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Abstract: Background: Gastric cancer (GC) ranks fifth in prevalence among carcinomas worldwide.
Both pyroptosis and long noncoding RNAs (IncRNAs) play crucial roles in the occurrence and
development of gastric cancer. Therefore, we aimed to construct a pyroptosis-associated IncRNA
model to predict the outcomes of patients with gastric cancer. Methods: Pyroptosis-associated
IncRNAs were identified through co-expression analysis. Univariate and multivariate Cox regression
analyses were performed using the least absolute shrinkage and selection operator (LASSO).
Prognostic values were tested through principal component analysis, a predictive nomogram,
functional analysis and Kaplan—Meier analysis. Finally, immunotherapy and drug susceptibility
predictions and hub IncRNA validation were performed. Results: Using the risk model, GC individuals
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were classified into two groups: low-risk and high-risk groups. The prognostic signature could
distinguish the different risk groups based on principal component analysis. The area under the curve
and the conformance index suggested that this risk model was capable of correctly predicting GC
patient outcomes. The predicted incidences of the one-, three-, and five-year overall survivals exhibited
perfect conformance. Distinct changes in immunological markers were noted between the two risk
groups. Finally, greater levels of appropriate chemotherapies were required in the high-risk group.
AC005332.1, AC009812.4 and AP000695.1 levels were significantly increased in gastric tumor tissue
compared with normal tissue. Conclusions: We created a predictive model based on 10 pyroptosis-
associated IncRNAs that could accurately predict the outcomes of GC patients and provide a promising
treatment option in the future.

Keywords: gastric cancer; pyroptosis-associated genes; IncRNA; survival outcome; immunological
response; drug sensitivity

1. Introduction

Gastric cancer (GC) ranks as the fifth most prevalent tumor worldwide [1]. With 768,793 patients
dying globally in 2020, GC ranks fourth in terms of death among cancers [2]. The prognostic outcomes
of early GC patients have considerably improved with advancements in detection, surgery and
radiotherapy. However, the effect of these strategies is limited, with a median survival duration of less
than one year and a poor survival rate of five years, for advanced GC patients [3]. Compared with
chemotherapy, molecular and immunological therapies have distinct impacts on the treatment of a
small number of advanced GC patients [4—6]. However, the deficiency of indicators to predict the early
diagnosis of GC necessitates the construction of a novel prognostic and diagnostic risk model.

Pyroptosis, also known as inflammasome-induced programmed cell death, is a new type of cell
death (PCD) [7]. Excessive inflammasome activation in pyroptosis is strongly associated with various
human diseases and disorders [8]. For example, gasdermin superfamily proteins are the most common
pyroptosis inducers; the N-terminal regions of proteins from this family form pores across the cell
membrane, thereby leading to the secretion of IL-1p and IL-18 [9]. In addition, the caspase-1-
mediated inflammation-associated cell death pathway in pyroptosis involves the AIM2-, NLRP1-,
NLRP3-, NLRC4- and pyrin-inflammasomes, and it is known as the most traditional inflammasome
pathway [10]. Compared to standard therapies, induction of pyroptosis represents a potential strategy
for cancer treatment [11]. Thus, new pyroptosis-associated markers that expand current knowledge of
pyroptosis in GC and forecast the prognosis of GC patients are urgently needed.

IncRNAs with over 200 nucleotides [12] are important regulators of gene expression, growth,
differentiation, progression and chromatin dynamics [13]. In a growing number of scientific studies,
aberrant expression of IncRNAs has been identified as a prognostic marker in a variety of malignancies.
For example, AK023391, a IncRNA that promotes gastric cancer, plays a critical role in stimulating
the PI3K/Akt signal transduction pathway and has been used as a predictive and therapeutic biomarker
in patients with GC [14]. Furthermore, MT1JP, a downregulated IncRNA in GC linked to GC survival,
functions as a type of ncRNA to compete with miR-92a-3p and mediates FBXW7 expression to
regulate GC progression [15]. Furthermore, EGR1-induced HNF1A-AS1 modulates a variety of pro-
and anti-growth regulators to promote the development of GC, thereby serving as a potential
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therapeutic target and prognostic biomarker in this disorder [16]. However, only a limited number of
investigations on pyroptosis-associated IncRNAs and their involvement in the prognosis of GC patients
have been published to date, representing a gap that needs to be filled. Recently, applications of
information and computer technology in health care have expanded rapidly [17], such as bioinformatics
analysis, deep learning [18], machine learning [19] and Mendelian stochastic studies [20]. Unlike
traditional diagnostic and analytical methods, algorithmic analysis has many advantages, including
speed, low cost and high accuracy. This study aimed to construct a predictive model through
bioinformatics analysis to solve many problems in the diagnosis and treatment of gastric cancer that
are currently being encountered in clinical practice.

