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Abstract: Recently, applications of high-speed, lightweight parallel robots have been gaining 

increasing interest. Studies have shown that their elastic that their elastic deformation during operation 

often affects the robot's dynamic performance. In this paper, we designed and studied a 3 DOF parallel 

robot with a rotatable working platform. We developed a rigid-flexible coupled dynamics model 

consisting of a fully flexible rod and a rigid platform by combining the Assumed Mode Method with 

the Augmented Lagrange Method. The driving moments under three different modes were used as 

feedforward in the model's numerical simulation and analysis. We conducted a comparative analysis 

demonstrating that the flexible rod's elastic deformation under a redundant drive is significantly 

smaller than that of a non-redundant one, leading to a better suppression effect on vibration. The 

system's dynamic performance under the redundant drive was significantly superior compared to that 

of the non-redundant one. Additionally, the motion accuracy was higher and the driving mode b was 

better than that of the driving mode c. Finally, the proposed dynamics model's correctness was verified 

by modeling it in Adams.  

 

Keywords: parallel robot; redundant actuation; rigid-flexible coupling dynamic modeling; assumed 

mode method 

 

1. Introduction  

Parallel robots possess features of high stiffness, high load-bearing capacity, low cumulative error, 

and high motion accuracy [1]. They have been widely used in processing and manufacturing, aerospace, 
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and medical fields [2–7]. However, they also have some disadvantages, such as smaller working spaces, 

more singularities, and difficulty in dynamic solutions. These limitations have restricted the 

development of parallel robots to some extent. 

Due to their structural features, parallel robots have several singularities. Near the singularity, the 

robot's performance sharply drops. In more critical cases, it may lead to control loss [1]. Therefore, 

when designing and applying parallel robots, singular dislocations should be avoided, especially type 

II singularities [8]. The redundancy method is a widely-used method that permits the avoidance of 

such singularities [9–13]. This method is further divided into the kinematic [9,10] and the drive 

redundancy methods [11–13]. Compared to the prior, the latter is more operational because it does not 

introduce a new DOF in the elimination process. 

With the industry's rapid development, demand for the dynamic performance of parallel robots 

has been increasing. To obtain superior dynamic characteristics, parallel robots are often designed to 

be light. However, their flexible components are prone to elastic deformations during high-speed 

motion, potentially causing motion errors in the moving platform in addition to elastic vibration or 

resonance in the mechanism. This consequently results in the parallel mechanism's kinematic and 

dynamic performance degradation. Therefore, it is of the utmost importance to consider the elastic 

deformation of components during the modeling process, in addition to establishing a flexible model. 

To simplify this study, we discretized the components and used the following main methods: 1) the 

Finite Element Method (FEM) [14,15] ; 2) the Assumed Mode Method (AMM) [16,17] ; 3) the finite 

section method [18] ; and 4) the lumped parameter method [19]. The assumed mode method could be 

further combined with the modal truncation technique to truncate the dominant low-order modes. After 

that, we can use the LaGrangian formulation and Kane's equation to establish the system's dynamic 

equations with lower dimensions. Therefore, the assumed mode method is suitable for the construction 

of active control strategies for flexible robots. 

Academic research on the treatment of rigid-flexible kinematic relationships of flexible bodies 

has led to the development of various modeling methods. The most widely used of these are the 

following: 1) The Kinematic Elastic Dynamics (KED); 2) the Floating Frame of Reference (FFRF); 

and 3) the Absolute Nodal Coordinate Formulation (ANCF). The floating frame of reference proved 

to be a reliable method of establishing the rigid-flexible coupled dynamics model. 

Recently, there have been some studies on the dynamic modeling of flexible parallel robots. For 

example, Liang Dong et al [20] studied a multi-drive 2 DOF parallel robot and established a systematic 

rigid-flexible coupling dynamics model by combining the assumed mode method with the Augmented 

Lagrange method. They also conducted a study on the active control strategy. İDer, S. K et al [21] 

established a dynamic model for flexible joints and studied the inverse dynamic control of flexible 

joint parallel robots. Sheng et al [22] developed a dynamics model for a 3-RRR parallel robot with a 

flexible intermediate linkage and investigated the vibration features. Cammarata et al [23] proposed 

an MSA/CMS framework to describe the complete and simplified model of fully flexible parallel 

robots' dynamic elasticity. 

We present in this paper a novel 4-RRR redundantly-driven parallel robot. First, we discretized 

the flexibility of the system's arbitrary rod, j, based on the assumed mode method. Then, we established 

the flexible rod's dynamic equations. Using the Lagrangian formulation, we established the end-

effector's rigid platform’s dynamic equations. We also categorized the eight rods into four branch 

chains to establish the open-chain system's dynamic equations. We established the complete system's 

dynamic equations on the system's closed-loop vector equations and transformed them into the closed-
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loop system dynamic equations in the form of independent generalized system coordinates.  

We regarded the robot's eight rods as flexible bodies while the end-effector platform as a rigid 

body. They thus formed a rigid-flexible coupled system and were numerically simulated. In these 

simulations, the dynamic performance was discussed under 3 types of drive-force distribution: a) a 

non-redundant drive; b) a redundant drive with minimum input torque; and c) a redundant drive with 

minimum input energy. Based on the inverted rigid body dynamics model, we respectively calculated 

three sets of corresponding driving moments. Taking the previously mentioned modes' driving 

moments as feedforward inputs, numerical calculations were conducted in MATLAB to obtain the 

system's dynamic response. To provide a reference for control and strategy, we then compared and 

analyzed the dynamic performance differences under these three modes. 

We developed in this paper a dynamic model of a rigid-flexible coupled parallel manipulator with 

a rigid end-effector. Moreover, we analyzed the model's dynamic performance under three driving 

modes. The modular modeling method was conducive to the generalization to other models; 

additionally, it was helpful for the spatial structure's modeling. The established rigid-flexible coupling 

system dynamics model has proved to be beneficial for the optimization of light design and 

dynamic performance of parallel robots. Moreover, it is conducive to the development of 

subsequent control strategies. 

2. Model 

We present in this paper a planar 3 DOF parallel robot design as shown in Figure 1. It contains a 

total of four branch chains, each of which contains two rods and a square end-effector platform. The 

four branch chains are connected to the end-effector platform's four corners. Among all the branch 

chains, the rods labeled 1–4 are active while the 5–8 ones are driven. We placed the robot in the inertial 

coordinate system 𝑂 − 𝑥 − 𝑦. Let𝐴𝑖denote the solid joint coordinates between the ith branch chain 

and the inertial coordinate system, its coordinates denoted as (𝑥𝐴𝑖 , 𝑦𝐴𝑖) , and its angle as 𝜙𝑖(𝑖 =

1,⋯ ,4) . Let𝐵𝑖 denote the position of the joint between the two rods of the ith branch chain, its 

coordinate denoted as (𝑥𝐵𝑖 , 𝑦𝐵𝑖), and its angle as 𝜙𝑖(𝑖 = 5,⋯ ,8). Let 𝐶𝑖denote the position of the 

joint at the end of the follower rod of the ith branch chain, its coordinate denoted as (𝑥𝐶𝑖 , 𝑦𝐶𝑖).The 

operating platform's center point’s position is denoted as P, having coordinates of (𝑥𝑃, 𝑦𝑃). We denote 

the angle between the line of the center point P, 𝐶𝑖, and the 𝑂 − 𝑥 axis as𝜙𝑖. 

