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Abstract: In this work, the global stability of a continuous bioreactor model is studied, with the 
concentrations of biomass and substrate as state variables, a general non-monotonic function of 
substrate concentration for the specific growth rate, and constant inlet substrate concentration. Also, 
the dilution rate is time varying but bounded, thus leading to state convergence to a compact set instead 
of an equilibrium point. Based on the Lyapunov function theory with dead-zone modification, the 
convergence of the substrate and biomass concentrations is studied. The main contributions with 
respect to closely related studies are: i) The convergence regions of the substrate and biomass 
concentrations are determined as function of the variation region of the dilution rate (𝐷) and the global 
convergence to these compact sets is proved, considering monotonic and non-monotonic growth 
functions separately; ii) several improvements are proposed in the stability analysis, including the 
definition of a new dead zone Lyapunov function and the properties of its gradient. These 
improvements allow proving convergence of substrate and biomass concentrations to their compact 
sets, while tackling the interwoven and nonlinear nature of the dynamics of biomass and substrate 
concentrations, the non-monotonic nature of the specific growth rate, and the time-varying nature of 
the dilution rate. The proposed modifications are a basis for further global stability analysis of 
bioreactor models exhibiting convergence to a compact set instead of an equilibrium point. Finally, the 
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theoretical results are illustrated through numerical simulation, showing the convergence of the states 
under varying dilution rate. 

Keywords: dead-zone Lyapunov function; global asymptotic stability; non-monotonic growth model; 
attractive set 

 

1. Introduction 

Continuous tank bioreactors are useful for producing chemical compounds, cultivating biomass, 
and for biological wastewater treatment [1–3]. In these bioreactors, the dilution rate and inlet substrate 
concentration have an important effect on the behavior of the biomass and substrate concentrations. 
Also, an overlarge dilution rate or equivalently low hydraulic retention time leads to biomass washout 
in most cases [4–7]. Adequate operation conditions of continuous bioreactors with avoidance of 
biomass washout can be studied through global and local stability analysis [3,7,8]. It has been found 
that in the chemostat model with non-monotonic growth function, two stable biomass equilibria may 
occur for certain values of the dilution rate, corresponding to biomass washout and to positive biomass. 
The initial condition determines which equilibrium is reached [3,7]. Some examples are the model for 
phenol and p-cresol mixture degradation in a continuously stirred tank bioreactor [9]; the microalgae 
Droop model [10]; the model for microalgae culture in presence of nitrifying bacteria [11]; the model 
of anaerobic digester [12]. In addition, if the yield coefficient is a function of the substrate concentration, 
a stable limit cycle exists for a certain range of the dilution rate, what is consistent with experimental 
results. Bioreactor operation with these limit cycles is usually avoided in practice [13–15]. 

Local stability can be studied by the indirect Lyapunov method, the main results include 
equilibrium points related to biomass existence and biomass washout, and the effect of dilution rate 
and inlet substrate concentration on the existence and stability of equilibria [7,16,17]. In contrast, 
global stability for constant dilution rate can be assessed by Lyapunov function theory, and the main 
results include the determination of global stability of the equilibrium associated with positive 
biomass concentration [9,11,18,19], stability of the equilibrium associated to biomass extinction 
[9,19,20], effect of kinetic parameters on the stability of equilibria [20], convergence of the additive 
combination of biomass, substrate and product concentrations [9,19]; domain of attraction of stable 
equilibria (see [11]); range of the input substrate concentration for global stability of the positive 
equilibrium point [21]. 

Some of these works are discussed at what follows. In [19], the global stability of a chemostat 
with overflow metabolism is studied. The state variables of the model are the concentrations of biomass, 
substrate, and by-product. The by-product secretion has an inhibitory effect on the growth of 
microorganisms, whereas the by-product excretion rate function is non-smooth. The existence and 
global stability of the equilibrium corresponding to positive biomass are proved, and the parameter 
conditions related to the existence of by-product are determined. In [9], the local and global stability 
of a model for phenol and cresol mixture degradation in a continuously stirred bioreactor is studied. 
The state variables are the concentrations of biomass, phenol and cresol. The biomass-specific growth 
rate involves inhibition caused by the substrate concentrations. The local asymptotic stability of the 
equilibrium point and the existence of local bifurcation in dependence on the dilution rate (𝐷) are 
studied. It was found that two positive biomass equilibria exist, and the interval of 𝐷 for the existence 
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of each is determined. Global asymptotic stability of one equilibrium is established. In [18], a stability 
analysis is performed for a simplified model of anaerobic digestion. The model corresponds to 
continuously stirred bioreactor, with two biomasses (acidogenic and methanogenic microorganisms) 
and three substrates (simple substrate, acetic acid, and ammonia). The specific growth rate of the 
methanogenic microorganisms involves inhibition dependence on acetic acid and ammonia. There are 
four equilibria, some of which involve the existence of one biomass. Their local stability analysis is 
proved for different cases of the input concentration of simple substrates (𝑠 ) whereas global stability 
is proved for some cases of low 𝑠 . In [11], a stability analysis is performed for a microalgal pond 
with nitrification, whose model corresponds to that of a continuously stirred bioreactor with two 
biomass species (nitrifying biomass and microalgal biomass) and two substrates (ammonium 
concentration and nitrate concentration). Based on the Lyapunov function method, the global 
asymptotic stability of the equilibria is proved. There are different equilibrium points, corresponding 
to the following cases: washout of both biomasses; existence of one biomass; and existence of two 
biomasses. The conditions for the existence of these equilibrium points are determined, and their local 
and global stability are determined. In [22] a global stability analysis is performed for a wastewater 
treatment process whose model corresponds to continuously stirred bioreactor with three substrates 
(organic nitrogen, NH4

+-N, and NO2
-+NO3

-). The specific reaction rates are Monod type, and the 
dilution rate is considered constant, whereas the inlet concentration of organic nitrogen is considered 
time-varying and bounded, so that the system converges to a compact set instead of an equilibrium 
point. Only normal operation is considered, with no biomass washout. The convergence sets are 
determined, and global convergence is proved. To this end, dead-zone Lyapunov functions are used.  

In cases that the dilution rate (𝐷) is neither fixed nor controlled, the state variables converge to a 
region instead of an equilibrium point. This case is addressed in [3], where the stability of a simple 
chemostat model is studied, considering the concentrations of biomass and substrate as state variables, 
non-monotonic specific growth rate, and random disturbances on the input flow rate. The perturbations 
on the input flow rate are modeled through bounded random fluctuations. Positive constant lower and 
upper bounds are considered for the dilution rate. Biomass concentration can exhibit either extinction, 
weak persistence or strong persistence, depending on the bounds of the dilution rate constraint. The 
occurrence of these biomass behaviors is proved, and the respective dilution rate range is given. In 
addition, the convergence regions of substrate and biomass concentrations are determined for the case 
of biomass persistence. To this end, a comparison of solutions of scalar differential equations, and 
theory of asymptotically autonomous dynamical systems are used. 

In this work, the global stability of a model of continuous bioreactor is studied. The concentrations 
of biomass and substrate are the state variables, whereas non-monotonic and monotonic functions of 
substrate concentration are used for the specific growth rate, and the inlet substrate concentration is 
considered constant. Also, the dilution rate is time varying but bounded, thus leading to the 
convergence of biomass and substrate concentrations to a compact set instead of an equilibrium point. 
Based on Lyapunov function theory with dead-zone modification, global stability is studied and proved. 
Finally, these results are illustrated by numerical simulation of a continuous bioreactor, considering 
non-monotonic and a monotonic specific growth rates. The main contributions with respect to closely 
related studies are: 

 Contribution CA. The convergence regions of the substrate and biomass concentrations are 
determined as a function of the upper bound of the dilution rate (𝐷), and the global asymptotic 
convergence to these compact sets is proved, considering the persistent variation of 𝐷. In contrast, in 
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stability studies of open loop continuous bioreactor model based on Lyapunov function, 𝐷  is 
commonly considered constant and substrate concentration converges to a point, not a compact set (for 
instance [9,11,18,19,23]. In addition, the working volume is not assumed constant, which is in contrast 
to other studies based on the Lyapunov function, for instance [3,11,18,22]. 

