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1. Introduction

In this paper, we study the Cauchy problem for the nonlinear Schrödinger equationi∂tu + ∆u + ug1(|u|2) = 0,
u(0) = u0 ∈ H1(R2),

(1.1)

where u(t, x) : R × R2 → C, g1 ∈ C1(R,R+) is a positive real function satisfying g1(0) = 0, and

g(z) := zg1(|z|2), G(z) :=
∫ |z|

0
g(s)ds.

We assume g(u) satisfies the following conditions:

(H)

(i) g ∈ C1 and g(0) = g′(0) = 0.
(ii) g(u) is monotone, and is convex for u > 0, concave for u < 0.
(iii) (p + 1)G(u) ≤ ug(u), |ug(u)| ≤ γ|G(u)|, where 2 < p + 1 ≤ γ < ∞.

Recently, the qualitative research on the nonlinear fourth-order Schrödinger equations has been
widely performed, and the corresponding results have greatly developed the mathematical theory of
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Schrödinger equations (see for instance [1–3] and the references therein). Here we restrict our attention
to the nonlinear second-order Schrödinger equations. Monomial semilinear Schrödinger equation

i∂tu + ∆u + µ|u|p−1u = 0, p > 1, u : (−T ∗,T ∗) × Rd → C (1.2)

is called defocusing if µ = −1 and focusing if µ = 1. The solutions of (1.2) satisfy conservation of
mass

M (u(t)) =
1
2
∥u(t)∥2L2(Rd)

and Hamiltonian
Hp(u(t)) := ∥∇u(t)∥2L2(Rd) −

2µ
p + 1

∫
Rd
|u(t, x)|p+1dx.

For d = 2, when p > 1 the Cauchy problem for nonlinear Schrödinger equation (1.2) is energy
subcritical [4]. As is well known, the problems with exponential nonlinear terms have lots of
applications, for instance the self-trapped laser beams in plasma [5]. Cazenave [6] considered the
Cauchy problem for the Schrödinger equation i∂tu + ∆u + F (u) = 0, t ∈ R, x ∈ R2,

u(0, x) = u0(x), x ∈ R2,

with the decreasing exponential nonlinear term F (u), and showed global well-posedness and scattering.
Generally, the problems with increasing exponential nonlinear terms are more complicated because
there are no a priori L∞-estimates on the nonlinear terms. Furthermore, in view of its relationship with
the critical Moser-Trudinger inequality, the two-dimensional case is interesting (see [7, 8]). For the
higher-dimensional case, we refer the readers to [3, 9–13] and the references therein.

Later on, Colliander et al. [14] considered the Cauchy problem for the Schrödinger equationi∂tu + ∆u = u(e4π|u|2 − 1), t ∈ R, x ∈ R2,

u(0) = u0 ∈ H1(R2).

They obtained global well-posedness under the situation that the initial data u0 satisfies

H(u0) = ∥∇u0∥
2
L2(R2) +

1
4π
∥e4π|u0 |

2
− 1 − 4π|u0|

2∥L1(R2) ≤ 1

and an instability when H(u0) > 1. Saanouni [4] used the Strichartz estimate and some embedding
inequalities to get the global existence result of the Cauchy problem for semilinear Schrödinger
equation i∂tu + ∆u + ug1(|u|2) = 0, t ∈ R, x ∈ R2,

u(0) = u0 ∈ H1(R2),

in the subcritical case 
g1(0) = g′1(0) = 0,
∀α > 0, ∃Cα > 0 s.t. |g(s)| ≤ Cαeαs2

, s ∈ R,

(D − 2)G(r) > 0 and (D − 2)2G(r) ≥ 0, ∀r > 0.
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In critical case

g1(0) = g′1(0) = 0,
lim
|u|→∞

GL(u)/uG′L(u) = 0,

∃k0 > 0 s.t lim
|u|→∞

G′′L (u)e−k|u|2 = {0 if k > k0, ∞ if k < k0},

∃ε > 0 s.t (D − 4 − ε)G(r) ≥ 0 and (D − 2)(D − 4 − ε)G(r) ≥ 0, ∀r > 0,

he got the blow-up result for the above equation under some assumptions. However, the sharp
conditions for global existence and blow-up of solutions of the problem is still unsolved. In the
present paper, we aim to consider this by the concavity arguments and the potential well theory (see
for instance [3, 9–13, 15–23] and the references therein).

The outline of our paper is as follows. In Section 2, we show a few propositions and lemmas.
Moreover, we introduce some functionals and invariant manifolds. In Section 3, we provide a sharp
condition for global existence and blow-up of solutions of problem (1.1).

In this paper, we use ∥ · ∥H1 to stand for the norm of H1(R2) and ∥ · ∥ of L2(R2). For simplicity,

hereafter, we will denote
∫
R2
·dx by

∫
·.

