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Abstract: This paper develops an adaptive output feedback control for a class of functional constraint
systems with unmeasurable states and unknown dead zone input. The constraint is a series of functions
closely linked to state variables and time, which is not achieved in current research results and is
more general in practical systems. Furthermore, a fuzzy approximator based adaptive backstepping
algorithm is designed and an adaptive state observer with time-varying functional constraints (TFC)
is constructed to estimate the unmeasurable states of the control system. Relying on the relevant
knowledge of dead zone slopes, the issue of non-smooth dead-zone input is successfully solved. The
time-varying integral barrier Lyapunov functions (iBLFs) are employed to guarantee that the states of
the system remain within the constraint interval. By Lyapunov stability theory, the adopted control
approach can ensure the stability of the system. Finally, the feasibility of the considered method is
conformed via a simulation experiment.

Keywords: fuzzy state observer; time-varying functional constraints (TFC); dead-zone input;
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1. Introduction

Over the past few decades, a lot of attention has been raised to handle the stability of nonlinear
control systems [1, 2]. It is worth noting that adaptive control is favored by many scholars because of
its ability to update adaptive parameters online. For dealing with the unknown nonlinear characteris-
tics, fuzzy logic systems (FLSs) [3,4] and neural networks (NNs) [5–7] are widely employed. To list a
few, utilizing FLSs control approach, a state feedback adaptive fuzzy method is presented in [8]. The
work [9] develops an adaptive fuzzy control scheme to overcome the actuator faults of stochastic non-
linear systems. Moreover, a fixed time tracking control is investigated in [10], where an adaptive fuzzy
controller is devised via backstepping technique. In [11], a Lyapunov stability strategy is addressed
based on event-triggered mechanism. Considering fault-tolerant control problem, a suitable neural
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controller combining with backstepping method is proposed in [12], which ensures the stability of the
system in finite-time. Nevertheless, the mentioned adaptive control schemes don’t take the constraint
problem into consideration.

As the main factor affecting system performance, constraint problem always appears in most prac-
tical systems. Hence, it is a challenging task to construct a suitable controller to maintain the stability
of such systems. The barrier Lyapunov functions (BLFs) and backstepping algorithm are selected
to stop the signal of the system from exceeding the constraint compact set in [13–16]. According
to fuzzy approximate approach and BLFs, the output constraints related to constants are developed
in [17,18]. In addition, full-state constant constraints are achieved in [19–21], where all signals are not
transgressed the constraint boundary. Under the frame of NNs, a neural network control scheme with
external disturbances and uncertainties is introduced in [22]. In particular, Zhao and Song [23] develop
a unique approach (nonlinear state-dependent function) to achieve asymmetric state constraint, which
completely removes the feasibility conditions that current BLFs exist. Subsequently, the time-varying
constraints have attracted scholar’s attention because of its generally. In [24], a neural approach is
presented to prevent arms to move to the desired position. Furthermore, Liu et al. [25] address a back-
stepping feedback control strategy with uncertain parameters, preventing the constraint boundaries
from being violated and achieving full state constraints. Differently, a unified barrier function (UBF)
with time-varying state constraints is established in [26], where novel coordinate transformations are
introduced into the backstepping technique. Remarkably, only a small number of scholars have de-
voted themselves to the study of complex functional constraints. As far as we know, this breakthrough
is only completed in [27]. However, the aforementioned results are realized under the assumption that
the system is in good working condition.

In practical systems, the non-smooth input characteristics such as hysteresis, dead zone, saturation
signal, etc. are always inevitable, which can lead to system instability. It is emphasized that dead
zone regarded as a significant input nonlinearity continually occurs in actual systems. Therefore, the
performance of the system will also be greatly affected when dead-zone inputs exist in the system,
which should not be ignored. To ensure tracking performance, an adaptive compensation algorithm
subject to dead-zone characteristics is proposed in [28]. Considering continuous-time nonlinear dy-
namic systems, Wang et al. [29] employ an adaptive control scheme by relying on the method of
establishing dead zone model. An adaptive asymptotic control is analyzed in [30] where the unknown
dead-zone and event trigger input are considered simultaneously. For nonlinear discrete-time systems,
a fuzzy approximation combining with backstepping algorithm is constructed in [31]. Especially, not
only the above-mentioned nonlinear systems, but also the dead zone input has been introduced into
the constraint control systems. To just name a few, a full-state constraint tracking control approach
based adaptive backstepping technique is addressed in [32]. The stability of feedback control systems
subjected to dead-zone is outlined in [33], while barrier Lyapunov-Krasovskii functional (LKF) is in-
troduced to overcome time-delay terms. It is noteworthy that these dead-zone inputs are investigated
under the condition of state constraints, ignoring the problem of immeasurable states.

In addition to the state measurable systems of the above-mentioned researches, there are still a
number of states that cannot be directly obtained in many practical systems, which encourages schol-
ars to construct state observers to estimate the unmeasurable states. In [34], a sliding-mode observer
is addressed to cope with unmeasurable states of stochastic polynomial systems. According to the ap-
proximation of FLSs, various state observer control approaches are achieved in [35–37] via employing
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backstepping algorithm. Subsequently, the control strategy has been further developed to stabilize other
nonlinear systems, such as discrete-time fuzzy systems [38] and input delay systems [39]. Yoo [40]
proposes an output-feedback control scheme considering fault detection and accommodation, where a
neural state observer is constructed. Under the framework of constraint control systems, a neural-based
output constraints control [41] and an adaptive fuzzy observer with time-varying full state constraints
(TFSC) [42] are developed. By relying on BLF, a fuzzy tracking control strategy about backlash-like
hysteresis and TFSC is established in [43]. Liu et al. [44] present a constraint control of multi-input-
multi-output systems, where the problem of unmeasurable states is well solved. Despite remarkable
achievements have been made in nonlinear constrained control systems, the situation of unmeasurable
states in functional constrained systems need to be further studied.