 Contribution CB. Several improvements are proposed in the stability analysis, including the 
definition of a new dead zone Lyapunov function and the properties of its gradient. These 
improvements allow proving global convergence of substrate and biomass concentrations to their 
compact sets, while tackling: a) The interwoven and nonlinear nature of the dynamics of biomass and 
substrate concentrations, b) the non-monotonic nature of the specific growth rate; c) the time-varying 
nature of the dilution rate. These improvements are a basis for further global stability analysis of 
bioreactor models exhibiting convergence to a compact set instead of convergence to an equilibrium 
point. In contrast: i) Challenges a and c are not considered in [22], which is based on dead-zone 
Lyapunov function theory; ii) other global stability studies based on dead-zone Lyapunov function (for 
instance [24–27]) are applied to closed-loop systems and are not straightforwardly applicable to the 
considered bioreactor; iii) global stability studies based on Lyapunov function prove state convergence 
to compact sets, including the finite-time Lyapunov theory [28–33] and the ultimate bound approach 
[34–38] but they are not straightforwardly applicable to the considered bioreactor. 

The work is organized as follows. The bioreactor model is presented in Section 2. The main results 
are presented in Section 3. The discussion is presented in Section 4. Numerical simulations are 
presented in Section 5. The conclusions are drawn in Section 6. 

2. Bioreactor model 

Consider a continuous flow bioreactor described by model [3,8,39,40]: 

𝜇 𝐷 𝑡 𝑥                               (1a) 

𝑠 𝑠 𝐷 𝑡 𝑦 𝜇𝑥        (1b) 

where 𝑥  and 𝑠  are the concentrations of biomass and substrate, respectively; 𝜇  is the specific 
growth rate; 𝑦  is the substrate to biomass yield, 𝑦 𝜇𝑥 is the specific substrate consumption rate; 𝑠  
is the input substrate concentration; 𝑄  is the input flow rate of medium, 𝑄  is the output flow 
rate of medium, and 𝑣 is the volume of the medium in the bioreactor vessel; and 𝐷 𝑡 𝑄 𝑣⁄  is 
the dilution rate. If the bioreactor works as an original chemostat, the input and output flow rates are 
the same (𝑄  =𝑄  ) so that the working volume 𝑣  is constant [3]. The 𝑡  argument is hereafter 
dropped for the sake of simplicity. 

The following assumptions are considered: 
Assumption 1. The biomass and substrate concentrations feature 𝑥 ∈ 0, ∞ , 𝑠 ∈ 0, 𝑆  [33]. 
Assumption 2. 𝑦  and 𝑠  are positive and constant [3,39,40]. 
Assumption 3. The specific growth rate 𝜇 is a continuous function of the substrate concentration 

(𝑠): it is non-negative, it is either monotonic or non-monotonic, it may involve growth threshold, and 
it satisfies the following features: 

 Non-monotonic case: 
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⎩
⎪
⎨

⎪
⎧

𝜇 0                                               
𝜇 is decreasing for 𝑠 ∈ 𝑆 , 𝑆                     

𝜇 is increasing for 𝑠 ∈ 𝑠, 𝑆  and 𝜇 0 for 𝑠 ∈ 0 𝑠

𝑜𝑟 𝜇 is increasing for 𝑠 ∈ 0, 𝑆                    

        (2) 

where 𝑆 𝑎𝑟𝑔 𝑠𝑢𝑝
 ∈ ,    

𝜇, and 𝑠 is a constant value in the range 0, 𝑆 . 

 Monotonic case: 
𝜇 0                                             
𝜇 is increasing for 𝑠 ∈ 𝑠, 𝑆  and 𝜇 0 for 𝑠 ∈  0 𝑠
𝑜𝑟 𝜇  is increasing for  𝑠 ∈ 0, 𝑆                   

         (3) 

where 𝑠 is a constant value in the range 0, 𝑆 . 
Remark 2.1. The features of the non-monotonic growth rate (2) are based on [3,40,41], 

considering the growth threshold of [42]. Nonmonotone functions describe the case that substrate 
limits growth at low concentrations, but it is inhibitory at high concentrations [43–45]. As some 
examples of substrate induced inhibition, Candida utilis is inhibited by butanol [46]. A. succinogenes 
is inhibited by sugar [47], Nitrobacter is inhibited by nitrite and Nitrosomas is inhibited by ammonia 
[48]. A common nonmonotone function is the Andrews model [3,48,49]. 

𝜇 𝜇                                  (4) 

where 𝑘  , 𝑘   are saturation and inhibition constants, and 𝑠  is the substrate concentration. The 
coordinates of the maximum are: 

𝜇 𝜇 , 𝑆 𝑘 𝑘                    (5) 

where 𝜇  is the maximum specific growth rate attainable in presence of inhibition, and 𝑆  is 
the substrate concentration at maximum specific growth rate. Growth is inhibited and 𝜇  is decreasing 
for 𝑠 𝑆  [48]. 

Remark 2.2. The features of the monotonic growth rate (3) are based on [17,39,41], considering 
the growth threshold of [42]. A basic example of monotonic growth rate (3) with growth threshold is 
obtained by using the Monod growth rate function: 

𝜇
𝜇 𝑘  𝑓𝑜𝑟 𝑠 𝑘 𝑘 / 𝜇 𝑘  

0            𝑓𝑜𝑟 𝑠 𝑘 𝑘 / 𝜇 𝑘
          (6) 

where 𝜇 𝑘 , whereas 𝜇 , 𝑘 , 𝑘  are positive. 
Remark 2.3. Growth ceasing for low values of substrate concentration has been verified for some 

strains. This is represented by using zero reaction rate for substrate concentrations lower than a 
threshold 𝑠 [42,50]. 

Remark 2.4. In the case that 𝑠 𝑠  for 𝑡 𝑡 , Eq (1b) leads to 𝑑𝑠 𝑑𝑡 𝑦 𝜇𝑥 0⁄ , what 
implies 𝑠 𝑠  for 𝑡 𝑡 , where 𝑠  is 𝑠 at initial time. 
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3. Analysis of convergence to compact set 

In this section, the global stability of model (1) with convergence to a compact set is studied, 
considering non-monotonic and monotonic growth functions: 

i) The dynamics of transformed states of biomass and substrate concentrations and the summary 
of the stability analysis procedure is given in subsection 3.1. The dynamics of the transformed states 
is a necessity for the Lyapunov-based stability analysis. 

ii) The convergence regions of the substrate and biomass concentrations are given in terms of 
the upper bound of the dilution rate (D), and the global asymptotic convergence to these compact sets 
is stated in subsection 3.2; the non-monotonic growth function (2) is considered in Theorem 3.1, and 
the monotonic growth function (3) is considered in Theorem 3.2. 

iii) An overview of the proposed improvements of the stability analysis necessary for proving 
convergence of the substrate and biomass concentrations to their compact sets is given in subsection 
3.3, including the proposed dead-zone Lyapunov function and the defined properties of the gradient 
𝑊. 

iv) The relationship of results stated in Theorems 3.1 and 3.2 with equilibrium points is given in 
subsection 3.4. 