TCGA (The Cancer Genome Atlas) was used to obtain the expression profiles of 52 pyroptosis-
associated genes and 14056 IncRNAs for our investigation. We built a predictive signature to analyze
the survival values of GC patients based on 10 pyroptosis-associated IncRNAs. Then, depending on
the median cutoff, the predictive model classified GC individuals into two different risk groups.
Survival results, risk states and IncRNA expression levels were analyzed using patient data from the
training, testing and entire groups. Furthermore, we examined the prognostic capacity of this
constructed model, demonstrating that the predictive signature could recognize the differences
between the two risk groups. The model was also utilized to examine the tumor immune
microenvironment as well as the tumor immunotherapeutic reaction, and significant changes in the
expression of immunological biomarkers were noted between the two risk groups. Then, we analyzed
and summarized the mutation data, demonstrating that this model exhibited better predictive ability
using tumor mutational burden data. Finally, to identify a more efficacious chemotherapy regimen for
GC patients, we used a drug susceptibility analysis to compare the ICso values using the GDSC
database [21], demonstrating that the appropriate chemotherapy had better effects in the high-risk
group. The validation results from the InCAR database indicated that AC005332.1, AC009812.4 and
AP000695.1 levels were significantly increased in gastric tumor tissue compared with normal tissue,
and the overall survival of the patients with GC had statistically significant in high and low
AP000695.1 group. These results were consistent with the results based on TCGA GC cohort, which
showed that AC005332.1, AC009812.4 and AP000695.1 were crucial biomarkers involved in the
regulation of GC progression.

In conclusion, we developed a predictive model for GC patients using hub pyroptosis-associated
IncRNAs. The effect of pyroptosis-associated IncRNAs on predicting survival and immunological
responses was revealed, providing a new method to identify effective diagnostic biomarkers and
paving the way for the treatment of GC patients.

2. Materials and methods
2.1. GC patient information

RNA transcriptome sequencing information of 32 normal samples and 375 GC samples, the
corresponding clinical information (age, sex, cancer differentiation grade and TNM stage) and the
mutation information were abstracted from TCGA (https://portal.gdc.cancer.gov/) [22]. Normalized

RNA-seq data were obtained in the fragment per kilobase million (FPKM) format. GC patients without
survival data were omitted to reduce statistical bias. TNM (T: tumor; N: node; M: metastasis).
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2.2. Identification of IncRNAs associated with pyroptosis

Fifty-two pyroptosis-associated genes were retrieved from prior publications [23—33]. The specific
gene names are shown in Supplementary Table 1. The STRING database (https://string-db.org/) was
used to explore possible potential interactions between pyroptosis-associated genes, and a protein
interaction network was constructed. We hid disconnected nodes and set a minimum required
interaction score (high confidence: 0.007) in the network. We also used the TCGA database to obtain
the profiles of IncRNAs and pyroptosis-associated genes. A total of 739 pyroptosis-associated
IncRNAs were identified based on Pearson’s correlation analysis [34]. [Pearson R|> 0.4 and p < 0.001
were employed as criteria. The above results were visualized with a Sankey plot using the R packages
limma, dplyr, ggalluvial and ggplot2 [35].

2.3. Construction of a predictive signature

The entire TCGA cohort was classified into training and validation cohorts based on a ratio of 1:1.
The training cohort was used to establish a pyroptosis-associated IncRNA model, and the entire and
testing cohorts were used to verify this risk model. The clinical baseline information of the above two
cohorts is presented in Supplementary Table 2. No statistically significant differences in clinical
features were noted between the two datasets (p > 0.05). We used univariate Cox regression analysis
and survival statistics of GC individuals to assess the prognosis of 739 pyroptosis-associated
IncRNAs (p < 0.05), and forest plots were drawn. Prognosis-associated IncRNAs were identified
using LASSO to narrow the number of IncRNAs (using the penalty parameter estimated by 10-fold
cross-validation) [36]. We discovered that 20 pyroptosis-associated IncRNAs were strongly associated
with the overall survival (OS) of GC patients. Twenty pyroptosis-associated IncRNAs were analyzed
using multivariate Cox regression analysis, and a risk model based on 10 pyroptosis-associated IncRNAs
was created [37]. The above process was performed using the R packages survival, caret, glmnet,
survminer and timeROC. The risk score was computed using the following formula: Risk score = coe
(IncRNAT1) x exp (IncRNAT1) + coe (IncRNA2) x exp (IncRNA2) + ... + coe (IncRNAn) x exp
(IncRNA~n), where coe (IncRNAn) indicates the coefficient of IncRNAs and exp (IncRNA#) indicates
the expression of IncRNAs [38]. The median score was calculated to classify the individuals into two
groups: a low-risk group and a high-risk group.

