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Abstract: In this paper, the practical discontinuous control algorithm is used in the tracking controller
design for a permanent magnet synchronous motor (PMSM). Although the theory of discontinuous
control has been studied intensely, it is seldom applied to the actual systems, which encourages us to
spread the discontinuous control algorithm to motor control. Due to the constraints of physical condi-
tions, the input of the system is limited. Hence, we design the practical discontinuous control algorithm
for PMSM with input saturation. To achieve the tracking control of PMSM, we define the error vari-
ables of the tracking control, and the sliding mode control method is introduced to complete the design
of the discontinuous controller. Based on the Lyapunov stability theory, the error variables are guar-
anteed to converge to zero asymptotically, and the tracking control of the system is realized. Finally,
the validity of the proposed control method is verified by a simulation example and the experimental
platform.
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1. Introduction

In recent years, the control problem of time-varying systems has been widely considered [1–4], and
most control protocols of time-varying systems are based on continuous control methods [5–9], which
require continuous control input. However, discontinuous control [10, 11] is more effective in some
specific cases, and it has attracted more and more attention from researchers. Although the theoretical
research on discontinuous control strategy is abundant, few researchers have applied it to practical
systems, which motivates us to use this method in actual scenarios. In addition, the input of the actual
system is limited, and the control input based on the traditional approach is likely to exceed the limit
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and affect the control performance of the controller. Thus, input saturation can-not be ignored in the
process of controller design. According to the above analysis, we study the practical discontinuous
control of PMSM and complete the design of an intermittent controller by the sliding mode control
method.

Discontinuous control strategy includes impulsive control [12, 13], intermittent control, and sam-
pling control. According to the division of the control cycle, intermittent control is divided into peri-
odic and non-periodic intermittent control. In [14, 15], a novel control strategy consisting of an event-
triggering mechanism and impulsive control showed its effectiveness in stabilizing nonlinear systems
and can effectively reduce the cost of signal transmission. To solve the leader-follower synchroniza-
tion problem in complex networks [16, 17], a batch control scheme based on being dual event-driven
was proposed. In [18], the observer-based state feedback non-periodic intermittent control for uncer-
tain systems with structural uncertainty was studied. A class of finite-time synchronous control of
reaction-diffusion nervous systems coupled with small regions with interaction diagrams on spatial
boundaries was researched in [19]. In [20], the intermittent control strategy for synchronous analysis
of time-varying complex dynamic networks was studied, and some numerical simulations verified the
validity of the results. Although discontinuous control has received much attention from researchers,
most of the above research remains at the stage of theoretical research. To improve the practical ability
of the algorithm, we carry out the research of applying the discontinuous control algorithm to motor
control.

For a real system, the limit of input saturation can not be ignored. Input saturation [21, 22] often
seriously affects the performance of the system and even leads to system instability. In [23], the global
stabilization problem of discrete-time linear systems with input saturation and delay was studied, and
three examples demonstrated the effectiveness of the proposed method. In [24], the researchers studied
the consistency of a class of linear multi-agent systems with input saturation under a self-triggering
mechanism. The adaptive control strategy of the flexible manipulator with a double pendulum structure
was analyzed, and the effectiveness of the saturation controller in tracking control was verified in [25].
The tracking control problem for nonlinear stochastic systems with time-varying state constraints and
input saturation was studied in [26]. In [27], adaptive fuzzy tracking control for high-order nonlinear
time-delay systems with full state constraints and input saturation was studied. Considering that the
input is bounded in the real system, the input saturation auxiliary system is used to compensate for the
influence of input saturation on the control performance, which makes our algorithm more valuable in
the application.

Currently, many control methods are applied to controller design, such as the backstepping method
[28, 29], model predictive control and sliding mode control [30, 31]. As one of the common control
methods, sliding mode control has a wide range of application scenarios [32, 33]. In [34], the sliding
mode control of uncertain linear systems with impulsive effects was studied, and the stability of the
system was analyzed by piecewise discontinuous Lyapunov function. A robust fault-tolerant compen-
sation control method based on the integral sliding mode method was proposed for uncertain linear
systems on networks [35]. In [36], the researchers considered unknown asymmetric input saturation
and control singularity and designed a fuzzy terminal sliding mode controller based on the disturbance
observer. In [37], a new sliding mode switching approximation law was proposed to improve sliding
mode control performance for a class of high-order self-organizing systems. The problem of event-
triggered fuzzy sliding mode control for networked control systems with semi-Markov process adjust-
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ment was studied in [38]. To design a practical discontinuous controller with input saturation, sliding
mode control is used in the design of the control algorithm to achieve the desired control objective.

