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Abstract: The purpose of the present study was to develop a transmission model of COVID-19 cases 

with and without a contact history to understand the meaning of the proportion of infected individuals 

with a contact history over time. We extracted epidemiological information regarding the proportion 

of coronavirus disease 2019 (COVID-19) cases with a contact history and analyzed incidence data 

stratified by the presence of a contact history in Osaka from January 15 to June 30, 2020. To clarify 

the relationship between transmission dynamics and cases with a contact history, we used a bivariate 

renewal process model to describe transmission among cases with and without a contact history. We 

quantified the next-generation matrix as a function of time; thus, the instantaneous (effective) 

reproduction number was calculated for different periods of the epidemic wave. We objectively 

interpreted the estimated next-generation matrix and replicated the proportion of cases with a contact 

𝑝(𝑡) over time, and we examined the relevance to the reproduction number. We found that 𝑝(𝑡) does 

not take either the maximum or minimum value at a threshold level of transmission with 𝑅(𝑡) = 1.0. 

With R(t) < 1 (subcritical level), p(t) was a decreasing function of R(t). Qualitatively, the minimum 

𝑝(𝑡) was seen in the domain with 𝑅(𝑡) > 1. An important future implication for use of the proposed 

model is to monitor the success of ongoing contact tracing practice. A decreasing signal of 𝑝(𝑡) 

reflects the increasing difficulty of contact tracing. The present study findings indicate that monitoring 

𝑝(𝑡) would be a useful addition to surveillance. 

Keywords: COVID-19; contact history; reproduction number; next-generation matrix; statistical 

estimation 
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1. Introduction  

Coronavirus disease 2019 (COVID-19) first appeared in Wuhan, China in late 2019 and resulted 

in a worldwide pandemic that has lasted for more than 2 years at this writing. According to the World 

Health Organization, the pandemic has led to 615 million confirmed cases and 6.5 million deaths 

globally as of October 2, 2022 [1]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 

highly transmissible in indoor settings with limited ventilation [2], spreading from human to human, 

and has evolved rapidly, with the emergence of several variants, including Alpha (B.1.1.7), Delta 

(B.1.617), and Omicron (B.1.1.529) [3]. A published study indicated that there are a number of risk 

factors for COVID-19 death including the gross domestic product (GDP) per capita, healthcare 

spending and air pollution of nations [4]. Due to stringent non-specific (non-pharmaceutical) 

countermeasures, socioeconomic activities were hampered in many parts of the world [5]. During the 

early stage of the COVID-19 pandemic, Wu et al. [6] pointed out that the travel history, as well as 

contact history of cases, represent key information in containment efforts. Contact tracing, quarantine 

and other non-pharmaceutical interventions (NPIs) were proven to be sufficiently effective to contain 

virus transmission in several settings [7–11] and the combination of multiple NPIs was shown to be 

more effective compared with single choice of control [12,13]. Ruhomally et al. [14] maintained that 

vaccination combined with NPIs is indispensable to restrain epidemic prevalence. Nevertheless, 

another published study [15] showed that the rollout of vaccinations would be influenced by the level 

of public health governance. Liu et al. [16] proposed a landscape network entropy method to identify 

the pre-outbreak stage when NPIs should be prepared to implement, and Yuan et al. [17] employed a 

linear spline model to estimate the NPIs effectiveness. 

Kretzschmar et al. [18] indicated that application (app)-based tracing could be more effective than 

conventional tracing, considering the impact of delays in the effectiveness of contact tracing strategies. 

Ferretti et al. [19] also proposed the use of a smartphone app from which contact data can be obtained 

instantly, automatically, and anonymously by recording proximity events between two phones and via 

which users with a COVID-19 diagnosis can be asked to self-isolate. According to a systematic 

review [20], digital tracing methods using mobile applications have been adopted in many regions, 

and logistic regression and SIR models are most commonly used for supervised learning. But many 

problems remained in its implementation, including the protection issue of personal privacy [21–24]. 

