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Abstract: This article discusses the problem of estimation with step stress partially accelerated life 
tests using Type-II progressively censored samples. The lifetime of items under use condition follows 
the two-parameters inverted Kumaraswamy distribution. The maximum likelihood estimates for the 
unknown parameters are computed numerically. Using the property of asymptotic distributions for 
maximum likelihood estimation, we constructed asymptotic interval estimates. The Bayes procedure 
is used to calculate estimates of the unknown parameters from symmetrical and asymmetric loss 
functions. The Bayes estimates cannot be obtained explicitly, therefor the Lindley’s approximation and 
the Markov chain Monte Carlo technique are used to obtaining the Bayes estimates. Furthermore, the 
highest posterior density credible intervals for the unknown parameters are calculated. An example is 
presented to illustrate the methods of inference. Finally, a numerical example of March precipitation 
(in inches) in Minneapolis failure times in the real world is provided to illustrate how the approaches 
will perform in practice. 
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1. Introduction 

As a result of significant advancements in high technology, today’s products are becoming more 
and more reliable, and product lifetimes are increasing. A product’s failure may take a long period, 
such as several years, making it difficult, if not impossible, to gather failure information for products 
that are as reliable under normal settings. While running at a higher stress level shortens the product's 
life, the accelerated life test (ALT) is utilized to induce more failures and then derive the reliability 
information under normal conditions. ALT enables the researcher to change the stress level factors to 
in order to gain information on the parameters of lifetime distributions more quickly than under regular 
operating conditions. The main assumption in ALT is that the mathematical model in which species 
the relationship between the average lifetime and the stress is known or the acceleration factor is known. 
In some cases, such a model does not exist or is very difficult to suppose. So, partially ALT (PALT) is 
a good nominee to carry out the life test in such cases. Various types of stress loading may be applied 
when performing PALT. Constant-stress and step-stress are the two most common types. A test unit 
runs under constant-stress PALT (CSPALT) in one of two modes: normal use or accelerated use. 
However, with step-stress PALT (SSPALT), a test item is run under normal conditions first, if it does 
not fail, it is then run under accelerated conditions until it fails or the observation is censored. The 
various types of PALT models have been the interest of many researchers see [1–17]. 

In many lifetime studies, it is common for the lifetime of test units to be inaccurately recorded. 
In practice, investigators need to process the censored data, as they rarely have the time to record and 
watch all of the people involved in the experience during their course of lifetime. There are various 
censoring patterns. Type-I and Type-II censoring are the most prevalent censoring techniques used in 
life testing or reliability experiments. Lately, the Type-II progressive censoring scheme has become 
popular enough to analyze highly reliable data. This kind of censoring scheme can be described as: 
suppose 𝑛 identical items are put to test, the integer 𝑚 ≤ 𝑛 is a prespecified number of failures and 
𝑅 , 𝑅 , … , 𝑅   are 𝑚  prefixed integers satisfying 𝑅 + 𝑅 + ⋯ + 𝑅 + 𝑚 = 𝑛 . At the time of the 
first failure 𝑡 : : , 𝑅  of the surviving units are randomly withdrawn. Likewise, at the time of the 
second failure 𝑡 : : , 𝑅  of the surviving units are randomly withdrawn, and so on. At the time of the 
𝑚𝑡ℎ failure 𝑡 : : , the experiment is stopped and all surviving 𝑅 = 𝑛 −  𝑅 − 𝑅 − ⋯ − 𝑅 −

𝑚  units are withdrawn. Conventional Type-II censoring is a special case when 𝑅 =  𝑅 = ⋯ =

𝑅 = 0 and 𝑅 = 𝑛 − 𝑚. For more details about Type-II progressive censoring, see [18–21]. 
The inverted Kumaraswamy (IKum) distribution with the parameters 𝛼, 𝛽 > 0, will be denoted 

by IKum  (𝛼, 𝛽). IKum distribution was derived from Kumaraswamy distribution (Kum) using the 
transformation 𝑋 = 1 𝑌⁄ − 1, when 𝑌 has a Kum distribution. Three special cases of IKum (𝛼, 𝛽) 
distribution are Lomax distribution (when 𝛽 = 1), inverted beta Type-II distribution (when 𝛼 = 1) 
and log-logistic (Fisk) distribution (when 𝛼 = 𝛽 = 1 ). The corresponding cumulative density 
distribution (CDF), probability density function (PDF) and hazard rate function (HRF) are given, 
respectively, by 

