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Abstract: For inefficient trajectory planning of six-degree-of-freedom industrial manipulators, a tra-
jectory planning algorithm based on an improved multiverse algorithm (IMVO) for time, energy, and
impact optimization are proposed. The multi-universe algorithm has better robustness and conver-
gence accuracy in solving single-objective constrained optimization problems than other algorithms.
In contrast, it has the disadvantage of slow convergence and quickly falls into local optimum. This
paper proposes a method to improve the wormhole probability curve, adaptive parameter adjustment,
and population mutation fusion to improve the convergence speed and global search capability. In
this paper, we modify MVO for multi-objective optimization to derive the Pareto solution set. We
then construct the objective function by a weighted approach and optimize it using IMVO. The results
show that the algorithm improves the timeliness of the six-degree-of-freedom manipulator trajectory
operation within a specific constraint and improves the optimal time, energy consumption, and impact
problems in the manipulator trajectory planning.

Keywords: trajectory planning; optimization algorithm; optimal time; optimal energy consumption;
optimal impact

1. Introduction

Recently, with the continuous development of robotic arm technology, the requirements for its
working environment are becoming increasingly stringent. Therefore, the performance requirements
for robotic arms are also getting higher and higher. Under different working conditions, the operating
time, speed, acceleration, jerk, and other performance requirements of the manipulator are different.
Optimizing the trajectory of the robotic arm has always been the goal of designers.

Trajectory optimization can be generally classified into single-objective optimization, and multi-
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objective optimization [1] according to the optimization objective. Single-objective optimization usu-
ally optimizes only one objective without considering other performance metrics. For example, in a
trajectory optimization problem concerning time, increasing the speed to reduce the running time also
increases the impact on the robot arm. Multi-objective optimization needs to consider two or more
performance optimalities simultaneously, obtain the corresponding Pareto solution set, and then select
the optimal solution based on the working conditions.

Rabab Benotsmane et al. [2] elaborated a new ”whip-lashing” method that aims to realize an op-
timized trajectory for the five-degree-of-freedom RV-2AJ robot arm, and the method lowered energy
consumption and increased productivity. Han et al. [3] proposed a particle swarm optimization (PSO)
algorithm that can dynamically adjust the learning factor. This method effectively combines the piece-
wise polynomial interpolation function with PSO, avoids the complex process of particle swarm al-
gorithm to construct the adaptation function, and improves the problem that the traditional PSO is
more probably to fall into local extreme value in the early stage and convergence speed is slow in the
later stage. Zhao et al. presented an efficient numerical method for trajectory optimization for motion
planning involving complicated robot dynamics. Peng et al. [4] employed the non-dominated neigh-
borhood immune genetic algorithm, obtaining each joint’s optimal position, velocity, acceleration, and
jerk planning curves. Kei Ota et al. [5] proposed a reinforcement learning-based algorithm for trajec-
tory optimization for constrained dynamical systems. Shi et al. [6] proposed a multi-objective genetic
algorithm (NSGA-II) and multi-objective particle swarm optimization algorithm (MOPSO) in order to
settle trajectory planning with kinematic and dynamic constraints.

In this study, a 3-5-3 spline polynomial and multiverse optimization algorithm are used to plan the
trajectory of the manipulator in the joint space. Nevertheless, the multiverse optimization algorithm
performs poorly in solving large-scale optimization problems and lacks jumping out of local poles [7].
The ability of value makes it impossible to find the optimal global solution. This paper proposes a
multi-objective optimization based on MVO and a method to improve the wormhole probability curve,
aiming to improve the convergence speed and enhance the global search ability through population
mutation. The final result confirms the method’s feasibility, improves the manipulator’s efficiency and
reduces energy consumption.