3. The components' dynamics model 

3.1. The flexible rod j’s dynamic modeling 

3.1.1. The discretization of an arbitrary flexible rod j 

According to the floating coordinate frame method, the motion of an arbitrary flexible rod j can 

be decomposed into two parts. One is a large range of rigid bodies solidly connected to the floating 

coordinate system and the other is a small range of elastic deformation motions relative to it. Thus, we 

selected the arbitrary rod's near-frame endpoint as the origin of its floating coordinate system. The x-

direction is the rod's axial direction while the y-direction is its tangential one. At this point, we 

simulated the deformation of the flexible rod j as the cantilever beam’s deformation. Figure 2 shows 

this deformation while moving. 
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Figure 1. A structural illustration of the 4-RRR parallel robot and its deformation under 

high-speed motion. 

 

Figure 2. The deformation of the flexible rod j during ovements. 

In Figure 2, 𝑂 − 𝑥 − 𝑦 represents the global coordinate system. The origin O is fixed in the 

plane of motion. 𝑂𝑗 − 𝑥𝑗 − 𝑦𝑗 represents the floating coordinate system fixed on the flexible rod j. 

The position vector of the origin 𝑂𝑗 in the overall coordinate system is 𝒓𝑂𝑗 = [
𝑥𝑂𝑗 𝑦𝑂𝑗]𝑇. Before 

the flexible rod's motion deformation,𝑃𝑗is a point on it and its position vector in the floating coordinate 

system 𝑂𝑗 − 𝑥𝑗 − 𝑦𝑗 is 𝒓𝑂,𝑃𝑗 = [𝑥̄ 0]𝑇. After motion deformation, the deformation vector diameter 

of the point 𝑃𝑗in the floating coordinate system becomes 𝜹𝑃𝑗 = [𝑣𝑃𝑗 𝑤𝑃𝑗]𝑇. The position vector of 

the point 𝑃𝑗 in the overall coordinate system is denoted as 𝒓𝑃𝑗. According to Fig.2, the following 

position-vector relationship can be obtained as follows: 

𝒓𝑃𝑗 = 𝒓𝑂𝑗 + 𝑹(𝜙𝑗) (𝒓𝑂,𝑃𝑗 + 𝜹𝑃𝑗)              (𝑗 = 1,2,⋯ ,8).           (1) 

In the equation,𝑹(𝜙𝑗) = [
𝑐𝑜𝑠 𝜙𝑗 −𝑠𝑖𝑛𝜙𝑗
𝑠𝑖𝑛 𝜙𝑗 𝑐𝑜𝑠 𝜙𝑗

] denotes the rotation transformation matrix of the 
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floating coordinate system 𝑂𝑗 − 𝑥𝑗 − 𝑦𝑗 , in which the flexible rod j is located with respect to the 

overall coordinate system 𝑂 − 𝑥 − 𝑦, where 𝜙𝑗 is the relative angle of rotation. 

The following equation can be obtained using the assumed mode method to discretize the flexible 

rod j: 

           {
𝑣𝑃𝑗(𝑥̄, 𝑡) = ∑ 𝜓𝑣𝑗,𝑘𝑣(𝑥̄) ⋅ 𝑞𝑣𝑗,𝑘𝑣(𝑡)

∞
𝑘𝑣=1

≈ ∑ 𝜓𝑣𝑗,𝑘𝑣(𝑥̄) ⋅ 𝑞𝑣𝑗,𝑘𝑣(𝑡)
𝑛𝑣
𝑘𝑣=1

= 𝝍𝑣𝑗(𝑥̄) ⋅ 𝒒𝑓𝑣𝑗
(𝑡)

𝑤𝑃𝑗(𝑥̄, 𝑡) = ∑ 𝜓𝑤𝑗,𝑘𝑤(𝑥̄) ⋅ 𝑞𝑤𝑗,𝑘𝑤(𝑡)
∞
𝑘𝑤=1

≈ ∑ 𝜓𝑤𝑗,𝑘𝑤(𝑥̄) ⋅ 𝑞𝑤𝑗,𝑘𝑤(𝑡)
𝑛𝑤
𝑘𝑤=1

= 𝝍𝑤𝑗(𝑥̄) ⋅ 𝒒𝑓𝑤𝑗
(𝑡).       (2) 

In the equation, 𝑣𝑃𝑗(𝑥̄, 𝑡) and 𝑤𝑃𝑗(𝑥̄, 𝑡) denote the axial and transverse elastic deformations on 

the flexible rod j at a distance 𝑥̄ from the origin under the floating coordinate system 𝑂𝑗 − 𝑥𝑗 − 𝑦𝑗 

at the moment of motion t, respectively. 

𝝍𝑣𝑗,𝑘𝑣
(𝑥̄) denotes the 𝑘𝑣 order axial modal shape function. 

𝝍𝑤𝑗,𝑘𝑤
(𝑥̄) denotes the transverse modal shape function of the 𝑘𝑤 order. 

𝑞𝑣𝑗,𝑘𝑣(𝑡) denotes the axial modal time-varying coordinates. 

𝑞𝑤𝑗,𝑘𝑣(𝑡) denotes the transverse modal time-varying coordinates. 

𝑘𝑣 and 𝑘𝑤 denote axial and transverse modal orders, respectively. 

𝝍𝑣𝑗
(𝑥̄) denotes the axial mode shape function matrices. 

𝝍𝑤𝑗
(𝑥̄) denotes the transverse mode shape function matrices. 

𝒒𝑓𝑣𝑗
(𝑡) denotes the column matrix of the axial modal time-varying coordinates. 

𝒒𝑓𝑤𝑗
(𝑡) denotes the column matrix of the transverse modal time-varying coordinates. 

For this paper's 4-RRR parallel robot, we can model the rods as a cantilever beam model; i.e.: 

with fixed-free boundary conditions. Based on structural dynamics [24], the modal shape 

functions𝝍𝑣𝑗,𝑘𝑣
(𝑥̄) and 𝝍𝑤𝑗,𝑘𝑤

(𝑥̄) can be obtained with specific expressions as follows: 

{
𝜓𝑣𝑗,𝑘𝑣(𝑥̄) = 𝑠𝑖𝑛

(2𝑘𝑣−1)𝜋

2𝐿𝑗
𝑥̄

𝜓𝑤𝑗,𝑘𝑤(𝑥̄) = 𝑐𝑜𝑠(𝛩𝑗,𝑘𝑤𝑥̄) − cosh(𝛩𝑗,𝑘𝑤𝑥̄) − 𝛾𝑗,𝑘𝑤(sin(𝛩𝑗,𝑘𝑤𝑥̄) − sinh(𝛩𝑗,𝑘𝑤 𝑥̄))
，             (3) 

In the equation， 

𝛩𝑗,1 =
1.875

𝐿𝑗
, 𝛩𝑗,2 =

4.694

𝐿𝑗
, 𝛩𝑗,𝑘𝑤 =

(𝑘𝑤−0.5)𝜋

𝐿𝑗
       (𝑘𝑤 ≥ 3), 

𝛾𝑗,𝑘𝑤 = −
cos(𝛩j,k𝑤𝐿𝑗)+cosh(𝛩j,k𝑤𝐿𝑗)

sin(𝛩j,k𝑤𝐿𝑗)+sinh(𝛩j,k𝑤𝐿𝑗)
. 

After discretizing the flexible rod j in the assumed mode method, we can express the position 

vector of the arbitrary point Pj after the rod's kinematic deformation in the overall coordinate 

system as: 

                 𝒓𝑃𝑗 = 𝒓𝑂𝑗 + 𝑹(𝜙𝑗) (𝒓𝑂,𝑃𝑗 +𝝍𝑗(𝑥̄)𝒒𝑓𝑗),                             (4) 

In the equation， 

𝒓𝑂,𝑃𝑗 = [𝑥̄ 0]𝑇, 𝝍𝑗(𝑥̄) = [
𝝍𝑣𝑗

(𝑥̄) 𝟎1×𝑛𝑤
𝟎1×𝑛𝑣 𝝍𝑤𝑗

(𝑥̄)
], 𝒒𝑓𝑗 = [

𝒒𝑓𝑣𝑗
𝑇 𝒒𝑓𝑤𝑗

𝑇
]
𝑇

. 

