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Abstract: In the predator-prey system, predators can affect the prey population by direct killing
and inducing predation fear, which ultimately force preys to adopt some anti-predator strategies.
Therefore, it proposes a predator-prey model with anti-predation sensitivity induced by fear and
Holling-II functional response in the present paper. Through investigating the system dynamics of
the model, we are interested in finding how the refuge and additional food supplement impact the
system stability. With the changes of the anti-predation sensitivity (the refuge and additional food), the
main result shows that the stability of the system will change accordingly, and it has accompanied with
periodic fluctuations. Intuitively the bubble , bistability phenomena and bifurcations are found through
numerical simulations. The bifurcation thresholds of crucial parameters are also established by the
Matcont software. Finally, we analyze the positive and negative impacts of these control strategies on
the system stability and give some suggestions to the maintaining of ecological balance, we perform
extensive numerical simulations to illustrate our analytical findings.
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1. Introduction

In ecology, prey-predator interaction happens at many higher trophic levels, and due to these
interactions, predators always have an impact; direct, indirect or both, on prey population. The direct
effect can be seen in nature when the predators catch the prey and kill [1, 2]. In resent years, more and
more habitats and ecological communities have been modified by human activities, and this state will
continue. Unlike in the past, the predator-prey interactions increasingly occur in other aspects [3].
The theories with respect to the evolution of predator-prey interactions are reviewed by Peter A.
Abrams [4], which includes the dynamics and stability of both populations and traits, as well as the
anti-predator traits to environmental changes. The crucial feature of predator-prey interactions is the
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predator’s functional response, which is used to describe the predation of predator on prey [5,6]. They
are generally classified into two types: the prey-dependent and predator-dependent, namely, the
Holling type and Bedding type respectively [7–9]. Whereas, the Holling-II type functional response is
most commonly used in mathematical modeling [10, 11].

Apart from the direct killing of prey by predator, more and more experimental data show that
population of prey reduced due to fear of the predator [12–17]. Due to the fear effect, the prey shows
a variety of antipredator responses, including different psychological changes, habitat changes, and
foraging. For example, the impact of fear has been investigated on the prey’s birth rate, Zanette et
al. [15] carried out an experiment on song sparrows during the whole breeding season in 2011, the
experiment was conducted in a free-living area for birds and there were no predators, the experimenter
have used playbacks of the predator’s voice to manipulate artificial risk, they found a reduction in
reproduction by 40% in the number of offsprings due to the fear of predation alone, the experiment
showed that prey could respond to the danger of being preyed. Similarly, another experiment revealed
the effect of predator’s fear for the death rate of prey, the experiment was performed by on the prey
(grasshopper nymphs) and the predator (toothless spider) [17], the results of the experiment showed
that the presence of predator increased the number of the death of prey by 20% compared with no
predators, if the number of killing by predators was taken into account, then the death rate of prey was
enhanced only by 9%, in fact, the indirect predation rate was 2 times larger than the direct killing.
Further evidence has been found about Siberian jay in Eggers et al. [18], birds in Hua et al. [19] and
lambs in Krapivsky et al. [20]. In addition, the recent research shows that the fear effect can induce
bifurcations and even stabilize chaos of predator-prey system dynamics [21–23]. The adult prey also
shows weaker anti-predator behaviors if the cost of fear is higher, such as reducing outside activity,
foraging and starving to prevent from predation. These anti-predation sensitivity of prey should be
considered into the mathematical model to reveal the realistic system dynamics [24]. Almost all
experiment evidences confirmed that the impact of fear is very important in studying the system
dynamics, refer to Blumstein [25]. Therefore, the impact of fear and the anti-predation of prey should
be added to the ecological model, we can reveal how these factors affect the system stability.

In the anti-predation behaviors of prey, the prey usually move to safer place to avoid attack from
predator, so the refuge area is very important for prey during their survival [26–30]. Most of the
researchers have shown that refuges can preserve the prey and stabilize the system, which is very
important for the survival of prey and predator. Kar [31] proposed a prey-predator model with Holling-
II type functional response, and he added shelter for prey in the model, Kar established some sufficient
conditions assuring the existence and stability of the equilibrium points, he found that a stable limit
cycles appeared when the equilibrium point was unstable by bifurcation analysis. Recently, the prey-
predator models with refuge areas have attracted many researchers’s attention [32].