2.4. Kaplan—Meier analysis and principal component analysis

Principal component analysis was used to reduce dimensionality, identify models and visualize
different-dimensional data from the whole set of genes [39], 52 pyroptosis genes, 10 pyroptosis-
associated IncRNAs and the prognostic signature, depending on the expression data of 10 pyroptosis-
associated IncRNAs. Principal component analysis was also used to cluster GC patients, and a 3D
scatterplot was used to display the distribution of GC patients with the R package scatterplot3D [37].
All samples containing GC patients were divided into low- and high-risk subsets based on the training
set’s median, which served as a cutoff criterion. To explain the differences in survival outcomes
between the two groups, we employed Kaplan—Meier analysis [40]. This approach was performed with
the survminer and survival packages in R.
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2.5. Evaluating the independence of the pyroptosis-associated [ncRNA model

In GC individuals, multivariate and univariate Cox regression analyses were used to determine
whether the risk score was an independent factor compared to other clinical features (age, sex, TNM
stage and grade) [41]. To analyze the independent prognosis of the pyroptosis-associated IncRNA
model, we used the dplyr, survival, rms and pec packages of R to construct the C-index [42]. The
survival, survminer and time ROC packages of R were used to construct the ROC curve [43], which
examined the independent predictors associated with various clinical features, such as age, sex, clinical
phase, TNM stage and risk score. We assessed the relationship between the model and the clinical
features using the chi-square test. The sensitivity and specificity of the predictive signature on the one-,
three- and five-year OS of GC patients were also assessed.

2.6. Building and validating a predictive nomogram

Various clinical features (age, sex, TNM stage and grade) and risk scores were established to
forecast the one-, three- and five-year OS using a predictive nomogram [44]. To demonstrate the
consistency between the practical result and the forecast outcome of this risk model, we also
constructed calibration curves using the survival, regplot and rms packages of R. The predictive ability
of the proposed nomogram models was demonstrated based on the Hosmer-Lemeshow test.

2.7. Functional analysis

Using the R package limma, the differentially expressed genes (DEGs) between the high- and
low-risk groups were discovered. The restricted condition was set to log: |fold change| > 1 and false
discovery rate < 0.05. To determine the biological activities of the DEGs, we used Gene Ontology
analysis [45]. Three parts of the GO analysis, biological process (BP), cellular component (CC) and
molecular function (MF), were examined. The R packages clusterProfiler, org.Hs.eg.db, enrichplot,
ggplot2, ggpubr and dplyr were used in this approach. The p value was calculated to identify the
threshold of outcome, and p < 0.05 indicated that the functional statement was considerably enriched.

2.8. The roles of pyroptosis-associated [ncRNAs in tumor immune microenvironment

To assist the determination of the quantities of immune pathways and tumor-infiltrating immune
cells (TIICs) for each sample in various risk groups, a single sample gene-set enrichment analysis
(ssGSEA) score was computed. To study and summarize the mutation information from TCGA, we
used the R package maftools. The tumor mutational burden (TMB) was calculated depending on tumor
mutant genes [37]. To compare the survival outcomes of patients in different TMB groups, we used
the survival package in R. The TMB could be utilized to predict the possibility of an
immunotherapeutic response in the future. The waterfall diagram demonstrated the relationship
between TMB and risk ratings in GC patients.
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2.9. Possible drugs targeting pyroptosis-associated IncRNAs

We performed drug analysis to evaluate the response based on the ICso available in the GDSC
database for every sample using the R packages limma, ggpubr, pRRophetic and ggplot2 [46] to
identify potential drugs targeting the pyroptosis-associated IncRNA signature for treating GC patients.
To compare the ICso differences between popular antineoplastic drugs in the high- and low-risk
categories, the Wilcoxon signed rank test was employed. We discovered that 12 compounds had
substantial differences in predicted ICso in the two groups, and the high-risk group was more
susceptible to the above compounds.

2.10.  Validation of hub pyroptosis-associated IncRNAs in the [InCAR database

The InCAR database (https://Incar.renlab.org/) collected and collated differential expression
analysis of 52,306 samples and survival analysis of 12,883 samples from 10 tumors (bladder, breast,
cervical, colon, esophageal, gastric, liver, lung, ovarian and prostate cancers) from the GEO
database [47]. Low-throughput data, such as real-time PCR and northern blot data, were integrated
into the InCAR database as validation datasets. We analyzed the expression levels of hub pyroptosis-
associated IncRNAs in GC from the InCAR database. We also performed survival analysis of hub
pyroptosis-associated IncRNAs in GC from the Sento Academic website (https://www.xiantao.love/).