By taking the first order derivative of equation (4) with respect to time, we can obtain the velocity 

vector at the global coordinates of point Pj as: 
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𝒓̇𝑃𝑗 = 𝒓̇𝑂𝑗 − 𝜙̇𝑗𝑹(𝜙𝑗)𝑲̃ (𝒓𝑂,𝑃𝑗 +𝝍𝑗(𝑥̄)𝒒𝑓𝑗) + 𝑹(𝜙𝑗)𝝍𝑗(𝑥̄)𝒒̇𝑓𝑗 = 𝑺𝑗𝒒̇𝑗,          (5) 

In the equation，𝑺𝑗 = [𝑰2×2 −𝑹(𝜙𝑗)𝑲̃ (𝒓𝑂,𝑃𝑗 +𝝍𝑗(𝑥̄)𝒒𝑓𝑗) 𝑹(𝜙𝑗)𝝍𝑗(𝑥̄)] ∈ ℝ2×(3+𝑛𝑣+𝑛𝑤)， 

𝒒𝑗 = [𝒓𝑂𝑖
𝑇 𝜙𝑗 𝒒𝑓𝑗

𝑇
]
𝑇
∈ ℝ(3+𝑛𝑣+𝑛𝑤)×1  are defined as a column matrix of the flexible rod's 

generalized coordinates. It contains both rigid generalized coordinates, 𝒓𝑂𝑗 and 𝜙𝑗, for a wide range 

of variation and flexible generalized coordinates, 𝒒𝑓𝑗, for a small one.  

𝒒̇𝑗 = [𝒓̇𝑂𝑗
𝑇 𝜙̇𝑗 𝒒̇𝑓𝑗

𝑇 ], 𝑰2×2 = [
1 0
0 1

], 𝑲̃ = [
0 1
−1 0

]. 

3.1.2. The arbitrary flexible rod's kinetic energy 

By integrating the flexible rod's microelements' kinetic energy, we obtained its kinetic energy at 

moment t as: 

𝑇𝑡,𝑗 =
1

2
∫ 𝜌𝐴𝒓̇𝑃𝑗

𝑇𝐿𝑗
0

𝒓̇𝑃𝑗𝑑𝑥̄ =
1

2
∫ 𝜌𝐴𝒒̇𝑗

𝑇𝐿𝑗
0

𝑺𝑗
𝑇𝑺𝑗𝒒̇𝑗𝑑𝑥̄ =

1

2
𝒒̇𝑗
𝑇𝑴𝑡,𝑗(𝒒𝑗)𝒒̇𝑗.                     (6) 

In the equation，𝜌 denotes the flexible rod j's density; A denotes its cross-sectional area; 𝐿𝑗 

denotes its length; 𝑴𝑡,𝑗(𝑞𝑗) = ∫ 𝜌𝐴𝑺𝑗
𝑇𝐿𝑗

0
𝑺𝐽 denotes its mass matrix, which is a function of 𝒒𝑗. 

3.1.3. The arbitrarily flexible rod's potential energy 

In this paper, the 4-RRR parallel robot always moves in the horizontal plane, and the gravitational 

potential energy is constant; thus, we can nullify the latter. This implies that we only need to calculate 

the mechanism's elastic potential energy. Neglecting the rod's shear deformation and considering only 

the deformation and bending ones, we can obtain its potential energy as: 

𝑈𝑡,𝑗 =
1

2
∫ 𝐸𝐼 (

𝜕2𝑤𝑃𝑗(𝑥̄,𝑡)

𝜕𝑥̄2
)

𝐿𝑗
0

2

𝑑𝑥̄ +
1

2
∫ 𝐸𝐴 (

𝜕𝑣𝑃𝑗(𝑥̄,𝑡)

𝜕𝑥̄
)

𝐿𝑗
0

2

𝑑𝑥̄ =
1

2
𝒒𝑗
𝑇𝑲𝑡,𝑗𝒒𝑗 .                    (7) 

In the equation, E denotes the flexible rod's material's modulus of elasticity. I denotes the cross-

sectional's area moment of inertia, and 𝑲𝑡,𝑗 denotes its stiffness matrix. 

3.1.4. The flexible rod's kinetic equations 

We can express the Lagrangian formulation in the following form: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝒒̇𝑖
) −

𝜕𝐿

𝜕𝒒𝑖
= 𝝉𝑖  .                                           (8) 

Where L is the difference between the kinetic and potential energies, 𝐿 = 𝑇𝑡,𝑗 − 𝑈𝑡,𝑗, 𝒒𝑖 is the 

generalized coordinate, 𝒒̇𝑖 is the generalized velocity, and 𝝉𝑖 is the generalized force corresponding 

to the generalized coordinate. 

Upon collation, the flexible rod's kinetic equation can be obtained as: 
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𝑴𝑡,𝑗(𝒒𝑗)𝒒̈𝑗 + 𝑪𝑡,𝑗(𝒒𝑗 , 𝒒̇𝑗)𝒒̇𝑗 +𝑲𝑡,𝑗𝒒𝑗 = 𝑭𝑡,𝑗 .                      (9) 

In the equation,𝑴𝑡,𝑗(𝒒𝑗)  and 𝑲𝑡,𝑗  denote the flexible rod's mass and stiffness matrices, 

respectively.𝑭𝑡,𝑗  denotes its generalized external moment column matrix.𝑪𝑡,𝑗(𝒒𝑗, 𝒒̇𝑗)  denotes its 

centrifugal Force/Coriolis force matrix with the following expressions: 

𝑪𝑡,𝑗(𝒒𝑗 , 𝒒̇𝑗) =
𝜕𝑴𝑡,𝑗(𝒒𝑗)

𝜕𝒒𝑗
𝑇 (𝒒̇𝑗⊗𝑰) −

1

2
(𝑰⊗ 𝒒̇𝑗)

𝑇 𝜕𝑴𝑡,𝑗(𝒒𝑗)

𝜕𝒒𝑗
 .                         (10) 

where I denotes the unit matrix and ⨂ the Kronecker Product symbol. 

3.2. The flexible rod’s kinetic equations in the system’s generalized coordinate form 

For this paper's system, we can express the near-frame end joint coordinates 𝒓𝐵𝑖 of the driven 

rod 𝐵𝑖𝐶𝑖 of the arbitrary branch chain i in terms of the drive rod's angle of rotation and deformation 

modal coordinates,𝐴𝑖𝐵𝑖. Therefore, we chose all the rods' angles of rotation and modal coordinates as 

the generalized coordinates. Since the end effector is a rigid body, its center point coordinate, 𝒓𝑃, and 

its rotation angle, 𝜑1, are chosen as its generalized coordinates. By grouping all flexible rods with the 

end effector, a total of eight flexible rods and one rigid operator are included. The whole system’s 

generalized coordinates are denoted as 𝒒𝑠 (non-independent coordinates) and are specified below： 

{
𝒒𝑠 ≜ [𝜙1 𝜙2 ⋯ 𝜙8 𝒒𝑓1

𝑇 𝒒𝑓2
𝑇 ⋯ 𝒒𝑓8

𝑇 𝑥𝑃 𝑦𝑃 𝜑1]
𝑇
∈ ℝ(11+8(𝑛𝑣+𝑛𝑤))×1

𝒒̇𝑠 ≜ [𝜙̇1 𝜙̇2 ⋯ 𝜙̇8 𝒒̇𝑓1
𝑇 𝒒̇𝑓2

𝑇 ⋯ 𝒒̇𝑓8
𝑇 𝑥̇𝑃 𝑦̇𝑃 𝜑̇1]

𝑇
∈ ℝ(11+8(𝑛𝑣+𝑛𝑤))×1

.              (11) 

To represent the flexible bar's generalized coordinates 𝒒𝑗 in the system's generalized coordinates, 

it is necessary to express each quantity in 𝒒𝑗 as 𝒒𝑠. 