2. Trajectory planning

2.1. Construction of joint trajectory based on 3-5-3 spline polynomial

The parameters, including speed, acceleration, and jerk of the manipulator, have better real-time
performance in joint space, do not need to consider particular problems, and are more convenient to
control and describe. As a result, trajectory planning is generally carried out in joint space. In order
to solve the relationship between each joint variable and time, it is necessary to discretize the task
trajectory performed by the manipulator first and then perform inverse kinematics analysis. In the
trajectory planning of the manipulator, the 3rd-degree polynomial interpolation can only ensure that
the velocity and displacement are continuous, and the acceleration may jump, which is not necessarily
continuous. Moreover, the discontinuous acceleration will make the joints of the robotic arm shake and
impact, which will influence the working efficiency and service life of the robotic arm [8]. Compared
with the 3rd-degree polynomial, the 5th-degree polynomial interpolation can ensure continuous and
smooth curves of joint displacement, velocity, and acceleration, even though the calculation amount
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is increased [9]. Generally, the higher the order of the polynomial function, the more constraints it
can satisfy. Therefore, a 5th-degree polynomial is used to fit each joint position sequence node, and
a continuous and smooth trajectory of displacement, velocity, and acceleration can thus be obtained
[10, 11].

Assuming that the robot’s starting point, ending point, and two intermediate path points are known,
each joint angle of each joint at the four interpolation points can be obtained by solving the inverse
kinematics equation. The interpolation angle of joint i is denoted by θ ji, where i represents the number
of joints (i = 1, 2, 3, 4, 5, 6), and j denotes the serial number of the interpolation point ( j = 1, 2, 3, 4).
The general formula of the 3-5-3 spline polynomial for the i joint is:

l j1(t) =a j13t3 + a j12t2 + a j11t + a j10

l j2(t) =a j25t5 + a j24t4 + a j23t3 + a j22t2 + a j21t + a j20

l j3(t) =a j33t3 + a j32t2 + a j31t + a j30

(2.1)

where l j1(t), l j2(t) and l j3(t) represent the trajectory of the 3-5-3 spline polynomial, respectively. Ac-
cording to the constraints of the multi-degree polynomial, the polynomial is solved. The unknown
coefficient a can be obtained. The initial point of each segment of the joint, the displacement of the
two path points and the termination point, the continuous displacement, velocity, and acceleration be-
tween the path points, as well as the velocity (usually 0) and acceleration of the initial point and the
termination point, are known.

2.2. Solving polynomial interpolated trajectories

The matrix A can be listed according to the constraints, including Eq (2.2). It can be seen from the
matrix expression that the constraints and constraints are only related to the time t.The value of the
coefficient a can be obtained from Relational Eq (2.5). t1, t2, t3 in Eq (2.2) respectively represent the
time of the 3-segment polynomial interpolation of the i joint, respectively.

A =



t3
1 t2

1 t1 1 0 0 0 0 0 −1 0 0 0 0
3t2

1 2t1 1 0 0 0 0 0 −1 0 0 0 0 0
6t1 2 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 t5

2 t4
2 t3

2 t2
2 t2 1 0 0 0 −1

0 0 0 0 5t4
2 4t3

2 3t2
2 2t2 1 0 0 0 −1 0

0 0 0 0 20t3
2 12t2

2 6t2 2 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 t3

3 t2
3 t3 0

0 0 0 0 0 0 0 0 0 0 3t2
3 2t3 1 0

0 0 0 0 0 0 0 0 0 0 6t3 2 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0



(2.2)

θ =
[
0 0 0 0 0 0 x j3 0 0 x j0 0 0 x j2 x j1

]T
(2.3)
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a = A−1θ =
[
a j13 a j12 a j11 a j10 a j25 a j24 a j23 a j22 a j21 a j21 a j33 a j32 a j31 a j30

]T
(2.4)

2.3. Establishment of objective function and kinematic constraints

Under the premise of considering various constraints in kinematics to improve the working ef-
ficiency of the manipulator, reduce energy consumption, reduce the impact, and achieve the multi-
objective comprehensive optimization of time, energy consumption, and impact, the optimization ob-
jective function is defined as: 

S 1 = T =
n−1∑
j=0

(
t j+1 − t j

)
S 2 =

N∑
i=1

√
1
T

∫ T

0
a2

i dt

S 3 =

N∑
i=1

√
1
T

∫ T

0
J2

i dt

(2.5)