Furthermore, if digital tracing method was taken, it would be necessary to handle the huge amount of 

information correctly and efficiently under systematical management to avoid drawing distorting 

conclusions [25]. It is also generally understood that controlling COVID-19 via forward contact tracing 

alone might be unfeasible because a certain fraction of infections remains asymptomatic. Moreover, 

even among symptomatic cases, a substantial proportion of secondary transmissions occur during the 

pre-symptomatic (incubation) period [26]. According to recent studies, at least 40% of people infected 

with COVID-19 remain asymptomatic throughout the course of infection, and the rate of asymptomatic 

infection with the Omicron variant is estimated at 80–90% [27,28]. A considerable number of 

infections are therefore undiagnosed or unreported, implying that a notable proportion of infected 

individuals are very likely to be infected by an unrecognized primary case; thus, these secondary cases 

do not have a contact history. Arun et al. [29] suggested that using IoT (Internet of things)-based 

devices and sensors cloud be a possible way of detecting and monitoring asymptotic patients. 

Despite the asymptomatic and mild nature of many COVID-19 infections, it is important to 

understand why and how information regarding contact history can be utilized in COVID-19 control. 
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In a modeling analysis, Aleta et al. [30] indicated that a response system of enhanced testing and tracing 

have a major role in relaxing social distancing interventions when there is a lack of herd immunity 

against SARS-CoV-2. Tian et al. [31] calculated a number of indicators for patients with COVID-19 

in Beijing, including the proportion with a contact history, with the aim to put forward reasonable 

isolation policy recommendations. Mizumoto et al. [32] estimated the reproduction number for market-

to-human and human-to-human transmission in quantitative modeling analyses using incidence data 

from a wet market in China, stratified according to contact history. Lan et al. [33] identified 

occupations with a high risk of infection, analyzing work-related cases with a contact history and 

identifying local settings with a high transmission risk. Published studies in different countries have also 

indicated that contact history plays an important role in public health and social measures [34–40].  

Questions regarding the meaning of having or not having a contact history for each diagnosed 

case have yet to be clarified. For example, what does the proportion of cases with a contact history 

indicate over the time course of an epidemic? In Japan, retrospective and prospective contact tracing 

have been conducted from the start of the first wave [41]. Accordingly, the line list of cases during the 

early stage of the pandemic (by July 2020) included information of contact history for each confirmed 

case. These data offer the opportunity to explore the relationship between transmission dynamics and 

the proportion of infected individuals with contact history in an explicit manner. The daily number of 

new cases can be stratified according to the presence of a contact history, and the relationship between 

the reproduction number and contact history can then be investigated. 

The purpose of the present study was to develop a transmission model of COVID-19 cases with 

and without a contact history to understand what the proportion of infected individuals with a contact 

history indicates over time. We attempted to understand the relationship between contact history and 

the reproduction number and demonstrate that monitoring the proportion of cases with a contact history 

would be a useful addition to surveillance. Using our simple model, we analyzed first-wave data in 

Osaka from January 15 to June 30, 2020. 

2. Materials and methods 

2.1. Sample and data 

In Japan, COVID-19 is a notifiable disease according to the Infectious Disease Law, and all cases 

confirmed by means of RT-PCR are notified to the government via local health centers. We analyzed 

an epidemiological dataset comprising the daily number of infected individuals as a function of the 

date of illness onset, stratified by the presence of a contact history in Osaka for the period January 15 

to June 30, 2020. All confirmed infected individuals were checked for their contact histories and 

recorded respectively during that period. The original data are openly shared by the Osaka prefectural 

government [42] and are presented as Supplementary Data 1. 

2.2. Measures of variables 

We denote the daily number of infected individuals without a contact history at calendar time t as 

𝑐0(𝑡)  and the number with a contact history as 𝑐1(𝑡) . We calculated the proportion of infected 

individuals with a contact history, which is denoted as 
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𝑝(𝑡) =
𝑐1(𝑡)

𝑐0(𝑡) + 𝑐1(𝑡)
 (1) 

Figure 1 shows the original dataset according to contact history. Whereas the number of COVID-19 

cases with a contact history was larger at the beginning of the epidemic wave, those without a contact 

history exceeded that number, and the relationship was recovered in the middle of the declining phase. 

Thus, the qualitative pattern in the proportion of cases with a contact history 𝑝(𝑡) exhibited a U-shape. 

It should be noted that the proportion 𝑝(𝑡) in the figure only reflects the dataset from March 6 to 

May 10 because the daily number of infected individuals was low and 𝑝(𝑡) were not calculable prior 

to March 6 and also after May 10. 

 

Figure 1. COVID-19 cases with a contact history in Osaka, 2020. 

The blue line in the left panel represents the daily number of new cases (individuals) with a 

contact history; the red line represents the daily number of new cases (individuals) without a contact 

history. Both datasets are from January 15 to June 30, 2020, in Osaka. The right panel shows the 

proportion of cases with a contact history (%) calculated from March 6 to May 10, 2020. 