2.11.  Statistical analysis

Statistical analyses were performed with R software (version 4.2.0). Clinicopathological
characteristics, TMB and drug sensitivity differences between the high- and low-risk groups were
analyzed with the Wilcoxon test. The prognostic values were tested by utilizing principal component
analysis, a predictive nomogram, functional analysis and Kaplan—Meier analysis. To compare
categorical data among various groups, the chi-square test was employed. Here, p < 0.05 was
considered statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001).

3. Results
3.1. Identification of pyroptosis-associated IncRNAs in patients with GC

The flow chart for constructing the risk model and the subsequent analysis is displayed in Figure 1.
TCGA was used to extract the matrix information of 52 pyroptosis-associated genes and 14056
IncRNAs. Pyroptosis-associated IncRNAs were defined as IncRNAs that had a sufficient correlation
with 52 pyroptosis genes (|Pearson R| > 0.4 and p < 0.001). Finally, using the Sankey plot, the co-
expression network of pyroptosis-associated IncRNAs was displayed, and 739 pyroptosis-associated
IncRNAs were identified as pyroptosis-associated IncRNAs (Figure 2A). In the entire TCGA cohort,
links between 52 pyroptosis genes and 10 prognostic pyroptosis-associated IncRNAs were identified
(Figure 2B). A protein interaction network of pyroptosis-associated genes was constructed (Figure S1).
These prognostic pyroptosis-associated IncRNAs were used for subsequent model construction.
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Figure 1. The flowchart of our study. The flowchart depicts the identification and
validation of the pyroptosis-associated IncRNA signature. GC: gastric cancer; OS:
overall survival.

3.2. Building and validating a risk model based on pyroptosis-associated IncRNAs

In total, 52 pyroptosis-associated IncRNAs associated with OS were screened with univariate Cox
regression (Figure 3A). LASSO analysis is a common multiple regression analysis technique. Thus,
we used LASSO to narrow the number of IncRNAs to 20 (Figure 3B,C). Furthermore, using
multivariate Cox analysis, 10 pyroptosis-associated IncRNAs were identified as prognostic factors that
were independently connected with OS and utilized to build a predictive signature to estimate the
predictive outcomes in GC patients. The risk model classified GC patients into two different risk
categories depending on their median risk score. The scattering of survival outcomes between the
two different categories was demonstrated using the entire TCGA cohort (Figure 4A), and survival
times were clearly evident when using the entire TCGA cohort (Figure 4B). Distinct expression standards
of 10 pyroptosis-associated IncRNAs were represented in the entire TCGA cohort (Figure 4C). Survival
analysis revealed that the high-risk group had a lower OS than the low-risk group (p < 0.001) in the
entire TCGA cohort (Figure 4D).

To test the predictive capacity of the constructed signature, we calculated the risk score for each
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individual in the training cohort and testing cohort utilizing the consistent method. The survival results,
risk status and IncRNA expression standards of each individual from the training cohort and testing
cohort are shown (Figure SA—C, E-G). The individuals in the high-risk category had a greater risk of
dying than those in the low-risk category. Kaplan—Meier analysis revealed that the OS of the high-risk

category was obviously lower (Figure 5D,H).
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Figure 2. Recognition of pyroptosis-associated IncRNAs in patients with gastric cancer.
(A) The Sankey diagram visualizes 52 pyroptosis-associated genes and 739 pyroptosis-
associated IncRNAs. Different colors represent the connections between different genes
and the corresponding IncRNAs. (B) The connections for 52 pyroptosis-associated genes
and 10 prognostic pyroptosis-associated IncRNAs are depicted in the heatmap. Red
represents a positive correlation, and blue represents a negative correlation. *p < 0.05; **p
<0.01; ***p <0.001.
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Figure 3. Establishment of the predictive model for patients with gastric cancer based on
pyroptosis-associated IncRNAs. (A) Univariate Cox regression revealed significant
correlations between the selected IncRNAs and clinical prognosis. A hazard ratio < 1
indicated weak risk factors; however, a hazard ratio > 1 indicated strong risk factors. (B)
LASSO identified 20 pyroptosis-associated IncRNAs based on the minimum criteria when
the curve was at its lowest point. (C) The coefficients of pyroptosis-associated IncRNAs
according to the determined tuning parameters (log 4).
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Subgroups of patients from the entire TCGA cohort were created based on sex, grade, stage or
tumor phase, and the overall survivals of the low-risk subgroups were also better (Figure 6A-D). In
this step, we first constructed a predictive signature and explored the predictive expression of the 10
pyroptosis-associated IncRNA signatures in the training, testing and entire cohorts, and the predictive
value of this model was better evaluated.
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Figure 4. The predictive performances of 10 pyroptosis-associated IncRNA models in the
entire cohort. (A) The distribution of the pyroptosis-associated IncRNA signature
depended on the risk score for the entire cohort. Survival and death are depicted by the
blue and red dots, respectively. (B) Different survival statuses and times between the two
risk groups for the entire cohort. (C) The expression standards of the 10 predictive
IncRNAs for every patient in the entire cohort are displayed in a heatmap created using a
cluster algorithm. Red represents high expression, and blue represents low expression. (D)
Kaplan—Meier analysis for the entire cohort of individuals in the two risk groups (p <0.001).