Inspired by aforementioned approaches, this paper addresses an output feedback control scheme
with functional constraints and dead-zone input, where a state observer is constructed to estimate the
unmeasurable states. The major contributions are summarized as follows.

(1) The time-varying functional constraints (TFC) are considered by adopting integral BLF. In par-
ticular, this paper specifically investigates the impact on system performance when the state variables
and time exist simultaneously in the constraint boundary.

(2) Most studies tend to develop state measurable systems, but neglect the situation of state unmea-
surable. In order to handle this issue, an adaptive fuzzy state observer combining with backstepping
technique is presented in this paper. Currently, the output feedback control with functional constraints
has not been developed.

(3) As a significant input nonlinearity affecting the stability of the system, dead-zone input is suc-
cessfully solved in the controller design. Finally, an observer based adaptive backstepping algorithm
with TFC and dead zone input is achieved in this paper.

The remainder of this paper is organized as follows. Some basic knowledge and system descrip-
tions are elaborated in Section 2. In Section 3, a fuzzy state observer is constructed. The process of
controller construction is provided in Section 4. Section 5 gives the simulation results. At last, Section
6 concludes the work of this paper.

2. System description and preliminaries

2.1. System descriptions

Take the following strict feedback nonlinear systems into consideration:

ẋ1 = f1(x1) + x2,

ẋ2 = f2(X2) + x3,
...

ẋi = fi(Xi) + xi+1,

ẋn = fn(X) + u,
y = x1

(2.1)

where Xi = [x1, x2, ..., xi]T denotes immeasurable state vectors with i ≥ 2, X = [x1, x2, ..., xn]T denotes
the state variables, and y ∈ R represents the system output. fi(Xi) stands for unknown nonlinear
smooth functions. In addition, choose the known functional constraints ξci(Xi−1, t), (i = 1, 2, ..., n) with
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x0 = yr, so that the states in this paper are constrained in predefined compact sets ∆x = { xi| |xi(t)| <
ξci(Xi−1, t),∀t ≥ 0}, where ξci(Xi−1, t) is a designable function. u ∈ R denotes the input of the dead-zone,
which is described as:

u(t) = D (υ(t)) =


mr(υ(t) − kr), i f υ(t) ≥ kr

0, i f − kl < υ(t) < kr

ml(υ(t) + kl), i f υ(t) ≤ −kl

(2.2)

where υ(t) denotes the input of the dead zone, mr, ml represent right and left slopes, mr = ml = m. kr,
kl > 0 are the break points. The dead zone Eq (2.2) can be expressed as:

D (υ(t)) = mυ(t) + k(t) (2.3)

where

k(t) =


−mkr, υ(t) ≥ kr

−mυ(t), − kl < υ(t) < kr

mkl, υ(t) ≥ kr

with k̄ = max{mkr,mkl} is the upper bounded of |k(t)|.
Transforming system Eq (2.1) into the following state space form: Ẋ = AX + ηy +

n∑
i=1

Bi fi(Xi) + βu

y = CX
(2.4)

where

A =



−η1 1 · · · · · · 0

−η2 0 . . . · · · 0
...

...
. . .

. . .
...

−ηn−1 0 · · ·
. . . 1

−ηn 0 · · · · · · 0


n×n

, β =


0
...

1


n×1

,

η = [η1, η2, ..., ηn]T , Bi = [ 0 . . . 1 . . . 0 ]T , C = [ 1 . . . 0 . . . 0 ]1×n, and vector η is selected
such that A denotes a strict Hurwitz matrix. Thus, given a matrix Q = QT > 0, there exists a matrix
P = PT > 0 satisfying:

AT P + PA = −2Q (2.5)

Remark 1. A large number of achievements investigated nonlinear constraint systems whose
boundary was a constant [19–23] or a time-varying function [24–26]. Differently, this paper takes
functional constraints relying on state variables and time into account, which has not achieved in cur-
rent research. In addition, the states of this system are unmeasurable, leading us to construct a fuzzy
observer to estimate the former. The non-smooth input dead-zone is also considered in this paper,
which is a challenging task to design a reasonable controller.
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Control objective: The control objective is to develop an output feedback control strategy to
achieve the following points: a) the output of this system can follow desired signal yr(t) and the con-
structed fuzzy state observer can estimate the unmeasurable states commendably; b) the functional
constraints are never violated; c) all signals in the closed-loop system remain within bounds.

Assumption 1 [25]: There exist unknown constants ℑ0
i and ℑq

i (i = 1, ..., n, q = 1, ..., n) satis-
fying

∣∣∣ξci(Xi−1, t)
∣∣∣ ≤ ℑ0

i and
∣∣∣ξ(q)

ci (Xi−1, t)
∣∣∣ ≤ ℑq

i , where ξ(q)
ci (Xi−1, t) denotes the qth-order derivative of

ξci(Xi−1, t), ∀t ≥ 0.
Assumption 2 [18]: For any functional constraints ξci(Xi−1, t) > 0, there exist positive constants C0

and Ci such that the desired signal yr(t) and its ith-order derivative y(i)
r (t) satisfy |yr(t)| ≤ C0 < ξc1(yr, t)

and
∣∣∣y(i)

r (t)
∣∣∣ ≤ Ci.