In the formula, S 1 is the total running time of the manipulator, the sum of the time intervals between
the position sequence nodes, and the work efficiency index of the manipulator. S 2 is the average
acceleration of the joint, which is the energy consumption index. S 3 is the average jerk in the joint
motion and the pulsating impact index. T is the total running time of the manipulator. ai is the
acceleration of the joint, and Ji is the jerk of the joint. The manipulator must be subject to constraints
such as position, velocity, acceleration, and jerk during operation. t j is the time of the jth point, and N
is the total number of joints of the manipulator. Besides, the constraints are defined as

g1(t) = |qi(t)| − Qjmax

g2(t) = |vi(t)| − Vjmax

g3(t) = |ai(t)| − Ajmax

g4(t) = | ji(t)| − J j max

(2.6)

wherein, g1(t) is the joint displacement constraint; g2(t) represents the joint velocity constraint; g3(t)
indicates joint acceleration constraints; g4(t) suggests joint acceleration constraints; Q jmax is the max-
imum displacement of the joint, qi(t) is the angle of the ith joint; V jmax is the maximum speed of the
joint, vi(t) is the speed of the ith joint; A jmax is the maximum acceleration of the joint, ai(t) is the ac-
celeration of the ith joint; and J jmax indicates the maximum jerk of the joint, ji(t) is the jerk of the ith
joint.

2.4. Robotic arm trajectory optimization based on multiverse algorithm

2.4.1. Multiverse algorithm

The main idea of the multiverse optimization algorithm (MVO) is to build a model based on the
three main concepts of the multiverse theory, namely, white holes, black holes, and wormholes. A
white hole is a celestial body that only emits but does not absorb. A black hole absorbs everything in
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the universe. A wormhole is like a space-time tunnel connecting a white hole and a black hole, sending
individuals to any corner of the universe, even from one universe to another. The multiverse reaches a
stable state through the three. The candidate solution is defined as the universe, and the fitness of the
candidate solution is the universe’s expansion rate. Additionally, the MVO algorithm can be divided
into the following steps:

1) Set up a group consisting of N universes to search in the D-dimensional target space, and initialize
it.

X =


x1

1 x2
1 · · · xd

1
x1

2 x2
2 · · · xd

2
...
...
. . .

...

x1
n x2

n · · · xd
n

 (2.7)

2) To establish a mathematical model between white and black holes and exchange the objects of
the universe, the roulette mechanism is adopted. In each iteration, the universe is sorted according to
the expansion rate (fitness) of the universe. Besides, a roulette wheel is used to select one White hole.

x j
i =

x j
k, r1 < NI (Xi)

x j
i , r1 ≥ NI (Xi)

(2.8)

where x j
i is the j argument for the i universe, NI (Xi) shows the normalized expansion rate of the i

universe, r1 is a random number between [0, 1], and x j
k is the j parameter of the k universe selected by

the roulette mechanism.
3) The wormhole existence probability WEP increases linearly, the travel distance rate T DR de-

creases continuously in the iterative process. Thus, a more accurate local search can be performed
within the obtained global optimum range.The adaptive formulas of two coefficients are Eqs (2.9) and
(2.10):

WEP = WEPmin + l ×
(WEPmax −WEPmin

L

)
(2.9)

T DR = 1 −
l1/p

L1/p (2.10)

where WEPmin is the minimum value of WEP, WEPmax is the largest value of WEP, l is the current
number of iterations, L is the maximum number of iterations, and p defines the development precision
during iteration. It indicates the higher the value of p, the faster the local search.

4) Update the cosmic position and find the optimal individual.
When r2 < WEP ,

x j
i =

x j + T DR ×
((

ub j − lb j

)
× r4 + lb j

)
, r3 < 0.5

x j − T DR ×
((

ub j − lb j

)
× r4 + lb j

)
, r3 ≥ 0.5

(2.11)

When r2 ≥ WEP ,
x j

i = x j
i (2.12)

where x j represents the j parameter of the best universe currently formed, ub j and lb j represents the
upper and lower bounds of the j variable, and r2, r3 and r4 suggest random numbers between [0, 1].
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2.4.2. Multiverse algorithm improvements

Wormhole existence probability WEP increases linearly in the iterative process. In order to speed
up the convergence speed of the algorithm, WEP is currently improved on the basis of traditional
MVO, and its expression is:

αt = α0exp(−β × t) (2.13)

where α0 is the initialization learning rate, the learning rate at the t iteration is αt, and β is the attenua-
tion rate.