3.3. Confirming the grouping efficiency of the pyroptosis-linked IncRNA signature

According to the whole gene set, 52 pyroptosis genes, 10 pyroptosis-associated IncRNAs and a
predictive signature constructed by 10 pyroptosis-associated IncRNAs, principal component analysis
was performed to test the differences between the two risk groups (Figure 7A—D). The locations of the
two risk groups were considerably split (Figure 7A—C). In addition, the model results revealed that the
two risk categories had clearly different distributions (Figure 7D). The findings showed that the
predictive model could differentiate between the two risk groups, which confirmed the grouping
efficiency of the signature.
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Figure 5. Predictive expression of the 10 pyroptosis-associated IncRNA signature in the
training cohort and testing cohort. (A) The distribution of the pyroptosis-associated
IncRNA model depended on the risk score for the training cohort. The blue and red dots
represent survival and death, respectively. (B) Different survival times and statuses in the
two different risk groups in the training cohort. (C) The expression levels of 10 predictive
IncRNAs for every individual in the training cohort are displayed in a heatmap created by
a cluster algorithm. Red represents high expression, and blue represents low expression.
(D) Kaplan—Meier analysis for the training cohort of individuals in the two risk groups. (E)
The distribution of the pyroptosis-associated IncRNA signature depends on the risk score
for the testing cohort. Survival and death are depicted by the blue and red dots, respectively.
(F) Different survival times and statuses in two different groups for the testing cohort. (G)
The expression levels of 10 predictive IncRNAs for every individual in the testing cohort
are displayed in a heatmap created using a cluster algorithm. Red represents high
expression, and blue represents low expression. (H) Kaplan—Meier analysis of individuals

in the two risk groups from the testing cohort.

Mathematical Biosciences and Engineering

Volume 20, Issue 2, 1856-1881.



1867

A

Figure 6. Kaplan—Meier curves of survival outcomes for the two risk groups in the entire
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Figure 7. Principal component analysis for the two risk groups. (A) All genes. (B) Twenty-
two pyroptosis-associated genes. (C) Ten pyroptosis-associated IncRNAs. (D) Risk model
based on 10 pyroptosis-associated IncRNAs using the entire TCGA cohort. Red represents
high risk, and blue represents low risk.

3.4. Evaluating the predictive ability of the risk model based on pyroptosis-associated IncRNAs and
the clinical characteristics of GC

To determine whether the risk model based on pyroptosis-associated IncRNAs had independent
predictive ability for GC, we used univariate and multivariate Cox regression. Using univariate Cox
regression, the HR of the risk score was 1.132 with a 95% confidence interval (CI) of 1.090-1.175 (p
< 0.001) (Figure 8A). The HR for pyroptosis-associated IncRNAs was 1.150 with a 95% confidence
interval of 1.105-1.196 (p < 0.001) (Figure 8B). These results suggested that clinical and pathological
factors, including sex, age, TNM stage and grade, were not connected to the risk model. The
concordance index of the predictive signature increased over time, outperforming other clinical
features, such as sex, age, TNM stage and grade, implying that the predictive signature could
accurately predict the survival outcomes of GC patients (Figure 8C). To examine the specificity and
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responsiveness of the predictive signature in forecasting the results of GC patients, the AUC was
calculated. The AUC of the risk grade was greater than that of other clinical variables, indicating that
the predictive ability of the risk signature was quite reliable (Figure 8D). The AUC was 0.743 at one
year, 0.685 at three years and 0.715 at five years, as shown in Figure 8E. All of the above indicators
demonstrated that the risk score of this predictive model was superior to other clinical characteristics.
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Figure 8. Evaluation of the predictive signature and clinical features in gastric cancer using
the entire TCGA cohort. (A) Univariate Cox regression analysis between clinical features
and risk score with survival outcome. A hazard ratio < 1 indicated weak risk factors;
however, a hazard ratio > 1 indicated strong risk factors. (B) Multivariate analysis for
clinical features and risk score with OS. (C) Concordance index of the risk score and
clinical features. (D) ROC curves of clinical features and risk scores. (E) Time-related
ROC curves of the risk model at 1, 3 and 5 years. AUC: area under the ROC curve.
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3.5. Building and assessment of a predictive nomogram