3.1. Dynamics of the transformed states and overview of the stability analysis procedure 

Consider the bioreactor model (1), subject to assumptions 1 to 3. Let 𝑧 𝑦 𝑥 𝑠. Differentiating 
with respect to time and using the time derivatives (1a), (1b) yields 

𝑧 𝑠 𝑧 𝐷 

Let 𝑧̅ 𝑦 𝑥 𝑠 𝑠 . Differentiating with respect to time and arranging, yields 

̅
𝑧̅𝐷           (7) 

The error of substrate concentration is defined as 𝑒 𝑠 𝑠∗. The constant 𝑠∗ is: 
 The lowest constant value that satisfies 𝜇 𝐷  at 𝑠 𝑠∗  for non-monotonic growth 

function (2). In this case, two 𝑠 values satisfy 𝜇 𝐷 , and 𝑠∗ is the lowest of them. 
 The constant substrate concentration value that satisfies 𝜇 𝐷  at 𝑠 𝑠∗ for monotonic 

growth function (3). In this case, only one 𝑠 value satisfies 𝜇 𝐷 . 
Differentiating 𝑒 with respect to time, yields 𝑒 𝑠. Substituting the time derivative of 𝑠 (1b) 

and arranging, yields 

𝑒 𝑦 𝜇 𝐷 𝑥 𝑠 𝑠 𝑦 𝑥 𝐷 

Arranging, yields 

𝑒 𝑦 𝜇 𝐷 𝑥 𝑧̅𝐷             (8) 

The overall steps of the procedure used in the proofs of Theorems 3.1 and 3.2 are: definition of 
the error 𝑒 as the difference between the substrate concentration and the upper limit of its convergence 
region; determination of the time derivative 𝑑𝑒/𝑑𝑡; definition of the new state 𝑧, consisting on the 
weighted addition of the biomass and substrate concentrations; determination of the time derivative 
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𝑑𝑧/𝑑𝑡 ; definition of the Lyapunov function for 𝑧 𝑉   and determination of its time derivative 
𝑑𝑉 𝑑𝑡⁄  ; definition of the features of the Lyapunov function for 𝑒 𝑉    and the features of its 

gradient 𝑊 , using dead-zone modification; determination of the 𝑑𝑉 𝑑𝑡⁄  expression in terms of 
the gradient 𝑊; definition of the dead zone 𝑊 function; determination of the 𝑉  function using the 
defined 𝑊 function; determination of the 𝑑 𝑉 𝑉 𝑑𝑡⁄  expression in terms of 𝑊; arrangement of 
the 𝑑 𝑉 𝑉 𝑑𝑡⁄  expression in terms of a non-positive function of 𝑊, by applying the properties 
of the defined dead zone 𝑊 function and determining the properties of its interaction with the 𝜇, 𝑧̅ 
terms; determination of the convergence of the substrate concentration; determination of the 
convergence of biomass concentration. 

This procedure aims at identifying the convergence region of the substrate concentration that leads 
to non-positive nature of the 𝑑 𝑉 𝑉 𝑑𝑡⁄  expression, what in turn allows to prove the convergence. 
The dead-zone modification is used in the Lyapunov function 𝑉  to facilitate the study of convergence 
to a compact set instead of an equilibrium point. Dead-zone Lyapunov functions have been mainly 
used for robust control design: recent studies are presented in [24–27] whereas early studies are 
presented in [51–53]. In addition, an application to open loop systems is presented in [22]. 

3.2. Convergence of the substrate and biomass concentrations 

Theorem 3.1. Consider the bioreactor model (1) subject to assumptions 1 to 3, with the non-
monotonic growth function 𝜇 satisfying conditions (2), and the dilution rate 𝐷 is time-varying and 
subject to saturation: 

𝐷 ∈ 0,   𝐷                               (9) 

  0 𝐷 𝜇  

𝐷 𝑠𝑢𝑝
 ∈ ,    

𝜇                         (10) 

where 𝜇  is the 𝜇 value at 𝑠 𝑠 . Then: 
i) the substrate concentration 𝑠 converges asymptotically to Ω 𝑠: 0 𝑠 𝑠∗  where 𝑠∗ 

is the lowest constant value that satisfies 𝜇 𝐷  at 𝑠 𝑠∗; 

ii) the biomass concentration 𝑥  converges asymptotically to Ω 𝑥: 𝑠 𝑠∗ 𝑥

𝑠 . 

Proof. Expression (8) involves both 𝑠 and 𝑧̅ with nonlinear dependence on 𝑠, and time varying 
dilution rate (D). Then, choosing a Lyapunov function that allows proving the convergence of 𝑒 is 
overly complex. To this end, the Lyapunov function 𝑉  is defined in terms of its gradient 𝑊, and the 
properties of 𝑉 , 𝑊 are also defined at this point, but the 𝑉 , 𝑊 expressions are defined at the last 
part of the stability analysis. The main features of 𝑉  are: 

𝑉 0  𝑓𝑜𝑟 𝑒 0 

𝑉 0  𝑓𝑜𝑟 𝑒 0                             (11) 

𝑉   𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒, and it is bounded for bounded 𝑒 

𝑉   𝑖𝑠 𝑛𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒, 𝑓𝑜𝑟 𝑒 0 
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The time derivative of 𝑉  can be expressed as 

 𝑊                                  (12) 

Where the gradient of 𝑉  is: 

𝑊                                    (13) 

The properties of 𝑊 in terms of 𝑒 are: 

𝑊 0 𝑓𝑜𝑟 𝑒 0 

 𝑊 0 𝑓𝑜𝑟 𝑒 0                              (14) 

𝑊 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒  

𝑊 𝑖𝑠 𝑛𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒, 𝑓𝑜𝑟 𝑒 0 

The 𝑉  function can be determined from the integrated form of Eq (13): 

𝑉 𝑊𝑑𝑒                                 (15) 

The resulting 𝑉   function fulfills properties (11). Combining Eq (12) with the 𝑑𝑒 𝑑𝑡⁄  
expression (8), yields 

𝑑𝑉
𝑑𝑡

𝑦 𝑊 𝜇 𝐷 𝑥 𝑊𝑧̅𝐷 

Which can be rewritten as 

𝜀 𝑦 𝑊 𝜇 𝐷 𝑥 𝜀 𝑦 𝑊 𝜇 𝐷 𝑥 𝑊𝑧̅𝐷       (16) 

Where 𝜀 , 𝜀  are positive constants fulfilling 

𝜀 𝜀 1; 𝜀 ∈ 0, 1 ; 𝜀 ∈ 0, 1  

From the definition of 𝑠∗, the dependence of 𝜇 on 𝑠 (2) and the limitation of 𝐷  (10) it 
follows that 

𝜇 𝐷  𝑓𝑜𝑟 𝑠 𝑠∗ and 𝜇 𝐷  𝑓𝑜𝑟 𝑠 𝑠∗             (17) 

Hence, 𝜇 𝐷 0 𝑓𝑜𝑟 𝑒 0. Considering the limitation of 𝐷 (9), we get 

𝜇 𝐷 𝜇 𝐷 0  𝑓𝑜𝑟 𝑒 0                                (18) 

Combining with the 𝑊  properties (14), we have 𝑊 𝜇 𝐷 0   for 𝑠 𝑠∗  and 𝑊 𝜇
𝐷 0 for 𝑠 𝑠∗. Therefore, 

𝜀 𝑦 𝑊 𝜇 𝐷 𝑥 𝜀 𝑦 𝑊 𝜇 𝐷 𝑥 

Hence, a preliminary 𝑊 function is chosen to be 
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𝑊
𝜇 𝐷  𝑓𝑜𝑟  𝑠 𝑠∗ 
0       𝑓𝑜𝑟   𝑠 𝑠∗  

Which does not satisfy the last of 𝑊 properties (14), because of the non-monotonic nature of 𝜇. 
From Eq (17) and the fact that 𝜇 𝜇  for 𝑠 𝑠 , it follows that 𝜇 is higher than the line that 
connects the points 𝑠∗, 𝐷  and 𝑠 , 𝜇 : 

𝜇 >𝐷 ∗ 𝑠 𝑠∗   𝑓𝑜𝑟   𝑠 ∈  𝑠∗, 𝑠  

𝜇 𝐷 ∗ 𝑠 𝑠∗   𝑓𝑜𝑟   𝑠 ∈  𝑠∗, 𝑠               (19) 