Actually, due to the destruction of ecological environment, apart from the construction of refuge
zones to preserve the survival of animals, human want to reduce the prey’s negative effect of fear by
releasing additional food to predator or prey or both of them, this is a very popular strategy in biological
control [33–36]. Releasing proper additional food for predator can reduce the consumption of predator
and conserve the prey, Moorland Working Group [34] made an experiment in the spring and summer
of 1998 and 1999 years, they put in additional food to the hen harriers (predator) living on Langholm
moor in south Scotland, the predation rate of prey reduced from 3.7 chicks to 0.5 chicks per hour.
However, it is worth of pointing out that additional food supplement may increase the reproduction
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rate of predators causing the reduce or extinction of prey [35]. Certainly, the “quality” and “quantity”
of additional food plays an key role in the system stability [36]. The researchers found that good
additional food benefited the survival of predators which has led to arising high predation rate, low
quality of food would do harm to the predator and benefit the prey [37,38], so the strategy of releasing
additional food should be based on some theoretical results and be done scientifically and reasonably.

In this work we have proposed a prey-predator mathematical model with the fear effect and the
anti-predation. In view of the importance of system stability, we have mainly studied the local and
global stability of the equilibrium states and bifurcations. To observe the impact of fear, refuge and
additional food on the dynamics of preyCpredator system, we study the nonlinear dynamics of
proposed mathematical model using various techniques of stability analysis, permanence, persistence
and Hopf bifurcation analysis.

Our main works are as follows:

1) The fear effect and their anti-predation sensitivity to predator have been incorporated in the prey-
predator system.

2) Biological control strategies such as constructing refuge area and releasing additional food for
predator have been included.

3) Some theorems of the local and global asymptotical stability and bifurcations have been obtained
by using characteristic equation and Sotomayor’s bifurcation theorems.

4) The interaction of the effects of fear, refuge, additional food and the stability of equilibrium points
have been investigated by using theoretical and numerical methods.

The paper has been organized as follows. The mathematical model is formulated in Section 2. The
stability and bifurcation analysis are carried out in Section 3. The numerical simulations are executed
in Section 4 to establish the bifurcation thresholds of some key parameters. Finally, we end the paper
with a discussion of our findings.

2. Model construction

Let x(t) and y(t) (x and y for simplicity) be the density of prey and predator at time t respectively.
In the absence of predator, we assume that the birth rate of prey is a, the competition rate between prey
is b. The functional response of predator to prey is the Holling-II type, where the meanings of c and d
refer to [11, 12]. The conversion rate of prey to predator is β, the dearth rate of predator is e, then we
have the following prey-predator model: x′ = x

(
a − bx − cy

1+dx

)
,

y′ = y
(
βcx

1+dx − e
)
.

Taking into account the fear of predator and the anti-predation level of prey to protect them from
outside risk, the parameter f is the fear level and the parameter κ is the anti-predation sensitivity.
Meanwhile, we incorporate parameter µ to describe the refuge area for prey and α, β and F to describe
the additional food supplement in biological control, where αF and β represent the quantity (effectual
food level) and quality of additional food respectively (the details refer to [33,36]), then we get the
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following model: 
x′ = x

(
a

1 + f κy
− bx −

c(1 − µ)y
1 + dκ(1 − µ)x + δαF

)
,

y′ = y
(
βc[(1 − µ)x + αF]

1 + dκ(1 − µ)x + δαF
− e

)
.

(2.1)

The initial conditions are x(0) > 0 and y(0) > 0. All parameters in (2.1) are supposed to be positive so
as to accord with the biological justifications.

3. Main results

3.1. Existence of fixed point

By the theory of functional differential equation [40], we can obtain that there exists a unique
positive solution for system (2.1) which remains in R2

+ = {(x, y) : x > 0, y > 0}. It is easy to obtain
that the trivial fixed point of system (2.1) is Q0(0, 0), the boundary fixed point is Q1( a

b , 0). Now we
discuss the coexistence fixed point Q̃(x̃, ỹ), by the definition of coexistence fixed point, x̃ satisfy the
following equation,

βc[(1 − µ)x + αF]
1 + dκ(1 − µ)x + δαF

− e = 0.

Using restrictive condition edκ < βc < e(1+δαF
αF , then

x̃ =
e(1 + δαF) − βcαF
(1 − µ)(βc − edκ)

> 0.

Denote c(1−µ)
1+dκ(1−µ)x̃+δαF = Υ and put x̃ into the first equation of Eq (2.1), we have

a
1 + f κy

− bx̃ − Υy = 0.

That is
Υ f κy2 + (Υ + bx̃ f κ)y + bx̃ − a = 0. (3.1)

Due to bx̃− a < 0, it is clear that the Eq (3.1) has a unique positive solution, say ỹ. Consequently, (2.1)
has a unique positive coexistence fixed point Q̃(x̃, ỹ). Next we will establish some sufficient conditions
assuring the stability of these fixed points.

3.2. LAS and bifurcation analysis

In this part, we focus on the local asymptotic stability (LAS for simplicity) and bifurcation analysis
of the fixed points. For (2.1), let X = (x, y)T , we rewrite (2.1) as the form X′ = G(X),G = (G1,G2)T .