Through the above analysis, we consider the practical discontinuous tracking control problem of
PMSM under input saturation and use the sliding mode control method to complete the design of the
controller. The main contributions of this paper are described as follows:

1) To improve the applicability of the discontinuous control method, we apply the discontinuous con-
trol method to the tracking control of PMSM and carry out the experimental verification. However,
most of the previous discontinuous control is at the level of theoretical research and rarely applied
to the actual system.

2) Due to physical constraints, we consider the input saturation in the actual scenario. By introducing
the input saturation auxiliary system, we reduce the influence of input saturation on the system and
calculate the theoretical control input of the system.

3) To realize the discontinuous control of PMSM, sliding mode control is introduced into the design
of the discontinuous controller, which ensures the stability and robustness of the system under the
input of discontinuous control.

The remaining part of the paper is described as follows. Some essential knowledge and a necessary
lemma are introduced in Section 2. We use the sliding mode control method to complete the design of
the discontinuous controller and provide the stability analysis in Section 3. We resort to the simulation
results to verify the availability of the controller design in Section 4. In Section 5, the experimental
platform demonstrates the effectiveness of the practical discontinuous control algorithm. In Section 6,
we summarize the whole paper.

2. Preliminaries and problem formulation

This section introduces the definitions of intermittent control, systems model, and input saturation,
which will be used in the rest of the work.

2.1. Discontinuous control

Intermittent control is one of the strategies of discontinuous control. The division of the control
cycle can be divided into periodic intermittent control and aperiodic intermittent control. In this paper,
we adopt the periodic intermittent control strategy. The main design idea is to divide the whole control
cycle into equal intervals T of the control cycle. Each control period is divided into the controlled
period and the uncontrolled period. The two continuous control periods, n and n + 1, are described in
Figure 1, and n = 0, 1, 2, · · · .

When t ∈ [nT, nT + η], at nT moment, the system receives instructions from the controller, and at
nT + η moment, the control instruction ends. Thus, [nT, nT + η] is the controlled period of the system.
During the period of [nT +η, (n+1)T ], the system does not receive any instructions from the controller.
Thus, [nT + η, (n + 1)T ] is the uncontrolled period of the system. In addition, in periodic intermittent
control, the control amplitude η = nT + η − nT > 0 is a constant value.

Lemma 1. (Young’s inequality) For arbitrary positive real numbers x and y, the following inequality
holds.
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Figure 1. Graphical explanation of intermittent control strategy.

xy ≤
xa

a
+

yb

b
(2.1)

where a > 0 and b > 0, with (a − 1)(b − 1) = 1. If and only if xa = yb, the equality sign holds.

Definition 1. Considering the impact of input saturation, the actual control input u
(
iq

)
is the nonlinear

function of ideal control input iq. The u
(
iq

)
is defined as follows

u
(
iq

)
= sat

(
iq

)
=

 iq |iq| ≤ iM

iM · sgn
(
iq

)
|iq| > iM

(2.2)

where iM is the boundary of control input saturation.

2.2. The dynamic model of the PMSM and system descriptions

The dynamic model of a 3-phase PMSM can be described as [39] J dω
dt = Te − Tl − fω

Te =
3
2 piq

[
id

(
Ld − Lq

)
+ Φ
] (2.3)

where J is the moment of inertia, ω is the angular velocity , and Te and Tl are the electromagnetic
torque and load torque, respectively. f is the damping coefficient. p represents the number of pairs of
the permanent magnet rotor poles. Ld and Lq are the inductance of the d-q axis, and id and iq represent
the d-q axis parts of stator current. Φ is the permanent magnet flux linkage.

Normally, the space vector pulse-width modulation control method of id = 0 is used for the 3-phase
PMSM with the surface-mounted permanent magnet rotor. Hence, we can the following formula [40].