The arbitrary flexible rod’s angular coordinates of rotation, 𝜙𝑗 can be expressed as: 

𝜙𝑗 = 𝑱𝜙𝑗𝒒
𝑠 .                                 (12) 

In the equation, 𝑱𝜙𝑗  denotes the transfer matrix between the flexible rod's angular coordinates of 

rotation and the system's generalized coordinates, which is a Boolean matrix; i.e.: its elements are 

either 0 or 1. We specify it as: 

𝑱𝜙𝑗 = [𝟎1×(𝑗−1) 11×1 𝟎1×(8−𝑗) 𝟎1×(8(𝑛𝑣+𝑛𝑤)+3)] .       (13) 

Similarly, we can express the arbitrary flexible rod's array of modal coordinates, 𝒒𝑓𝑗 , as: 

𝒒𝑓𝑗 = 𝑱𝑞𝑓𝑗
𝒒𝑠 .                                 (14) 

In the equation, 𝑱𝑞𝑓𝑗
 denotes the transfer matrix between the array of the arbitrary flexible rod's 

modal coordinates and the system's generalized coordinates. It is also a Boolean matrix specified as: 

𝑱𝑞𝑓𝑗
= [𝟎(𝑛𝑣+𝑛𝑤)×8 𝟎(𝑛𝑣+𝑛𝑤)×(𝑗−1)(𝑛𝑣+𝑛𝑤) 𝑰(𝑛𝑣+𝑛𝑤)×(𝑛𝑣+𝑛𝑤) 𝟎(𝑛𝑣+𝑛𝑤)×((8−𝑗)(𝑛𝑣+𝑛𝑤)+3)] .      (15) 
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Due to the mechanism's configuration, we cannot express the flexible rod's near-frame end joint 

coordinates, 𝒓𝑂𝑗, as a general formula. Thus, it is necessary to divide each rod's near-frame end joint 

coordinates into two categories expressed as a function of the system's generalized coordinates, 𝒒𝑠, 
respectively： 

( ) ( )
4 4

4

4 4 4

( 1,2,3,4)

( 5,6,7,8)
0

j j j

j j j

T

O A A

j

O O j j j f

x y                                                       j

L
L          j

− −

−

− − −

  = =
 

   
 = + + =  
   

r

r r R ψ q

 .              (16) 

Taking each of these two equations first order derivative with respect to time t, we can obtain： 

{

𝒓̇𝑂𝑗 = 𝑱𝑟𝑂𝑗
𝒒̇𝑠                                                                                                            (𝑗 = 1,2,3,4)

𝒓̇𝑂𝑗 = 𝜙̇𝑗−4
𝜕𝑹(𝜙𝑗−4)

𝜕𝜙𝑗−4
([
𝐿𝑗−4
0
] + 𝝍𝑗−4(𝐿𝑗−4)𝒒𝑓𝑗−4) + 𝑹(𝜙𝑗−4)𝝍𝑗−4(𝐿𝑗−4)𝒒̇𝑓𝑗−4 = 𝑱𝑟𝑂𝑗

𝒒̇𝑠     (𝑗 = 5,6,7,8)
 .  (17) 

In the equation， 

{
 
 

 
 𝑱𝑟𝑂𝑗

= 𝟎2×(11+8(𝑛𝑣+𝑛𝑤))                                                                                 (𝑗 = 1,2,3,4)

𝑱𝑟𝑂𝑗
= [𝟎2×(𝑗−5)

𝜕𝑹(𝜙𝑗−4)

𝜕𝜙𝑗−4
([
𝐿𝑗−4
0
] +𝝍𝑗−4(𝐿𝑗−4)𝒒𝑓𝑗−4) 𝟎2×(12−𝑗)

𝟎2×(𝑗−5)(𝑛𝑣+𝑛𝑤) 𝑹(𝜙𝑗−4)𝝍𝑗−4(𝐿𝑗−4) 𝟎2×(12−𝑗)(𝑛𝑣+𝑛𝑤)+3)]
              (𝑗 = 5,6,7,8)

. 

According to equations (12), (14), and (17), we can express the rod's generalized coordinate 

column matrix's first-order derivative, 𝒒̇𝑗, in terms of the system's generalized coordinates' first-order 

derivative, 𝒒̇𝑠, as: 

𝒒̇𝑗 = [

𝑱𝑟𝑂𝑗
𝑱𝜙𝑗
𝑱𝑞𝑓𝑗

] 𝒒̇𝑠 = 𝑱𝑗𝒒̇
𝑠 .                                        (18) 

Inputting (18) into (9), we can express it in the form of the system's generalized coordinates as 

follows: 

𝑴𝑡,𝑗(𝒒𝑗
𝑠)(𝑱𝑗𝒒̈

𝑠 + 𝑱̇𝑗𝒒̇
𝑠) + 𝑪𝑡,𝑗(𝒒𝑗

𝑠, 𝒒̇𝑗
𝑠)𝑱𝑗𝒒̇

𝑠 +𝑲𝑡,𝑗𝑫𝑗𝒒
𝑠 = 𝑭𝑡,𝑗 ,             (19) 

where 𝑫𝑗 is a Boolean matrix specified as: 

𝑫𝒋 = [

𝟎𝟐×(𝟏𝟏+𝟖(𝒏𝒗+𝒏𝒘))

𝟎𝟏×(𝟏𝟏+𝟖(𝒏𝒗+𝒏𝒘))
𝟎(𝒏𝒗+𝒏𝒘)×𝟖 𝟎(𝒏𝒗+𝒏𝒘)×(𝒋−𝟏)(𝒏𝒗+𝒏𝒘) 𝑰(𝒏𝒗+𝒏𝒘)×(𝒏𝒗+𝒏𝒘) 𝟎(𝒏𝒗+𝒏𝒘)×(𝟑+(𝟖−𝒋)(𝒏𝒗+𝒏𝒘))

]  . 

To organize equation (19) symmetrically, we multiply both ends by 𝑱𝑗
𝑇, leading to: 

𝑴𝒕,𝒋
𝒔 (𝒒𝒋

𝒔)𝒒̈𝒔 + 𝑪𝒕,𝒋
𝒔 (𝒒𝒋

𝒔, 𝒒̇𝒋
𝒔)𝒒̇𝒔 +𝑲𝒕.𝒋

𝒔 𝒒𝒔 = 𝑭𝒕,𝒋
𝒔 ,                       (20) 

In the equation, 

𝑴𝒕,𝒋
𝒔 (𝒒𝒋

𝒔) = 𝑱𝒋
𝑻𝑴𝒕,𝒋(𝒒𝒋

𝒔)𝑱𝒋 , 

𝑪𝒕,𝒋
𝒔 (𝒒𝒋

𝒔, 𝒒̇𝒋
𝒔) = 𝑱𝒋

𝑻(𝑴𝒕,𝒋(𝒒𝒋
𝒔)𝑱̇𝒋 + 𝑪𝒕,𝒋(𝒒𝒋

𝒔, 𝒒̇𝒋
𝒔)𝑱𝒋) , 

𝑲𝒕,𝒋
𝒔 = 𝑱𝒋

𝑻𝑲𝒕,𝒋𝑫𝒋 , 
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𝑭𝒕,𝒋
𝒔 = 𝑱𝒋

𝑻𝑭𝒕,𝒋 , 

where 𝑴𝑡,𝑗
𝑠 (𝒒𝑗

𝑠), 𝑪𝑡,𝑗
𝑠 (𝒒𝑗

𝑠, 𝒒̇𝑗
𝑠), 𝑲𝑡,𝑗

𝑠 , and 𝑭𝑡,𝑗
𝑠  respectively denote the flexible rod's mass, centrifugal 

force/Coriolis force, stiffness, and generalized external moment column matrices expressed in the form 

of the system’s generalized coordinates. 