WEP = WEPmin + (1 − αt)(WEPmax −WEPmin) (2.14)

MVO has great advantages in local search, but it is not difficult to fall into local optimum, resulting
in insufficient accuracy, whereas the genetic algorithm has strong global search ability. In order to
overcome the above shortcomings, the population mutation strategy is currently used to enhance the
diversity of the population and avoid falling into local optimum. Improvement strategies are described
below:

xi = [x1
i , x

2
i , · · · , x

k
i , · · · , x

d
i ], r4 < Mut (Xi) (2.15)

xk
i = lbk + rand × (ubk − lbk) (2.16)

where Mut (Xi) is the rate of variability of the i universe, r4 is a random number between [0, 1], and k
refers to a random integer between [1, d].

In this paper, an adaptive adjustment strategy for parameter p is proposed. The specific steps of the
strategy are as follows:

1) Calculate the average value of the normalized expansion rate fm.
2) Take out the universes whose expansion rate is greater than the average expansion rate, and

calculate their average expansion rate fm1. Assign a universe with an expansion rate greater than fm1 to
a maximum p.

3) Take out the universes whose expansion rate is less than the average expansion rate, and calculate
their average expansion rate fm2. Particles with an expansion rate less than fm2 are assigned the smallest
p.

4) According to the adaptive adjustment strategy, the particles whose fitness value is between fm1

and fm2 are given values that vary linearly between the maximum and minimum p of fm1 and fm2.
When there are multiple objectives, due to the conflict and incomparability between objectives, a

solution may be the best on one objective and the worst on other objectives. These solutions, which,
while improving any objective function, necessarily weaken at least one other objective function, are
called non-dominated solutions or Pareto solutions.

The comparison in the single objective only compares the value of the single objective function. In
the multi-objective, if all the objective function values of the A solution are better than the B solution,
then A is then said to dominate B. If A solution cannot satisfy all target values that are better than B,
and no target values of B are better than A, then A and B belong to the same level.

1) First, generate the population, obtain the first dominant solution, and use the roulette wheel to
select the optimal universe in the first dominant solution.

2) Update the universe according to the original MVO algorithm, the expansion rate belonging to
the first dominant solution takes the smaller value, and the expansion rate which does not belong to the
feasible solution takes 1.
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3) The newly obtained universe is merged with the parent population, and the first dominant solution
is updated. Additionally, redundant and inferior solutions are deleted.

2.4.3. Test function and validation

After testing the ZDT1 function and ZDT2 function, the effect is shown in Figures 1 and 2.
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Figure 1. ZDT1 function effect.
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Figure 2. ZDT2 function effect.

Table 1. Benchmark functions used in the study.

Benchmark function Range fmin

f1(x) =
n∑

i=1

x2
i [-100,100] 0

f2(x) =
n∑

i=1

|xi| +

n∏
i=1

|xi| [-10,10] 0

f3(x) =
n

max
i=1
{|xi|} [-100,100] 0

f4(x) =
n∑

i=1

(|xi + 0.5|)2 [-100,100] 0

f5(x) =
n∑

i=1

[
x2

i − 10 cos (2πxi) + 10
]

[-5.12,5.12] 0

f6(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
xi
√

i
+ 1 [-600,600] 0

f7(x) = 1 − cos

2π
√√

n∑
i=1

x2
i

 + 0.1

√√
n∑

i=1

x2
i [-32,32] 0

f8(x) = −20 exp

−0.2

√√
1
n

n∑
i=1

x2
i

 − exp

1n
n∑

i=1

cos (2πxi)

 + 20 + e [-100,100] 0

f9(x) =
n∑

i=1

ix4
i + rand [-1.28,1.28] 0

f10(x) =
n−1∑
i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
[-30,30] 0
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Ten classical benchmark functions, as shown in Table 1, are used to evaluate the performance of
MVO, PSO and IMVO are the algorithms for comparison. In the ten functions, f1 ∼ f4 are unimodal
test functions that can test the optimization accuracy of the algorithms, f5 ∼ f8 are multimodal test
functions that can test the global optimization ability and convergence speed of the algorithms, f9 ∼

f10 is ill-conditioned test functions that can test the exploration and exploitation capabilities of the
algorithms.