Therefore, the 𝑊 function is chosen to be 

  𝑊 ∗ 𝑒 𝑓𝑜𝑟  𝑒 0 

0        𝑓𝑜𝑟    𝑒 0
                    (20) 

Which satisfies 𝑊  properties (14). In addition, the resulting Lyapunov function 𝑉   can be 
obtained by using Eqs (15) and (20): 

   𝑉 ∗  𝑓𝑜𝑟  𝑒 0 

0          𝑓𝑜𝑟    𝑒 0
                   (21) 

Equations (14), (18), (19) and (20) imply 

𝑊 𝜇 𝐷 𝑊 0                             (22) 

The proof is given in Appendix A1. From this property and the positiveness of 𝑥  stated in 
assumption 1, it follows that 

𝜀 𝑦 𝑊 𝜇 𝐷 𝑥 𝜀 𝑦  𝑥 𝑊  

𝑥  inf 𝑥 

Substituting in Eq (16), yields 

𝜀 𝑦 𝑊 𝑥 𝜀 𝑦 𝑥 𝑊 𝑊𝑧̅𝐷               (23) 

In view of the effect of 𝑧̅, we consider the Lyapunov function for it: 

𝑉 𝑘 𝑧̅                                   (24) 

which exhibits the following properties: 

𝑉 0  𝑓𝑜𝑟 𝑧̅ 0 

𝑉 0  𝑓𝑜𝑟 𝑧̅ 0                             (25) 

𝑉   𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑧̅, and it is bounded for bounded 𝑧̅ 
𝑉   𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 |𝑧̅| 

Differentiating 𝑉  with respect to time, using Eq (7), yields 

𝑉 𝑘 𝐷𝑧̅  
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Combining with Eq (23), yields 

𝜀 𝑦 𝑊 𝑥 𝜀 𝑦 𝑥 𝑊 𝑊𝑧̅𝐷 𝑘 𝐷𝑧̅             (26) 

Where 

𝜀 𝑦 𝑥 𝑊 𝑊𝑧̅𝐷 𝑘 𝐷𝑧̅ 0 

𝑓𝑜𝑟  𝑘
𝐷

4𝜀 𝑦 𝑥
 

Substituting into Eq (26), yields 

𝑑𝑉
𝑑𝑡

𝑑𝑉
𝑑𝑡

𝜀 𝑦 𝑊 𝑥 

Considering assumption 1, yields 

𝜀 𝑦 𝑊 𝑥 0                       (27) 

Arranging and integrating, yields 

𝑉 𝑉 𝜀 𝑦 𝑥 𝑊 𝑑𝑡 𝑉 𝑉                 (28) 

where 𝑉  is 𝑉  at initial time, whereas 𝑉  is 𝑉  at initial time. From (28) it follows that 𝑉 ∈
ℒ ,   𝑉 ∈ ℒ ,   𝑊 ∈ ℒ . Applying the Barbalat’s lemma [54], yields 

lim
→

𝑊 0 

And consequently, 

lim
→

𝑊 0 

Accounting for the 𝑊  properties (14) and the substrate positiveness constraint stated in 
assumption 1, we deduce that 𝑠 converges asymptotically to Ω 𝑠: 0 𝑠 𝑠∗ . 

From Eq (7) it follows that 𝑧̅ 𝑦 𝑥 𝑠 𝑠  converges exponentially to zero. This result and 
the asymptotic convergence of 𝑠 to Ω  imply that 𝑥 converges asymptotically to 

Ω 𝑥:
1
𝑦

𝑠 𝑠∗ 𝑥
1
𝑦

𝑠  

This completes the proof. 
Remark 3.1. The value 𝜇 𝐷  holds true for two values of substrate concentration (𝑠), for 

non-monotonic specific growth rate 𝜇, and 𝑠∗ is the lowest of them. 
Remark 3.2. The fulfillment of the 𝑊  properties (14) leads to the fulfillment of the 𝑉  

properties (11). In addition, 𝑉  (24) exhibits the properties (25). 

Remark 3.3. In Theorem 3.1, the conditions 0 𝐷 𝜇 , 𝐷 𝑠𝑢𝑝
 ∈ ,    

𝜇  imply 

𝐷 𝑚𝑖𝑛 𝜇 , 𝑠𝑢𝑝
 ∈ ,    

𝜇 𝜇  
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because 𝜇 𝑠𝑢𝑝
 ∈ ,    

𝜇. 

Remark 3.4. Condition 0 𝐷 𝜇   implies that only one 𝑠  value 𝑠∗   satisfies both 
𝜇| ∗ 𝐷  and 𝑠 𝑠 . 

Theorem 3.2. Consider the bioreactor model (1) subject to assumptions 1 to 3, with the monotonic 
growth function 𝜇, satisfying conditions (3), and the dilution rate 𝐷 is time varying and subject to 
saturation: 

𝐷 ∈ 0, 𝐷                               (29) 

  0 𝐷 𝜇                             (30) 

Where 𝜇  is the 𝜇 value at 𝑠 𝑠 . Then: 
i) the substrate concentration converges asymptotically to Ω 𝑠: 0 𝑠 𝑠∗  where 𝑠∗ is 

a constant substrate concentration value that satisfies 𝜇 𝐷  at 𝑠 𝑠∗; 

ii) the biomass concentration 𝑥  converges asymptotically to Ω 𝑥: 𝑠 𝑠∗ 𝑥

𝑠 . 

Proof. The transformed states 𝑒, 𝑧̅ are defined as 

𝑒 𝑠 𝑠∗, 𝑧̅ 𝑦 𝑥 𝑠 𝑠  

The time derivative of 𝑒 is given by Eq (8), whereas the time derivative of  𝑧̅ is given by Eq 
(7). Consider the Lyapunov function 

𝑉 𝑉 𝑉                                 (31) 

Where 

𝑉 𝑘 𝑧̅ , 𝑉 𝑊𝑑𝑒 

and the gradient function 𝑊 satisfies the properties in terms of 𝑒: 

𝑊 0  𝑓𝑜𝑟 𝑒 0 

𝑊 0  𝑓𝑜𝑟  𝑒 0                            (32) 

𝑊 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒 

𝑊 𝑖𝑠 𝑛𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒, 𝑓𝑜𝑟 𝑒 0 

Differentiating 𝑉 (31) with respect to time, using the time derivatives of 𝑒 and 𝑧̅ given by Eqs 
(8), (7), yields 

𝜀 𝑦 𝑊 𝜇 𝐷 𝑥                         (33) 

From the definition of 𝑠∗, the dependence of 𝜇 on 𝑠 (3), and the limitation of 𝐷  (30), it 
follows that 𝜇 𝐷    for 𝑠 𝑠∗  and  𝜇 𝐷   for 𝑠 𝑠∗ . Hence, 𝜇 𝐷 0  for 𝑒
0 and 𝜇 𝐷 0 for 𝑒 0. Considering the limitation of 𝐷 (29), we have 
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𝜇 𝐷 𝜇 𝐷 0  for 𝑒 0                      (34) 

Then, considering the 𝑊 properties (32), the exact 𝑊 function is chosen as 

𝑊
𝜇 𝐷  𝑓𝑜𝑟   𝑒 0
0        𝑓𝑜𝑟   𝑒 0                       (35) 

Which satisfies properties (32). In addition, the resulting Lyapunov function 𝑉  can be obtained 
from Eq (15): 

𝑉
𝜇 𝐷 𝑑𝑒   𝑓𝑜𝑟   𝑒 0

0                 𝑓𝑜𝑟  𝑒 0
                (36) 

Where 𝜇  is the 𝜇 function with the state transformation 𝑠 𝑒 𝑠∗. From the 𝑊 definition 
(35) and properties (34), (32) it follows that  

