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Abstract: Background: Gastric cancer (GC) ranks fifth in prevalence among carcinomas worldwide. 
Both pyroptosis and long noncoding RNAs (lncRNAs) play crucial roles in the occurrence and 
development of gastric cancer. Therefore, we aimed to construct a pyroptosis-associated lncRNA 
model to predict the outcomes of patients with gastric cancer. Methods: Pyroptosis-associated 
lncRNAs were identified through co-expression analysis. Univariate and multivariate Cox regression 
analyses were performed using the least absolute shrinkage and selection operator (LASSO). 
Prognostic values were tested through principal component analysis, a predictive nomogram, 
functional analysis and Kaplan‒Meier analysis. Finally, immunotherapy and drug susceptibility 
predictions and hub lncRNA validation were performed. Results: Using the risk model, GC individuals 
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were classified into two groups: low-risk and high-risk groups. The prognostic signature could 
distinguish the different risk groups based on principal component analysis. The area under the curve 
and the conformance index suggested that this risk model was capable of correctly predicting GC 
patient outcomes. The predicted incidences of the one-, three-, and five-year overall survivals exhibited 
perfect conformance. Distinct changes in immunological markers were noted between the two risk 
groups. Finally, greater levels of appropriate chemotherapies were required in the high-risk group. 
AC005332.1, AC009812.4 and AP000695.1 levels were significantly increased in gastric tumor tissue 
compared with normal tissue. Conclusions: We created a predictive model based on 10 pyroptosis-
associated lncRNAs that could accurately predict the outcomes of GC patients and provide a promising 
treatment option in the future. 

Keywords: gastric cancer; pyroptosis-associated genes; lncRNA; survival outcome; immunological 
response; drug sensitivity 

 

1. Introduction 

Gastric cancer (GC) ranks as the fifth most prevalent tumor worldwide [1]. With 768,793 patients 
dying globally in 2020, GC ranks fourth in terms of death among cancers [2]. The prognostic outcomes 
of early GC patients have considerably improved with advancements in detection, surgery and 
radiotherapy. However, the effect of these strategies is limited, with a median survival duration of less 
than one year and a poor survival rate of five years, for advanced GC patients [3]. Compared with 
chemotherapy, molecular and immunological therapies have distinct impacts on the treatment of a 
small number of advanced GC patients [4–6]. However, the deficiency of indicators to predict the early 
diagnosis of GC necessitates the construction of a novel prognostic and diagnostic risk model. 

Pyroptosis, also known as inflammasome-induced programmed cell death, is a new type of cell 
death (PCD) [7]. Excessive inflammasome activation in pyroptosis is strongly associated with various 
human diseases and disorders [8]. For example, gasdermin superfamily proteins are the most common 
pyroptosis inducers; the N-terminal regions of proteins from this family form pores across the cell 
membrane, thereby leading to the secretion of IL-1β and IL-18 [9]. In addition, the caspase-1-
mediated inflammation-associated cell death pathway in pyroptosis involves the AIM2-, NLRP1-, 
NLRP3-, NLRC4- and pyrin-inflammasomes, and it is known as the most traditional inflammasome 
pathway [10]. Compared to standard therapies, induction of pyroptosis represents a potential strategy 
for cancer treatment [11]. Thus, new pyroptosis-associated markers that expand current knowledge of 
pyroptosis in GC and forecast the prognosis of GC patients are urgently needed. 

lncRNAs with over 200 nucleotides [12] are important regulators of gene expression, growth, 
differentiation, progression and chromatin dynamics [13]. In a growing number of scientific studies, 
aberrant expression of lncRNAs has been identified as a prognostic marker in a variety of malignancies. 
For example, AK023391, a lncRNA that promotes gastric cancer, plays a critical role in stimulating 
the PI3K/Akt signal transduction pathway and has been used as a predictive and therapeutic biomarker 
in patients with GC [14]. Furthermore, MT1JP, a downregulated lncRNA in GC linked to GC survival, 
functions as a type of ncRNA to compete with miR-92a-3p and mediates FBXW7 expression to 
regulate GC progression [15]. Furthermore, EGR1-induced HNF1A-AS1 modulates a variety of pro- 
and anti-growth regulators to promote the development of GC, thereby serving as a potential 
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therapeutic target and prognostic biomarker in this disorder [16]. However, only a limited number of 
investigations on pyroptosis-associated lncRNAs and their involvement in the prognosis of GC patients 
have been published to date, representing a gap that needs to be filled. Recently, applications of 
information and computer technology in health care have expanded rapidly [17], such as bioinformatics 
analysis, deep learning [18], machine learning [19] and Mendelian stochastic studies [20]. Unlike 
traditional diagnostic and analytical methods, algorithmic analysis has many advantages, including 
speed, low cost and high accuracy. This study aimed to construct a predictive model through 
bioinformatics analysis to solve many problems in the diagnosis and treatment of gastric cancer that 
are currently being encountered in clinical practice. 