This nomogram incorporating the risk score and clinical characteristics was constructed to
forecast the one-, three- and five-year OS occurrences in patients with GC. Compared with clinical
criteria, the risk score of the predictive signature suggested that the nomogram had better forecast
power (Figure 9A). The predicting rates of the one-, three- and five-year OS exhibited perfect
conformance on the correlation plot (Figure 9B). The above results indicated that the nomogram
exhibited good forecasting ability.
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Figure 9. Building and evaluating the nomogram. (A) The nomogram predicted 1-, 3-
and 5-year OS. Total points equaled the sum of the scores of each indicator, and the
probability of OS was calculated based on the scores. (B) The calibration curves of the
nomogram foresaw the OS at 1, 3 and 5 years. The closer the point is to the gray slash,
the better the OS.

3.6. Assessment of the immune correlation and tumor immunotherapy efficacy utilizing the pyroptosis-
associated IncRNA signature

Depending on the predictive signature, the enrichment degree and engagement of various immune
infiltrating cells and pathways in GC were sufficiently investigated. The scores of tumor-infiltrating
immune cell types in the two risk groups were determined (Figure 10A). High scores of tumors
infiltrating immune cells, including DCs, iDCs, macrophages, mast cells, neutrophils, pDCs, T helper
cells, TILs and Tregs, were noted in the high-risk group. We also performed ssGSEA of immune
functions by comparing the two risk groups (Figure 10B). The above results showed that the high-risk
group had a higher score of infiltration functions compared with the low-risk group. We performed
Gene Ontology enrichment to determine the potential molecular function of the pyroptosis-associated
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risk model, revealing the participation of several immune-associated biological activities (Figure S2).
We found that the pyroptosis-associated genes in the risk model were mainly enriched in positive
regulation of enzyme inhibitor action, peptidase mediator activity, peptidase inhibitor action, collagen-
containing extracellular matrix, negative mediation of hydrolase action, regulation of peptidase action,
adverse mediation of proteolysis and adverse mediation of peptidase action.

The relationship between the pyroptosis-associated IncRNA model and immunotherapeutic
indicators was also explored. Gene mutations were analyzed to gain novel insight into the molecular
mechanism in subgroups of the pyroptosis-associated IncRNA model. The mutation data of the
pyroptosis-associated genes were evaluated using the R package maftools. Different predictors were
used to classify the mutations. The top 20 driver genes (TTN, TP53, MUCI16, ARID1A, LRP1B,
SYNEI, FLG, FAT4, CSMD3, PCLO, DNAHS5, KMT2D, FAT3, HMCN1, OBSCN, ZFHX4, RYR2,
SPTA1, PIK3CA and CSMD1) with the highest mutation incidences between the two different risk
subgroups are shown in Figure 10C,D. The low-risk group exhibited a greater incidence of gene
mutation compared with the high-risk group (88.36 vs. 87.86%). Genes with a mutation rate of greater
than 20% in the high-risk group included TTN, TP53, MUC16, ARID1A and SYNE1. TTN, TP53,
MUCI16, ARIDIA, LRP1B, SYNEI1, FLG, FAT4, CSMD3 and PCLO were identified as genes with
mutation rates of greater than 20% in the low-risk subgroups. The most common mutation in both
groups was Missense _mutation followed by Multi Hit, Frame Shift Del and Nonsense mutation.

In many malignancies, including gastric cancer, a connection is noted between treatment
intervention and TMB. The higher the TMB score is, the more cancer genetic mutations. In addition,
a higher TMB score was noted in tumors with more abnormal cells. Thus, it was possible for immune
cells to find the tumor. This type of tumor was a good candidate for tumor immunological treatment.
We then calculated tumor mutational burden scores using the mutation data. The TMB in the high-risk
category was lower, demonstrating that pyroptosis-associated factors exhibited a stronger relationship
with the TMB (Figure 10E). Gastric cancer patients with a high TMB score had a considerably greater
survival rate (Figure 10F). The above results indicated that TMB could act as an independent predictive
factor in gastric cancer. Then, we tested whether the risk model could predict the OS of GC patients
together with tumor mutational burden. Patients with two different TMB scores in the high-risk
category (called H-TMB/high and L-TMB/high) had a lower survival rate than individuals with the
two different TMB groups in the low-risk category (H-TMB/low and L-TMB/low) (Figure 10G).
Based on our findings, the pyroptosis-associated IncRNA model could have increased predictive value
with tumor mutational burden. The above results implied that immune infiltrating levels, mutation
incidence and TMB significantly differed in the two risk groups, and this information can be used to
guide individual treatment.