𝜇 𝐷 𝑊 0   𝑓𝑜𝑟 𝑒 0 

Combining with the second subequation of (32), yields 

𝑊 𝜇 𝐷 𝑊 0  𝑓𝑜𝑟 𝑒 0                     (37) 

From the first subequation of (32), it follows that 

𝑊 𝜇 𝐷 0 𝑊    𝑓𝑜𝑟 𝑒 0 

Combining with (37), yields 

𝑊 𝜇 𝐷 𝑊 0 

Using this result in Eq (33), yields 

𝑑𝑉
𝑑𝑡

𝑑𝑉
𝑑𝑡

𝜀 𝑦 𝑊 𝑥 0 

Considering assumption 1, yields 

𝑑𝑉
𝑑𝑡

𝑑𝑉
𝑑𝑡

𝜀 𝑦 𝑊 𝑥 0 

Arranging and integrating, yields 

𝑉 𝑉 𝜀 𝑦 𝑥 𝑊 𝑑𝑡 𝑉 𝑉  

Hence, 𝑉 ∈ ℒ , 𝑉 ∈ ℒ , 𝑊 ∈ ℒ . Applying the Barbalat’s lemma [54], yields 

lim
→

𝑊 0 

And consequently, 

lim
→

𝑊 0 
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Accounting for the 𝑊  definition (35) and the substrate positiveness constraint stated in 
assumption 1, we deduce that 𝑠 converges asymptotically to Ω 𝑠: 0 𝑠 𝑠∗ . 

From Eq (7) it follows that 𝑧̅ 𝑦 𝑥 𝑠 𝑠  converges exponentially to zero. This result and 
the asymptotic convergence of 𝑠 to Ω  imply that 𝑥 converges asymptotically to 

Ω 𝑥:
1
𝑦

𝑠 𝑠∗ 𝑥
1
𝑦

𝑠  

This completes the proof. 
Remark 3.5. Theorem 3.1 considers nonmonotonic growth rate function 𝜇 whereas Theorem 

3.2 considers monotonic growth rate function. 
Remark 3.6. Any time-varying 𝐷 behavior satisfying 𝐷 ∈ 0,   𝐷 , 0 𝐷 𝜇  is 

allowed in Theorems 3.1 and 3.2, including the sinusoidal, random type or a combination of them. 
Also, constant 𝐷 behavior is allowed. 

Remark 3.7. For the nonmonotonic case, the geometric properties of 𝑉  stated in Eq (11) arise 
as a consequence of the properties of 𝑊  stated in Eq (14). Indeed, properties (11) are 
straightforwardly verified for the Lyapunov function (21). For the monotonic case, the geometric 
properties of 𝑉  arise as a consequence of the properties of 𝑊 stated in Eq (32). 

3.3. Summary of the proposed improvements of the stability analysis and dead zone Lyapunov function 

Proposed improvements of the stability analysis. The improvements proposed in the stability 
analysis are detailed in the proofs of Theorems 3.1 and 3.2, most of them related to the proposed dead 
zone Lyapunov function for the tracking error 𝑒 𝑠 𝑠∗ , 𝑉  , and its gradient 𝑊 . These 
improvements can be summarized as follows: 

 Before defining 𝑉 , the 𝑑𝑉 𝑑𝑡⁄  equation is expressed in terms of the gradient 𝑊 (see Eqs 
(12) and (16)) and the properties of 𝑊 relevant for proving convergence of the tracking error 𝑒 are 
defined using dead zone modification, see Eq (14).  

 Then, the Lyapunov function 𝑉  is expressed as an integral in terms of its gradient 𝑊, see 
Eq (15). 

 A particular dead zone 𝑊 function is proposed, see Eqs (20) and (36), fulfilling the stated 
𝑊 properties. As a result, a new expression is obtained for 𝑉 , with dead zone modification, see Eqs 
(21) and (36). 

 The 𝑑 𝑉 𝑉 𝑑𝑡⁄  expression is arranged in terms of a non-positive function of 𝑊, by 
applying the properties of the 𝑊 stated in Eq (14) and determining the properties of the interaction 
of 𝑊 with the 𝜇, 𝑧̅ terms, see Eq (22) and subsequent equations. 

Proposed dead zone Lyapunov function and its gradient. The overall Lyapunov function is 

𝑉 𝑉 𝑉 , 𝑉 𝑘 𝑧̅  

Where 𝑘 𝐷 4𝜀 𝑦 𝑥⁄  , 𝑧̅ 𝑦 𝑥 𝑠 𝑠  , and 𝑉   is function of the error 𝑒 𝑠
𝑠∗, and it is defined in terms of its gradient: 

𝑉 𝑊𝑑𝑒                             (38) 

The properties of  𝑊 in terms of the error 𝑒 𝑠 𝑠∗ are: 
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𝑊 0  𝑓𝑜𝑟   𝑒 0 

𝑊 0  𝑓𝑜𝑟  𝑒 0                            (39) 

𝑊 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒 

𝑊 𝑖𝑠 𝑛𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑒, 𝑓𝑜𝑟 𝑒 0 

A particular 𝑊 function that satisfies these properties, for the case of non monotonic specific 
growth rate (2), is: 

𝑊 ∗ 𝑒 𝑓𝑜𝑟  𝑒 0 

0         𝑓𝑜𝑟    𝑒 0
                    (40) 

For which the Lyapunov function 𝑉  is found by using Eq (38): 

𝑉 ∗  𝑓𝑜𝑟  𝑒 0 

0         𝑓𝑜𝑟    𝑒 0
                     (41) 

A particular 𝑊 function that satisfies properties (39), for the case of monotonic specific growth 
rate (3), is: 

𝑊
𝜇 𝐷  𝑓𝑜𝑟   𝑒 0
0       𝑓𝑜𝑟   𝑒 0                       (42) 

For which the Lyapunov function 𝑉  is: 

𝑉
𝜇 𝐷 𝑑𝑒   𝑓𝑜𝑟   𝑒 0

0                  𝑓𝑜𝑟  𝑒 0
                   (43) 

Where 𝜇  is the 𝜇 function with the state transformation 𝑠 𝑒 𝑠∗. Both 𝑊 functions (40) 
and (42) fulfill 

𝑊 𝜇 𝐷 𝑊 0 

In the case of Monod growth function with growth threshold (6), the Lyapunov expression 𝑉  
(43) gives: 

𝑉
𝜇 𝑒 𝑘 𝑙𝑛

∗

∗ 𝑘 𝐷 𝑒  𝑓𝑜𝑟   𝑒 0

0                                   𝑓𝑜𝑟   𝑒 0
        (44) 

Remark 3.8. The results stated in Theorems 3.1 and 3.2 and their proofs do not allow stating the 
input to state stability (ISS) of system (1), in the context of the ISS notion stated in [55]. One way to 
prove that a system is ISS is by proving that the existence of an ISS Lyapunov function. An ISS 
Lyapunov function satisfies 

𝛼 |𝑦| 𝑉 𝑦 𝛼 |𝑦|                            (45) 

𝑑𝑉
𝑑𝑡

𝛼 |𝑦| 𝛼 ‖𝑢‖  

Where 𝑦  is the state vector, 𝑢  is the input; 𝛼  ,𝛼  , 𝛼  , 𝛼   are 𝒦   functions, according to 



3410 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3396–3424. 

[55]. In Eqs (26) and (27): 
i) The term 𝜀 𝑦 𝑊 𝑥  is not 𝒦 , because 𝑊  is not strictly increasing, according to 

Eq (14). Indeed, it is not increasing for 𝑒 0.  
ii) The Lyapunov function 𝑉 𝑉 𝑉  does not satisfy condition (45) because 𝑉  is not 

strictly increasing. 
Then, ISS property cannot be concluded. However, Theorems 3.1 and 3.2 and their proofs allow 

stating the boundedness for bounded input 𝐷 . Equation (28) implies that 𝑒, 𝑧  are bounded, and 
consequently 𝑥, 𝑠 are bounded, provided bounded 𝐷. 