TCGA (The Cancer Genome Atlas) was used to obtain the expression profiles of 52 pyroptosis-
associated genes and 14056 lncRNAs for our investigation. We built a predictive signature to analyze 
the survival values of GC patients based on 10 pyroptosis-associated lncRNAs. Then, depending on 
the median cutoff, the predictive model classified GC individuals into two different risk groups. 
Survival results, risk states and lncRNA expression levels were analyzed using patient data from the 
training, testing and entire groups. Furthermore, we examined the prognostic capacity of this 
constructed model, demonstrating that the predictive signature could recognize the differences 
between the two risk groups. The model was also utilized to examine the tumor immune 
microenvironment as well as the tumor immunotherapeutic reaction, and significant changes in the 
expression of immunological biomarkers were noted between the two risk groups. Then, we analyzed 
and summarized the mutation data, demonstrating that this model exhibited better predictive ability 
using tumor mutational burden data. Finally, to identify a more efficacious chemotherapy regimen for 
GC patients, we used a drug susceptibility analysis to compare the IC50 values using the GDSC 
database [21], demonstrating that the appropriate chemotherapy had better effects in the high-risk 
group. The validation results from the lnCAR database indicated that AC005332.1, AC009812.4 and 
AP000695.1 levels were significantly increased in gastric tumor tissue compared with normal tissue, 
and the overall survival of the patients with GC had statistically significant in high and low 
AP000695.1 group. These results were consistent with the results based on TCGA GC cohort, which 
showed that AC005332.1, AC009812.4 and AP000695.1 were crucial biomarkers involved in the 
regulation of GC progression. 

In conclusion, we developed a predictive model for GC patients using hub pyroptosis-associated 
lncRNAs. The effect of pyroptosis-associated lncRNAs on predicting survival and immunological 
responses was revealed, providing a new method to identify effective diagnostic biomarkers and 
paving the way for the treatment of GC patients. 

2. Materials and methods 

2.1. GC patient information 

RNA transcriptome sequencing information of 32 normal samples and 375 GC samples, the 
corresponding clinical information (age, sex, cancer differentiation grade and TNM stage) and the 
mutation information were abstracted from TCGA (https://portal.gdc.cancer.gov/) [22]. Normalized 
RNA-seq data were obtained in the fragment per kilobase million (FPKM) format. GC patients without 
survival data were omitted to reduce statistical bias. TNM (T: tumor; N: node; M: metastasis). 
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2.2. Identification of lncRNAs associated with pyroptosis 

Fifty-two pyroptosis-associated genes were retrieved from prior publications [23–33]. The specific 
gene names are shown in Supplementary Table 1. The STRING database (https://string-db.org/) was 
used to explore possible potential interactions between pyroptosis-associated genes, and a protein 
interaction network was constructed. We hid disconnected nodes and set a minimum required 
interaction score (high confidence: 0.007) in the network. We also used the TCGA database to obtain 
the profiles of lncRNAs and pyroptosis-associated genes. A total of 739 pyroptosis-associated 
lncRNAs were identified based on Pearson’s correlation analysis [34]. |Pearson R| > 0.4 and p < 0.001 
were employed as criteria. The above results were visualized with a Sankey plot using the R packages 
limma, dplyr, ggalluvial and ggplot2 [35]. 

2.3. Construction of a predictive signature 

The entire TCGA cohort was classified into training and validation cohorts based on a ratio of 1:1. 
The training cohort was used to establish a pyroptosis-associated lncRNA model, and the entire and 
testing cohorts were used to verify this risk model. The clinical baseline information of the above two 
cohorts is presented in Supplementary Table 2. No statistically significant differences in clinical 
features were noted between the two datasets (p > 0.05). We used univariate Cox regression analysis 
and survival statistics of GC individuals to assess the prognosis of 739 pyroptosis-associated 
lncRNAs (p < 0.05), and forest plots were drawn. Prognosis-associated lncRNAs were identified 
using LASSO to narrow the number of lncRNAs (using the penalty parameter estimated by 10-fold 
cross-validation) [36]. We discovered that 20 pyroptosis-associated lncRNAs were strongly associated 
with the overall survival (OS) of GC patients. Twenty pyroptosis-associated lncRNAs were analyzed 
using multivariate Cox regression analysis, and a risk model based on 10 pyroptosis-associated lncRNAs 
was created [37]. The above process was performed using the R packages survival, caret, glmnet, 
survminer and timeROC. The risk score was computed using the following formula: Risk score = coe 
(lncRNA1) × exp (lncRNA1) + coe (lncRNA2) × exp (lncRNA2) + … + coe (lncRNAn) × exp 
(lncRNAn), where coe (lncRNAn) indicates the coefficient of lncRNAs and exp (lncRNAn) indicates 
the expression of lncRNAs [38]. The median score was calculated to classify the individuals into two 
groups: a low-risk group and a high-risk group. 