In Figure 4, it can be seen that the optimization speed and accuracy of IMVO added with the
parameter adaptive adjustment and wormhole probability curve are significantly improved compared
with MVO, which shows that improving the population diversity and the ability to jump out of the local
solutions is incredibly beneficial. f1 ∼ f4 prove that the optimization accuracy of IMVO is not weaker
than that of PSO, and the convergence speed is faster than that of MVO. f5 ∼ f8 prove that the global
optimization ability and convergence speed of IMVO is higher than that of MVO and PSO. f9 ∼ f10

prove that the exploration capabilities of IMVO can be maintained at a high level.
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(b) Performance comparison on the f2 function
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(c) Performance comparison on the f3 function
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(d) Performance comparison on the f4 function

Figure 3. Average convergence curve of the standard test functions f1 ∼ f4.

All of the above show that the IMVO algorithm is effective in dealing with unimodal, multimodal,
and ill-conditioned test functions, and it has better optimization accuracy and speed, which is very
helpful in solving the problems to be optimized in engineering practice.
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(d) Performance comparison on the f8 function
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(e) Performance comparison on the f9 function
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Figure 4. Average convergence curve of the standard test functions f5 ∼ f10.
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3. Algorithm flow

Start

Initialize the universe matrix

Set the standard expansion rate of the universe

Calculate the fitness and find the optimal universe

Black and white hole pass Cosmic Location Update

Mutations

Meet termination
conditions

End

Yes

No

Details as follows:
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1) Initialization parameters X.

2) Set Normalized Expansion Ratio NI(X) and initialize αt, WEP and p.

3) Calculate and normalize various fitness of population individuals to find the optimal fitness and
normalize it.

4) Black and white hole transfer and update position, αt and p.

5) Individual variation in populations.

6) If the termination condition is not met, go to Step 3. otherwise, end.

4. Simulation

4.1. Testing environment

Test environment: the hard disk running environment is AMD Ryzen 7 5800X 8-Core Processor, the
memory is 16GB, the software running environment is Windows11 system, and the running software
is MATLAB 2021a.

4.2. Model building

The D-H parameters of the PUMA560 robot arm are shown in Table 2.

Table 2. D-H parameter table.

number θi/ (◦) di/m ai/m αi

1 0 0 0 −π/2
2 0 0 0.432 0
3 0 0.149 0.02 −π/2
4 0 0.433 0 π/2
5 0 0 0 −π/2
6 0 0 0 0

Table 3. Each joint position series.

First Pose Via Pose 1 Via Pose 2 End Pose
θ1/rad 0.2 0.8 -0.2 -0.8
θ2/rad 1.1 1.5 0.8 -0.3
θ3/rad -0.2 -0.8 -0.4 -0.1
θ4/rad 1 0.8 -0.3 -0.7
θ5/rad 1.4 0.6 1.7 2.6
θ6/rad 0 -0.7 -1.1 -1.5

As shown in Table 2, θi is the joint angle around the Z axis; di is the joint distance; ai is the
connecting rod length, and αi is the torsion around the X axis.

Using the D-H parameters in Table 2, create the model of the PUMA560 manipulator in the four
postures in Table 3 in Matlab simulation software. The models are shown in Figure 5.
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The joint constraints are shown in Table 4. In order to objectively compare the optimization perfor-
mance of each algorithm, all algorithms select the same initial population, and the average fitness value,
optimal fitness value, standard deviation of fitness value, and average running time of each algorithm
running independently for ten times are counted, and the algorithms are comprehensively evaluated.
Specific parameter settings are shown in Table 5.

Table 4. Constraints of each joint.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Qmax/rad 3.14 3.14 3.14 3.14 3.14 3.14
Vmax/(rad/s) 1.65 2.36 2.33 2.57 2.44 1.85
Amax/(rad/s2) 1.08 1.49 1.88 1.42 1.57 1.44
Jmax/(rad/s3) 2.63 2.72 3.14 2.83 2.63 3.14

Table 5. Parameter setting.

IMVO MVO PSO ASPSO
pop 100 100 100 100
ub 100 100 100 100
lb 0.1 0.1 0.1 0.1
MaxIter 100 100 100 100
vmax - - 2 2
vmin - - -2 -2
WEPmin 0.2 0.2 - -
WEPmax 1 1 - -
Mut 0.001 - - -
β 1.00E-03 1.00E-03 - -
a0 1 1 - -
pmin 2 - - -
pmax 20 - - -
c1 - - 2 2
c2 - - 2 2
wmin - - - 1
wmax - - - 3

4.3. Simulation results and analysis

Trajectory optimization simulation is carried out by MOPSO and MOMVO, and Pareto optimal
solution is set with time, Energy, and impact as optimization objectives are obtained. As shown in
Figure 6, Energy is positively correlated with impact, and both of them are negatively correlated with
time, which jointly restricts the optimal performance of time. Because it is necessary to increase the
speed to pursue the shortest time, the energy consumption and impact will increase. In practice, it is
necessary to select an appropriate solution in the Pareto optimal solution set according to the specific
operating conditions of the manipulator.
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Figure 5. Simulation model diagram of PUMA560 manipulator.