Remark 2. To make this paper more rigorous, we introduced Assumptions 1 and 2. Assumption 1
indicates that the selected boundary function and its qth derivative are bounded. Obviously, it is more
meaningful to construct an appropriate controller to maintain the states in a closed set. Assumption 2
guarantees the boundedness of the desired signal yr(t), which facilitates the theorem proving. Similar
assumptions have also been introduced in existing researches [18,25].

Lemma 1 [14,15]: For |xi(t)| < ξci(Xi−1, t), i = 1, ..., n, the function Vzi satisfies the following
inequality:

Vzi ≤ z2
i ξ

2
ci

(Xi−1, t)
/(
ξ2

ci
(Xi−1, t) − x2

i

)
.

2.2. FLSs

A fuzzy approximator is constructed to estimate uncertain nonlinear functions which exists in the
function-constrained systems with unmeasurable states. The detailed characteristics are as follows.

Lemma 2: An unknown continuous function f (x) defined on a compact set ∆ satisfies the following
inequality:

sup
x∈∆

∣∣∣ f (x) − ϑTϕ(x)
∣∣∣ ≤ ε (2.6)

In this paper, the unknown continuous functions are described as:

fi(Xi|ϑi) = ϑT
i ψi(Xi) (2.7)

f̂i( X̂i

∣∣∣ϑi) = ϑT
i ψi(X̂i) (2.8)

where X̂i = [x̂1, x̂2, ..., x̂n]T stands for the estimation of Xi = [x1, x2, ..., xn]T .
Define

δi = fi(Xi) − f̂i( X̂i

∣∣∣ϑ∗i ) (2.9)

ζi = fi(Xi) − f̂i( X̂i

∣∣∣ϑi), i = 1, ..., n (2.10)

where δi denotes the fuzzy minimum approximation error, ζi is the approximation error, and ϑ∗i denotes
the optional parameter vector. Moreover, there exist positive constants δ̄i and ζ̄i, which satisfy |δi| ≤ δ̄i,
|ζi| ≤ ζ̄i, (i = 1, ..., n).

According to above analysis, select ϖi = δi − ζi, we can obtain |ϖi| ≤ ϖ̄i with constant ϖ̄i > 0.
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3. Observer-based adaptive controller construction and stability analysis

To handle the unmeasurable state problem, an adaptive observer is developed by combining back-
stepping technique in this section. And the stability of this system is analyzed at the end.

Constructing the following fuzzy state observer:
˙̂X = AX̂ + ηy +

n∑
i=1

Bi f̂i( X̂i

∣∣∣ϑi) + βu

ŷ = CX̂
(3.1)

Let
⌣

X = X − X̂ = [⌣x1,
⌣x2, ...,

⌣xn]T be the observer errors, based on Eqs (2.4) and (3.1), one obtains

⌣̇

X = A
⌣

X +
n∑

i=1

Bi

[
fi(Xi) − f̂i( X̂i

∣∣∣ϑi)
]

= A
⌣

X + ζ

(3.2)

where ζ = [ζ1, ζ2, ..., ζn]T .
Take the following Lyapunov function candidate into account:

VX
0 =

1
2

⌣

X
T

P
⌣

X (3.3)

The time derivative of VX
0 along Eq (3.2) is given as

V̇X
0 =

1
2

⌣̇

X
T

P
⌣

X +
1
2

⌣

X
T

P
⌣̇

X (3.4)

Substituting Eq (2.5) into Eq (3.4) and combining Eq (3.2), one acquires

V̇X
0 =

1
2

⌣

X
T
(AT P + PA)

⌣

X +
⌣

X
T

Pξ

= −
⌣

X
T

Q
⌣

X +
⌣

X
T

Pξ

≤ −λmin(Q)
∥∥∥∥⌣

X
∥∥∥∥2
+

⌣

X
T

Pξ

(3.5)

Utilizing the Young’s inequality, we have

⌣

X
T

Pξ ≤
1
2

∥∥∥∥⌣

X
∥∥∥∥2
+

1
2
∥Pξ∥2 (3.6)

Then, the following inequality holds

V̇X
0 ≤ −(λmin(Q) −

1
2

)
∥∥∥∥⌣

X
∥∥∥∥2
+

1
2
∥Pξ∥2 (3.7)

To realize the control objectives, the following coordinate transformation are given:

z1 = x1 − yr (3.8)

zi = x̂i − αi−1, i = 2, ..., n (3.9)
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where zi represents the tracking error, and αi−1 denotes a virtual controller with α0 = yr.
Selecting the following Lyapunov function candidate:

Vzi =

∫ zi

0

γξ2
ci

(
X̂i−1, t

)
ξ2

ci

(
X̂i−1, t

)
− (γ + αi−1)2

dγ (3.10)

where Vzi is positive definite and continuously differentiable. The state vectors x1 and X̂i, (i ≥ 2) are
confined to |x1| < ξc1(yr, t) and

∣∣∣X̂i(t)
∣∣∣ < ξci(X̂i−1, t), respectively.