For the convenience of the reader, we compute the partial derivatives of the operator G as follows:

DG =


a

1 + f κy
− 2bx −

c(1 − µ)(1 + δαF)y
(1 + dκ(1 − µ)x + δαF)2 −

a f κx
(1 + f κy)2 −

c(1 − µ)x
1 + dκ(1 − µ)x + δαF

βcy(1 − µ)(1 + δαF − dκαF)
(1 + dκ(1 − µ)x + δαF)2

βc[(1 − µ)x + αF]
1 + dκ(1 − µ)x + δαF

− e

 ,
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Gxx =


−2b +

2cdκ(1 − µ)2(1 + δαF)y
(1 + dκ(1 − µ)x + δαF)3

−2βcdκy(1 − µ)2(1 + δαF − dκαF)
(1 + dκ(1 − µ)x + δαF)3

 ,

Gxy = Gyx =


−

a f κ
(1 + f κy)2 −

c(1 − µ)(1 + δαF)
(1 + dκ(1 − µ)x + δαF)2

βc(1 − µ)(1 + δαF − dκαF)
(1 + dκ(1 − µ)x + δαF)2

 ,

Gyy =


2a f 2κ2x

(1 + f κy)3

0

 .
Next, we begin to discuss the stability of above fixed points one by one.

• Stability of Q0

By the representation of DG, we can easily obtain the variational matrix at Q0 is

M0|Q0 =

 a 0

0
bαF

1 + δαF
− e

 .
By using the characteristic equation, we know that there is a positive characteristic root λ = a > 0, and

hence it is unstable. If
bαF

1 + δαF
− e = 0, then zero is a characteristic root, the eigenvectors of λ = 0

corresponding to the matrix M0 and MT
0 are V1 = (0, 0)T and V2 = (0, 1)T respectively. Take δ as a

parameter and denote the solution of
bαF

1 + δαF
− e = 0 as δ = δ̂. We investigate the conditions of the

existence of bifurcations [39].
(i) VT

2 [Gδ(Q0, δ = δ̂)] = 0,

(ii) VT
2 [DGδ(Q0, δ = δ̂)V1] = (0, 1)

[(
0 0
0 βcαF

1+δαF

) (
0
0

)]
= 0,

then there is neither transcritical bifurcation nor saddle-node bifurcation around the trivial fixed point
Q0, so we can get the following theorem.

Theorem 3.1. System (2.1) undergoes no bifurcation around the trivial fixed point Q0(0, 0), which is
unstable.

• Stability of Q1

We proceed to study the dynamics of the predator free equilibrium state Q1( a
b , 0). By same manner

as before, we obtain the variational matrix at Q1(a
b , 0) is,

M1|Q1 =


−a −

a2 f κ
b
−

ac(1 − µ)
adκ + b(1 + δαF)

0
βc[(1 − µ)a + bαF]
adκ + b(1 + δαF)

− e

 .
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Denote m1 = e −
βc[(1 − µ)a + bαF]
adκ + b(1 + δαF)

, then the characteristic equation corresponding to matrix M1 is

(λ + a)(λ + m1) = 0.

The solutions of above equation are λ1 = −a, λ2 = −m1. If m1 > 0, we obtain that the characteristic
roots are all negative, and hence system (2.1) is LAS around Q1( a

b , 0). If m1 = 0, there is a zero
characteristic root, then eigenvectors of zero root w.r.t matrix M1 and MT

1 are V1 = (ν, 1)T and V2 =

(0, 1)T respectively, where ν = −a f κ
b −

p(1−µ)
adκ+b(1+δαF) . Take µ as a parameter, we verify the following

transversality conditions of the existence of transcritical and saddle-node bifurcations respectively. We
denote the µ satisfying m1 = 0 as µ. It is not difficult to compute that

Gµ =


c(1 + δαF)y

(1 + dκ(1 − µ)x + δαF)2

βcx[αF − (1 + δαF)]
(1 + dκ(1 − µ)x + δαF)2

 ,

DGµ =


−2dκ(1 − µ)c(1 + δαF)y
(1 + dκ(1 − µ)x + δαF)3

c(1 + δαF)
(1 + dκ(1 − µ)x + δαF)2

βc[αF − (1 + δαF)](1 − dκ(1 − µ)x + δαF)
(1 + dκ(1 − µ)x + δαF)2 0

 .
By computation, we have

(i) VT
2 [Gµ(Q1, µ = µ)] , 0.

(ii) VT
2 [DGµ(Q1, µ = µ)V1] = (0, 1)

[(
0 Dµ1

Dµ2 0

) (
ν

1

)]
, 0,

where Dµ1 =
c(1 + δαF)

(1 + dκ(1 − µ)x + δαF)2 ,Dµ2 =
βc[αF − (1 + δαF)](1 − dκ(1 − µ)x + δαF)

(1 + dκ(1 − µ)x + δαF)2 .