3.7. Drug sensitivity assessment based on pyroptosis-associated IncRNAs in patients with gastric cancer

We used a drug sensitivity analysis to assess the ICso differences between risk categories from the
GDSC database to identify a better chemotherapy regimen for GC patients. With the exception of
ABT.888 and AKT inhibitor VIII, the low-risk group was more responsive to A.443654, A.770041,
AICAR, AMG.706, AS601245, ATRA, AUY922, axitinib, AZ628 and AZD.0530 (Figure 11A-L). We
hypothesized that the effect of adequate treatment was superior in high-risk populations and that the
information derived from these studies would be useful to guide individual chemotherapy.
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Figure 10. Assessment of tumor immune correlation and tumor immunotherapy efficacy
using the pyroptosis-associated IncRNA signature. (A) The scores of tumor-infiltrating
immune cell types in the two risk groups. (B) The scores of immune functions were
compared in the two risk groups using ssGSEA. Different mutation rates in the high-risk
group (C) and low-risk group (D) are presented in waterfall curves. BP: biological process;
CC: cellular component; MF: molecular function. (E) TMB differences in the individuals
of the two risk groups. (F) Kaplan—Meier analysis of patients with different TMB levels.
(G) Kaplan—Meier analysis of survival outcomes for individuals based on TMB levels and
the pyroptosis-associated IncRNA model is shown.
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Figure 11. Assessment of drug sensitivity (ICso) in patients with GC. ICso: the half
maximal inhibitory concentration (A—L).
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3.8. Expression levels of hub pyroptosis-associated IncRNAs in patients with GC

We further explored the expression of hub pyroptosis-associated IncRNAs in the InCAR database.
The results indicated that AC005332.1, AC009812.4 and AP000695.1 levels were significantly
increased in gastric tumor tissue compared with normal tissue (Figure 12A—C). And the overall
survival of the patients with GC had statistically significant in high and low AP000695.1 group (p <
0.05) (Figure 12D). These results were consistent with the results based on TCGA GC cohort,
demonstrating that AC005332.1, AC009812.4 and AP000695.1 were crucial biomarkers in regulating
GC progression. The above results provide novel ideas to explore the specific mechanisms of the
initiation and development of gastric cancer.
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Figure 12. The expression levels and overall survival of hub pyroptosis-associated
IncRNAs in the patients with GC. (A—C) The expression levels of AC009812.4,
AP000695.1 and AC005332.1 in the InCAR database. (D-F) The overall survival of
AC009812.4, AP000695.1 and AC005332.1 in the Sento Academic website. *p < 0.05. **p
<0.01. ***p <0.001.

4. Discussion
GC is well known as a common gastrointestinal system tumor with a high morbidity and mortality

rate, and it receives an increasing amount of attention each year [48]. A reliable method to correctly
predict the outcomes of GC patients is currently not available. In addition, pyroptosis has a dual effect
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on the appearance and growth of cancers. Pyroptotic cell death in the oxygen-deficit area of the tumor
center could impair antitumor immunity and facilitate tumor formation [26]. On the other hand,
pyroptosis can trigger an immune reaction and slow tumor development by causing acute inflammation
in the tumor microenvironment [49]. For example, the AIM2 inflammasome has been shown to
regulate mTOR to diminish S6K1 activation, thereby suppressing tumor progression [50]. However,
the interaction of pyroptosis-associated genes in GC and their underlying potential to forecast GC
patient prognosis remain unknown.

Furthermore, the critical role of IncRNAs in the induction of pyroptosis in tumor cells has been
verified. For instance, previous work focused on GSDME to investigate the crucial function of
IncRNAs involved in ionizing radiation (IR)-regulated pyroptosis in colon cancer cells [51]. The
findings shed light on the biochemical processes driving IR-induced damage in cancer radiation
treatment and could provide a solid theoretical framework for the development of colon cancer
treatments. Furthermore, microRNA-4306 and Sirtuinl (SIRT1) regulate the expression of
LINCO00958, which is involved in the induction of oral squamous cell carcinoma cell death by
missing in melanoma 2 [52]. Nevertheless, research on IncRNAs connected to pyroptosis in tumors,
particularly GC, is severely poor. As a result, we aimed to develop a predictive model based on
pyroptosis-associated IncRNAs in patients with gastric cancer with the goal of generating a model
that could accurately predict the outcomes of GC patients and provide a promising treatment option
in the future.