2. Preliminaries

Regarding problem (1.1), we define the energy space in the course of nature by

H :=
{

u ∈ H1(R2)

∣∣∣∣∣∣
∫
|x|2|u|2 < ∞

}
with the inner product

(u, v) =
∫

(∇u∇v̄ + uv̄),

where v̄ denotes the conjugate function of v.

Proposition 2.1 ( [24]). Let φ0 ∈ H. Then the Cauchy problem (1.1) has a unique solution
u ∈ C([0,T ); H), where T ≤ ∞ is the maximal existence time of the solution. Moreover, we have
alternative: T = ∞, or T < ∞ and

lim
t→T
∥u∥H1 = ∞.

The solution u satisfies

M(t) =
1
2

∫
|u|2 =

1
2

∫
|u0|

2 (2.1)

and
E(t) =

1
2

∫ (
|∇u|2 − 2G(u)

)
≡ E(0).

Lemma 2.2 ( [20]). Let g(u) satisfy (H). Then

u
(
ug′(u) − g(u)

)
≥ 0,

and the equality holds only for u = 0.
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From [24] we have the following lemma.

Lemma 2.3. Let u be the solution of the problem (1.1) with u0 ∈ H. For J(t) :=
∫
|x|2|u|2, we have

J
′′

(t) = 8
∫ (
|∇u|2 − |u|g(|u|) + 2G(u)

)
.

Next, for φ ∈ H, we define

P(φ) :=
1
2

∫ (
|∇φ|2 + |φ|2 − 2G(φ)

)
(2.2)

and

I(φ) :=
∫ (
|∇φ|2 + |φ|2 − |φ|g(|φ|)

)
. (2.3)

When φ is the solution of problem (1.1) with φ0 ∈ H, there holds

P(φ) ≡ P(φ0). (2.4)

Now we consider a constrained variational problem

d = inf
φ∈M

P(φ), (2.5)

where
M = {φ ∈ H \ {0} | I(φ) = 0}.

Lemma 2.4. If φ ∈ M, then d > 0.

Proof. By (H), (2.2) and (2.3), we have∫ (
|∇φ|2 + |φ|2

)
=

∫
|φ|g(|φ|)

and

P(φ) =
1
2

∫ (
|∇φ|2 + |φ|2 − 2G(φ)

)
=

1
2

∫
(|φ|g(|φ|) − 2G(φ))

≥
1
2

∫ (
|φ|g(|φ|) −

2
p + 1

|φ|g(|φ|)
)

> 0.

(2.6)

Furthermore, combining with (2.6) and (2.5), we can obtain d > 0. □

Lemma 2.5. Let φ ∈ H. Put φλ(x) = λφ(x) for λ > 0, then there exists a unique constant µ > 0
(depending on φ) such that I(φµ) = 0, I(φλ) > 0 for any 0 < λ < µ, and I(φλ) < 0 for any λ > µ.
Furthermore, P(φµ) ≥ P(φλ) for any λ > 0.
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Proof. From (2.2) and (2.3), we have

I(φλ) =λ2
∫ (
|∇φ|2 + |φ|2 −

∣∣∣∣∣1λφ
∣∣∣∣∣g(|λφ|)

)
and

P(φλ) =
λ2

2

∫
(|∇φ|2 + |φ|2) −

∫
G(λφ).

It is easy to see that there exists a unique constant µ > 0 (depending on φ) such that I(φµ) = 0,

I(φλ) > 0, 0 < λ < µ,

and
I(φλ) < 0, λ > µ.

Combining
d

dλ
P(φλ) = λ−1I(φλ),

d2

dλ2 P(φλ) = −λ−2I(φλ) + λ−1 d
dλ

I(φλ)

= ∥∇u∥2 + ∥u∥2 −
1
λ2

∫
λ2u2g′(λu)

and Lemma 2.2, we get
λu(λug′(λu) − g(λu)) > 0. (2.7)

Integrating (2.7) with respect to x in R2 and dividing its both sides by λ2, we derive

1
λ

∫
Ω

ug(λu) <
1
λ2

∫
Ω

λ2u2g′(λu),

which, together with
I(φµ) = 0,

yields
d2

dλ2 P(φλ) < 0.

Hence
P(φµ) ≥ P(φλ), λ > 0.