(iii) By the definition of D2G, then

D2G(Q1, µ = µ)(V1,V1) = Gxx(Q1, µ = µ)ν2 + 2Gxy(Q1, µ = µ)ν +Gyy(Q1, µ = µ)

= 2


−a f κ −

c(1 − µ)(1 + δαF)
(1 + dκ(1 − µ)a/b + δαF)2

βc(1 − µ)(1 + δαF − dκαF)
(1 + dκ(1 − µ)a/b + δαF)2

 ν +
(

2a f 2κ2a/b
0

)
.

Accordingly,

VT
2 [D2G(Q1, µ = µ)(V1,V1)] = (0, 1)


−2νa f κ − 2ν

c(1 − µ)(1 + δαF)
(1 + dκ(1 − µ)a/b + δαF)2 + 2a f 2κ2a/b

βc(1 − µ)(1 + δαF − dκαF)
(1 + dκ(1 − µ)a/b + δαF)2 ν


=
βc(1 − µ)(1 + δαF − dκαF)
(1 + dκ(1 − µ)a/b + δαF)2 ν
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, 0.

Therefore, by Sotomayor’s bifurcation theorem, there is a transcritical bifurcation around the predator-
free fixed point Q1. It is easy to get the representation of the threshold of parameter µ as,

µ = 1 +
bαF

a
−

e(adκ + b(1 + δαF))
aβc

.

Similarly, we can obtain the transcritical bifurcations and get their representations of thresholds w.r.t.
parameters κ, δ and β.We summarize our findings as the following theorem.

Theorem 3.2. System (2.1) is LAS around the predator-free fixed point Q1 if
βc[(1 − µ)a + bαF]
adκ + b(1 + δαF)

< e;

and if
βc[(1 − µ)a + bαF]
adκ + b(1 + δαF)

= e, then system (2.1) undergoes transcritical bifurcations w.r.t. parameter

µ, κ, δ and β with the following parameter thresholds respectively.

µ = 1 +
bαF

a
−

e(adκ + b(1 + δαF))
aβc

,

κ =
βc[(1 − µ)a + bαF] − eb(1 + δαF)

ead
,

δ =
βc[(1 − µ)a + bαF] − eadκ − bαF

bαF
,

β =
e(adκ + b(1 + δαF))
c[(1 − µ)a + bαF]

.

• Stability of Q̃

We begin with the analysis of the stability of system (2.1) near the coexistence equilibrium state
Q̃(x̃, ỹ). Repeating the above computation leads to the following Jacobian matrix at Q̃(x̃, ỹ) as

M̃|Q̃ =
(
−m11 −m12

m21 0

)
,

where

m11 = −
a

1 + f κ̃y
+ 2bx̃ +

c(1 − µ)(1 + δαF )̃y
(1 + dκ(1 − µ)x̃ + δαF)2 ,

m12 =
a f κx̃

(1 + f κ̃y)2 +
c(1 − µ)x̃

1 + dκ(1 − µ)x̃ + δαF
,

m21 =
βc̃y[(1 − µ)(1 + δαF) − dκαF]

(1 + dκ(1 − µ)x̃ + δαF)2 .

The characteristic equation of the matrix M̃ reads,

λ2 + m11λ + m12m21 = 0. (3.2)

Obviously, if m11 > 0,m21 > 0, then the characteristic roots are both negative and system (2.1) is LAS
around the interior fixed point M̃. If m11 > 0,m21 = 0, then λ1 = 0, λ2 = −m11. We continue to
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study whether the bifurcation appears around M̃ or not. By computation, the eigenvectors of λ = 0
corresponding to M̃ and M̃T are Ṽ1 = (̃ν, 1)T , Ṽ2 = (0, 1)T respectively, where ν̃ = −m11

m12
. Take µ as a

parameter and denote µ̃ such that m21 = 0. By same manner as before, it is not difficult to verify that

(i) VT
2 [Gµ(Q̃, µ = µ̃)] =

βcx̃[αF − (1 + δαF)]
(1 + dκ(1 − µ)x̃ + δαF)2 , 0.

(ii) VT
2 [D2G(Q1, µ = µ̃)(V1V1)] , 0.

Therefore Sotomayor’s theorem for saddle-node bifurcation [39] indicates that there is a saddle-node
bifurcation around the coexistence fixed point Q̃ with the threshold µ̃ = 1 − dκαF

1+δαF .

Similarly, we can find that the saddle-node bifurcation around Q̃ for parameters κ, δ and β.We will
make a summary in the conclusion part.

Theorem 3.3. System (2.1) is LAS around the coexistence fixed point M̃ if the following C1 and C2

hold.

C1 : 2bx̃ +
c(1 − µ)(1 + δαF )̃y

(1 + dκ(1 − µ)x̃ + δαF)2 −
a

1 + f κ̃y
> 0,

and

C2 : (1 − µ)(1 + δαF) − dκαF > 0.