Since a single objective cannot compare the pros and cons of the solutions in the Pareto optimal
solution set, it is essential to define a weighted objective function in order to compare the iterative
results. The normalized weighted objective function is defined as

f =
S 1

N1
+

S 2

N2
+

S 3

N3
(4.1)

N1, N2, and N3 take different values, respectively, and establish different objective functions for
comparison. The comparison results of each algorithm are shown in Tables 6 and 7.
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Figure 7. Displacement, velocity, acceleration and jerk curves of each joint.

As seen from Figure 9, the improved MVO algorithm quickly obtained iterative convergence in the
early stage, and the convergence was stable later.

In addition, as shown in Tables 6 and 7, in order to minimize the error, in a statistical sense, IMVO
is better than MVO, PSO, and SAPSO in terms of mean and optimal values of four sets of models
constructed with different values of N1, N2 and N3 respectively. The standard deviation of the four data
sets is also the smallest IMVO, meaning that the results are more concentrated and the algorithm is
more stable. Only the running time of MVO is optimal in the four sets of data because IMVO is an
improvement on the MVO, the long running time is normal, and the running time of IMVO is shorter
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than PSO and SAPSO. It is only about 1s more than the MVO, which is allowed in engineering. Figure
7 shows that the parameters optimized by IMVO can meet the constraints in Table 4.

The simulation results show that when the constraint conditions are satisfied, the convergence speed
and accuracy of the improved MVO are obviously higher than those of MVO, PSO and SAPSO.
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Figure 8. Simulation trajectory diagram.

Table 6. Test result 1.

N1 = 1,N2 = 1,N3 = 1 N1 = 10,N2 = 1,N3 = 1
Mean Best Std Time/s Mean Best Std Time/s

IMVO 64.7978* 64.7409* 0.0520* 6.08 10.3552* 10.3552* 0.0000* 8.52
MVO 64.9327 64.8866 0.0640 5.09* 10.3554 10.3553 0.0001 6.92*
PSO 65.5215 65.3328 0.1783 6.08 10.3565 10.3553 0.0012 8.82
SAPSO 65.2849 65.1291 0.1969 7.04 10.3560 10.3555 0.0005 8.83

Table 7. Test result 2.

N1 = 1,N2 = 10,N3 = 1 N1 = 1,N2 = 1,N3 = 10
Mean Best Std Time/s Mean Best Std Time/s

IMVO 62.6674* 62.6204* 0.0475* 6.18 61.8478* 61.8304* 0.0230* 6.23
MVO 62.8381 62.7740 0.0948 5.19* 61.8927 61.8629 0.0381 4.97*
PSO 63.2617 62.8332 0.3766 6.54 62.6859 62.5218 0.2414 6.45
SAPSO 62.9724 62.8403 0.1389 6.74 62.1954 62.0787 0.1790 6.27

5. Conclusions and future works

The kinematics analysis of the joint space of the 6-DOF manipulator is performed, and the trajectory
model of the manipulator in the joint space is constructed by 3-5-3 polynomial interpolation.
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Figure 9. Iterative graph under different parameters.

Taking the running time, energy consumption, and impact of each joint of the manipulator as the
optimization goal, the optimization is conducted under the specified constraints, and the Pareto optimal
solution set with good diversity and convergence is obtained. Customizing the normalized weighted
objective function and selecting the optimal solution meeting the conditions from the Pareto optimal
solution set is essential.

Compared with MVO, PSO, and SAPSO, the improved MVO algorithm optimizes the iteration
result, improves the optimization structure, and improves the algorithm efficiency.