2.3. Models and data analysis procedure 

To clarify the epidemiological meaning of the proportion of cases with a contact history, we 

used a renewal process model to reconstruct the transmission dynamics. The bivariate process is 

described as 
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(
𝑐0(𝑡)
𝑐1(𝑡)

) = 𝐾(𝑡)

(

 
 
∫ 𝑐0(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0

∫ 𝑐1(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0 )

 
 
, (2) 

where t = 1,2,3… denotes the calendar day starting from January 15, 2020 (day 1). The next-generation 

matrix at calendar time t, 𝐾(𝑡) = (
𝑅00(𝑡) 𝑅01(𝑡)
𝑅10(𝑡) 𝑅11(𝑡)

), describes how transmission to and from cases 

with/without a contact history takes place (e.g., 𝑅10(𝑡)  stands for the average number of traced 

secondary cases generated by a single untraced primary case). 𝑔(𝑠) is the probability density function 

of generation time, assumed to be captured by a gamma distribution with a mean of 4.8 days and 

standard deviation at 2.4 days [43]. 

Because retroactive contact tracing was in place, when there was a very small number of cases 

owing to containment efforts during the first epidemic wave in Japan, cases with a contact history were 

thought to be all traced, implying that there was no transmission from the traced cases to other cases 

who were later diagnosed but were untraced, 𝑅01(𝑡) = 0 and 𝑅11(𝑡) > 0. Otherwise, no constraint 

was imposed on the estimate of the next-generation matrix. Among untraced cases, their secondary 

cases would be partly traced and otherwise remain untraced; thus, we assume that 𝑅10(𝑡) =

𝑘(𝑡)𝑅00(𝑡)  where 𝑘(𝑡)  is the ratio of traced to untraced among secondary cases. With these 

assumptions, the bivariate renewal process becomes 

{
 
 

 
 𝑐0(𝑡) = 𝑅00(𝑡)∫ 𝑐0(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠

∞

0

≝ 𝜆0(𝑡),

𝑐1(𝑡) = 𝑘(𝑡)𝑅00(𝑡)∫ 𝑐0(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0

+ 𝑅11(𝑡)∫ 𝑐1(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0

≝ 𝜆1(𝑡).

 (3) 

Assuming that variations of 𝑐0(𝑡) and 𝑐1(𝑡) are sufficiently captured by a Poisson distribution, 

i.e., 𝑐0(𝑡)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆0(𝑡)) and 𝑐1(𝑡)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1(𝑡)) , the likelihood function to estimate 

unknown parameters of the system (2) 𝐿0 and 𝐿1 is 

{
 
 

 
 𝐿0 =

𝜆0(𝑡1)
𝑐0(𝑡1)…𝜆0(𝑡𝑛)

𝑐0(𝑡𝑛)

𝑐0(𝑡1)! … 𝑐0(𝑡𝑛)!
𝑒−(𝜆0(𝑡1)+⋯+𝜆0(𝑡𝑛))

𝐿1 =
𝜆1(𝑡1)

𝑐1(𝑡1)…𝜆1(𝑡𝑛)
𝑐1(𝑡𝑛)

𝑐1(𝑡1)!… 𝑐1(𝑡𝑛)!
𝑒−(𝜆1(𝑡1)+⋯+𝜆1(𝑡𝑛))

 (4) 

where 𝑡1, 𝑡2, … , 𝑡𝑛 ∈ [1,168] (from January 15 to June 30, 2020). The total likelihood 𝐿 is 

𝐿 = 𝐿0𝐿1 (5) 

which can be log-linearized as: 
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ln(𝐿) = ∑ 𝑐0(𝑡𝑖) ln(𝑅00(𝑡𝑖) ∫ 𝑐0(𝑡𝑖 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0
)𝑛

𝑖=1 +

∑ 𝑐1(𝑡𝑖) ln(𝑘(𝑡𝑖)𝑅00(𝑡𝑖) ∫ 𝑐0(𝑡𝑖 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0
+ 𝑅11(𝑡𝑖) ∫ 𝑐1(𝑡𝑖 − 𝑠)𝑔(𝑠)𝑑𝑠

∞

0
)𝑛

𝑖=1 −

∑ 𝑅00(𝑡𝑖) ∫ 𝑐0(𝑡𝑖 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0
𝑛
𝑖=1 −∑ (𝑘(𝑡𝑖)𝑅00(𝑡𝑖) ∫ 𝑐0(𝑡𝑖 − 𝑠)𝑔(𝑠)𝑑𝑠

∞

0
+𝑛

𝑖=1

𝑅11(𝑡𝑖) ∫ 𝑐1(𝑡𝑖 − 𝑠)𝑔(𝑠)𝑑𝑠
∞

0
) − ∑ 𝑙𝑛(𝑐0(𝑡𝑖)!)