Further, if C1 as well as C3 hold,

C3 : (1 − µ)(1 + δαF) − dκαF = 0,

then system (2.1) undergoes saddle-node bifurcations w.r.t. parameter µ, κ and δ with the following
thresholds respectively.

µ̃ = 1 −
dκαF

1 + δαF
, κ̃ =

(1 − µ)(1 + δαF)
dαF

, δ̃ =
1 + dκαF − µ

(1 − µ)αF
.

Next we investigate the existence of Hopf bifurcation. If m11 = 0,m21 > 0, then there are two
imaginary roots λ = ±

√
m12m21i for Eq (3.2). By the Hopf bifurcation theorem [39], we only need to

verify the transversality conditions. Take f as a bifurcation parameter and denote f H such that m11 = 0.
Suppose the root of (3.2) has the general form as λ = ϕ1( f ) + ϕ2( f )i. Substituting it into (3.2) leads to

ϕ2
1 − ϕ

2
2 + m11ϕ1 + m12m21 + ϕ2(2ϕ1 + m11)i = 0.

Differentiating it w.r.t parameter f , then

2ϕ1ϕ
′
1 − 2ϕ2ϕ

′
2 + m′11ϕ1 + m11ϕ

′
1 + m′12m21 + m12m′21 + ϕ

′
2(2ϕ1 + m11)i + ϕ2(2ϕ′1 + m′11)i = 0.

That is {
(2ϕ1 + m11)ϕ′1 − 2ϕ2ϕ

′
2 = −m′11ϕ1 − m′12m21 − m12m′21,

2ϕ2ϕ
′
1 + (2ϕ1 + m11)ϕ′2 = −ϕ2m′11.

Consequently we have

ϕ′1 =
X1X3 + X2X4

X2
1 + X2

2

,
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where X1 = 2ϕ1 +m11, X2 = 2ϕ2, X3 = 2ϕ2 −m′11ϕ1 −m′12m21 −m12m′21, X4 = −ϕ2m′11. By the definition
of f H and the necessary condition of bifurcation appearance, at f = f H, we have ϕ1 = 0,m11 = 0, and

ϕ′1| f= f H = −
m′11

2
| f= f H , 0.

That is, the transversality conditions of Hopf bifurcation hold, and hence we get the following result.

Theorem 3.4. System (2.1) undergoes a Hopf bifurcation around the coexistence equilibrium M̃(x̃, ỹ)
provided the conditions C3 and the following C4 hold,

C4 : 2bx̃ +
c(1 − µ)(1 + δαF )̃y

(1 + dκ(1 − µ)x̃ + δαF)2 −
a

1 + f κ̃y
= 0,

and hence, the threshold is

f H =
(a − 2bx̃)(1 + dκ(1 − µ)x̃ + δαF)2 − c(1 − µ)(1 + δαF )̃y
ky(2bx̃(1 + dκ(1 − µ)x̃ + δαF)2) + c(1 − µ)(1 + δαF )̃y)

.

Similarly, we can find the Hopf bifurcation thresholds about parameters µ, δ and κ, which are to be
validated in numerical analysis.

3.3. GAS analysis

In this section, by using the Lyapunov functional stability theory [34], we investigate the global
asymptotic stability (GAS) of the equilibrium points of system (2.1).

Theorem 3.5. Assume that system (2.1) is LAS near the predator-free fixed point Q1( a
b , 0), then it is

GAS provided that
1 + δαF + adκ(1 − µ)/b > β(1 + δαF − dκαF).

Proof. Consider the following function,

V(x, y) = x − x0 − x0 ln
x
x0
+ y,

where x0 =
a
b , then it is positive on the interval x > 0, y > 0. Computing its derivative w.r.t. t along the

solution of system (2.1), we have

dV
dt
|(2.1) = (x − x0)

(
a

1 + f κy
− bx −

c(1 − µ)y
1 + dκ(1 − µ)x + δαF

)
+y

(
βc[(1 − µ)x + αF]

1 + dκ(1 − µ)x + δαF
− e

)
≤ −b(x − x0)2 −

(1 + δαF + dκ(1 − µ)x0) − β(1 + δαF − dκαF)
(1 + dκ(1 − µ)x + δαF)(1 + dκ(1 − µ)x0 + δαF)

y(x − x0)

< 0.

Therefore, according to the stability theorem of functional differential equation [40], system (2.1) is
GAS around the fixed point Q1.■
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Theorem 3.6. Assume that system (2.1) is LAS near the coexistence fixed point Q̃, then it is GAS if the
following conditions hold.

(i) c(1 − µ) ỹ
x̃ < b,

(ii) β(1 + δαF − dκαF) < 1 + δαF + dκ(1 − µ)x̃.