The purpose of our study was to identify the association between pyroptosis-associated IncRNAs
and GC patient outcome based on the expression data and biological activity of pyroptosis-associated
IncRNAs in GC. Pyroptosis-associated IncRNAs were identified through co-expression analyses. To
create a pyroptosis-associated IncRNA risk model, we used LASSO for univariate and multivariate
Cox regression. The predictive signature comprising 10 pyroptosis-associated IncRNAs (AC005332.1,
AC009812.4, AC015802.5, AC040904.1, AC053503.4, ADNP—ASI1, AP000695.1, LIMS1—-ASI,
SACS—ASI and SOX9—-AS1) was confirmed to be an independent factor of prognosis. Among the 10
IncRNAs of the predictive model, several pyroptosis-associated IncRNAs have been reported to
facilitate tumor incidence and progression. For example, a SOX9-AS1/miR-5590-3p/SOX9 positive
feedback loop that signals through the Wnt/B-catenin pathway causes the progression and metastasis
of HCC, suggesting that SOX9-AS1 represents a promising new predictive and therapeutic target for
HCC [53]. Therefore, more researchers would like to study the role of pyroptosis-associated IncRNAs
in GC and assess their value as predictive indicators.

Our study also discovered that this risk model was closely connected with immunotherapeutic
markers and the prediction of sensitivity to medication. Various immunological biomarkers differed
between the two risk groups. The above outcomes further showed that the pyroptosis-associated
IncRNA model had a significant effect on the immune cell-infiltrating environment. We can focus more
on the high-risk group because in the high-risk group, immune cells as well as immune function have
higher scores. Relationships between treatment efficacy and TMB are noted in many malignancies,
including gastric cancer. The TMB was higher in the low-risk group, demonstrating that the pyroptosis-
associated signature was closely related to TMB. The survival probability of GC patients in the high
TMB group was increased. TMB was identified as a risk-independent predictive marker in gastric
cancer based on the findings of this study. The ICs in the GDSC database was compared between risk
categories using a drug susceptibility assessment. We found that the effect of adequate treatment is
superior in high-risk populations. Finally, we further explored the expression of hub pyroptosis-
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associated IncRNAs in the InCAR database.

The pathogenic stage is an important factor in the decision regarding GC treatment. However, GC
patients in the same pathological stage also exhibit diverse clinical results, demonstrating that earlier
categorization approaches are ineffective in providing reliable predictions and distinguishing the
heterogeneity of GC. As a result, the established pyroptosis-associated IncRNA model provides a novel
and accurate method to predict the survival outcomes and immunological responses of GC patients.
We also validated the above results using the INCAR database. The novelty of our work lies in the
combination of two factors (pyroptosis and IncRNA) that play an important role in gastric cancer to
establish a new prediction model. The main contribution is that, currently, earlier staging methods are
ineffective in providing reliable predictions and facilitating the differentiation of gastric cancer
heterogeneity based on a multitude of bioinformatics and computer algorithms. Here, we constructed
and validated a prediction model to provide an accurate and simple method to predict patient survival
and provide a theoretical basis for patient treatment. The model can be reproduced, making it attractive
for clinical translation and implementation. Despite the significant findings of our study, we note that
our research had several flaws and limitations. Research on the correlation between pyroptosis-linked
IncRNAs and the tumor immune microenvironment remains in its initial phases and requires a more
thorough analysis. Moreover, an in vivo test was used to confirm the expression activity of pyroptosis-
associated IncRNAs. Based on the above results, we constructed a prognostic model consisting of 10
pyroptosis-linked IncRNAs. Recently, ncRNAs, including IncRNAs, miRNAs and circRNAs, have
attracted considerable attention from scientists [54]. Prediction studies focused on interacting factors will
provide valuable insights into the genetic markers and ncRNAs associated with GC, such as the IncRNA-
miRNA-mRNA ceRNA network [55-57] and circRNA-miRNA-mRNA network [58]. Ideally, the
simultaneous use of several correlated molecular targets increases the sensitivity and reliability of
candidate genes as biomarkers [59], which also represents the direction of our future research.

5. Conclusions

In conclusion, we developed an excellent risk model to forecast the outcomes of GC patients
based on 10 pyroptosis-associated IncRNAs, including AC005332.1, AC009812.4, AC015802.5,
AC040904.1, AC053503.4, ADNPASI1, AP000695.1, LIMS1AS1, SACSAS1 and SOX9ASI.
Validation results showed that AC005332.1, AC009812.4 and AP000695.1 were crucial biomarkers in
regulating GC progression. And the overall survival of the patients with GC had statistically significant
in high and low AP000695.1 group. More importantly, the above findings could elucidate the function
of pyroptosis-associated IncRNAs and provide adequate evidence for prognostic prediction in GC
patients. Furthermore, the predictive risk model demonstrated efficacy in identifying GC patients who
would benefit from immunotherapy.
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