” function was turned on during training, for each time a batch of
training images would be resized to a random size in the “target_size list”, followed the below formula:

targetgi,, = 320+ n+*32, n€ Zon[-2,9]. 3)

Anchor:

In PaddleDetection, anchors could be obtained for our own dataset. Its principle was to use the k-
means clustering method to learn different anchors from the training set, but in practice, we found the
performance was not as desired in training. Therefore, according to the characteristics of our own data
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set, we gave a set of customized parameters.
To sum up, the hyper parameters for PP-YOLO as listed in Tabel 2.

Table 2. Hyper parameters for PP-YOLO.

Hyper parameters detail

Epoch 300

Batch_ size 64

Learning_rate 0.02

Target_size list 256, 288, 320, 352, 384, 416

Anchors [10, 14], [23, 27], [37, 58], [81, 82], [135, 169]

3. Experiment
3.1. Experimental environment

This experiment was conducted on the paddlepaddle deep learning framework, and we used
PaddleDetection 2.4. Besides, NVidia A100, CUDA 11.2, TensorRT 8.2.1 and Ubuntu 18.04 operation
system were also configured.

3.2. Experimental strategy

By analyzing the current task, we found that predicting the results did not require determining the
exact anchor frame location for the cells, but only the number of cells within the picture. The output
of non-maximum suppression (NMS) [18] was shaped as [N, 6], where N is the number of predictor
boxes, and 6 is [class_id, score, x1, y1, x2, y2]. When the output is bbox num, only the number of
prediction boxes for each image is output. For example, if batch size is 2, the output is [N1, N2], which
means the first image contains N1 prediction boxes, and the second image contains N2. The total
number of prediction boxes is the same as the first dimension N of NMS output. In addition, the
inference time did not include the cost of data reading and post-processing.

3.3. Experimental results and analysis
3.3.1. Precision

The mean average precision (mAP) is an indicator to evaluate the accuracy of the model, which
is the sum of the average precision of all object. However, in our task, there is only one class of
target class in this study. Hence, mAP is the AP of a single class. The training convergence curve of
the model is shown in the Figure 8(a). It is easy to see the loss function converges quickly, which is
attributed to the effectiveness of the ResNet structure. Meanwhile, we can get from Figure 8(b) that
after 200 epochs, the bbox-map stabilizes.

In order to compare the inference performance of the model, we conducted the speed test (s-
FP32, s-FP16) did contain or not contain the data reading and post-processing (NMS) cost
respectively. All tests were accelerated by TensorRT.

As can be seen from Figure 9(a) and Table 3, the AP of PP-YOLO r18vd was 0.986 and 0.938
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when IoU = 0.5 and IoU = 0.75, respectively. It was the same as the other models in the control group.

Loss Bbox_ mAP
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Figure 8. Training process. (a) Loss, (b) mAP.
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Figure 9. Model performance. (a) Precision, (b) Inference time.
Table 3. Precision.
Model 10U(0.5:0.95) 1oU(0.5) 10U(0.75)
PP-YOLO rl18vd 0.788 0.986 0.938
PP-YOLOE crn s [19] 0.805 0.990 0.940
PicoDet_s [20] 0.804 0.989 0.935
PP-YOLO mbv3 s 0.775 0.988 0.936

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3970-3982.
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3.3.2. Inference time

To compare the inference efficiency advantage of PP-YOLO r18vd, we trained several models
with different parameters for a deeper exploration of inference deployment. We tested the inference
time of a single image on the exported model. As shown in Figure 9(b) and Table 4, we found PP-
YOLO rl8vd object detection model was the best one, only costing 0.9 ms. With the help of TensorRT
inference acceleration library and FP16 data quantification, the model could infer an image of 320x320
pixels at 6.5 ms. This means that, using PP-YOLO r18vd to infer a picture and output the visualization
results, the inference efficiency of 153 frame per second (FPS) can be achieved uing TensorRT in GPU
computing mode.

Table 4. Inference time.

Model No Preprocess + No Postprocess Preprocess + Postprocess
FP32(ms) FP16(ms) FP32(ms) FP16(ms)
PP-YOLO rl18vd 1.2 0.9 7.4 6.5
PP-YOLOE crn s 2.1 1.6 8.4 8.4
PicoDet s 2 2.2 7.8 7.2
PP-YOLO mbv3 s 22 1.9 13.3 12.7

3.3.3. Analysis

From Table 3, we can see that PP-YOLO r18vd had a certain gap in accuracy compared with
PP-YOLOE crn_s and PicoDet_s. At IoU = 0.5:0.95, the accuracy is about 1.7% lower. In practice,
we generally set the threshold value to 0.5, and then the detection accuracy of PP-YOLO_r18vd was
about 1.4% lower.

When the slight difference of detection accuracy is acceptable, we paid more attention to whether
the predicting speed of model meets our application requirements. PP-YOLO r18vd had excellent
performance in pure inference time without data reading and post-process cost. When the data type
was set to FP16, it took 0.7 ms (+77.8%) less than PP-YOLOE and 1.3 ms (+144%) less than PicoDet.
PP-YOLO also had advantages in measuring the total inference time. When the data type was set to
FP16, it cost 1.9 ms (+29.2%) less than PP-YOLOE and 0.7 ms (+10.8%) less than PicoDet.

Due to the small difference in accuracy but a large speed advantage, PP-YOLO was selected as
the detection model in this work. We tried to compare the mainstream feature extraction backbone
between mobilenet v3 small and resnet _18vd. Experimental results showed that resnet 18vd had an
absolute advantage whether in accuracy or speed.

3.3.4. Cell detection result

Figure10 shows some inference results of PP-YOLO r18vd for our flow single cell detection
task. It can be found that the model was robust enough to deal with flow cell recognition in
microfluidic scenarios, such as complex background, blurred target boundary, mutual stacking and
large brightness change.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3970-3982.
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Figure 10. Detection results.

4, Conclusions

This study implements a machine vision based single-cell partitioning method that enables end-
to-end real-time detection separation. Experiments show that PP-YOLO r18vd has relatively good
time performance in flow cell detection task, and its detection accuracy can meet our requirements.

Due to experimental conditions, the dataset is not enough in cell types, so that the model may not
generalize to all cell assignments. Aim to this problem, if more cell types are added on the basis of
existing dataset, the more robustness of the model will be improved. In terms of inference speed, we
believe that there is still a lot of room for improvement. In the future, we may further reduce the size
of the feature extraction network, remove unnecessary preprocessing, and remove post-processing. As
well, we can try to convert the current RGB image to grayscale and reduce the size even further.
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