2.4. Kaplan‒Meier analysis and principal component analysis 

Principal component analysis was used to reduce dimensionality, identify models and visualize 
different-dimensional data from the whole set of genes [39], 52 pyroptosis genes, 10 pyroptosis-
associated lncRNAs and the prognostic signature, depending on the expression data of 10 pyroptosis-
associated lncRNAs. Principal component analysis was also used to cluster GC patients, and a 3D 
scatterplot was used to display the distribution of GC patients with the R package scatterplot3D [37]. 
All samples containing GC patients were divided into low- and high-risk subsets based on the training 
set’s median, which served as a cutoff criterion. To explain the differences in survival outcomes 
between the two groups, we employed Kaplan‒Meier analysis [40]. This approach was performed with 
the survminer and survival packages in R. 



1860 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 1856–1881. 

2.5. Evaluating the independence of the pyroptosis-associated lncRNA model 

In GC individuals, multivariate and univariate Cox regression analyses were used to determine 
whether the risk score was an independent factor compared to other clinical features (age, sex, TNM 
stage and grade) [41]. To analyze the independent prognosis of the pyroptosis-associated lncRNA 
model, we used the dplyr, survival, rms and pec packages of R to construct the C-index [42]. The 
survival, survminer and time ROC packages of R were used to construct the ROC curve [43], which 
examined the independent predictors associated with various clinical features, such as age, sex, clinical 
phase, TNM stage and risk score. We assessed the relationship between the model and the clinical 
features using the chi-square test. The sensitivity and specificity of the predictive signature on the one-, 
three- and five-year OS of GC patients were also assessed. 

2.6. Building and validating a predictive nomogram 

Various clinical features (age, sex, TNM stage and grade) and risk scores were established to 
forecast the one-, three- and five-year OS using a predictive nomogram [44]. To demonstrate the 
consistency between the practical result and the forecast outcome of this risk model, we also 
constructed calibration curves using the survival, regplot and rms packages of R. The predictive ability 
of the proposed nomogram models was demonstrated based on the Hosmer-Lemeshow test. 

2.7. Functional analysis 

Using the R package limma, the differentially expressed genes (DEGs) between the high- and 
low-risk groups were discovered. The restricted condition was set to log2 |fold change| > 1 and false 
discovery rate < 0.05. To determine the biological activities of the DEGs, we used Gene Ontology 
analysis [45]. Three parts of the GO analysis, biological process (BP), cellular component (CC) and 
molecular function (MF), were examined. The R packages clusterProfiler, org.Hs.eg.db, enrichplot, 
ggplot2, ggpubr and dplyr were used in this approach. The p value was calculated to identify the 
threshold of outcome, and p < 0.05 indicated that the functional statement was considerably enriched. 

2.8. The roles of pyroptosis-associated lncRNAs in tumor immune microenvironment 

To assist the determination of the quantities of immune pathways and tumor-infiltrating immune 
cells (TIICs) for each sample in various risk groups, a single sample gene-set enrichment analysis 
(ssGSEA) score was computed. To study and summarize the mutation information from TCGA, we 
used the R package maftools. The tumor mutational burden (TMB) was calculated depending on tumor 
mutant genes [37]. To compare the survival outcomes of patients in different TMB groups, we used 
the survival package in R. The TMB could be utilized to predict the possibility of an 
immunotherapeutic response in the future. The waterfall diagram demonstrated the relationship 
between TMB and risk ratings in GC patients. 
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2.9. Possible drugs targeting pyroptosis-associated lncRNAs 

We performed drug analysis to evaluate the response based on the IC50 available in the GDSC 
database for every sample using the R packages limma, ggpubr, pRRophetic and ggplot2 [46] to 
identify potential drugs targeting the pyroptosis-associated lncRNA signature for treating GC patients. 
To compare the IC50 differences between popular antineoplastic drugs in the high- and low-risk 
categories, the Wilcoxon signed rank test was employed. We discovered that 12 compounds had 
substantial differences in predicted IC50 in the two groups, and the high-risk group was more 
susceptible to the above compounds. 

2.10. Validation of hub pyroptosis-associated lncRNAs in the lnCAR database 

The lnCAR database (https://lncar.renlab.org/) collected and collated differential expression 
analysis of 52,306 samples and survival analysis of 12,883 samples from 10 tumors (bladder, breast, 
cervical, colon, esophageal, gastric, liver, lung, ovarian and prostate cancers) from the GEO 
database [47]. Low-throughput data, such as real-time PCR and northern blot data, were integrated 
into the lnCAR database as validation datasets. We analyzed the expression levels of hub pyroptosis-
associated lncRNAs in GC from the lnCAR database. We also performed survival analysis of hub 
pyroptosis-associated lncRNAs in GC from the Sento Academic website (https://www.xiantao.love/). 