𝐹(𝑥) = [1 − (1 + 𝑥) ] ,   𝑥 > 0 , 𝛼, 𝛽 > 0 , 

𝑓(𝑥) = 𝛼𝛽(1 + 𝑥) ( )[1 − (1 + 𝑥) ] , 

ℎ(𝑥) = 𝛼𝛽(1 + 𝑥) ( )[1 − (1 + 𝑥) ] 1 − [1 − (1 + 𝑥) ] . 
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Figure 1. The PDF and HRFplots for the IKum distribution. 

Figure 1 shows that the IKum distribution has a lengthy right tail when compared to other 
commonly used distributions based on the PDF and HRF curves. As a result, it will influence long-
term reliability predictions, producing optimistic predictions of uncommon events that occur in the 
right tail of the distribution when compared to other distributions. Furthermore, the IKum distribution 
fits various data sets from the literature quite well. IKum distribution was introduced by reference [22]. 
They investigated various structural properties with the application. They also addressed the problem 
of estimation of parameters of the IKum distribution based on Type-II censoring. Reference [23] used 
general progressive censored samples to evaluate the unknown parameters of the IKum distribution. 
Reference [24] studied relations for moments of dual generalized order statistics for IKum. For more 
details about IKum distribution see [25,26] 

The motivation of this paper is to apply SSPALT to items whose lifetimes under normal stress 
conditions follow the IKum distribution under Type-II progressive censoring, and to estimate the 
involved parameters using ML and Bayes methods (under squared error (SE) and linear exponential 
(LINEX) loss functions). To demonstrate and evaluate the performance of the given estimating 
methods, an actual data set is investigated. The rest of this article is planned as follows. Section 2 
presents the description of the model. In Section 3, both the ML estimates (MLEs) and observed Fisher 
information matrix are presented. In addition, Lindely’s approximation and the Markov chain Monte 
Carlo (MCMC) technique are used to get the Bayes estimates (Bes) and the highest posterior density 
(HPD) credible intervals of the model parameters as given in Section 4. illustrative example and Monte 
Carlo (MC) simulation results are presented in Sections 5 and 6, respectively. Section 7 presents a 
numerical example to illustrate all methods of inference established in the article in hand. Finally, we 
make some concluding remarks in Section 8. 

2. Model description 

In this Section, for Type-II progressive censoring, we develop the following assumptions under 
SSPALT: 

1) The SSPALT is composed of two stress levels, 𝑠   and 𝑠   (𝑠 < 𝑠 ) , where 𝑠  represents 
normal stress conditions and 𝑠 represents accelerated stress conditions. 

2) Suppose 𝑛 independent and identical distribution units are placed on a life test and at least 
one failure must be observed for each stress 𝑠  and 𝑠 . 
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3) All 𝑛 units are subjected to an initial stress level 𝑠 . At the fixed pre-specified time 𝜏 the 
stress level is increased to 𝑠 . 

4) The lifetime distributions at the stress levels 𝑠  and 𝑠  are assumed to be IKum distribution 
with shape parameters 𝛼  and 𝛼  respectively, and a common additional shape parameter 𝛽. 

Under the assumption of the cumulative exposure model (CEM), the CDF of the lifetime of a test 
unit under SSPALT is given by 

𝐺(𝑡) =
𝐺 (𝑡) = 𝐹 (𝑡),             0 ≤ 𝑡 < 𝜏,

 
𝐺 (𝑡) = 𝐹 (𝑠 + 𝑡 − 𝜏),          𝑡 ≥ 𝜏,

                 (1) 

where 𝑠  is the solution of the equation 𝐹 (𝜏) = 𝐹 (𝑠)  (see [27]). So, it is evident that 𝑠 =
(1 + 𝜏) ⁄ − 1. 