Define γ = εzi, one gets

Vzi = z2
i

∫ 1

0

εξ2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − (εzi + αi−1)2 dε ≥
1
2

z2
i (3.11)

which is applied in stability analysis.
Step 1: Based on Eq (3.8), one acquires

ż1 = ϑ̃
T
1ψ1(X̂1) + ϑT

1ψ1(X̂1) +ϖ1 + z2 + α1 +
⌣x2 − ẏr (3.12)

in which ϑ1 represents the estimation of ϑ∗1, ϑ̃1 denotes the estimation error, and ϑ̃1 = ϑ
∗
1 − ϑ1.

According to Eq (3.12), V̇z1 is obtained as

V̇z1 =
z1ξ

2
c1

(yr, t)

ξ2
c1

(yr, t) − (z1 + yr)2 ż1 + ẏr

∫ z1

0

∂

∂yr

γξ2
c1

(yr, t)

ξ2
c1

(yr, t) − (γ + yr)2 dγ

+ ξ̇c1(yr, t)
∫ z1

0

∂

∂ξc1(yr, t)
γξ2

c1
(yr, t)

ξ2
c1

(yr, t) − (γ + yr)2 dγ

(3.13)

where ∫ z1

0

∂

∂yr

γξ2
c1

(yr, t)

ξ2
c1

(yr, t) − (γ + yr)2 dγ

= z1

 ξ2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

+
∂ξc1(yr, t)
∂yr

M1(ξc1 , yr, z1) − N1(ξc1 , yr, z1)


with

M1(ξc1 , yr, z1) = −
(z1 + yr)ξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

+

∫ 1

0

(2εz1 + yr)ξc1(yr, t)
ξ2

c1
(yr, t) − (εz1 + yr)2 dε

= −
(z1 + yr)ξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

−
ξc1(yr, t)

z1
ln
ξ2

c1
(yr, t) − x2

1

ξ2
c1

(yr, t) − y2
r

+
yr

2z1
ln

(
ξc1(yr, t) − x1

) (
ξc1(yr, t) + yr

)(
ξc1(yr, t) − yr

) (
ξc1(yr, t) + x1

)
N1(ξc1 , yr, z1) =

∫ 1

0

ξ2
c1

(yr, t)

ξ2
c1

(yr, t) − (εz1 + yr)2 dε

=
ξc1(yr, t)

2z1
ln

(
ξc1(yr, t) + x1

) (
ξc1(yr, t) − yr

)(
ξc1(yr, t) + yr

) (
ξc1(yr, t) − x1

) .
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The following part of Eq (3.13) is expressed as∫ z1

0

∂

∂ξc1(yr, t)
γξ2

c1
(yr, t)

ξ2
c1

(yr, t) − (γ + yr)2 dγ

=

∫ z1

0
−γ(γ + yr)d

ξc1(yr, t)
ξ2

c1
(yr, t) − (γ + yr)2

= z1

(
−

z1ξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

+ P1(ξc1 , yr, z1)
) (3.14)

where

P1(ξc1 , yr, z1) = −
yrξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

+

∫ 1

0

(2εz1 + yr)ξc1(yr, t)
ξ2

c1
(yr, t) − (εz1 + yr)2 dε

= −
yrξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

−
ξc1(yr, t)

z1
ln

ξ2
c1

(yr, t) − x2
1

ξ2
c1

(yr, t) − y2
r


+

yr

2z1
ln

((
ξc1(yr, t) − x1

) (
ξc1(yr, t) + yr

)(
ξc1(yr, t) + x1

) (
ξc1(yr, t) − yr

))
Remark 3. For convenience of description, this paper rewrites M1(ξc1 , yr, z1), N1(ξc1 , yr, z1), and

P1(ξc1 , yr, z1) as M1, N1, P1, respectively. Applying L’Hôpital’s rule, we get limz1→0M1 = limz1→0P1 =

0, limz1→0N1 = ξ
2
c1

(yr, t)
/
(ξ2

c1
(yr, t) − y2

r ). Assumption 2 supposes that yr is bounded satisfying |yr(t)| ≤
C0 , so the boundedness of N1 is guaranteed when z1 → 0 . These rules are also established in below
steps.

Choose a Lyapunov function as

V1 = VX
0 + Vz1 +

1
2ρ1

ϑ̃T
1 ϑ̃1 (3.15)

where ρ1 is a designable parameter.
Then, the derivative of V1 becomes

V̇1 =V̇X
0 +

z1ξ
2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

(
ϖ1 + z2 + α1 +

⌣x2 − ẏr

)
+

z1ξ
2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

(
ϑT

1ψ1(X̂1) + ϑ̃T
1ψ1(X̂1) + ẏr

)
+
∂ξc1(yr, t)
∂yr

z1M1ẏr + z1P1ξ̇c1(yr, t)

− z1N1ẏr −
z2

1ξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

ξ̇c1(yr, t) −
1
ρ1
ϑ̃T

1 ϑ̇1

(3.16)

where

ξ̇c1 (yr, t) =
∂ξc1 (yr, t)

∂yr
ẏr +

∂ξc1 (yr, t)
∂t

.