3.3. The end effector’s kinetic equations 

The end effector has a square structure and high stiffness. We can consider its motion to be purely 

rigid. We denoted its position and posture vector by 𝑿𝑃 = [𝑥𝑃 𝑦𝑃 𝜑1]𝑇 , its position vector as 

𝒓𝑃 = [𝑥𝑃 𝑦𝑃]𝑇 = 𝑺𝑃1𝑿𝑃 , and its rotation angle as 𝜑1 = 𝑺𝑃2𝑿𝑃 , where 𝑺𝑃1  and 𝑺𝑃2  are the 

transformation matrices expressed as: 𝑺𝑃1 = [
1 0 0
0 1 0

] and 𝑺𝑃2 = [0 0 1]. 

The end effector's kinetic energy, Tp , consists of both translational and rotational kinetic energies 

expressed as follows: 

𝑻𝑷 =
𝟏

𝟐
𝒎𝑷𝒓̇𝑷

𝑻 𝒓̇𝑷 +
𝟏

𝟐
𝑰𝑷𝝋̇𝟏𝝋̇𝟏 =

𝟏

𝟐
𝑿̇𝑷
𝑻𝑴𝑷𝑿̇𝑷.                        (21) 

Where 𝑚𝑃 denotes the end effector's mass, 𝑰𝑃 its rotational inertia, and 𝑴𝑃 its mass matrix, 

which is expressed as 𝑴𝑃 = 𝑚𝑃𝑺𝑃1
𝑇 𝑺𝑃1 + 𝐼𝑃𝑺𝑃2

𝑇 𝑺𝑃2. 

 

Figure 3. A schematic diagram of the 4-RRR parallel robot with the cut joint. 

As shown in Figure 3, we theoretically divided the end manipulator's four jointed sections and 

analyzed them separately. Since the end effector constantly is in a pure rigid motion, we can set both 

its gravitational and elastic potential energies as zero. Moreover, its kinetic energy can be plugged into 

the Lagrangian formulation to obtain its kinetic equation: 

𝑴𝑷𝑿𝑷 = 𝑭𝑷  .                                   (22) 

In the equation, 
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𝑭𝑃denotes the column matrix of the equivalent external force on the center of mass of the end-

effector and its external torque. 

To represent its kinetic equations as a system in a generalized coordinate form, it is necessary to 

map 𝑿̈𝑃 onto 𝒒̈𝑠. 𝑿̈𝑃can represented as： 

𝑿̈𝑷 = 𝑱𝑿𝑷𝒒̈
𝒔 .                              (23) 

In the equation， 

𝑱𝑋𝑃 = [

𝟎1×(8+8(𝑛𝑣+𝑛𝑤)) 1 0 0

𝟎1×(8+8(𝑛𝑣+𝑛𝑤)) 0 1 0

𝟎1×(8+8(𝑛𝑣+𝑛𝑤)) 0 0 1
] . 

Substituting (23) into equation (22) allows us to write it as: 

𝑴𝑷𝑱𝑿𝑷𝒒̈
𝒔 = 𝑭𝑷 .                           (24) 

Multiplying both sides of (24) by 𝑱𝑿𝑃
𝑇  gives the end effector system's dynamic equations in the 

generalized coordinate form: 

𝑴𝑃
𝑠 𝒒̈𝑠 = 𝑭𝑃

𝑠  .                                  (25) 

In the equation， 

𝑴𝑃
𝑠 = 𝑱𝑋𝑃

𝑇 𝑴𝑃𝑱𝑋𝑃  , 

𝑭𝑃
𝑆 = 𝑱𝑋𝑃

𝑇 𝑭𝑃 . 

Here, 𝑴𝑃
𝑆   and 𝑭𝑃

𝑆   denote the end effector's mass and generalized external moment column 

matrices in the form of the system's generalized coordinates, respectively. 

4. The system's kinetic equations 

4.1. The kinetic equations of open chain systems 

For this paper’s 4-RRR parallel robot system, we expressed all of the components' dynamic 

equations using the system's generalized coordinates. We can obtain the open chain system's dynamic 

equations by grouping all of the components: 

𝑴𝑠(𝒒𝑠)𝒒̈𝑠 + 𝑪𝑠(𝒒𝑠, 𝒒̇𝑠)𝒒̇𝑠 +𝑲𝑠𝒒𝑠 = 𝑭𝑠.                  (26) 

In the equation， 

𝑴𝒔(𝒒𝒔) = 𝑴𝑷
𝒔 +∑ 𝑴𝒕,𝒋

𝒔 (𝒒𝒋
𝒔)𝟖

𝒋=𝟏  ,

 𝑪𝒔(𝒒𝒔, 𝒒̇𝒔) = ∑ 𝑪𝒕,𝒋
𝒔 (𝒒𝒋

𝒔, 𝒒̇𝒋
𝒔)𝟖

𝒋=𝟏  , 

𝑲𝒔 = ∑ 𝑲𝒕,𝒋
𝒔𝟖

𝒋=𝟏  ,

 𝑭𝒔 = 𝑭𝑷
𝒔 +∑ 𝑭𝒕,𝒋

𝒔𝟖
𝒋=𝟏  .

 𝑴𝑠(𝒒𝑠), 𝑪𝑠(𝒒𝑠, 𝒒̇𝑠), 𝑲𝑠, and 𝑭𝑠 respectively denote the open chain system's mass, centrifugal 

force/Coriolis force, stiffness, and generalized external moment column matrices. 

4.2. The kinetic equations of closed chain systems 

The system dynamic equations obtained above are in the form of an open chain; i.e.: the four 

branch chains are hypothetically severed from the end table. To obtain the complete closed chain 
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system dynamic equations, we must add back the closed chain constraint to the equation. 

We can write four sets of closed chain constraint equations (i=1,2,3,4) based on the closed chain 

vector relationship: 

𝜱𝒊 ≜ [
𝒙𝑨𝒊
𝒚𝑨𝒊
] + 𝑹(𝝓𝒊) ([

𝑳𝒊
𝟎
] + 𝝍𝒊(𝑳𝒊)𝒒𝒇𝒊) + 𝑹(𝝓𝒊) ([

𝑳𝒊+𝟒
𝟎
] + 𝝍𝒊+𝟒(𝑳𝒊+𝟒)𝒒𝒇𝒊+𝟒) 

       − [
𝒙𝑷
𝒚𝑷
] − 𝑹(𝝋𝒊) [

𝑳𝑷𝑪𝒊
𝟎
]                                                                         (𝒊 = 𝟏, 𝟐, 𝟑, 𝟒)  .                     (27) 

In the equation, 𝜑𝑖 denotes the angle between the line from P to 𝐶𝑖 and the 𝑂 − 𝑥 axis; 𝐿𝑃𝐶𝑖  

denotes the length of the line from P to 𝐶𝑖. 

Set 𝜱1, 𝜱2, 𝜱3, and𝜱4in a matrix to obtain the closed chain constraint matrix equation for 

the system: 

𝜱𝒔(𝒒𝒔, 𝒕) = [𝜱𝟏
𝑻 𝜱𝟐

𝑻 𝜱𝟑
𝑻 𝜱𝟒

𝑻]𝑻 = 𝟎𝟖×𝟏 .                   (28) 

The above equation does not explicitly include the time t for which the first-order derivative with 

respect to time is obtained. 