Ld = Lq = Ls (2.4)
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where Ls is the inductance of the stator.
According to Definition 1, (2.3) and (2.4), the dynamic model under input saturation can be de-

scribed as the following: 
θ̇1 = ω1

ω̇1 =
3
2

pΦ
J

u
(
iq

)
−

Tl

J
−

f
J
ω1

(2.5)

where θ1 and ω1 are angle and angular velocity, respectively.
Let g = 3

2
pΦ
J , d = −Tl/J, c = − f /J, and (2.5) can be redescribed as

θ̇1 = ω1

ω̇1 = gu
(
iq

)
+ d + cω1

y1 = θ1

(2.6)

where iq and y1 are the ideal control input and output, respectively.
The dynamics of the reference signal are described as

θ̇2 = ω2

ω̇2 = d + cω2

y2 = θ2

(2.7)

where θ2 and ω2 are angle and angular velocity of the reference signal.
Control objective: In this paper, the control objective is to design the discontinuous controller with

the sliding mode control method under the constraint of input saturation, such that the error variables
ε1 and ε2 converge to zero asymptotically.

3. Discontinuous controller design and stability analysis

3.1. Discontinuous controller design

In this section, we design the discontinuous controller through sliding mode control to realize the
tracking control to reference signal.

The structure diagram of the practical discontinuous controller is shown in Figure 2. The controller
is mainly composed of the discontinuous controller, input saturation auxiliary system, input saturation
actuator and PMSM. The dynamic control model of PMSM can be expressed by Eq (2.6), and the
constraint effect of the input saturation actuator on the control input signal can be expressed by Eq
(2.2). The design of other parts will be given in detail below.

For any n ∈ Z+ ∪ {0}, t ∈ (nT, (n + 1)T ), the error variables are described as follows : ε1 = θ1 − θ2 −
∫ t

0
ξdt +

∫ nT

0
ξdt,

ε2 = ω1 − ω2 − ξ,
(3.1)

where ε1 and ε2 are error variables. ξ is the input saturation auxiliary system, which will be designed
in subsequent processes.

We define
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Figure 2. Block diagram of discontinuous controller.

θ = θ1 − θ2, (3.2)

ω = ω1 − ω2, (3.3)

ε̄ = ε2 + kε1. (3.4)

The time derivative of (3.1) is written as{
ε̇1 = ω1 − ω2 − ξ = ε2,

ε̇2 = ω̇1 − ω̇2 − ξ̇ = ω̇ − ξ̇.
(3.5)

Case 1: For any n ∈ Z+ ∪ {0}, t ∈ [nT, nT + η), we construct the following Lyapunov function

V =
1
2

(
ε2

1 + ε̄
2
)

(3.6)

The time derivative of (3.6) is written as

V̇ = ε1ε̇1 + ε̄ ˙̄ε
= ε1ε2 + ε̄ (ε̇2 + kε̇1) .

(3.7)

Substituting (3.5) into (3.7), we have

V̇ = ε1 (ε̄ − kε1) + ε̄
(
ω̇ − ξ̇ + k (ω1 − ω2 − ξ)

)
= −kε2

1 + ε̄
(
ω̇ − ξ̇ + k(ω − ξ) + ε1

) (3.8)

The input saturation auxiliary system ξ and ideal control input iq are designed as follows:

ξ̇ = cξ + gu
(
iq

)
− giq, ξ(nT ) = 0 (3.9)

iq = −
1
g

[(
(2k + c)ε2 +

(
k2 + 1

)
ε1

)]
(3.10)
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Substituting (3.9) into (3.8), we can obtain

V̇ = −kε2
1 + ε̄

(
ω̇ − ξ̇ + k(ω − ξ) + ε1

)
= −kε2

1 + ε̄
(
ω̇ − cξ − gu

(
iq

)
+ giq + k(ω − ξ) + ε1

)
= −kε2

1 + ε̄
(
(k + c) · (ω − ξ) + giq + ε1

)
= −kε2

1 + ε̄
(
(k + c) · ε2 + giq + ε1

) (3.11)

Substituting (3.10) into (3.11), we have

V̇ = −k
(
ε2

1 + ε̄
2
)

= −2kV.
(3.12)

Case 2: For t ∈ [nT + η, (n + 1)T ) and there holds that

V̇ = ε1ε̇1 + ε̄ε̇

= ε1ε2 + ε̄ (ε̇2 + kε̇1)