Proof. Define
V(x, y) = x − x̃ − x̃ ln

x
x̃
+ y − ỹ − ỹ ln

y
ỹ
,

then it is positive on x > 0, y > 0. Similarly we have

dV
dt
|(2.1) = (x − x̃)

(
a

1 + f κy
− bx −

c(1 − µ)y
1 + dκ(1 − µ)x + δαF

)
+(y − ỹ)

(
βc[(1 − µ)x + αF]

1 + dκ(1 − µ)x + δαF
− e

)
= (x − x̃)

(
−

a f κ(y − ỹ)
(1 + f κy)(1 + f κ̃y)

− b(x − x̃)

−c(1 − µ)
(1 + δαF + dκ(1 − µ)x̃)(y − ỹ) − dκ(1 − µ)̃y(x − x̃)

(1 + dκ(1 − µ)x̃ + δαF)(1 + dκ(1 − µ)x + δαF)

)
+(y − ỹ)

(
βc(1 − µ)(1 + δαF − dκαF)(x − x̃)

(1 + dκ(1 − µ)x + δαF)(1 + dκ(1 − µ)x̃ + δαF)

)
≤ −

(
b − c(1 − µ)

ỹ
x̃

)
(x − x̃)2

−
(1 + δαF + dκ(1 − µ)x̃) − β(1 + δαF − dκαF)
(1 + dκ(1 − µ)x + δαF)(1 + dκ(1 − µ)x̃ + δαF)

(x − x̃)(y − ỹ)

< 0.

Using the Lyapunov stability theory of differential equation again, we conclude that system (2.1) is
GAS around Q̃. ■

4. Numerical analysis

In this section, we study the bifurcations and stability of (2.1) from numerical angle intuitively by
depicting some pictures.

4.1. Bifurcation analysis

We begin with our discussion of bifurcation to reveal the impacts on the system stability and explore
the dynamics of (2.1) in detail. We classify it into three different scenarios as the bifurcations of fear,
refuge and additional food supplement. For system (2.1), we fix a set of parameter values as below

a = 0.8, b = 0.04, c = 0.5, d = 1, e = 0.3, F = 2, f = 0.3, κ = 0.2, µ = 0.5, β = 0.6, δ = 0.4, α = 0.6.
(4.1)

By computation, the predator extinction equilibrium point is Q(20, 0) and the interior equilibrium point
is Q̃(0.7, 3.8547).
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Figure 1. The trajectories of equilibrium point of system (2.1). (a) The trajectory of prey
about fear f . (b) The trajectory of prey about anti-predation sensitivity κ.
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Figure 2. The bi-parameter bifurcation graph w.r.t. fear f and anti-predation sensitivity
κ or transversion rate β. (a) is about parameters κ and f , (b) is about parameters κ and β.

• Bifurcation of fear and anti-predation sensitivity

The parameter f represents the fear level of predator on prey, meanwhile, the anti-predation
sensitivity parameter κ is induced by the fear of predator, which shows the sensitivity of prey that
preventing themselves from the predation risk. These two indexes jointly reflect the effect of fear to
the system dynamics. Consequently we analyze the bifurcations of parameters f and κ numerically.
By use of Matlab2014a and continuation software Matcont [41], we get the trajectories of equilibrium
point of (2.1), see Figure 1. It is clear that the prey is oscillatory if f < 0.305109, when f = 0.305109,
the periodic fluctuation loses and it becomes stable when f > 0.305109 (see Figure 1(a)). For the
parameter κ < 0.19927, the equilibrium point is stable, at κ = 0.199270, it becomes unstable and Hopf
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bifurcation occurs, while at κ = 0.844747, the oscillatory disappear and it becomes stable again from
unstable state. A bubble formulates between the interval κ ∈ (0.19927, 0.844747), which means that
system (4.1) changes its stability from stable to unstable and to stable again, that is, multiple stable
statuses appear, see also References [24]. Then as the increase of κ, the density of prey increases
quickly, and at κ = 0.9720, a transcritical bifurcation occurs, which means the predator is extinct and
the prey attains the peak value with x = 20 and keeps stable at the equilibrium point Q(20, 0).
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Figure 3. The bi-stability phenomena of system (2.1) with fixed parameters and
different initial data. (a) is the time series graph of (2.1) with initial data (3,3) for
blue line and (0.7,3.85) for green line, (b) is the phase graph of (a); (c) is the time series
graph of (2.1) with initial data (3,3) for blue line and (1,3) for green line, (d) is the phase
graph of (c); (e) is the time series graph of (2.1) with initial data (3,3) for blue line and
(1,1) for green line, (f) is the phase graph of (e).