𝜱𝒒
𝒔(𝒒𝒔, 𝒕)𝒒̇𝒔 = 𝟎𝟖×𝟏 .                                   (29) 

In the equation, 𝜱𝑞
𝑠 (𝒒𝑠, 𝑡) =

𝜕𝜱𝑠(𝒒𝑠,𝑡)

𝜕(𝒒𝑠)𝑇
  denotes the system's closed chain-constrained 

Jacobi matrix, which is a sparse matrix. 𝒒̇𝑠 denotes the derivative of the system's generalized 

coordinate array. 

We reintroduce the generalized binding forces, 𝜱𝑞
𝑠𝑇𝜆, at the joint cut-offs (joints C1, C2, C3, C4) 

into the open chain system's dynamic equations to obtain the complete closed chain system 

dynamic equations: 

{
𝑴𝒔(𝒒𝒔)𝒒̈𝒔 + 𝑪𝒔(𝒒𝒔, 𝒒̇𝒔)𝒒̇𝒔 +𝑲𝒔𝒒𝒔 +𝜱𝒒

𝒔𝑻𝝀 = 𝑭𝒔

𝜱𝒔(𝒒𝒔, 𝒕) = 𝟎𝟖×𝟏
 .                  (30) 

In the equation, 𝜆 ∈ ℝ8×1, is a Lagrangian multiplier indicating the generalized binding force's 

magnitude at the joint cut-off (joints C1, C2, C3, C4). 𝜱𝑞
𝑠𝑇 is the transpose of the system constraint 

Jacobi matrix, 𝜱𝑞
𝑠 (𝑞𝑠, 𝑡), whose column vectors indicate the generalized binding force's direction at 

the joint cut-off (joints C1, C2, C3, C4). 

4.3. The kinetic equations of closed chain systems written in the form of system independent 

generalized coordinates 

The system dynamic equations obtained above contain the system generalized coordinate array, 

𝒒𝑠 , with a total of (11 + 8(𝑛𝑣 + 𝑛𝑤)) coordinate variables that are mutually coupled and non-

independent. To solve the system's dynamic equations, we must obtain them in the form of the system's 

independent generalized coordinates. Considering that this paper's parallel robot is in the horizontal 

plane and contains two translational and one rotational DOFs, we can utilize the position and posture 

array 𝑿𝑃 = [𝑥𝑃 𝑦𝑃 𝜑1]𝑇 at point P as the rigid system's independent coordinates. The mechanism 

consists of 8 flexible rods. 

All the flexible rods' modal coordinates can be used as the flexible system's independent 

coordinates. Therefore, we can define the system's independent generalized coordinates as: 
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𝒒̄𝒔 ≜ [𝒒𝒇𝟏
𝑻 𝒒𝒇𝟐

𝑻 ⋯ 𝒒𝒇𝟖
𝑻 𝒙𝑷 𝒚𝑷 𝝋𝟏]

𝑻
 .                            (31) 

The first 3 terms in the equation are the end effector's rigid independent coordinates and the last 

8 terms are the independent modal coordinates of the 8 flexible rods. 

To represent the system's non-independent generalized coordinate array, 𝒒𝑠 , as a system-

independent one, 𝒒̄𝑠, we divide all terms in 𝒒𝑠 into 3 classes and rewrite them as: 

𝒒𝒔 ≜ [𝒒𝝓
𝑻 𝒒𝝓

𝑻 𝒒𝝓
𝑻 ]
𝑻

 .                             (32) 

In this equation, 𝒒𝜙 = [𝜙1 𝜙2 ⋯ 𝜙8]
𝑇 , 𝒒𝑓 = [𝒒𝑓1

𝑇 𝒒𝑓2
𝑇 ⋯ 𝒒𝑓8

𝑇 ]
𝑇
 , 𝒒𝑓 =

[𝒒𝑓1
𝑇 𝒒𝑓2

𝑇 ⋯ 𝒒𝑓8
𝑇 ]

𝑇
 , and 𝒒𝑃 = [𝑥𝑃 𝑦𝑃 𝜑1]𝑇  denote all the rods' angular array, modal 

coordinate array, and the end effector position and posture array, respectively. 

Following the above description, we can write the system-independent generalized coordinates 

as： 

𝒒̄𝒔 ≜ [𝒒𝒇
𝑻 𝒒𝑷

𝑻]
𝑻

 .                                    (33) 

Taking the first order derivative with respect to time for both ends of the system's closed chain 

constraint matrix equation (28) gives： 

𝜱̇𝒔(𝒒𝝓, 𝒒𝒇, 𝒒𝑷) = 𝑱𝝓𝒒̇𝝓 + 𝑱𝒇𝒒̇𝒇 + 𝑱𝑷𝒒̇𝑷 = 𝟎𝟖×𝟏 .                  (34) 

In the equation， 

𝑱𝝓 =
𝝏𝜱𝒔(𝒒𝝓,𝒒𝒇,𝒒𝑷)

𝝏𝒒𝝓
𝑻 ∈ 𝑹𝟖×𝟖 , 

𝑱𝝓 =
𝝏𝜱𝒔(𝒒𝝓,𝒒𝒇,𝒒𝒑)

𝝏𝒒𝝓
𝑻 ∈ 𝑹𝟖×𝟖 , 

𝑱𝒇 =
𝝏𝜱𝒔(𝒒𝝓,𝒒𝒇,𝒒𝒑)

𝝏𝒒𝒇
𝑻 ∈ 𝑹𝟖×𝟖(𝒏𝒗+𝒏𝒘) , 

𝑱𝑷 =
𝝏𝜱𝒔(𝒒𝝓,𝒒𝒇,𝒒𝑷)

𝝏𝒒𝑷
𝑻 ∈ 𝑹𝟖×𝟑 . 

Reforming equation (34) gives： 

𝒒̇𝝓 = [−𝑱𝝓
−𝟏𝑱𝒇 −𝑱𝝓

−𝟏𝑱𝑷] [
𝒒̇𝒇
𝒒̇𝑷
] .                             (35) 

Substituting the above equation into the first-order derivative 𝒒̇𝑠 ≜ [𝒒̇𝜙
𝑇 𝒒̇𝑓

𝑇 𝒒̇𝑃
𝑇]
𝑇
 of the 

system's non-independent generalized coordinate array, we get： 

𝒒̇𝒔 = 𝑮[
𝒒̇𝒇
𝒒̇𝑷
] = 𝑮𝒒̇̄𝒔 .                              (36) 

In the equation， 

𝑮 = [
−𝑱𝝓

−𝟏𝑱𝒇 −𝑱𝝓
−𝟏𝑱𝑷

𝑰(𝟖(𝒏𝒗+𝒏𝒘)+𝟑)×𝟖(𝒏𝒗+𝒏𝒘) 𝑰(𝟖(𝒏𝒗+𝒏𝒘)+𝟑)×𝟑
] .                          

At this point, the system's non-independent generalized coordinate array's first-order derivative 

𝒒̇𝑠  has been expressed by the first-order derivative 𝒒̇̄𝑠  of the system's independent generalized 

coordinate array. Plugging (36) in (29) gives: 
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𝜱𝒒
𝒔(𝒒𝒔, 𝒕)𝑮𝒒̇̄𝒔 ≡ 𝟎 .                            (37) 

Since 𝒒̇̄𝑠 is a system independent generalized coordinate, the following consistently holds for 

the arbitrary 𝒒̇̄𝑠 in the system workspace: 

𝜱𝒒
𝒔 ∗ 𝑮 ≡ 𝟎 ⇔ 𝑮𝑻 ∗ 𝜱𝒒

𝒔𝑻 ≡ 𝟎 .                         (38) 

Hereby, we can define G as the system's closed-chain constrained Jacobi's zero-space matrix. 