2.11. Statistical analysis 

Statistical analyses were performed with R software (version 4.2.0). Clinicopathological 
characteristics, TMB and drug sensitivity differences between the high- and low-risk groups were 
analyzed with the Wilcoxon test. The prognostic values were tested by utilizing principal component 
analysis, a predictive nomogram, functional analysis and Kaplan‒Meier analysis. To compare 
categorical data among various groups, the chi-square test was employed. Here, p < 0.05 was 
considered statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001). 

3. Results 

3.1. Identification of pyroptosis-associated lncRNAs in patients with GC 

The flow chart for constructing the risk model and the subsequent analysis is displayed in Figure 1. 
TCGA was used to extract the matrix information of 52 pyroptosis-associated genes and 14056 
lncRNAs. Pyroptosis-associated lncRNAs were defined as lncRNAs that had a sufficient correlation 
with 52 pyroptosis genes (|Pearson R| > 0.4 and p < 0.001). Finally, using the Sankey plot, the co-
expression network of pyroptosis-associated lncRNAs was displayed, and 739 pyroptosis-associated 
lncRNAs were identified as pyroptosis-associated lncRNAs (Figure 2A). In the entire TCGA cohort, 
links between 52 pyroptosis genes and 10 prognostic pyroptosis-associated lncRNAs were identified 
(Figure 2B). A protein interaction network of pyroptosis-associated genes was constructed (Figure S1). 
These prognostic pyroptosis-associated lncRNAs were used for subsequent model construction. 
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Figure 1. The flowchart of our study. The flowchart depicts the identification and 
validation of the pyroptosis-associated lncRNA signature. GC: gastric cancer; OS: 
overall survival. 

3.2. Building and validating a risk model based on pyroptosis-associated lncRNAs 

In total, 52 pyroptosis-associated lncRNAs associated with OS were screened with univariate Cox 
regression (Figure 3A). LASSO analysis is a common multiple regression analysis technique. Thus, 
we used LASSO to narrow the number of lncRNAs to 20 (Figure 3B,C). Furthermore, using 
multivariate Cox analysis, 10 pyroptosis-associated lncRNAs were identified as prognostic factors that 
were independently connected with OS and utilized to build a predictive signature to estimate the 
predictive outcomes in GC patients. The risk model classified GC patients into two different risk 
categories depending on their median risk score. The scattering of survival outcomes between the 
two different categories was demonstrated using the entire TCGA cohort (Figure 4A), and survival 
times were clearly evident when using the entire TCGA cohort (Figure 4B). Distinct expression standards 
of 10 pyroptosis-associated lncRNAs were represented in the entire TCGA cohort (Figure 4C). Survival 
analysis revealed that the high-risk group had a lower OS than the low-risk group (p < 0.001) in the 
entire TCGA cohort (Figure 4D). 

To test the predictive capacity of the constructed signature, we calculated the risk score for each 
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individual in the training cohort and testing cohort utilizing the consistent method. The survival results, 
risk status and lncRNA expression standards of each individual from the training cohort and testing 
cohort are shown (Figure 5A–C, E–G). The individuals in the high-risk category had a greater risk of 
dying than those in the low-risk category. Kaplan‒Meier analysis revealed that the OS of the high-risk 
category was obviously lower (Figure 5D,H). 

 

Figure 2. Recognition of pyroptosis-associated lncRNAs in patients with gastric cancer. 
(A) The Sankey diagram visualizes 52 pyroptosis-associated genes and 739 pyroptosis-
associated lncRNAs. Different colors represent the connections between different genes 
and the corresponding lncRNAs. (B) The connections for 52 pyroptosis-associated genes 
and 10 prognostic pyroptosis-associated lncRNAs are depicted in the heatmap. Red 
represents a positive correlation, and blue represents a negative correlation. *p < 0.05; **p 
< 0.01; ***p < 0.001. 
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Figure 3. Establishment of the predictive model for patients with gastric cancer based on 
pyroptosis-associated lncRNAs. (A) Univariate Cox regression revealed significant 
correlations between the selected lncRNAs and clinical prognosis. A hazard ratio < 1 
indicated weak risk factors; however, a hazard ratio > 1 indicated strong risk factors. (B) 
LASSO identified 20 pyroptosis-associated lncRNAs based on the minimum criteria when 
the curve was at its lowest point. (C) The coefficients of pyroptosis-associated lncRNAs 
according to the determined tuning parameters (log λ). 
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Subgroups of patients from the entire TCGA cohort were created based on sex, grade, stage or 
tumor phase, and the overall survivals of the low-risk subgroups were also better (Figure 6A–D). In 
this step, we first constructed a predictive signature and explored the predictive expression of the 10 
pyroptosis-associated lncRNA signatures in the training, testing and entire cohorts, and the predictive 
value of this model was better evaluated. 