= ε1 (ε̄ − kε1) + ε̄
(
ω̇ − ξ̇ + k (ω1 − ω2 − ξ)

)
= −kε2

1 + ε̄
(
ω̇ − ξ̇ + k(ω − ξ) + ε1

) (3.13)

The input saturation auxiliary system ξ and control input u are designed as follows

ξ̇ = cξ + gu
(
iq

)
− giq (3.14)

iq = 0. (3.15)

Substituting (3.14) and (3.15) into (3.13), we can obtain

V̇ = −kε2
1 + ε̄

(
ω̇ − cξ − gu

(
iq

)
+ giq + k(ω − ξ) + ε1

)
= −kε2

1 + ε̄ ((k + c) · (ω − ξ) + ε1)

= −kε2
1 + ε̄ ((k + c) · ε2 + ε1) .

(3.16)

Substituting (3.4) into (3.16), we can obtain

V̇ = −kε2
1 + (k + c)ε̄ε2 + ε̄ε1

= −kε2
1 + (k + c)ε̄2 − k(k + c)ε̄ε1 + ε̄ε1

= [1 − k(k + c)]ε̄ε1 − kε2
1 + (k + c)ε̄2.

(3.17)

According to Lemma 1, we have

[1 − k(k + c)]ε̄ε1 ≤ (|1 − k(k + c)|)|ε̄ε1|

≤
1
2

(|1 − (k + c)k|)(ε2
1 + ε̄

2).
(3.18)

Substituting (3.18) into (3.17), we can obtain
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V̇ ≤
1
2

(|1 − (k + c)k|)
(
ε2

1 + ε̄
2
)
− kε2

1 + (k + c)ε̄2

≤
1
2

[(|1 − (k + c)k|) + (k + c)]
(
ε2

1 + ε̄
2
)

≤ k0V

(3.19)

where k0 = |1 − (k + c)k| + (k + c), 2k + c > 0.

3.2. Stability analysis

Case 1: For any n ∈ Z+ ∪ {0}, t ∈ [nT, nT + η), we have

V̇ = −2kV. (3.20)

Then, we have

V(nT + η) = e−2kηV(nT ). (3.21)

Proof : Multiplying both sides by e2kt, (3.20) becomes

d
dt

(V(t)e2kt) = 0. (3.22)

Integrating it over [nT, nT + η], we have

V(nT + η) = e−2kηV(nT ). (3.23)

Case 2: For any n ∈ Z+ ∪ {0}, t ∈ [nT + η, (n + 1)T ), we have

V̇ ≤ k0V. (3.24)

Similarly, we have

V((n + 1)T ) ≤ ek0(T−η)V(nT + η). (3.25)

According to (3.23) and (3.25)

V((n + 1)T ) ≤ ek0(T−η)V(nT + η)
≤ ek0(T−η)−2kηV(nT ).

(3.26)

Therefore, when the inequality

η

T
>

k0

k0 + 2k
(3.27)

holds the function V(t) is a monotonically decreasing continuous function.

lim
t→∞

V(t) = 0 (3.28)

According to (3.6), we have
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lim
t→∞

V(t) =
1
2

(
ε2

1 + ε̄
2
)
= 0. (3.29)

This indicates that  ε1 = θ1 − θ2 −
∫ t

0
ξdt +

∫ nT

0
ξdt = 0,

ε2 = ω1 − ω2 − ξ = 0.
(3.30)

Thus, when t → ∞, we have

iq = −
1
g

[(
(2k + c)ε2 +

(
k2 + 1

)
ε1

)]
= 0. (3.31)

Then, at the moment 0 < t1 < ∞, t1 ∈ [(n − 1)T, nT ), iq ≤ iM, u
(
iq

)
= iq, the following equality

holds:

ξ̇ = cξ + gu
(
iq

)
− iq = cξ, ξ(nT ) = 0, t2 ∈ [nT, nT + η),

ξ̇ = cξ, t2 ∈ [nT + η, (n + 1)T ).
(3.32)

Further, we can obtain

ξ(t2) = ec(t2−nT )ξ(nT ) = 0 (3.33)

where t2 > nT .
Thus, when t → ∞, we have {

ε1 = θ1 − θ2 = 0,
ε2 = ω1 − ω2 = 0.