The first virtual controller α1 and adaption law ϑ̇1 are constructed as
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α1 = − ι1z1 − c̄1z1 − ϑ
T
1ψ1(X̂1) −

z1ξc1(yr, t)
ξ2

c1
(yr, t) − x2

1

−
∂ξc1(yr, t)
∂yr

θ1M1ẏr

+ θ1N1ẏr −
∂ξc1 (yr, t)

∂yr
θ1P1ẏr −

∂ξc1 (yr, t)
∂t

θ1P1

(3.17)

ϑ̇1 =
ρ1z1ξ

2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

ψ1(X̂1) − β1ϑ1 (3.18)

where ι1 > 0, β1 > 0 are designable parameters, and θ1 =
(
ξ2

c1
(yr, t) − x2

1

)/
ξ2

c1
(yr, t). c̄1 is a time-varying

function described as c̄1 =

(
(ξ̇c1(yr, t)

/
ξc1(yr, t))

2
+ o1

) 1
2

with o1 > 0.

Utilizing Young’s inequality, one yields

z1ξ
2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

(
ϖ1 +

⌣x2

)
≤

 z1ξ
2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

2

+
1
2

∥∥∥⌣x2

∥∥∥2
+

1
2
ϖ̄2

1 (3.19)

Substituting Eqs (3.7), (3.17), (3.18) and (3.19) into Eq (3.16) gets

V̇1 ≤ − (λmin(Q) − 1)
∥∥∥∥⌣

X
∥∥∥∥2
− ι1

z2
1ξ

2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

+
β1

ρ1
ϑ̃T

1ϑ1

+
z1z2ξ

2
c1

(yr, t)

ξ2
c1

(yr, t) − x2
1

+
1
2
ϖ̄2

1 +
1
2
∥Pζ∥2

(3.20)

Step i(2 ≤ i ≤ n − 1): In view of Eq (3.9), żi is calculated as

żi = ˙̂xi − α̇i−1

= ηi
⌣x1 + zi+1 + αi + ϑ̃

T
i ψi(X̂i) + ϑT

i ψi(X̂i) +ϖi − α̇i−1
(3.21)

where

α̇i−1 =

i−1∑
m=1

∂αi−1

∂x̂m

(
x̂m+1 − ηm(x̂1 − y) + ϑT

mψm(X̂m)
)

+
∂αi−1

∂x1

(
x̂2 +

⌣x2 + ϑ
T
1ψ1(X̂1) + ζ1

)
+

i−1∑
m=1

∂αi−1

∂y(m−1)
r

y(m)
r

+

i−1∑
m=1

∂αi−1

∂ϑm
ϑ̇m +

i−1∑
m=1

i−m∑
j=0

∂αi−1

∂ξ
( j)
cm (X̂m−1, t)

ξ( j+1)
cm

(X̂m−1, t)

(3.22)

Choose the following Lyapunov function

Vi = Vi−1 +

∫ zi

0

γξ2
ci

(
X̂i−1, t

)
ξ2

ci

(
X̂i−1, t

)
− (γ + αi−1)2

dγ +
1

2ρi
ϑ̃T

i ϑ̃i (3.23)

The time derivative of Vi is
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V̇i =V̇i−1 +
ziξ

2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

żi + α̇i−1

∫ zi

0

∂

∂αi−1

γξ2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − (γ + αi−1)2 dγ

+ ξ̇ci(X̂i−1, t)
∫ zi

0

∂

∂ξci(X̂i−1, t)

γξ2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − (γ + αi−1)2 dγ −
1
ρi
ϑ̃T

i ϑ̇i

(3.24)

Substituting Eq (3.21) into Eq (3.24), one yields

V̇i =V̇i−1 +
ziξ

2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

(ηi
⌣x1 + zi+1 + αi + ϑ̃

T
i ψi(X̂i)

+ ϑT
i ψi(X̂i) +ϖi − α̇i−1) + α̇i−1

ziξ
2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

+
∂ξci(X̂i−1, t)
∂αi−1

ziMiα̇i−1 − ziNiα̇i−1 + ziPiξ̇ci(X̂i−1, t)

−
z2

i ξci(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

ξ̇ci(X̂i−1, t) −
1
ρi
ϑ̃T

i ϑ̇i

(3.25)

where Mi,Ni and Pi is similar to step 1, and the detailed calculations of them are provided in the
Appendix (a). Besides, ξ̇ci(X̂i−1, t) is expressed as

ξ̇ci(X̂i−1, t) =
i−1∑
m=1

∂ξci(X̂i−1, t)

∂X̂m

˙̂Xm +
∂ξci(X̂i−1, t)

∂t
(3.26)

Further, Eq (3.25) is rewritten in the following form

V̇i =V̇i−1 +
ziξ

2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

(zi+1 + αi +ϖi) +
ziξ

2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

(ηi
⌣x1

+ ϑ̃T
i ψi(X̂i) + ϑT

i ψi(X̂i)) +
∂ξci(X̂i−1, t)
∂αi−1

ziMiα̇i−1 − ziNiα̇i−1

−
z2

i ξci(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

 i−1∑
m=1

∂ξci(X̂i−1, t)

∂X̂m

˙̂Xm +
∂ξci(X̂i−1, t)

∂t


+ ziPi

i−1∑
m=1

∂ξci(X̂i−1, t)

∂X̂m

˙̂Xm + ziPi
∂ξci(X̂i−1, t)

∂t
−

1
ρi
ϑ̃T

i ϑ̇i

(3.27)