 

Figure 4. The predictive performances of 10 pyroptosis-associated lncRNA models in the 
entire cohort. (A) The distribution of the pyroptosis-associated lncRNA signature 
depended on the risk score for the entire cohort. Survival and death are depicted by the 
blue and red dots, respectively. (B) Different survival statuses and times between the two 
risk groups for the entire cohort. (C) The expression standards of the 10 predictive 
lncRNAs for every patient in the entire cohort are displayed in a heatmap created using a 
cluster algorithm. Red represents high expression, and blue represents low expression. (D) 
Kaplan‒Meier analysis for the entire cohort of individuals in the two risk groups (p < 0.001). 

3.3. Confirming the grouping efficiency of the pyroptosis-linked lncRNA signature 

According to the whole gene set, 52 pyroptosis genes, 10 pyroptosis-associated lncRNAs and a 
predictive signature constructed by 10 pyroptosis-associated lncRNAs, principal component analysis 
was performed to test the differences between the two risk groups (Figure 7A–D). The locations of the 
two risk groups were considerably split (Figure 7A–C). In addition, the model results revealed that the 
two risk categories had clearly different distributions (Figure 7D). The findings showed that the 
predictive model could differentiate between the two risk groups, which confirmed the grouping 
efficiency of the signature. 
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Figure 5. Predictive expression of the 10 pyroptosis-associated lncRNA signature in the 
training cohort and testing cohort. (A) The distribution of the pyroptosis-associated 
lncRNA model depended on the risk score for the training cohort. The blue and red dots 
represent survival and death, respectively. (B) Different survival times and statuses in the 
two different risk groups in the training cohort. (C) The expression levels of 10 predictive 
lncRNAs for every individual in the training cohort are displayed in a heatmap created by 
a cluster algorithm. Red represents high expression, and blue represents low expression. 
(D) Kaplan‒Meier analysis for the training cohort of individuals in the two risk groups. (E) 
The distribution of the pyroptosis-associated lncRNA signature depends on the risk score 
for the testing cohort. Survival and death are depicted by the blue and red dots, respectively. 
(F) Different survival times and statuses in two different groups for the testing cohort. (G) 
The expression levels of 10 predictive lncRNAs for every individual in the testing cohort 
are displayed in a heatmap created using a cluster algorithm. Red represents high 
expression, and blue represents low expression. (H) Kaplan‒Meier analysis of individuals 
in the two risk groups from the testing cohort. 
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Figure 6. Kaplan‒Meier curves of survival outcomes for the two risk groups in the entire 
TCGA cohort based on sex, grade, TNM stage (A–D) (p < 0.01). 
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Figure 7. Principal component analysis for the two risk groups. (A) All genes. (B) Twenty-
two pyroptosis-associated genes. (C) Ten pyroptosis-associated lncRNAs. (D) Risk model 
based on 10 pyroptosis-associated lncRNAs using the entire TCGA cohort. Red represents 
high risk, and blue represents low risk. 

3.4. Evaluating the predictive ability of the risk model based on pyroptosis-associated lncRNAs and 
the clinical characteristics of GC 

To determine whether the risk model based on pyroptosis-associated lncRNAs had independent 
predictive ability for GC, we used univariate and multivariate Cox regression. Using univariate Cox 
regression, the HR of the risk score was 1.132 with a 95% confidence interval (CI) of 1.090–1.175 (p 
< 0.001) (Figure 8A). The HR for pyroptosis-associated lncRNAs was 1.150 with a 95% confidence 
interval of 1.105–1.196 (p < 0.001) (Figure 8B). These results suggested that clinical and pathological 
factors, including sex, age, TNM stage and grade, were not connected to the risk model. The 
concordance index of the predictive signature increased over time, outperforming other clinical 
features, such as sex, age, TNM stage and grade, implying that the predictive signature could 
accurately predict the survival outcomes of GC patients (Figure 8C). To examine the specificity and 
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responsiveness of the predictive signature in forecasting the results of GC patients, the AUC was 
calculated. The AUC of the risk grade was greater than that of other clinical variables, indicating that 
the predictive ability of the risk signature was quite reliable (Figure 8D). The AUC was 0.743 at one 
year, 0.685 at three years and 0.715 at five years, as shown in Figure 8E. All of the above indicators 
demonstrated that the risk score of this predictive model was superior to other clinical characteristics. 