To clearly see the interactive effect of the fear level f and the anti-predation sensitivity level κ on the
stability of the equilibrium state, we carry our the two-parameter bifurcation diagrams. See Figure 2(a),
where HC curve represents the Homoclinic bifurcation curve produced at the BT point (Bogdanov-
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Takens point for short) ( f , κ) = (−0.016576, 0.959873). The Hopf curve and the HC curve separate the
whole plane into three regions denoted by R1,R2 and R3 respectively, where R1 is the region of stable
coexistence, R2 is the region of bi-stability between stable coexistence and oscillatory coexistence, R3

is the region of oscillatory coexistence. Figure 2(b) shows the interactive effect of κ and the transfer
coefficient β on the system dynamics. The BT points are (0.1791120.740001) and (1.2333380.740002)
respectively which produce the same HC curve. Similarly the HC and Hopf curves separate it into
three regions Ri(i = 1, 2, 3) with same meanings as before. Without other stated, the meanings of
Ri(i = 1, 2, 3) keep fixed later.

Figure 2 shows that the bi-stability phenomena appear, which means system (2.1) will converge to
different attractors under different initial data. In order to better visualize the bi-stability, we depict
the graph of trajectories with κ = 0.199 (other parameter values keep unchanged) and different initial
conditions, see Figure 3. With two different initial data (see the caption of Figure 3), Figure 3(a),(b)
shows (2.1) converges to the stable coexistence and oscillatory coexistence; Figure 3(c),(d) indicates
that it converges to two different oscillatory cycles; Figure 3(e),(f) shows that it converges to the same
oscillatory cycle.

• Bifurcation of refuge

Due to the fear effect of predator, the prey will seek for some refuges to prevent from the predation
of predator. Sometimes some refuge zones are constructed by people to preserve the prey from the
risk of being predated. Undoubtedly, the refuge can protect the prey and keep them from extinction,
so we continue to study the effect of refuge parameter µ on the stability of equilibrium point of
system (2.1). Numerically we carry out the trajectories of the equilibrium point about parameter µ,
see Figure 4. System (2.1) is unstable when µ is small, but at µ = 0.50117, it becomes stable from
periodic fluctuation. The protecting role of refuge on the prey is clearly showed. With the increasing
of µ, the prey goes to the maximum value at µ = 0.9825 and a transcritical bifurcation appears. When
µ > 0.9825, the predator is extinct and the prey keeps stable in the equilibrium state Q(20, 0).
Compared with Figure 4(a), Figure 4(b) shows the oscillatory behavior of equilibrium point. From
Figure 4, we can be aware the importance for refuge on the protection the prey.
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Figure 4. The trajectories of equilibrium point of system (2.1). (a) The trajectory of prey
about refuge µ, (b) The trajectory of predator about refuge µ.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3700–3720.



3713

0.4 0.45 0.5 0.55 0.6 0.65
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mu

f

Hopf  curve

R
2

LPC curve

R
1

R
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mu

be
ta

BTBT

Hopf  curve

R
2

HC curve

R
3

R
1

(a) (b)

Figure 5. The bi-parameter bifurcation graph w.r.t. refuge µ and fear f or transversion
rate β. (a) is about parameters µ and f , (b) is about parameters µ and β.

Similarly we give the two-parameter graphs (Figure 3), which explain the interplay effect of µ and
f or β on the system stability respectively, where the LPC curve ( saddle-node bifurcation of limit
cycle for simplicity) of Figure 5(a) originates from the GH point (generalized Hopf point) (µ, β) =
(−0.1257070.741974), and the BT point of Figure 5(b) is (µ, β) = (0.5386420.740012), which produce
the HC curve. The whole plane is divided into three same regions Ri(i = 1, 2, 3) as before, and the
bi-stability appears.
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Figure 6. The trajectories of equilibrium point of system (2.1). (a) The trajectory of
prey about additional food α, (b) The trajectory of predator about additional food δ.