Construct the intermediate virtual controller αi and adaption law ϑ̇i as

αi = − ιizi − c̄izi − ηi
⌣x1 − ϑ

T
i ψi(X̂i) −

∂ξci(X̂i−1, t)
∂αi−1

θiMiα̇i−1

+ θiNiα̇i−1 − θiPi

 i−1∑
m=1

∂ξci(X̂i−1, t)

∂X̂m

˙̂Xm

 − θiPi
∂ξci(X̂i−1, t)

∂t

−
1
2

ziξ
2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

−
zi−1ξ

2
ci−1

(X̂i−2, t)(ξ2
ci

(X̂i−1, t) − x̂2
i )

(ξ2
ci−1

(X̂i−2, t) − x̂2
i−1)ξ2

ci
(X̂i−1, t)

(3.28)
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ϑ̇i =
ρiziξ

2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

ψi(X̂i) − βiϑi (3.29)

where ιi > 0, βi > 0 are designable parameters, and θi =
(
ξ2

ci
(X̂i−1, t) − x̂2

i

)/
ξ2

ci
(X̂i−1, t). c̄i is a time-

varying function described as c̄i =

(
(ξ̇ci(X̂i−1, t)

/
ξci(X̂i−1, t))

2
+ oi

) 1
2

with oi > 0.
According to Young’s inequality, one has

ziξ
2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

ϖi ≤
1
2

 ziξ
2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

2

+
1
2
ϖ̄2

i (3.30)

Thus, we have

V̇i ≤ − (λmin(Q) − 1)
∥∥∥∥⌣

X
∥∥∥∥2
−

i∑
m=1

ιm
z2

mξ
2
cm

(X̂m−1, t)

ξ2
cm

(X̂m−1, t) − x̂2
m

+

i∑
m=1

βm

ρm
ϑ̃T

mϑm

+
ξ2

ci
(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

zizi+1 +

i∑
m=1

1
2
ϖ̄2

m +
1
2
∥Pζ∥2

(3.31)

Step n: Form Eq (3.9), żn is calculated as

żn = ˙̂xn − α̇n−1

= ηn
⌣x1 + mυ(t) + κ(t) + ϑ̃T

nψn(X̂n) + ϑT
nψn(X̂n) +ϖn − α̇n−1

(3.32)

where

α̇n−1 =

n−1∑
m=1

∂αn−1

∂x̂m

(
x̂m+1 − ηm(x̂1 − y) + ϑT

mψm(X̂m)
)

+
∂αn−1

∂x1

(
x̂2 +

⌣x2 + ϑ
T
1ψ1(X̂1) + ζ1

)
+

n−1∑
m=1

∂αn−1

∂y(m−1)
r

y(m)
r

+

n−1∑
m=1

∂αn−1

∂ϑm
ϑ̇m +

n−1∑
m=1

n−m∑
j=0

∂αn−1

∂ξ
( j)
cm (X̂m−1, t)

ξ( j+1)
cm

(X̂m−1, t)

(3.33)

Choose the following Lyapunov function

Vn = Vn−1 +

∫ zn

0

γξ2
cn

(
X̂n−1, t

)
ξ2

cn

(
X̂n−1, t

)
− (γ + αn−1)2

dγ +
1

2ρn
ϑ̃T

n ϑ̃n (3.34)

The time derivative of Vn is

V̇n =V̇n−1 +
znξ

2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

żn + α̇n−1

∫ zn

0

∂

∂αn−1

γξ2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − (γ + αn−1)2 dγ

+ ξ̇cn(X̂n−1, t)
∫ zn

0

∂

∂ξcn(X̂n−1, t)

γξ2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − (γ + αn−1)2 dγ −
1
ρn
ϑ̃T

n ϑ̇n

(3.35)
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Replacing Eq (3.35) by Eq (3.32) results in

V̇n =V̇n−1 +
znξ

2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

(ηn
⌣x1 + mυ(t) + k(t) + ϑT

nψn(X̂n) +ϖn)

+
∂ξcn(X̂n−1, t)

∂αn−1
znMnα̇n−1 − znNnα̇n−1 + znPnξ̇cn(X̂n−1, t)

−
z2

nξcn(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

ξ̇cn(X̂n−1, t) −
1
ρn
ϑ̃T

n

 ρnznξ
2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

ψn(X̂n) − βnϑn


(3.36)

where ρn, βn are positive constants, the definition of Mn, Nn and Pn will be explained in the Appendix
(b). Besides, ξ̇cn(X̂n−1, t) is expressed as

ξ̇cn(X̂n−1, t) =
n−1∑
m=1

∂ξcn(X̂n−1, t)

∂X̂m

˙̂Xm +
∂ξcn(X̂n−1, t)

∂t
(3.37)

The real controller υ(t) and adaption law ϑ̇n are given by

υ(t) =
1
m

[
−ιnzn − c̄nzn − ηn

⌣x1 − ϑ
T
nψn(X̂n) −

∂ξcn(X̂n−1, t)
∂αn−1

θnMnα̇n−1

+ θnNnα̇n−1 − θnPn

 n−1∑
m=1

∂ξcn(X̂n−1, t)

∂X̂m

˙̂Xm

 − θnPn
∂ξcn(X̂n−1, t)

∂t

−
znξ

2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

−
zn−1ξ

2
cn−1

(X̂n−2, t)(ξ2
cn

(X̂n−1, t) − x̂2
n)

(ξ2
cn−1

(X̂n−2, t) − x̂2
n−1)ξ2

cn
(X̂n−1, t)