 

Figure 8. Evaluation of the predictive signature and clinical features in gastric cancer using 
the entire TCGA cohort. (A) Univariate Cox regression analysis between clinical features 
and risk score with survival outcome. A hazard ratio < 1 indicated weak risk factors; 
however, a hazard ratio > 1 indicated strong risk factors. (B) Multivariate analysis for 
clinical features and risk score with OS. (C) Concordance index of the risk score and 
clinical features. (D) ROC curves of clinical features and risk scores. (E) Time-related 
ROC curves of the risk model at 1, 3 and 5 years. AUC: area under the ROC curve. 
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3.5. Building and assessment of a predictive nomogram 

This nomogram incorporating the risk score and clinical characteristics was constructed to 
forecast the one-, three- and five-year OS occurrences in patients with GC. Compared with clinical 
criteria, the risk score of the predictive signature suggested that the nomogram had better forecast 
power (Figure 9A). The predicting rates of the one-, three- and five-year OS exhibited perfect 
conformance on the correlation plot (Figure 9B). The above results indicated that the nomogram 
exhibited good forecasting ability. 

 

Figure 9. Building and evaluating the nomogram. (A) The nomogram predicted 1-, 3- 
and 5-year OS. Total points equaled the sum of the scores of each indicator, and the 
probability of OS was calculated based on the scores. (B) The calibration curves of the 
nomogram foresaw the OS at 1, 3 and 5 years. The closer the point is to the gray slash, 
the better the OS. 

3.6. Assessment of the immune correlation and tumor immunotherapy efficacy utilizing the pyroptosis-
associated lncRNA signature 

Depending on the predictive signature, the enrichment degree and engagement of various immune 
infiltrating cells and pathways in GC were sufficiently investigated. The scores of tumor-infiltrating 
immune cell types in the two risk groups were determined (Figure 10A). High scores of tumors 
infiltrating immune cells, including DCs, iDCs, macrophages, mast cells, neutrophils, pDCs, T helper 
cells, TILs and Tregs, were noted in the high-risk group. We also performed ssGSEA of immune 
functions by comparing the two risk groups (Figure 10B). The above results showed that the high-risk 
group had a higher score of infiltration functions compared with the low-risk group. We performed 
Gene Ontology enrichment to determine the potential molecular function of the pyroptosis-associated 
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risk model, revealing the participation of several immune-associated biological activities (Figure S2). 
We found that the pyroptosis-associated genes in the risk model were mainly enriched in positive 
regulation of enzyme inhibitor action, peptidase mediator activity, peptidase inhibitor action, collagen-
containing extracellular matrix, negative mediation of hydrolase action, regulation of peptidase action, 
adverse mediation of proteolysis and adverse mediation of peptidase action. 

The relationship between the pyroptosis-associated lncRNA model and immunotherapeutic 
indicators was also explored. Gene mutations were analyzed to gain novel insight into the molecular 
mechanism in subgroups of the pyroptosis-associated lncRNA model. The mutation data of the 
pyroptosis-associated genes were evaluated using the R package maftools. Different predictors were 
used to classify the mutations. The top 20 driver genes (TTN, TP53, MUC16, ARID1A, LRP1B, 
SYNE1, FLG, FAT4, CSMD3, PCLO, DNAH5, KMT2D, FAT3, HMCN1, OBSCN, ZFHX4, RYR2, 
SPTA1, PIK3CA and CSMD1) with the highest mutation incidences between the two different risk 
subgroups are shown in Figure 10C,D. The low-risk group exhibited a greater incidence of gene 
mutation compared with the high-risk group (88.36 vs. 87.86%). Genes with a mutation rate of greater 
than 20% in the high-risk group included TTN, TP53, MUC16, ARID1A and SYNE1. TTN, TP53, 
MUC16, ARID1A, LRP1B, SYNE1, FLG, FAT4, CSMD3 and PCLO were identified as genes with 
mutation rates of greater than 20% in the low-risk subgroups. The most common mutation in both 
groups was Missense_mutation followed by Multi_Hit, Frame_Shift_Del and Nonsense_ mutation. 

In many malignancies, including gastric cancer, a connection is noted between treatment 
intervention and TMB. The higher the TMB score is, the more cancer genetic mutations. In addition, 
a higher TMB score was noted in tumors with more abnormal cells. Thus, it was possible for immune 
cells to find the tumor. This type of tumor was a good candidate for tumor immunological treatment. 
We then calculated tumor mutational burden scores using the mutation data. The TMB in the high-risk 
category was lower, demonstrating that pyroptosis-associated factors exhibited a stronger relationship 
with the TMB (Figure 10E). Gastric cancer patients with a high TMB score had a considerably greater 
survival rate (Figure 10F). The above results indicated that TMB could act as an independent predictive 
factor in gastric cancer. Then, we tested whether the risk model could predict the OS of GC patients 
together with tumor mutational burden. Patients with two different TMB scores in the high-risk 
category (called H-TMB/high and L-TMB/high) had a lower survival rate than individuals with the 
two different TMB groups in the low-risk category (H-TMB/low and L-TMB/low) (Figure 10G). 
Based on our findings, the pyroptosis-associated lncRNA model could have increased predictive value 
with tumor mutational burden. The above results implied that immune infiltrating levels, mutation 
incidence and TMB significantly differed in the two risk groups, and this information can be used to 
guide individual treatment. 