3.4. Relationship with equilibrium points 

Notice that the limits of the convergence regions of 𝑥, 𝑠 stated in Theorem 3.1 are related to one 
of the equilibrium points of model (1). Model (1) with nonmonotonic growth rate (4) and constant 
dilution rate 𝐷 exhibits the equilibrium points: 

𝐸 :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥 𝑠 /

/
 

𝑠
/

           

𝐷 𝜇                        

           (46) 

𝐸 :

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥 𝑠 /

/

𝑠
/

         

𝐷 𝜇                      

             (47) 

𝐸 : 
𝑥 0

𝑠 𝑠                                    (48) 

The upper limit of the convergence region of 𝑠, that is, 𝑠∗
/

, 

obtained from condition 𝜇 𝐷   at 𝑠 𝑠∗ , that is, 𝜇 𝜇
∗

𝐷   corresponds to 

equilibrium point 𝐸  with constant 𝐷 𝐷 . The limits of the convergence region of 𝑥, that is 

𝑠 𝑠∗ 𝑠
/

/
  and 𝑠  , correspond to the 

equilibrium point 𝐸 , with constant 𝐷 𝐷  and constant 𝐷 0, respectively. 
Also, notice that the limits of the convergence regions of 𝑥, 𝑠 stated in Theorem 3.2 are related 

to one of the equilibrium points of model (1). Model (1) with monotonic growth rate 𝜇 𝜇  

and constant dilution rate 𝐷 exhibits the equilibrium points 
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𝐸 :

⎩
⎪
⎨

⎪
⎧𝑥

1
𝑦

𝑠
𝑘 𝐷

𝜇 𝐷

𝑠
𝑘 𝐷

𝜇 𝐷
𝐷 𝜇

 

𝐸 : 
𝑥 0

𝑠 𝑠  

The upper limit of the convergence region of s, obtained from condition 𝜇 𝐷  at 𝑠 𝑠∗, is 

𝑠∗  , and it corresponds to equilibrium point 𝐸   with constant 𝐷 𝐷 𝜇  . The 

limits of the convergence region of 𝑥 , that is, 𝑠 𝑠∗ 𝑠   and 𝑠  , 

correspond to the equilibrium point 𝐸  with constant 𝐷 𝐷  and constant 𝐷 0, respectively. 
In summary, the limits of the convergence regions of 𝑥, 𝑠 stated in Theorems 3.1 and 3.2 correspond 
to the equilibrium point 𝐸  with constant 𝐷 𝐷  and constant 𝐷 0. 

Remark 3.9. Consider the case that model (1) with constant dilution rate 

𝐷 sup 𝜇 

and Haldane kinetics (4), so that 

𝐷 𝜇 𝜇 . 

This 𝐷 value does not fulfill conditions (9) and (10), so that neither Theorem 3.1 nor 3.2 apply, 
and the constant nature of 𝐷 implies that the states converge to equilibrium point, not to compact set, 
so that dead-zone modification of the Lyapunov function is not necessary. In this case, the 𝐷 value 
implies that there is only two equilibrium points, and Eqs (46)–(48) lead to: 

𝐸 :

⎩
⎪
⎨

⎪
⎧ 𝑥 𝑠

/

𝑠
/

        

𝐷 𝜇      

                        (49) 

𝐸 : 
𝑥 0

𝑠 𝑠                                  (50) 

In addition, equilibrium 𝐸  is a pitchfork bifurcation point with respect to parameter 𝐷, so that 
its local stability cannot be stated through eigenvalues, and other stability tools for bifurcations are 
necessary, see for instance [56,57]. 

4. Discussion 

4.1. General discussion of results 

The stability analysis summarized in Theorems 3.1 and 3.2 determines global convergence of 
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biomass and substrate concentrations from the model (1) towards a compact set. Assumptions 1 to 3 
are considered, the specific growth rate function is assumed to be a nonlinear function of substrate 
concentration, either non-monotonic (2) or monotonic (3), with constant inflow substrate concentration. 
The dilution rate 𝐷  is varying within the compact set 𝛺 𝐷: 0 𝐷 𝐷 , implying that 
the states 𝑥, 𝑠 converge to the compact sets Ω , Ω  instead of an equilibrium point. Common global 
stability of open loop continuous bioreactor model based on the Lyapunov function (for instance 
[9,11,18,19,23]) cannot be used for this case, because they consider constant dilution rate 𝐷  and 
convergence of substrate and biomass concentrations towards a point, not a compact set. 

To this end, methods that consider state convergence to compact set include the comparison of 
solutions of scalar differential equations and theory of asymptotically autonomous dynamical systems 
[3]; dead zone Lyapunov functions [24–27], and ultimate bound approach [34–38]. The dead zone 
Lyapunov method is commonly used for control design, so that its application for bioreactor systems 
as the model (1) is hampered by the nonlinear 𝜇 term and the complex nonlinear connection between 
the dynamics of 𝑥, 𝑠. The application of the ultimate bound approach is also hampered by these facts. 

Results related to Contribution CA. Theorems 3.1 and 3.2 indicate the global convergence of 
substrate concentration 𝑠  to the compact set Ω 𝑠: 0 𝑠 𝑠∗   and the global convergence of 
biomass concentration 𝑥  to the compact set Ω 𝑥: 1 𝑦⁄ 𝑠 𝑠∗ 𝑥 1 𝑦⁄ 𝑠 , and also 
provide a persistent condition 0 𝐷 𝜇   that leads to biomass persistence (avoidance of 
washout) for the case of nonmonotonic growth rate function, where 𝑠∗ is the solution of 𝜇 𝐷  
for 𝑠 𝑠∗. The limit value 𝑠∗ is a function of 𝐷 , so that the widths of 𝛺 ,𝛺  depend on the 
width of 𝛺 . 

Results related to Contribution CB. The stability proofs of Theorems 3.1 and 3.2 in subsection 
3.2 use the Lyapunov function method with dead zone modification. However, the stability analysis is 
significantly improved, and a new dead-zone Lyapunov function 𝑉  is proposed, in order to prove 
global convergence of substrate and biomass concentrations to their compact sets 𝛺  , 𝛺   while 
tackling the non-linear nature of the specific growth rate 𝜇 , the interwined dynamics of the 
concentrations of substrate and biomass, and the variation of the dilution rate 𝐷  within the compact 
set 𝛺  . Indeed, the properties of 𝑉   and of its gradient 𝑊  are defined and used for the stability 
analysis but the exact 𝑊 and 𝑉  expressions are provided at the last part of the stability analysis. 
Some remarkable features are: 

 The properties of 𝑊 in Eq (39) indicate that 𝑊 is continuous, piecewise, dependent on 𝑒
𝑠 𝑠∗, increasing for 𝑒 0 and involving a vanishing region for 𝑒 0.  

 In the case of non-monotonic 𝜇 (2), 𝜇 is only increasing for a certain range of 𝑒 0, so 
that it does not lead to increasing 𝑊 . Thus, 𝑊  is defined as a piecewise linear function of 𝑒 , 
including no section of the 𝜇 curve, see Eq (40).  

 In the case of monotonic 𝜇 (3), 𝜇 leads to increasing 𝑊 function. Thus, the 𝑊 definition 
includes a section of the 𝜇 curve, see Eq (42).  

 The equation of 𝑉  as an integral in terms of 𝑊 (38) allows obtaining the 𝑉  functions (41) 
and (43). 