(3.38)

ϑ̇n =
ρnznξ

2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

ψn(X̂n) − βnϑn (3.39)

where ιn > 0 is desingable paremeter and θn =
(
ξ2

cn
(X̂n−1, t) − x̂2

n

)/
ξ2

cn
(X̂n−1, t). c̄n is a time-varying

function described as c̄n =

(
(ξ̇cn(X̂n−1, t)

/
ξcn(X̂n−1, t))

2
+ on

) 1
2

with on > 0.
Based on Young’s inequality, it has

znξ
2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

κ(t) ≤
1
2

 znξ
2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

2

+
1
2
κ̄2 (3.40)

znξ
2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

ϖn ≤
1
2

 znξ
2
cn

(X̂n−1, t)

ξ2
cn

(X̂n−1, t) − x̂2
n

2

+
1
2
ϖ̄2

n (3.41)

Finally, we obtain

V̇n ≤ − (λmin(Q) − 1)
∥∥∥∥⌣

X
∥∥∥∥2
−

n∑
m=1

ιm
z2

mξ
2
cm

(X̂m−1, t)

ξ2
cm

(X̂m−1, t) − x̂2
m

+

n∑
m=1

βm

ρm
ϑ̃T

mϑm (3.42)

Remark 4. It is worth emphasized that a direct constraint is adopted on the states of this system
according to the constraint Eq (3.10). But, through [19] and [24], the boundedness of the virtual
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controller must be obtained firstly, then from error transformation zi = xi − αi−1, the boundedness of
states can be known. The integral BLF-approach introduced in this paper successfully overcomes the
aforementioned conservation conditions.

Theorem 1. Under the condition of functional constraints |x̂i| < ξci(X̂i−1, t), consider strict-feedback
control systems Eq 2.1, actual fuzzy controller Eq (3.38), and adaptation laws Eqs (3.18), (3.29) and
(3.39), if the initial condition satisfies x(0) ∈ ∆x = { x̂i| |x̂i(0)| < ξci(X̂i−1(0), 0)}, the following properties
can be guaranteed:

• the constructed fuzzy state observer can estimate the unmeasurable states commendably;
• the functional constraints are never violated;
• the boundedness of all the closed-loop signals are ensured.

Proof. Applying Young’s inequality, the third term
n∑

m=1

βm

ρm
ϑ̃T

mϑm of Eq (3.42) is transformed into

the following form:

n∑
m=1

βm

ρm
ϑ̃T

mϑm ≤ −
1
2

n∑
m=1

βm

ρm
ϑ̃T

mϑ̃m +
1
2

n∑
m=1

βm

ρm
ϑ∗Tm ϑ

∗
m (3.43)

Substituting Eq (3.43) into Eq (3.42), one acquires

V̇n ≤ −χVn + Λ (3.44)

where

χ = {2(λmin(Q) − 1)/λmin(P), 2ιm, 2βm}, m = 1, ..., n,

and

Λ =

n∑
m=1

1
2
ϖ̄2

m +
1
2
∥Pζ∥2 +

n∑
m=1

1
2
κ̄2 +

1
2

n∑
m=1

βm

ρm
ϑ∗Tm ϑ

∗
m.

Multiplying Eq (3.44) by eπ1t, one obtains

d
(
eπ1tVn

)/
dt ≤ eπ1tΛ (3.45)

Integrating Eq (3.45) over [0, t] yields

Vn(t) ≤ (Vn(0) − Λ
/
χ)e−π1t+Λ/χ (3.46)

Employing Eqs (3.11), (3.15) and (3.46), the following inequalities are acquired

z2
i ≤ 2

[
(Vn(0) − Λ

/
χ)e−π1t+Λ/χ

]
(3.47)∥∥∥ϑ̃i

∥∥∥2
≤ 2

[
(Vn(0) − Λ

/
χ)e−π1t+Λ/χ

]
(3.48)

According to Eqs (3.42) and (3.44), one has

⌣

X
T

P
⌣

X ≤ 2Vn(0)e−π1t + 2Λ/χ (3.49)
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Further, we can obtain the following form∥∥∥∥⌣

X
∥∥∥∥ ≤ √

λmin(P−1)(2Vn(0)e−π1t + 2Λ/χ). (3.50)

Based on the inequality Eq (3.47), the boundedness of z1 is obtained. From Assumption 1 and 2, it
can be known that |yr(t)| ≤ C0 < ξc1(yr, t). Thus, we conclude that the boundedness of x1 is guaranteed.
Since ⌣xi = xi − x̂i, it’s obvious that ⌣xi and x̂i are within limits. Therefore, it can be proved that xi is
bounded. According to zi = x̂i − αi−1 and inequality Eq (3.47), the boundedness of αi−1 is implied.
Depending on the inequality Eq (3.48), the boundedness of ϑi is ensured. In the same way, it can be
deduced that the controller υ(t) is bounded.

Depending on the above analyses, we can draw a conclude that all the signals of this system are
within bounds.