(3.34)

According to the above analysis, when t → ∞, the tracking control target is accomplished. Simul-
taneously, there are θ1 = θ2 and ω1 = ω2.

4. Simulation example

The simulation design parameters are designed as c = −2.1, d = 0, k = 2, g = 200, η/T = 0.5 > 0.22
and iM = 5. The initial values of the system are selected as θ1(0) = 0, ω1(0) = 0, θ2(0) = 50, ω2(0) =
800 and ξ(0) = 0.

Figures 3–10 show the simulation results of two kinds of control methods. Figure 3 displays the
trajectories of θ1 and θ2. Figure 4 displays the trajectories of ω1 and ω2. The trajectories of error
variables ε1 and ε2 are shown in Figures 5 and 6, respectively. From Figures 3–6, the simulation results
indicate the proposed discontinuous control algorithm is valid. The trajectories of the control input iq

are exhibited in Figure 7. Figure 8 exhibits the trajectories of saturated input u(iq). The trajectories of
input saturation auxiliary system ξ are shown in Figure 9. The trajectories of signals

∫ t

0
ξdt −

∫ nT

0
ξdt

are exhibited in Figure 10. The comparison results show that the discontinuous controller designed in
this paper can achieve similar control effects to the continuous controller.
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Figure 3. The trajectories of system state of θ1 and θ2. (a) Discontinuous control. (b)
Continuous control.
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Figure 4. The trajectories of system state of ω1 and ω2. (a) Discontinuous control. (b)
Continuous control.
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Figure 5. The trajectories of error variables ε1. (a) Discontinuous control. (b) Continuous
control.
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Figure 6. The trajectories of error variables of ε2. (a) Discontinuous control. (b) Continuous
control.
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Figure 7. The trajectories of input iq. (a) Discontinuous control. (b) Continuous control.
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Figure 8. The trajectories of saturated input u(iq). (a) Discontinuous control. (b) Continuous
control.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3793–3810.



3804

0 1 2 3 4 5 6

T (s)

-700

-600

-500

-400

-300

-200

-100

0

V
a
lu

e

(a)

0 1 2 3 4 5 6

T (s)

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

V
a
lu

e

(b)

Figure 9. The trajectories of input saturation auxiliary system ξ. (a) Discontinuous control.
(b) Continuous control.
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Figure 10. The trajectories of signals
∫ t

0
ξdt −

∫ nT

0
ξdt. (a) Discontinuous control. (b) Con-

tinuous control.

5. Experimental results

The bicycle robot is a high-performance robot that integrates bicycles and intelligent control. It
has both the convenience and flexibility of bicycles and the high intelligence of integrated control
systems. Bicycle robots can replace human work on specific occasions, and they have broad application
prospects in rescue and disaster relief, industrial production and resource exploration. The intermittent
control algorithm designed in this paper has great application value in the balance control problem
of the balance bicycle. Based on this, we carry out the experimental test of the intermittent control
algorithm for a single balance control motor of the balance bike, which is shown in Figure 11. It can
be seen that the system consists of a DC power source, a controller and a motor. The communication
network is based on the controller area network (CAN). Figure 12 displays the trajectories of θ1 and
θ2. Figure 13 shows the trajectories of ω1 and ω2. Figure 14 exhibits the trajectories of saturated input
u(iq).
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Figure 11. The photograph of experimental platform. (a)balance bike. (b)Actual control of
the motor unit.

0 1 2 3 4 5 6

T (s)

0

10

20

30

40

50

60

V
a
lu

e

Figure 12. The trajectories of system state of θ1 and θ2.

6. Conclusions

In this paper, we complete the PMSM tracking controller design by the practical discontinuous
control algorithm. An input saturation auxiliary system is introduced to ensure the practicality of
the controller, which overcomes the influence of input saturation on controller design and control
performance. Then, the desired control goal is achieved by the sliding mode control method. Through
stability analysis, the proposed controller can achieve the desired control goal. Finally, the effectiveness
of the proposed algorithm is verified by simulation results and the experimental platform.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3793–3810.



3806

0 1 2 3 4 5 6

T (s)

-500

0

500

1000

1500

2000

V
a
lu

e

Figure 13. The trajectories of system state of ω1 and ω2.
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Figure 14. The trajectories of saturated input u(iq).
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