3.7. Drug sensitivity assessment based on pyroptosis-associated lncRNAs in patients with gastric cancer 

We used a drug sensitivity analysis to assess the IC50 differences between risk categories from the 
GDSC database to identify a better chemotherapy regimen for GC patients. With the exception of 
ABT.888 and AKT inhibitor VIII, the low-risk group was more responsive to A.443654, A.770041, 
AICAR, AMG.706, AS601245, ATRA, AUY922, axitinib, AZ628 and AZD.0530 (Figure 11A–L). We 
hypothesized that the effect of adequate treatment was superior in high-risk populations and that the 
information derived from these studies would be useful to guide individual chemotherapy. 
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Figure 10. Assessment of tumor immune correlation and tumor immunotherapy efficacy 
using the pyroptosis-associated lncRNA signature. (A) The scores of tumor-infiltrating 
immune cell types in the two risk groups. (B) The scores of immune functions were 
compared in the two risk groups using ssGSEA. Different mutation rates in the high-risk 
group (C) and low-risk group (D) are presented in waterfall curves. BP: biological process; 
CC: cellular component; MF: molecular function. (E) TMB differences in the individuals 
of the two risk groups. (F) Kaplan‒Meier analysis of patients with different TMB levels. 
(G) Kaplan‒Meier analysis of survival outcomes for individuals based on TMB levels and 
the pyroptosis-associated lncRNA model is shown. 
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Figure 11. Assessment of drug sensitivity (IC50) in patients with GC. IC50: the half 
maximal inhibitory concentration (A–L). 
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3.8. Expression levels of hub pyroptosis-associated lncRNAs in patients with GC 

We further explored the expression of hub pyroptosis-associated lncRNAs in the lnCAR database. 
The results indicated that AC005332.1, AC009812.4 and AP000695.1 levels were significantly 
increased in gastric tumor tissue compared with normal tissue (Figure 12A–C). And the overall 
survival of the patients with GC had statistically significant in high and low AP000695.1 group (p < 
0.05) (Figure 12D). These results were consistent with the results based on TCGA GC cohort, 
demonstrating that AC005332.1, AC009812.4 and AP000695.1 were crucial biomarkers in regulating 
GC progression. The above results provide novel ideas to explore the specific mechanisms of the 
initiation and development of gastric cancer. 

 

Figure 12. The expression levels and overall survival of hub pyroptosis-associated 
lncRNAs in the patients with GC. (A–C) The expression levels of AC009812.4, 
AP000695.1 and AC005332.1 in the lnCAR database. (D–F) The overall survival of 
AC009812.4, AP000695.1 and AC005332.1 in the Sento Academic website. *p < 0.05. **p 
< 0.01. ***p < 0.001. 

4. Discussion 

GC is well known as a common gastrointestinal system tumor with a high morbidity and mortality 
rate, and it receives an increasing amount of attention each year [48]. A reliable method to correctly 
predict the outcomes of GC patients is currently not available. In addition, pyroptosis has a dual effect 
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on the appearance and growth of cancers. Pyroptotic cell death in the oxygen-deficit area of the tumor 
center could impair antitumor immunity and facilitate tumor formation [26]. On the other hand, 
pyroptosis can trigger an immune reaction and slow tumor development by causing acute inflammation 
in the tumor microenvironment [49]. For example, the AIM2 inflammasome has been shown to 
regulate mTOR to diminish S6K1 activation, thereby suppressing tumor progression [50]. However, 
the interaction of pyroptosis-associated genes in GC and their underlying potential to forecast GC 
patient prognosis remain unknown. 

Furthermore, the critical role of lncRNAs in the induction of pyroptosis in tumor cells has been 
verified. For instance, previous work focused on GSDME to investigate the crucial function of 
lncRNAs involved in ionizing radiation (IR)-regulated pyroptosis in colon cancer cells [51]. The 
findings shed light on the biochemical processes driving IR-induced damage in cancer radiation 
treatment and could provide a solid theoretical framework for the development of colon cancer 
treatments. Furthermore, microRNA-4306 and Sirtuin1 (SIRT1) regulate the expression of 
LINC00958, which is involved in the induction of oral squamous cell carcinoma cell death by 
missing in melanoma 2 [52]. Nevertheless, research on lncRNAs connected to pyroptosis in tumors, 
particularly GC, is severely poor. As a result, we aimed to develop a predictive model based on 
pyroptosis-associated lncRNAs in patients with gastric cancer with the goal of generating a model 
that could accurately predict the outcomes of GC patients and provide a promising treatment option 
in the future. 