4. Simulation example

To further verify the feasibility of this scheme, the following simple pendulum system is considered:
ẋ1 = x2

ẋ2 = −
m1gL sin(x1)

2M
−

Dx2

M
+

u
M

y = x1

(4.1)

where m1 = 1, g = 9.8, L = 1.5, M = 0.5, D = 0.4. The state variables x1 and x2 are constrained by
−ξc1(yr, t) < x1 < ξc1(yr, t) and −ξc2(x1, t) < x2 < ξc2(x1, t). In this paper, the constraint boundaries are
selected as ξc1(yr, t) = 0.2 sin(2t)+ 0.8e−0.1yr + 1 and ξc2(x1, t) = 5 sin(0.3x1)+ 0.1e−0.5t + 4. In addition,
u denotes the dead-zone input which is described by:

u = D(υ(t)) =


0.5(υ(t) − 2.5) υ(t) ≥ 2.5

0 − 1.5 < υ(t) < 2.5
0.5(υ(t) + 1.5) υ(t) ≤ −1.5

(4.2)

The state observer is constructed as:{ ˙̂x1 = x̂2 + η1
⌣x1 + ϑ

T
1ψ1(x̂1)

˙̂x2 = η2
⌣x1 + ϑ

T
2ψ2(x̂2) + u

(4.3)

where the initial values are chosen as x1(0) = 0.6, x2(0) = 0.2, x̂1(0) = 0.6 and x̂2(0) = 0.2.
Select the following fuzzy membership functions:

µFi
1
(x̂1) = exp

(
(−x̂1 + 12 − 0.5i)2

)
,

µFi
2
(x̂1, x̂2) = exp

(
(−x̂1 + 12 − 0.5i)2

)
× exp

(
(−0.5x̂2 + 12 − 0.6i)2

)
.

where i = 1, 2, ..., 8.
The fuzzy basis functions are defined as:

ψ1 j(x̂1) =
µFi

1
(x̂1)∑8

j=1 µF j
1
(x̂1)

, ψ2 j(x̂1, x̂2) =
µFi

1
(x̂1)µFi

2
(x̂2)∑8

j=1 µF j
1
(x̂1)µF j

2
(x̂2)

.
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Figure 1. Trajectories of x1 and yr.
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Figure 2. Trajectories of x1, x̂1 and estimation error.

where j = 1, 2, ..., 8.
In this simulation, the tracking signal is designed as yr = 0.5 cos(4t), ẏr = −2 sin(4t).

The initial values of the adaptation laws are ϑ1(0) = [0.2, 0, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1]T , ϑ2(0) =
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Figure 3. Trajectories of x2, x̂2 and estimation error.

0 5 10 15 20 25 30

-300

-200

-100

0

100

200

0 5 10 15 20 25 30

-20

0

20

40

60

80

100

Figure 4. Trajectories of real controller υ and dead-zone input u.

[0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1]T . The relevant parameters in this paper are chosen as ρ1 = 0.5,
ρ2 = 0.2, β1 = 5, β2 = 16, ι1 = 30, ι2 = 25, o1 = o2 = 0.2, η1 = 5 and η2 = 155.

According to the mentioned above parameter values, the corresponding simulation results are
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Figure 5. Trajectories of ϑ1 and ϑ2.

demonstrated in Figures 1–5. The change curves of state x1 and reference signal yr(t) are described in
Figure 1, where two curves can approximate overlap and the tracking effect is good. In Figures 2 and 3,
the constructed observer is able to estimate the system states x1 and x2 well, and their estimation errors
are relatively small. Figures 1–3 indicates that system states are strictly restricted in the predetermined
ranges, and the TFSC are achieved. The trajectories of actual controller υ and dead-zone input u are
plotted in Figure 4, and their curves tend to be stable. Finally, Figure 5 diagrams the boundedness of
adaptation parameters ϑ1 and ϑ2.

5. Conclusions

A state observer and a fuzzy controller for a class of functional constraint systems subject to un-
known dead-zone have been constructed in this paper. The former is applied to estimate unmeasur-
able states, while the latter is established to approximate uncertain nonlinear functions. Relying on
backstepping algorithm and iBLFs, the full state TFC are accomplished and the issue of non-smooth
dead-zone input is successfully handled. The simulation diagrams further indicate that the developed
control scheme is feasible. In the future, how to choose an appropriate barrier function to settle the
application of constraint control in practical systems is a key problem.
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Appendix A

In this part, the specific steps of Eq (3.24) are demonstrated as follows. From Eq (3.24), one has∫ zi

0

∂

∂αi−1

γξ2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − (γ + αi−1)2 dγ

= zi

 ξ2
ci

(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

+
∂ξci(X̂i−1, t)
∂αi−1

Mi(ξci , αi−1, zi) − Ni(ξci , αi−1, zi)


where

Mi(ξci , αi−1, zi) = −
(zi + αi−1)ξci(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

+

∫ 1

0

(2εzi + αi−1)ξci(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − (εzi + αi−1)2 dε

= −
(zi + αi−1)ξci(X̂i−1, t)

ξ2
ci

(X̂i−1, t) − x̂2
i

−
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zi
ln

ξ2
ci

(X̂i−1, t) − x̂2
i

ξ2
ci

(X̂i−1, t) − α2
i−1

+
αi−1
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ln

(
ξci(X̂i−1, t) − x̂i

) (
ξci(X̂i−1, t) + αi−1

)(
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) (
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)
and

Ni(ξci , αi−1, zi) =
∫ 1
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) .
The following part of Eq (3.24) is expressed as
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∫ zi

0
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)
Appendix B

Partial calculations of the final step will be described in the following contents. According to
Eq (3.35), one has∫ zn
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The following part of Eq (3.35) is changed as
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