• Bifurcation of additional food supplement

For a prey-predator system with fear effect of predator, one effective way to protect the prey is to
build refuge zone, another way is to supply additional food for the predator, when there are enough
food for predator, they will reduce their attacks on prey so that the prey can survive naturally, the
additional food supplement can not only keep the predator’s survival, but also benefit to the living of
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prey, which is applied usually as a biological control strategy. Parameters α and δ are two crucial
indexes representing the quantity and quality of additional food. So we proceed with the study of the
effect of α and δ on the system dynamics. We carry out some numerical simulations about them. See
Figure 6. Figure 6(a) shows the bifurcation occurs at α = 0.6130 where y = 3.8764. Figure 6(b)
shows Hopf bifurcation appears at the point (y, δ) = (3.860116, 0.402164). When δ = 0.166667; A
transcritical bifurcation occurs where the prey is extinct and the predator y = 3.2184, meanwhile a
limit point appears at (y, δ) = (3.2184, 0.166667). At δ = 6.83333, the transcritical bifurcation appears
again where the predator is extinct and prey gets the peak value with x = 20. Figure 6 shows that when
the account of additional food is relatively low, both the quantity and quality bring positive roles to the
survival of predator, while Figure 6(b) shows that if δ is large enough (for example δ > 2), then the
quality of additional food δ produces negative role, and even leads to the extinction of predator, which
reveals that the control strategy should be applied rationally in a suitable region.
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Figure 7. The bi-parameter bifurcation graph w.r.t. the quantity of additional food α
and quality of additional food δ or transversion rate β. (a) is about parameters α and β,
(b) is about parameters α and β.
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Figure 8. The GAS of the predator-extinction equilibrium state Q(20, 0). (a) is time
series graph of prey and predator, (b) is phase graph.
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To see the interference of α and δ, we depict the two parameter graphs, see Figure 7. The HC curve
in α − δ plane originates from the BT point (α, δ) = (0.801951, 0.376521), while in α − β plane, HC
curve originates from the BT point (α, β) = (0.75341, 0.65322). The meaning of Ri(i = 1, 2, 3) is the
same as before.

Numerically, we find that the fear f , anti-predation sensitivity κ, the refuge µ, and the additional
food parameters α and δ bring large influence to the system dynamics including both positive and
negative effect, which result in the system complexity of system (2.1) and should be
controlled rationally.

4.2. Stability analysis

Now we give some numerical examples to validate the criteria of the global asymptotic stability.
We start with the verification of Theorem 3.5. For system (2.1), we fix a set of parameter values as
below:

a = 0.8, b = 0.04, c = 0.5, d = 1, e = 0.2, F = 2, f = 0.3, κ = 0.5, µ = 0.5, β = 0.2, δ = 0.4, α = 0.6.
(4.2)

Then, the predator extinction equilibrium point is Q(20, 0). We compute that the conditions of
Theorem 3.5 are satisfied, so it is GAS, see Figure 8.

Next we fix a set of parameter values as below:

a = 0.8, b = 0.04, c = 0.5, d = 1, e = 0.3, F = 2, f = 0.3, κ = 0.2, µ = 0.8, β = 0.6, δ = 0.4, α = 0.6.
(4.3)

By computation, the interior equilibrium point of (2.1) is Q̃(1.75, 7.4754). We verify that the
conditions of Theorem 3.6 hold, and it is GAS. See Figure 9.
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Figure 9. The GAS of the coexistence equilibrium state Q̃(1.75, 7.4754). (a) is time
series graph of prey and predator, (b) is phase graph.
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5. Discussion and conclusions

Considering the joint role of fear effect and direct consumption of predator populations on prey
populations, we formulated prey-predator mathematical model with fear and Holling-II type functional
response. Due to the existence of counter-predation behavior of prey, we introduced an anti-predation
sensitivity parameter to describe the level of anti-predation behavior. In addition, in order to prevent the
prey from being predated too quickly and protect the prey for biological balance, we add the additional
food supplement for predator. By use of Lyapunov stability theory, we investigated the existence of
equilibrium points and their stability. See Table 1. Finally, the bifurcation analysis is executed by
applying Sotomayor’s bifurcation theorem.

Table 1. Existence and stability of equilibria of (2.1).

Equilibrium Existence Stability
Q0 always exists unstable
Q1 always exists LAS under βc[(1−µ)a+bαF]

adκ+b(1+δαF) < e
Q̃ edκ < βc < e(1+δαF

αF LAS under C1 and C2

Numerically, we explored the effects on the system stability of such parameters as fear level, anti-
predation sensitivity, refuge level and the account of addition food. Particularly, we obtained the
bifurcation thresholds of these parameters, which are summarized in the following Table 2.

Table 2. Bifurcation thresholds for different parameters of (2.1).

Bifurcation
Thresholds of parameters

f κ µ α δ

Transcritical bifurcation – 0.9720 0.9825 0.8333 0.1667, 6.8333
Saddle-node bifurcation −0.2565 −0.1834 – 0.8333 0.1667
Hopf bifurcation 0.3051 0.1992,0.8447 0.5012 0.6130 0.4022

The main findings show that the fear significantly affect the system stability, the construction of
refuge area and the releasing of additional food for predator are two kinds of effective ways to reduce
the effect induced by the fear of predator and can preserve both predator and prey for their natural
survival. While these measures have both positive and negative effects, it can not only keep the
continuous survival of species, but also make the species be extinct if they are wrongly used.
Therefore, rational use of these measures is very crucial for people to control the ecological balance
and continuous development. If we take into the complexity of systems, there are still many factors
should be considered, for example, the delay exists in almost every process and the fear delay induced
by predator is inevitable. On the other hand, the environmental fluctuation, like earthquake, always
appear, and the disaster caused by which can affect the system dynamics seriously. All these are left
for us to study in the near future.
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