This paper only discusses 3-5-3 polynomial interpolation. As future work, IMVO can optimize
other interpolation functions such as cubic polynomial and quintic polynomial. IMVO can also be
applied to optimization in other fields, such as parameter structure optimization of machine learning,
fuzzy control optimization, inverse kinematics solution of the manipulator, etc.
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2. R. Benotsmane, L. Dudás, G. Kovács, Trajectory optimization of industrial robot
arms using a newly elaborated “whip-lashing” method, Appl. Sci., 10 (2020).
https://doi.org/10.3390/app10238666

3. S. Han, X. Shan, J. Fu, W. Xu, H. Mi, Industrial robot trajectory planning based on im-
proved pso algorithm, J. Phys.: Conf. Ser., 1820 (2021), 012185. https://doi.org/10.1088/1742-
6596/1820/1/012185

4. X. Peng, G. Chen, Y. Tang, C. Miao, Y. Li, Trajectory optimization of an electro-hydraulic robot,
J. Mech. Sci. Technol., 34 (2020), 4281–4294. https://doi.org/10.1007/s12206-020-0919-4

5. K. Ota, D. K. Jha, T. Oiki, M. Miura, T. Nammoto, D. Nikovski, et al., Trajectory opti-
mization for unknown constrained systems using reinforcement learning, in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), (2019), 3487–3494.
https://doi.org/10.1109/IROS40897.2019.8968010

6. X. Shi, H. Fang, G. Pi, X. Xu, H. Chen, Time-energy-jerk dynamic optimal trajectory planning for
manipulators based on quintic nurbs, in 2018 3rd International Conference on Robotics and Au-
tomation Engineering (ICRAE), (2018), 44–49. https://doi.org/10.1109/ICRAE.2018.8586763

7. G. I. Sayed, A. Darwish, A. E. Hassanien, Quantum multiverse optimization al-
gorithm for optimization problems, Neural Comput. Appl., 31 (2019), 2763–2780.
https://doi.org/10.1007/s00521-017-3228-9

8. W. P. Bailón, E. B. Cardiel, I. J. Campos, A. R. Paz, Mechanical energy optimization in trajec-
tory planning for six dof robot manipulators based on eighth-degree polynomial functions and a
genetic algorithm, in 2010 7th International Conference on Electrical Engineering Computing
Science and Automatic Control, (2010), 446–451. https://doi.org/10.1109/ICEEE.2010.5608583

9. S. Lu, Y. Li, Minimum-jerk trajectory planning of a 3-DOF translational parallel manipu-
lator, in 39th Mechanisms and Robotics Conference of International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, 2015.
https://doi.org/10.1115/DETC2015-46866

10. H. I. Lin, Y. C. Liu, Minimum-jerk robot joint trajectory using particle swarm optimization, in
2011 First International Conference on Robot, Vision and Signal Processing, (2011), 118–121.
https://doi.org/10.1109/RVSP.2011.70

11. P. Boscariol, A. Gasparetto, R. Vidoni, Planning continuous-jerk trajectories for industrial manip-
ulators, in ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis,
2012. https://doi.org/10.1115/ESDA2012-82103

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2776–2792.

http://dx.doi.org/https://doi.org/10.3390/app10238666
http://dx.doi.org/https://doi.org/10.1088/1742-6596/1820/1/012185
http://dx.doi.org/https://doi.org/10.1088/1742-6596/1820/1/012185
http://dx.doi.org/https://doi.org/10.1007/s12206-020-0919-4
http://dx.doi.org/https://doi.org/10.1109/IROS40897.2019.8968010
http://dx.doi.org/https://doi.org/10.1109/ICRAE.2018.8586763
http://dx.doi.org/https://doi.org/10.1007/s00521-017-3228-9
http://dx.doi.org/https://doi.org/10.1109/ICEEE.2010.5608583
http://dx.doi.org/https://doi.org/10.1115/DETC2015-46866
http://dx.doi.org/https://doi.org/10.1109/RVSP.2011.70
http://dx.doi.org/https://doi.org/10.1115/ESDA2012-82103
http://creativecommons.org/licenses/by/4.0

	Introduction
	Trajectory planning
	Construction of joint trajectory based on 3-5-3 spline polynomial
	Solving polynomial interpolated trajectories
	Establishment of objective function and kinematic constraints
	Robotic arm trajectory optimization based on multiverse algorithm
	Multiverse algorithm
	Multiverse algorithm improvements
	Test function and validation


	Algorithm flow
	Simulation
	Testing environment
	Model building
	Simulation results and analysis

	Conclusions and future works