𝑛
𝑖=1  −∑ 𝑙𝑛(𝑐1(𝑡𝑖)!)

𝑛
𝑖=1  

(6) 

Maximum likelihood estimation of unknown quantities (𝑅00(𝑡), 𝑅11(𝑡), 𝑘(𝑡)) can be achieved 

by minimizing the negative expression of the loglikelihood (6). Using the estimated parameters, we 

reconstructed the transmission dynamics. 

Quantitatively, we explored the relationship between p(t) and the instantaneous reproduction 

number of the entire population 𝑅(𝑡) = max (𝑅00(𝑡), 𝑅11(𝑡)), the latter taking the maximum because 

the reproduction number is calculated as the largest eigenvalue of K(t) [44]. All analyses were 

performed with R software Version 4.2.0 (The R Project for Statistical Computing, Vienna, Austria). 

2.4. Ethics approval of research 

This study was approved by the Medical Ethics Board of the Graduate School of Medicine at 

Kyoto University (no. R2676). The present study used publicly available data that were de-identified. 

3. Results 

3.1. Three-phase analysis 

On March 24, 2020, the governor of Tokyo decided to postpone the Tokyo Olympic Games for 1 

year. The Tokyo government then announced that Japan’s capital cities were at risk of having an 

exploding number of COVID-19 cases [45]. On March 27, 2020, the governor of Osaka requested 

people to refrain from going out over the weekend because the number of cases was showing an 

increasing trend [46]. On April 7, a state of emergency was declared by the government of Japan, 

requesting people to reduce contacts, adopt a stay-home policy, cancel mass gatherings and events, 

and refrain from crossing prefectural borders [46,47]. These were considered to have had an impact 

on the SARS-CoV-2 reproduction number [43,46]. Following the published studies, we calculated the 

reproduction numbers employing a piecewise constant model for three periods of calendar time, i.e., 

on and before March 26, March 27–April 6, and April 7 and later. For simplicity, we considered 𝑘(𝑡) 

as a constant for the entire period of time. During the initial period (up to March 26), the next-

generation matrix 𝐾1 was estimated at 

𝐾1 = (
1.70 0
0.36 0.99

). 

Transmission was mainly owing to people without a contact history, and the transmission among 

cases with a contact history contributed to 0.99 secondary transmissions. Bootstrap-based 95% 

confidence intervals (CIs) based on a multivariate normal distribution were (1.42, 1.97), (0.30, 0.41), 
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and (0.76,1.20) for 𝑅00, 𝑅10, and 𝑅11, respectively.  

The next-generation matrix 𝐾2 for the second period (from March 27 to April 6) and 𝐾3 for the 

third period (from April 7 to June 30) were estimated as 

𝐾2 = (
1.41 0
0.30 0.63

), 

and 

𝐾3 = (
0.67 0
0.14 0.68

), 

with 𝑅00∈[1.28, 1.55], 𝑅10∈[0.27, 0.33], and 𝑅11∈[0.41, 0.83] for the second period and 𝑅00∈

[0.60, 0.74], 𝑅10∈[0.12, 0.15] and 𝑅11∈[0.58, 0.77] for third period. Once the restriction of contacts 

was requested by the Japanese government, 𝑅00 decreased slightly but not substantially during the 

second period. Instead, 𝑅11 decreased more abruptly than 𝑅00. During the third period, both 𝑅00 

and 𝑅11 took a value below 1, and the epidemic in the entire population was brought under control.  

3.2. Step-function model 

Next, we estimated the parameter (𝑅00(𝑡), 𝑅11(𝑡), 𝑘(𝑡))  for every 3 days during the entire 

period to recover the observed dynamics of 𝑐0(𝑡) and 𝑐1(𝑡) and then calculated the estimated 𝑝(𝑡). 

Figure 2 presents a comparison of observed and predicted cases with and without a contact history 

as well as the estimated proportion of cases with a contact history. Bootstrap-based 95% CIs were 

computed by resampling the two types of infected individuals from a Poisson distribution, each 

for 1000 times. The predicted cases and predicted proportion contained most of the observed data 

within the 95% CI (Figure 2). 
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Figure 2. Predicted and observed COVID-19 cases by contact history in Osaka, 2020. 