To eliminate the generalized constraint, 𝜱𝑞
𝑠𝑇𝜆, which is difficult for the closed-chain system's 

dynamic equations, we multiply 𝑮𝑇 with both sides of equation (30), resulting in the following: 

𝑮𝑻𝑴𝒔(𝒒𝒔)𝒒̈𝒔 + 𝑮𝑻𝑪𝒔(𝒒𝒔, 𝒒̇𝒔)𝒒̇𝒔 + 𝑮𝑻𝑲𝒔𝒒𝒔 = 𝑮𝑻𝑭𝒔 .                  (39) 

Finally, plugging (36) in (39) gives the closed chain system's dynamic equations in the 

independent generalized coordinate form: 

𝑴̄𝒔𝒒̈̄𝒔 + 𝑪̄𝒔𝒒̇̄𝒔 + 𝑲̄𝒔𝒒̄𝒔 = 𝑭̄𝒔 .                       (40) 

In the equation， 

𝑴̄𝑠 = 𝑮𝑇𝑴𝑠𝑮 , 

𝑪̄𝑠 = 𝑮𝑇𝑴𝑠𝑮̇ + 𝑮𝑇𝑪𝑠𝑮 , 

𝑲̄𝑆 = 𝑮𝑇𝑲𝑠𝑫𝑠 , 

𝑭̄𝑠 = 𝑮𝑇𝑭𝑠 , 

𝑫𝑠 = [
𝟎8×(8(𝑛𝑣+𝑛𝑤)+3)

𝑰(8(𝑛𝑣+𝑛𝑤)+3)×(8(𝑛𝑣+𝑛𝑤)+3)
] ∈ ℝ

(8(𝑛𝑣+𝑛𝑤)+11)×(8(𝑛𝑣+𝑛𝑤)+3) . 

5. The dynamic response's numerical simulation 

Based on the closed chain system's dynamics model in the form of system-independent 

generalized coordinates, we conducted a dynamics simulation for a 4-RRR parallel robot containing 

two parts when moving at high speed. One part is a large range of rigid motions while the other is a 

small range of flexible ones. Since the two influence each other, we utilized the ode23tb solver to solve 

the differential equations and simplify the model for efficiency. We took all flexible rods as the first 

order of modalities [25]. To compare the robot's dynamic performance under different drive torque 

assignments, we first proposed different optimization schemes for the distribution of the rigid body 

model's active joint drive torques. We then inputted them into the rigid-flexible coupled 4-RRR parallel 

robot. The positive kinematic solution was then obtained to determine the system's dynamic response. 

The 4-RRR parallel robot has 3 DOFs and 4 active joints. If a non-redundant drive scheme is used, 

we can select any 3 active joints as inputs, where the input torque solution is unique and deterministic. 

Otherwise, if a redundant drive scheme is used, then there is an infinite number of possibilities for the 

allocation of input moments. The latter can be broadly divided into three categories: the first is the 

minimum input moment, i.e.: the minimum Euclidean norm 𝐹𝑡𝑜𝑟𝑞𝑢𝑒 = min√∑ 𝜏𝑖
24

𝑖=1   for the four 

active moments. The second is the minimum input energy, i.e.: the minimum Euclidean norm 

𝐹𝑝𝑜𝑤𝑒𝑟 = min√∑ (𝜏𝜙𝑖)2
4
𝑖=1  for the four active joints' input power. The third is the minimum power of 

some of the robot's internal forces. However, since the dynamics model's Lagrangian derivation only 

involves energy and not internal forces, we will not discuss this optimization scheme. 

In this simulation, the planned path was the following: the end effector's center point P moves 

from point (0, 0) to the point (1.2mm, -17.5mm) in a spiral trajectory within 0-0.4s, while 𝜑1 =
2

3
𝜋 
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remains constant. We chose the eccentric thread because the spiral trajectory has a gradually increasing 

velocity and acceleration on the one hand, which facilitates dynamic analysis. On the other hand, it 

permits us to study the system's response under such an eccentric trajectory as an eccentric thread. The 

trajectory, velocity, and acceleration of point P are shown in figures 4, 5, and 6, respectively. 

 

Figure 4. The planning trajectory at point P. 

 

Figure 5. Planned velocity at point P. 

 

Figure 6. Planned acceleration at point P. 

Table 1 demonstrates the parameters of a set of 4-RRR parallel robots. We assumed that all bars 

and end manipulators were of uniformly-textured aluminum and that all joints were lightweight ideal 
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bearings; i.e.: they are massless and frictionless, etc. 

Table 1. Parameters of the 4-RRR parallel robot (in mm). 

l1 l2 l3 

sectional 

area 

A(mm2) 

thickness 

of rod 

h(mm) 

𝜌 

(g/mm3) 

E 

(GPa) 

𝑚𝑃 

（g） 

 

100 100 35 16 2.5 0.0027 70 20  

 

Based on the previously-presented planning trajectory, we discuss the dynamic performance 

under 3 types of drive force distributions, namely mode a: a non-redundant drive (drive joints A1, A2, 

A3), mode b: a redundant drive with a minimum input moment, and mode c: a redundant drive with 

minimum input energy. According to the inverse rigid body dynamics model, their drive moments are 

calculated as shown in Figure 7. 

 

 

(a) Non-redundant drives.                (b) Minimum input torque redundant drive.  

  

(c) Minimum input power redundant drive. 

Figure 7. The drive torque for different drive modes. 

In MATLAB, the drive moments of these drive modes were used as prior inputs for the numerical 

calculations of the system's dynamic response. 

javascript:;
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(a) Elastic deformation at the end of rod 1.    (b) Elastic deformation at the end of rod 2. 

 

(b) Elastic deformation at the end of rod 3.     (d) Elastic deformation at the end of rod 4. 

 

(e) Elastic deformation at the end of rod 5.    (f) Elastic deformation at the end of rod 6. 

 

(g) Elastic deformation at end of rod 7.    (h) Elastic deformation at end of rod 8. 

Figure 8. The rod end's elastic deformation for different drive modes. 
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Figure 8 shows the end elastic deformation of rods 1–8 in the redundant drive modes. Since the 

axial deformation is much smaller than the transverse one, we only calculated the prior one here. To 

improve the calculation efficiency, the first-order mode was intercepted for all flexible rods for 

calculation. (1) For the active rod, the elastic deformation of the flexible rod's end in the non-redundant 

driving mode had the largest vibration amplitude in each small range, which is about 2–3 times bigger 

compared to that of the other two redundant driving modes. (2) For the active rod, the flexible rod's 

end's elastic deformation was in the non-redundant drive mode. The vibration amplitude in the period 

between (0–0.35s) was slightly larger than that of the other two redundant drive modes; the vibration 

amplitude in the period between (0.35–0.4s) was much larger than that of the other two redundant 

drive modes. (3) For all three drive modes, the driven rod's deformation was much smaller than that of 

the drive rod. (4) For the middle 4 driven rods, the deformation magnitudes under the 3 drive force 

modes did not greatly differ. (5) The redundant drive with the smallest input torque had a slightly 

smaller maximum deformation for rods 2, 3, and 4 compared to the redundant drive with the smallest 

input energy. (6) Since the robot's 1–4 rod was the active rod, its elastic deformation was affected by 

the driving force, demonstrating a trend fluctuation; the robot's 5–8 rod was the driven rod and its 

elastic deformation fluctuation was irregular. The deformation of the remaining flexible rods was 

equivalent. Overall, the deformation of the flexible rods in the two redundant drive modes was much 

smaller than that in the non-redundant drive mode. Compared to the two redundant drive modes, the 

redundant drive with the smallest input torque had a slightly smaller deformation of flexible rods 

compared to the redundant drive with the smallest input energy. 