The purpose of our study was to identify the association between pyroptosis-associated lncRNAs 
and GC patient outcome based on the expression data and biological activity of pyroptosis-associated 
lncRNAs in GC. Pyroptosis-associated lncRNAs were identified through co-expression analyses. To 
create a pyroptosis-associated lncRNA risk model, we used LASSO for univariate and multivariate 
Cox regression. The predictive signature comprising 10 pyroptosis-associated lncRNAs (AC005332.1, 
AC009812.4, AC015802.5, AC040904.1, AC053503.4, ADNP−AS1, AP000695.1, LIMS1−AS1, 
SACS−AS1 and SOX9−AS1) was confirmed to be an independent factor of prognosis. Among the 10 
lncRNAs of the predictive model, several pyroptosis-associated lncRNAs have been reported to 
facilitate tumor incidence and progression. For example, a SOX9-AS1/miR-5590-3p/SOX9 positive 
feedback loop that signals through the Wnt/β-catenin pathway causes the progression and metastasis 
of HCC, suggesting that SOX9-AS1 represents a promising new predictive and therapeutic target for 
HCC [53]. Therefore, more researchers would like to study the role of pyroptosis-associated lncRNAs 
in GC and assess their value as predictive indicators. 

Our study also discovered that this risk model was closely connected with immunotherapeutic 
markers and the prediction of sensitivity to medication. Various immunological biomarkers differed 
between the two risk groups. The above outcomes further showed that the pyroptosis-associated 
lncRNA model had a significant effect on the immune cell-infiltrating environment. We can focus more 
on the high-risk group because in the high-risk group, immune cells as well as immune function have 
higher scores. Relationships between treatment efficacy and TMB are noted in many malignancies, 
including gastric cancer. The TMB was higher in the low-risk group, demonstrating that the pyroptosis-
associated signature was closely related to TMB. The survival probability of GC patients in the high 
TMB group was increased. TMB was identified as a risk-independent predictive marker in gastric 
cancer based on the findings of this study. The IC50 in the GDSC database was compared between risk 
categories using a drug susceptibility assessment. We found that the effect of adequate treatment is 
superior in high-risk populations. Finally, we further explored the expression of hub pyroptosis-
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associated lncRNAs in the lnCAR database. 
The pathogenic stage is an important factor in the decision regarding GC treatment. However, GC 

patients in the same pathological stage also exhibit diverse clinical results, demonstrating that earlier 
categorization approaches are ineffective in providing reliable predictions and distinguishing the 
heterogeneity of GC. As a result, the established pyroptosis-associated lncRNA model provides a novel 
and accurate method to predict the survival outcomes and immunological responses of GC patients. 
We also validated the above results using the lnCAR database. The novelty of our work lies in the 
combination of two factors (pyroptosis and lncRNA) that play an important role in gastric cancer to 
establish a new prediction model. The main contribution is that, currently, earlier staging methods are 
ineffective in providing reliable predictions and facilitating the differentiation of gastric cancer 
heterogeneity based on a multitude of bioinformatics and computer algorithms. Here, we constructed 
and validated a prediction model to provide an accurate and simple method to predict patient survival 
and provide a theoretical basis for patient treatment. The model can be reproduced, making it attractive 
for clinical translation and implementation. Despite the significant findings of our study, we note that 
our research had several flaws and limitations. Research on the correlation between pyroptosis-linked 
lncRNAs and the tumor immune microenvironment remains in its initial phases and requires a more 
thorough analysis. Moreover, an in vivo test was used to confirm the expression activity of pyroptosis-
associated lncRNAs. Based on the above results, we constructed a prognostic model consisting of 10 
pyroptosis-linked lncRNAs. Recently, ncRNAs, including lncRNAs, miRNAs and circRNAs, have 
attracted considerable attention from scientists [54]. Prediction studies focused on interacting factors will 
provide valuable insights into the genetic markers and ncRNAs associated with GC, such as the lncRNA-
miRNA-mRNA ceRNA network [55–57] and circRNA-miRNA-mRNA network [58]. Ideally, the 
simultaneous use of several correlated molecular targets increases the sensitivity and reliability of 
candidate genes as biomarkers [59], which also represents the direction of our future research. 

5. Conclusions 

In conclusion, we developed an excellent risk model to forecast the outcomes of GC patients 
based on 10 pyroptosis-associated lncRNAs, including AC005332.1, AC009812.4, AC015802.5, 
AC040904.1, AC053503.4, ADNPAS1, AP000695.1, LIMS1AS1, SACSAS1 and SOX9AS1. 
Validation results showed that AC005332.1, AC009812.4 and AP000695.1 were crucial biomarkers in 
regulating GC progression. And the overall survival of the patients with GC had statistically significant 
in high and low AP000695.1 group. More importantly, the above findings could elucidate the function 
of pyroptosis-associated lncRNAs and provide adequate evidence for prognostic prediction in GC 
patients. Furthermore, the predictive risk model demonstrated efficacy in identifying GC patients who 
would benefit from immunotherapy. 
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