In all panels, the observed data are shown as dots, and the predicted mean is shown as a red line. 

Blue dashed lines represent 95% confidence intervals as computed by the bootstrap method. The top 

left panel shows the daily number of new cases (individuals) without a contact history, the top right 

panel shows the daily number of new cases (individuals) with a contact history, and the panel at the 

bottom shows the proportion of cases with a contact history (%) over time. 
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By fitting the model to the observed data using a piecewise constant model for all three parameters 

(𝑅00(𝑡), 𝑅11(𝑡), 𝑘(𝑡)) every 3 days, we could compute both the proportion of cases with a contact 

history 𝑝(𝑡) and the dominant eigenvalue of the next-generation matrix 𝑅(𝑡). Figure 3 shows the 

relationship between the two as a function of 𝑅(𝑡) on the horizontal axis. It can be seen that 𝑝(𝑡) 

does not take either the maximum or minimum value at a threshold level of transmission with 𝑅(𝑡) =

1.0; there was no apparent threshold property observed for 𝑝(𝑡). The empirically estimated proportion 

of infected individuals with a contact history was 60.4% at 𝑅(𝑡) = 1.0. With R(t) < 1 (subcritical 

level), p(t) was a decreasing function of R(t). Qualitatively, the minimum 𝑝(𝑡) was seen in the domain 

with 𝑅(𝑡) > 1. For instance, although not theoretically ensured as a global minimum, the empirically 

estimated proportion minimum was 28.8% when the reproduction number was 2.0. It appears that p(t) 

was slightly recovered for R(t) > 2, but it must be noted that the period with R(t) > 2 corresponded to the 

transmission dynamics in early March when a small number of secondary transmissions began with 

superspreading events. In fact, the well-cited basic reproduction number of SARS-CoV-2 is 2.5 [48]. 

 

Figure 3. Relationship between the instantaneous reproduction number and proportion of 

cases with a contact history.  

The black line shows the mean of estimated proportions of cases with a contact history (%), 

corresponding to the instantaneous reproduction number and the blue dotted lines show 95% 

confidence intervals computed using the bootstrap method. The colored points on the black line show 

the estimated instantaneous reproduction numbers that appeared from March 6 to May 10 with orange 

representing March 6–March 26, yellow representing March 27–April 6 and green representing 
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April 7–May 10, respectively. The points combined by two colors represent that the reproduction 

numbers at these points appeared in two of the three periods. The horizontal red line indicates the 

proportion of cases with a contact history when the instantaneous reproduction number is 1, as 

indicated by the vertical red dotted line. 

4. Discussion 

In the present study, we extracted epidemiological information regarding the proportion of 

COVID-19 cases with contact history. To clarify the relationship between transmission dynamics and 

contact history, we used a bivariate renewal process model to describe transmission among cases with 

and without a contact history. Analyzing the first wave dataset in Osaka from January 15 to June 30, 2020, 

we quantified the next-generation matrices as a function of time; thus, the instantaneous (effective) 

reproduction number was calculated for different periods during the epidemic wave. We objectively 

interpreted the estimated next-generation matrix and replicated the proportion of cases with contact 

𝑝(𝑡)  over time, and we examined the relationship to the reproduction number. In the subcritical 

condition with R(t) < 1, p(t) was a decreasing function of R(t). 𝑝(𝑡) was minimum with R(t) > 1. Even 

when the reproduction number was at the threshold level R(t) = 1, 𝑝(𝑡)  did not take either the 

maximum or minimum value, and 𝑝(𝑡) was minimum with R(t) > 1. 

An important point in the present study is that the dataset for the proportion of cases with a contact 

history does not simply reflect the transmission dynamics. As shown in Figure 3, 𝑝(𝑡)  takes the 

minimum value with R(t) > 1, implying that in practice, contact tracing might have collapsed at some 

point with R(t) > 1. With an increasing value of R(t) in a supercritical condition, p(t) declined and 

gradually plateaued, perhaps reflecting an epidemiological situation that precludes the ability to 

maintain contact tracing for a broad range of cases (instead, only close contacts within households and 

in elderly care and health care facilities were constantly monitored). At a subcritical level R(t) < 1, the 

qualitative pattern of p(t) still showed a decreasing trend with an increase in R(t). This might be 

consistent with the explanation that contact tracing capacity is slightly but gradually reduced as a 

function of the number of secondary transmissions. To our knowledge, the present study is the first to 

have demonstrated the abovementioned relationship, using the simple yet tractable bivariate renewal 

process model. 