Figure 9 shows point P's actual trajectory in different drive modes. Figure 10 shows its 

displacement in each direction, the desired displacement error, the end table's angle of rotation, and 

the desired angle error in different drive modes. The redundant drive with the lowest input torque 

and the one with the lowest energy input have relatively small deviations compared to the non-

redundant drive. 

 

Figure 9. Point P's motion trajectory for different drive modes. 
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(a) x-direction displacement error at Point P.    (b) y-direction displacement error at point P. 

 

(c) The end effector's cornering error. 

Figure 10. The displacement error in each direction at point P for different drive modes. 

Figure 11 shows the error between the actual motion and desired angles of rods 1–8 in different 

drive modes. We can observe that the deformation of each flexible rod increases sharply from 0.2s in 

all three drive modes. Additionally, the degree of deformation is greater in the non-redundant drive 

mode compared to that in the remaining two redundant modes. 

Figure 12 shows the actual kinematic angular velocities of rods 1–8 in different drive modes 

compared to the desired angular velocities. It is shown that for the active rod, the flexible rod in the 

non-redundant drive mode's angular velocity has the largest vibration amplitude in all small ranges, 

which is approximately 2–3 times greater than that of the other two redundant drive modes. Moreover, 

for the driven rod, the flexible rod in the non-redundant drive mode's angular velocities in some periods 

are slightly greater than the other two modes (for example, rod 5 at 0.35–0.4s). 

Figure 13 shows the actual kinematic angular acceleration of rods 1–8 in different drive modes 

compared to the desired angular acceleration. The amplitude of vibration is slightly greater in some 

periods than in the other two modes (for example, rod 5 at 0.35–0.4s). In general, the flexible rod's 

angular acceleration vibration tendency is identical to that of the angular velocity, albeit at a higher 

frequency and with a greater amplitude. 
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(a) Rod 1's angular error.                 (b) Rod 2's angular error. 

 

(c) Rod 3's angular error.                 (d) Rod 4's angular error. 

 

(e) Rod 5's angular error.                 (f) Rod 6's angular error. 

 

(g) Rod 7's cornering error.               (h) Rod 8's cornering error. 

Figure 11. The angular error of 1-8 rods in different drive modes. 
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(a) Rod 1's angular velocity.                 (b) Rod 2's angular velocity. 

 

(c) Rod 3's angular velocity.                (d) Rod 4's angular velocity. 

 

(e) Rod 5's angular velocity.                 (f) Rod 6's angular velocity. 

 

(g) Rod 7's angular velocity.                 (h) Rod 8's angular velocity. 

Figure 12. The angular velocity of rods 1-8 in different drive modes. 
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(a) Rod 1's angular acceleration.           (b) Rod 2's angular acceleration. 

 

(c) Rod 3's angular acceleration.            (d) Rod 4's angular acceleration. 

 

(e) Rod 5's angular acceleration.            (f) Rod 6's angular acceleration. 

 

(g) Rod 7's angular acceleration.          (h) Rod 8's angular acceleration. 

Figure 13. The angular acceleration of rods 1–8 in different drive modes. 
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6. Multi-Body software simulation validation 

We based the simulation validation on a parametric model of a rigid-flexible coupled system for 

a 4-RRR parallel robot built on Adams. It was modeled using an approach similar to finite segment 

discretization, in which we discretized the eight rods by dividing each one into nine rigid body 

subsections, each linked by a massless torsion spring. As shown in Figure 14, the end-effector platform 

was treated as a rigid body, i.e.: it was not divided [18].  

 

Figure 14. The adams simulation. 

 

(a) x-directional displacement.           (b) y-directional displacement. 

Figure 15. The P-Point displacement comparison. 

We conducted the simulation in Adams using the numerical calculation's same trajectory and the 

simulation duration set to 0.4s. Since the workspace is in the horizontal plane, we set the gravity to 0. 

Without loss of generality, the numerical calculation contained three torque distribution modes. 

The simulation was conducted with the lowest torque redundant drive. Figure 15 shows the trajectory 

displacement curve at the end console's center point P, which was obtained from the numerical 

calculation and the Adams simulation. Figure 16 shows the velocity profile at P. We can observe that 

the point's displacements and velocities obtained using the two methods are in good correspondence 

and have only some minor deviations. Figure 17 shows each rod's angular velocity profile obtained 

from the numerical calculation and the Adams simulation (taking rods 1–4 as an example). As observed, 

the angular velocities of each rod obtained by the two methods are in general agreement; their 
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deviations are bound by 15%. These differences are due to the different means of discretization used 

by the two methods; the numerical calculation uses the assumed mode method, while the Adams 

simulation uses the finite section method, resulting in a slight variation in the number of cells. 

 

(a) The x-direction velocity.             (b) The y-direction velocity. 

Figure 16. The P-Point speed comparison. 

 

(a) Rod 1's angular velocity.            (b) Rod 2's angular velocity.  

 

(c) Rod 1's angular velocity.           (d) Rod 2's angular velocity.  

Figure 17. Rods 1–4 angular velocity comparison. 

7. Conclusion 

In this paper, we designed and fabricated a planar 4-RRR parallel robot by combining the assumed 
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mode and floating coordinate frame methods to discretize an arbitrary, flexible rod j. The modal 

truncation method was used to intercept the rod's first-order modal state. Then, assembling the two 

flexible rods of an arbitrary branch chain i, one can further obtain the dynamics model of a single chain. 

Additionally, we introduced the closed chain constraint to obtain its complete dynamic equations. 

We utilized the zero-space method that eliminates the generalized binding terms in the equations. There 

are seven functions in MATLAB that could be used to solve for the numerical solution of differential 

equations: ode45, ode23, ode113, ode15s, ode23s, ode23t, and ode23tb. Among them, ode23tb is 

realized by TR -- BDF2 because it is based on the implicit Runge -- Kutta formula, which is more 

adequate for solving rigid equations. Accordingly, we used the ode23td solver to calculate the 

established model and obtain the dynamic response. After that, we used the Adams software to verify 

the results. From that, the following could be concluded： 

(1) The mechanism has planar rotational degrees of freedom, allowing it to move in the desired 

position and posture without being limited to a translational movement like the conventional planar 

parallel robots. This allows for more complex movements. 

(2) We proposed an effective modular rigid-flexible coupling modeling method based on the 

assumed mode one. We simplified it to enhance the accuracy and computational efficiency, which is 

of value for models with more flexible components and larger computational volumes. 

(3) Different torque distribution schemes for the drive joints were used as feedforward inputs to 

obtain different dynamic performances. The results show the following: firstly, the redundant drive 

mode can suppress the rod's elastic deformation to a certain extent and effectively improve the robot 

end-effector's trajectory tracking accuracy, which is an important guideline for the practical control of 

future robots. Secondly, the minimum input torque redundant drive has slightly less flexible rod 

deformation compared to the minimum input energy redundant one. However, they are almost equivalent. 

Furthermore, the dynamic model of the fully flexible link system proposed in this study is 

expected to aid in the optimization of lightweight design and dynamic performance of parallel robots, 

which are expected to be used in special processing scenarios and packaging industries. 

Work outlook 

(1) We did not consider the effect of joint gaps in this paper's modeling, which affects the actual 

model’s accuracy. Thus, we need to consider this in our future research. 

(2) In our future work, we should further investigate the expansion of the concept of parallel 

robots and their theoretical analysis method’s applications to spatially parallel mechanisms. 
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