In addition, the improved stability analysis (Theorems 3.1 and 3.2 and their proofs) is useful as 
the procedure for further global stability analysis of bioreactor models exhibiting convergence to a 
compact set instead of convergence to an equilibrium point, allowing the determination of: 

 R1: range of initial values of the state variables and parameter values leading to global 
convergence to the non-washout convergence set (washout avoidance) in the case in the case of 
nonmonotonic growth rate function.  
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 R2: upper bound of the transient values of the state variables as a function of their initial 
values and model parameters 

 R3: exponential, asymptotic, monotonic or nonmonotonic character of the global convergence 
of the state variables to the compact set 

In agreement with R1, the global stability of continuous bioreactors through Lyapunov function 
allows checkinh domains of attraction of normal operation equilibrium point, under a constant dilution 
rate [8,18,58]. 

From the analysis of the relationship between the results stated in Theorems 3.1 and 3.2 with the 
equilibrium points (in subsection 3.4) it would seem that local stability (equilibrium points and 
eigenvalues) is enough to study the convergence of the state variables to compact sets. However, local 
stability does not allow us to obtain results R1, R2 and R3, because it is limited to a close neighborhood 
of the equilibrium point, and it disregards the transient behavior in regions far from the equilibrium 
point, as can be deduced from [12,56]. 

4.2. Future work 

An important application field of the stability analysis based on the Lyapunov function presented 
in Theorems 3.1 and 3.2 and their proofs, is the anaerobic digestion process [18]. Anaerobic digestion 
is useful for wastewater treatment with biogas production. It involves a complex process with 
hydrolysis, acidogenesis, acetogenesis and methanogenesis steps. It is prone to biomass washout, 
which consists of microorganism extinction, it occurs for overlarge values of dilution rate and is related 
to high substrate concentration [8,12,59]. The stability of equilibrium points related to normal 
operation point and washout has been studied through equilibrium points, diagrams of equilibrium 
versus dilution rate, bifurcation diagrams with dilution rate and input substrate concentration as 
bifurcation parameters [12,56,59]. In contrast, global stability based on the Lyapunov function gives 
as result the conditions and the state space region that implies global stability of the normal operation 
equilibrium point, considering constant dilution rate [18,58]. 

Also, the developed stability analysis can be extended to more complex bioreactor models, and 
modifications of the model (1), including: 

 Model of anaerobic upflow fixed-bed digester with partial biomass attachment on support: 

𝜇 𝛼𝐷 𝑥; 𝑠 𝑠 𝐷 𝑦 𝜇𝑥 

where 𝛼 is a positive constant that represents the model heterogeneity [7,49]. 
 Model with maintenance term 𝑚𝑥: 

𝜇 𝐷 𝑥; 𝑠 𝑠 𝐷 𝑦 𝜇 𝑚 𝑥 

where 𝑚 is a postive constant [42]. 
 Model with several biomass species: 

𝜇 𝐷 𝑥 ;  𝑠 𝑠 𝐷 ∑ 𝑦 𝜇 𝑥  

where 𝑥  is the mass density of species i [60]. 
These models, combined with either time varying dilution rate 𝐷   or time varying inflow 
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substrate concentration 𝑠  leads to different convergence sets for the states 𝑥, 𝑠. In the case of 
varying 𝑠  , the model for 𝑧̅ 𝑦 𝑥 𝑠 𝑠   is modified. The limits of the convergence regions 
depend on the limits of 𝐷, 𝑠 . 

Some biological models exhibit limit cycles under constant parameters (see [61,62]). It has been 
suggested that their oscillations are a consequence of competitive interaction and low nutrient supply 
[63,64]. Simple models with two microbial populations and Monod uptake terms are capable of 
describing the states of the system with stable oscillations [64]. As an example, in nitrification at the 
soil with contaminant ammonium plume, bacterial populations exhibit boom and boost dynamics [62]. 
In these cases, the Lyapunov function is a possible tool for examining the global convergence of the 
states towards the limit cycle, but other tools are also necessary for proving the existence and stability 
of the limit cycles (see [65–67]). Indeed, some biological systems are described in predator-prey type 
models, whereas these models may be taken to polar coordinates so that the differential equation of 
the radial coordinate indicates that the radius is stable, and a Lyapunov function can be defined in terms 
of its gradient, see [51,68]. In this case, the dead zone Lyapunov function can provide a more complete 
stability result. 

5. Numerical simulation 

In this section, the convergence results stated in theorems 3.1 and 3.2 are illustrated through 
simulation, by showing the convergence regions of biomass and substrate concentrations 𝑥, 𝑠  and 
the asymptotic convergence of their trajectories towards to convergence regions. Bioreactor model (1) 
subject to assumptions 1 to 3 is considered, Theorem 3.1 is illustrated in the first simulation example, 
using a Haldane growth rate function, whereas theorem 3.2 is illustrated in the second simulation 
example, using a Monod growth rate function. 

First simulation example. The simulation conditions correspond to chemostat with bacterial 
species and Haldane growth rate function (4): 

𝜇 𝜇              (51) 

The parameter values are given in Table 1. 

Table 1. Parameter values used in the simulations. 

 Specific growth 
rate 

Model parameters Values of the main points of the 
specific growth rate function 

First 
simulation 
example 

Non-monotonic, 
Eq (51) 

𝜇 7 
𝑘 7 
𝑘 =7 
𝑠 =16.7 
𝐷 1.65 

𝑠 7 
𝜇 2.333 
𝑠∗ 2.4161 
𝜇 1.8397 

Second 
simulation 
example 

Monotonic, Eq 
(52) 

𝜇 0.9972 h-1 
𝑘 681.69 g/L 
𝑘 0.0548 h-1 
𝑠 =100 g/L 
𝐷 0.0582 h-1 

𝜇 0.0728 h-1 

𝑠∗ 87.13 g/L 



3415 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3396–3424. 

For the growth rate function (51), the coordinates of the maximum are given by Eq (5). The 𝐷  
value satisfies condition (10), and 𝑠∗ is the lowest solution of 𝜇 𝐷 : 

𝜇
𝑠

𝑘 𝑠 𝑠
𝑘 ∗

𝐷  

what leads to 

𝐷
𝑘

𝑠∗ 𝐷 𝜇 𝑠∗ 𝐷 𝑘 0 

𝑠∗
𝐷 𝜇 𝐷 𝜇 4

𝑘
𝑘 𝐷

2𝐷 /𝑘
 

An example of 𝐷 ,  𝑠∗ values is given in Table 1. The growth function (51), its main points, 
the gradient 𝑊 (40) and Lyapunov function 𝑉  (41) are illustrated in Figure 1. 

 

Figure 1. Non monotonic growth rate function and its gradient: (a) non-monotonic 
function (51); (b) function 𝜇 𝐷 , gradient 𝑊 and Lyapunov function 𝑉 . 

The time varying dilution rate is: 

𝐷

⎩
⎨

⎧ 0.5𝐷 0.5𝐷 𝑠𝑖𝑔𝑛 sin
2𝜋
𝜏

𝑡  𝑓𝑜𝑟 𝑡 ∈ Ω

0.5𝐷 𝑎 0.5𝐷 sin
2𝜋
𝜏

𝑡 1 𝑎 0.5𝐷 sin
2𝜋
𝜏

𝑡  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑎 0.93, 𝜏 45 𝜏 45/10and Ω 100, 230  for 𝐷 1.65 and for 𝐷 1. 

 

Figure 2. Simulation results for first simulation example. Subfigures (a), (c), (e) show the 
trajectories of the substrate and biomass concentrations and dilution rate signal for 
𝐷 1.65. Subfigures (b), (d), (f) show the trajectories of the substrate and biomass 
concentrations and dilution rate signal for 𝐷 1. The limits of biomass concentrations 
are 1 𝑦⁄ 𝑠 𝑠∗ , 1 𝑦⁄ 𝑠 . 