From the next-generation matrices estimated for three distinct time phases, which correspond to 

the three different phases of governmental policy, we can see how the reproduction number changed 

during this period in relation to contact history. During the initial period, transmission between 

individuals with a contact history was near critical (𝑅11 was 0.99), and transmission from individuals 

without a contact history to those with a contact history was limited (i.e., 𝑅10  was below 1). 

Transmission between individuals without a contact history was not under control, with 𝑅00 > 1. In 

the second period after the government’s request to limit contacts, 𝑅00 diminished slightly but still 

took a value > 1. Finally, after the declaration of the state of emergency, 𝑅00 fell to 0.67 and 𝑅10 

and 𝑅11 also both remained below 1, indicating that the epidemic had been brought under control. 

We found that transmission to individuals with a contact history was below 1 for the entire course of 

the epidemic wave. Transmission among individuals without a contact history was substantially 

reduced only after declaration of the state of emergency. In this way, we showed that the bivariate 

model allows for the determination of the type of individuals (i.e., traced or untraced cases) 

contributing to transmission in relation to the epidemic period and the interventions in place. 
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An important future implication for use of the proposed model is to understand whether 

containment efforts can be successful in real-time. In addition to estimating the instantaneous 

reproduction number over time, we showed that p(t), and also the next-generation matrix stratified by 

the presence of contact history, allows us to monitor the success of ongoing contact tracing (and other 

interventions) in practice with respect to containing an outbreak. A decreasing signal of p(t) reflects 

increasingly difficult contact tracing. The present study findings indicate that monitoring p(t) would 

be a useful addition to surveillance. 

Several limitations of the present study must be discussed. First, our next-generation matrix might 

have been oversimplified, e.g., 𝑅01(𝑡) = 0, in advance of the estimation. In Japan, retroactive and 

prospective contact tracing was conducted during the first epidemic wave; thus, it was unlikely that 

traced cases contributed to producing untraced cases. However, this might not be applicable in other 

countries, and in fact, the use of four unknown quantities in the next-generation matrix increased 

uncertainty with regard to the heterogeneous transmission dynamics, which is the biggest disadvantage 

of our approach. Second, we did not account for undiagnosed cases. Unascertained cases must have 

existed [49], and our next-generation matrix does not show how undiagnosed cases contributed to 

secondary transmissions. Transmission from untraced cases could have been overestimated. Third, the 

study setting was restricted to the first COVID-19 wave in Osaka, although we have seen similar 

patterns of p(t) in subsequent epidemic waves across Japan (data not shown). We can establish the 

generalizability of the findings in a quantitative sense by exploring multiple waves; however, the 

consistently traced data owing to the practice of backward and forward contact tracing in Japan was 

limited to the first wave. Fourth, we relied on contact tracing data taken during interviews conducted 

by healthcare workers. If other approaches are followed and the tracing capacity is not overwhelmed 

(e.g., by using smartphone apps, as described in the Introduction), quantitatively different patterns of 

relationships between p(t) and R(t) might be identified.  

5. Conclusions 

Many take-home lessons exist in designing control strategies for COVID-19 [50,51]. For instance, 

a longer duration of NPIs, e.g., lockdown, does not necessarily lead to smoothly decreasing confirmed 

cases, and the negative aspects of stringent NPIs on public health such as psychological distress are 

induced. As an alternative, specific mitigation policies that aim to diminish contact among people in 

specific high-risk settings (e.g., bar, cafeteria, gym, etc.) could also decrease transmission and 

potentially act as an alternative of NPIs for the entire population, but that calls for early diagnosis and 

isolation of secondary cases assisted by contact tracing. It should be noted that even if the digital 

tracing method is adopted, fully automated digital tracing without a manual tracing method may not 

be the most effective [52]. Combining digital and manual contact tracing methods would be perhaps 

required to confront the risk of the next pandemic. 

Despite several technical limitations, we believe that the theoretical foundation regarding the 

proportion of cases with a contact history in relation to transmission dynamics was successfully 

described in the present study. We showed that a decreasing signal of p(t) over time could reflect 

an increasing difficulty in further tracing of contacts. By stratifying the surveillance data of cases 

according to contact history, public health agencies can monitor the success of ongoing contact 

tracing practices. 
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