□

Theorem 2.6. Define
V := {φ ∈ H

∣∣∣P(φ) < d, I(φ) < 0},

then V is an invariant manifold of (1.1), that is, if u0 ∈ V, then the solution u of problem (1.1) also
satisfies u ∈ V for all t ∈ [0,T ).
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Proof. By Proposition 2.1, problem (1.1) admits a unique solution u ∈ C([0,T ); H) with T ≤ ∞. As
(2.4) shows

P(u) = P(u0), t ∈ [0,T ),

we conclude that P(u0) < d implies P(u) < d for all t ∈ [0,T ).
Next, we demonstrate I(u) < 0 for all t ∈ [0,T ). If it is not true, then from the continuity of I (u(t))

in t, there exists a t1 ∈ [0,T ) such that I(u(t1)) = 0. By (2.2), (2.3) and

P(u(t1)) > 0,

we have u(t1) , 0. If it is not true, then P(u(t1)) = 0, which contradicts P(u(t1)) > 0. From (2.5) we
get P(u(t1)) ≥ d. This contradicts P(u) < d for all t ∈ [0,T ). Therefore, I(u) < 0 for all t ∈ [0,T ), i.e.,
u ∈ V for all t ∈ [0,T ). So V is an invariant manifold of problem (1.1). □

By the same arguments as Theorem 2.6, we have the following theorem.

Theorem 2.7. Define
W := {φ ∈ H

∣∣∣P(φ) < d, I(φ) > 0} ∪ {0}.

Then W is an invariant manifold of problem (1.1).

3. Sharp conditions

Theorem 3.1. If u0 ∈ W, then the solution u of problem (1.1) globally exists on t ∈ [0,∞).

Proof. Theorem 2.7 shows that the solution u of problem (1.1) satisfies u ∈ W for all t ∈ [0,T ). Hence
P(u) < d and I(u) > 0. By (H), (2.2) and (2.3), we get(

1
2
−

1
p + 1

) ∫ (
|∇u|2 + |u|2

)
=

1
2

∫ (
|∇u|2 + |u|2

)
−

1
p + 1

(
I(u) +

∫
|u|g(|u|)

)
<

1
2

∫ (
|∇u|2 + |u|2 − 2G(u)

)
< d,

which gives ∫
(|∇u|2 + |u|2) <

2(p + 1)
p − 1

d. (3.1)

Therefore, by Proposition 2.1, (3.1) shows that u globally exists.
Let u0 = 0. Thanks to (2.1), we get u = 0, which shows that u is the trivial solution of problem

(1.1). The proof of Theorem 3.1 is completed. □

By the similar arguments in [10], we have the following lemma.

Lemma 3.2. Let φ ∈ H and µ > 0 satisfy I(φµ) = 0. Suppose that µ < 1, then

P(φ) − P(φµ) ≥
1
2

I(φ).
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Theorem 3.3. If u0 ∈ V, then the solution u of problem (1.1) blows up in finite time.

Proof. Suppose that T = ∞. Since u0 ∈ V , we conclude from Theorem 2.6 that u ∈ V , i.e., I(u) < 0 for
all t ∈ [0,∞). Thus

I(u) < 0, P(u) < d, t ∈ [0,∞).

From Lemma 2.3 we get
d2

dt2

∫
|x|2|u|2 ≤ 8

(
I(u) −

∫
|u0|

2
)
. (3.2)

Let µ > 0 satisfy
I(uµ) = 0.

From I(u) < 0 and Lemma 2.5 we obtain µ < 1. Note that

P(uµ) ≥ d, P(u) = P(u0).

From Lemma 3.2 we have
I(u) ≤ 2 (P(u0) − d) < 0. (3.3)

Let
δ = 2 (d − P(u0))

and δ > 0 be a constant independent of t. From (3.2) and (3.3) we obtain

J′′(t) =
d2

dt2

∫
|x|2|u|2dx

≤ 8δ − 8
∫
|u0|

2dx

= −c0 < 0, t ∈ [0,∞),

where c0 > 0 is a constant. Furthermore, we get

J′(t) ≤ −c0t + J′(0), t ∈ [0,∞).

Hence there exists a t0 ≥ 0 such that J′(t) < J′(0) < 0 for all t ∈ (t0,∞), and so

J(t) < J′(t0)(t − t0) + J(t0), t ∈ (t0,∞). (3.4)

Since I(u0) < 0 implies J(0) > 0, we conclude from (3.4) that there exists a T1 > 0 such that J(t) > 0
for all t ∈ [0,T1) and

lim
t→T1

J(t) = 0. (3.5)

From (3.5) and
∥u0∥

2 = ∥u∥2 ≤ ∥∇u∥J
1
2 (t),

it follows that
lim
t→T1
∥∇u∥ = ∞.

This contradicts T = ∞. Thus
lim
t→T
∥u∥H1 = ∞.

□
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4. Conclusions

It is clear that
{u ∈ H|P(u) < d} = W ∪ V, W ∩ V = ϕ.

Thus, by means of the location of the initial data, Theorems 3.1 and 3.3 provide a sharp condition for
global existence and blow-up of solutions of problem (1.1), i.e., u0 ∈ W vs u0 ∈ V .

The fractional Schrödinger equations may have a lot of interesting phenomena like the fractional
version of other partial differential equations explored in [25,26], hence we shall focus on these models
to investigate the corresponding sharp conditions.
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