Simulations of substrate and biomass concentrations show that (Figure 2): 
i) For each 𝐷  value, the convergence region of the simulated 𝑠 trajectory is inside the 

region bounded by the computed limit 𝑠∗, thus verifying the validity of theorem 3.1, and the residual 
set Ω 𝑠: 0 𝑠 𝑠∗ .   

ii) the substrate concentration 𝑠 is outside the residual set 𝛺  at initial time, it gets inside at 
5.22 for 𝐷 =1.65, and at 3.73 for 𝐷 1 , and it remains inside afterwards. 

iii) For each 𝐷  value, the convergence region of the simulated 𝑥 trajectory is inside the 
region bounded by the computed limits 1 𝑦⁄ 𝑠 𝑠∗ , 1 𝑦⁄ 𝑠 , thus verifying the validity of 
theorem 3.1, and the residual set Ω 𝑥: 1 𝑦⁄ 𝑠 𝑠∗ 𝑥 1 𝑦⁄ 𝑠 . 

Second simulation example. Continuous cultivation of Gluconacetobacter diazotrophicus is 
simulated, using conditions and data of batch cultivation with cane molasses as carbon source (see 
[69]), considering the Monod growth rate function: 
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𝜇
𝜇 𝑘  𝑓𝑜𝑟 𝑠 𝑘 𝑘 / 𝜇 𝑘  

0           𝑓𝑜𝑟 𝑠 𝑘 𝑘 / 𝜇 𝑘
               (52) 

Where 𝜇 𝑘 . 
The parameters of model (1) with this growth rate function were fitted to the batch data and are 

given in Table 1. For the growth rate function (52), the 𝐷  value satisfies condition (30) and 𝑠∗ is 
obtained from 𝜇 𝐷 : 

𝜇
𝑠

𝑘 𝑠
𝑘

∗
𝐷  

what leads to 

𝑠∗ 𝑘 𝐷 𝑘
𝜇 𝑘 𝐷

 

An example of 𝐷 , 𝑠∗ values is given in Table 1. The growth function (52), its main points, 
the gradient 𝑊 (42) and Lyapunov function 𝑉  (44) are illustrated in Figure 3. 

 

Figure 3. Monotonic growth rate function and its gradient: a) monotonic function (52); b) 
function 𝜇 𝐷  , gradient 𝑊  and Lyapunov function 𝑉  ; c) detail of function 𝜇
𝐷 , gradient 𝑊  and Lyapunov function 𝑉 . 

The time-varying dilution rate is: 
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𝐷

⎩
⎨

⎧ 0.5𝐷 0.5𝐷 𝑠𝑖𝑔𝑛 sin
2𝜋
𝜏

𝑡  𝑓𝑜𝑟 𝑡 ∈ Ω

0.5𝐷 𝑎 0.5𝐷 sin
2𝜋
𝜏

𝑡 1 𝑎 0.5𝐷 sin
2𝜋
𝜏

𝑡  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝑎 0.9, 𝜏 120  h, 𝜏 120/9  h and Ω 300, 550   h for 𝐷 0.0656 
h-1; whereas 𝑎 0.91,  𝜏 190  h, 𝜏 190/9  h and Ω 350, 600  h for 𝐷
0.0291 h-1. 

 

Figure 4. Simulation results for the second simulation example. Subfigures (a), (c), (e) 
show the trajectories of the substrate and biomass concentrations and dilution rate signal 
for 𝐷 0.0656 h-1. Subfigures (b), (d), (f) show the trajectories of the substrate and 
biomass concentrations and dilution rate signal for 𝐷 0.0291  h-1. The limits of 
biomass concentrations are 1 𝑦⁄ 𝑠 𝑠∗ , 1 𝑦⁄ 𝑠 . 

Simulations of substrate and biomass concentrations show that (Figure 4): 
i) for each 𝐷  value, the convergence region of the simulated 𝑠 trajectory is inside the 

region bounded by the computed limit 𝑠∗, thus verifying the validity of theorem 3.2, and the residual 
set  Ω 𝑠: 0 𝑠 𝑠∗ . 
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ii) the substrate concentration 𝑠 is inside the residual set 𝛺  at the initial time, and it is outside 
only during [40.7,131.1] h for 𝐷 0.0656 h-1 and during [16.2,138.7] h for 𝐷 0.0291 h-1. 

iii) for each 𝐷  value, the convergence region of the simulated 𝑥 trajectory is inside the 
region bounded by the computed limits 1 𝑦⁄ 𝑠 𝑠∗ , 1 𝑦⁄ 𝑠 , thus verifying the validity of 
Theorem 3.2, and the residual set Ω 𝑥: 1 𝑦⁄ 𝑠 𝑠∗ 𝑥 1 𝑦⁄ 𝑠 . 

General discussion on the numerical simulations. In summary, the first and second simulation 
examples show that the considered dilution rate constraint (9) and (29) with 𝐷  conditions (10) 
and (30) leads to asymptotic convergence of the substrate concentration to the determined compact set 
Ω 𝑠: 0 𝑠 𝑠∗   and asymptotic convergence of biomass concentration to the determined 
compact set Ω 𝑥: 1 𝑦⁄ 𝑠 𝑠∗ 𝑥 1 𝑦⁄ 𝑠 , in presence of varying dilution rate within 
the defined set 𝛺 . This illustrates Theorems 3.1 and 3.2, and verifies the validity of the residual sets 
𝛺 𝑠: 0 𝑠 𝑠∗  , Ω 𝑥: 1 𝑦⁄ 𝑠 𝑠∗ 𝑥 1 𝑦⁄ 𝑠  , where 𝑠∗  is the solution of 
𝜇 𝐷  for 𝑠 𝑠∗. 

6. Conclusions 

In this work, the global stability of a continuous bioreactor model is studied, with the 
concentrations of biomass and substrate as state variables. Non-monotonic and monotonic functions 
of substrate concentration are considered for the specific growth rate, whereas the dilution rate is time-
varying but bounded, thus leading to state convergence to a compact set instead of an equilibrium point. 
Based on the Lyapunov function theory with dead-zone modification, the asymptotic convergence of 
the substrate and biomass concentrations is studied. 

The main contributions with respect to closely related studies are: i) the convergence region of 
the substrate and biomass concentrations are determined as a function of the upper bound of the 
dilution rate (𝐷), and the global asymptotic convergence to these compact sets is proved, considering 
monotonic and non-monotonic growth functions separately; ii) several improvements are proposed in 
the stability analysis, including the definition of a new dead zone Lyapunov function and the properties 
of its gradient. These improvements allow proving convergence of substrate and biomass 
concentrations to their compact sets, while tackling the interwoven and nonlinear nature of the 
dynamics of biomass and substrate concentrations, the non-monotonic nature of the specific growth 
rate, and the time-varying nature of the dilution rate. The proposed modifications are a basis for further 
global stability analysis of bioreactor models exhibiting convergence to a compact set instead of an 
equilibrium point. Finally, the convergence of the states and the biomass persistence under varying 
dilution rates are illustrated by simulation. 
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Appendix 

Proof of Eq (22). 
From the 𝑊 properties (14) or alternatively from the definition of 𝑊 (20) it follows that 

𝑊 0  𝑓𝑜𝑟  𝑠 𝑠∗                             (A1) 

From property (19) and the 𝑊 definition (20) it follows that 

𝜇 𝐷 𝑊   𝑓𝑜𝑟 𝑠 𝑠∗ 

Combining with properties (18), (14), yields 

0 𝑊 𝜇 𝐷 𝜇 𝐷,   𝑓𝑜𝑟 𝑠 𝑠∗ 

That is, 

𝜇 𝐷 𝑊 0   𝑓𝑜𝑟 𝑠 𝑠∗ 

Combining with result (A1), yields 

𝑊 𝜇 𝐷 𝑊 0 𝑓𝑜𝑟 𝑠 𝑠∗                       (A2) 

From the 𝑊 definition (20) and properties (14) it follows that 

𝑊 𝜇 𝐷 0 𝑊    𝑓𝑜𝑟 𝑠 𝑠∗ 

Combining with Eq (A2), yields 

𝑊 𝜇 𝐷  𝑊 0 

This completes the proof. 
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