The corresponding PDF of the lifetime of a test unit is 

𝑔(𝑡) =

𝛼  𝛽 (1 + 𝑡) ( ) [1 − (1 + 𝑡) ] ,                      0 ≤ 𝑡 < 𝜏,
 

𝛼  𝛽 (1 + 𝜏) ⁄ + 𝑡 − 𝜏
( )

 1 − (1 + 𝜏) ⁄ + 𝑡 − 𝜏 , 𝑡 ≥ 𝜏.

 (2) 

3. Maximum likelihood estimation 

This part derives the MLEs of unknown model parameters. Also, we obtain the observed Fisher 
information matrix. Based on the Type-II progressively censored sample, we have 𝑛 identical units 
under an initial stress level 𝑠 . The stress level is changed to 𝑠  at a pre-fixed time 𝜏, and the life-
testing experiment is terminated when the 𝑚𝑡ℎ failure time 𝑡 : :  occurs, where 2 ≤ 𝑚 ≤ 𝑛. Let 
𝑛  be the number of units that fail before time 𝜏 at stress level𝑠 . With these notations the observed 
progressive censored data is 𝑡 : : < 𝑡 : : < ⋯ < 𝑡 : : < 𝜏 < 𝑡 : : < ⋯ < 𝑡 : : . with the 
corresponding progressive censoring scheme 𝑅 = (𝑅 , … , 𝑅 ), where ∑ 𝑅 = 𝑛 − 𝑚. 

From the CEM in (1) and the corresponding PDF in (2), the likelihood function (LF) of 𝛼 , 𝛼  
and 𝛽 are obtained based on the Type-II progressively censored sample as follows: 

𝐿(𝛼 , 𝛼 , 𝛽|𝑡) = 𝐶 𝛼 𝛽(1 + 𝑡 : : ) ( ) 𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : )  

× ∏ 𝛼 𝛽 𝜓(𝑡 : : )
( )

𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : ) ,     (3) 

where 𝜓(𝑡 : : ) = (1 + 𝜏) ⁄ + 𝑡 : : − 𝜏 , 𝜓 (𝑡 : : ) = 1 − (1 + 𝑡 : : ) , 𝜓 (𝑡 : : ) = 1 −

𝜓(𝑡 : : )  and 𝐶 = 𝑛(𝑛 − 1 − 𝑅 )(𝑛 − 2 − 𝑅 − 𝑅 ) … (𝑛 − 𝑚 − 1 − ∑ 𝑅 ). 
The logarithm of LF may be written as 

𝑙(𝛼 , 𝛼 , 𝛽) = ln 𝐶 + 𝑛 ln 𝛼 + (𝑚 − 𝑛 ) ln 𝛼 + 𝑚 ln 𝛽 

− ∑ (𝛼 + 1) ln(1 + 𝑡 : : ) − (𝛽 − 1) ln 𝜓 (𝑡 : : ) − 𝑅 ln 1 − 𝜓 (𝑡 : : )   

− ∑ (𝛼 + 1) ln 𝜓(𝑡 : : ) − (𝛽 − 1) ln 𝜓 (𝑡 : : ) − 𝑅 ln 1 − 𝜓 (𝑡 : : ) .    (4) 

The likelihood equations of 𝛼 , 𝛼  and 𝛽 as 

= − ∑ ln(1 + 𝑡 : : ) + 1 − 𝛽 + 𝛽𝑅 𝜓 (𝑡 : : )
( : : )

( : : )
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− ∑ (𝛼 + 1) + 1 − 𝛽 + 𝛽𝑅 𝜓 (𝑡 : : )
( : : )

( : : ) ( : : )

( : : )
,    (5) 

= − ∑ ln 𝜓(𝑡 : : ) + (𝛼 − 1)
( : : )

( : : )
  

− ∑ 1 − 𝛽 + 𝛽𝑅 𝜓 (𝑡 : : )
( : : )

( : : )
,              (6) 

= + ∑ 1 − 𝑅 𝜓 (𝑡 : : ) ln 𝜓 (𝑡 : : ) + ∑ 1 − 𝑅 𝜓 (𝑡 : : ) ln 𝜓 (𝑡 : : ) , (7) 

where; 𝜓 (𝑡 : : ) =
( : : )

( : : )
 , 𝜓 (𝑡 : : ) =

( : : )

( : : )
 , 

( : : )
= (1 + 𝜏) ⁄ ln(1 +

𝜏) , 
( : : )

= (1 + 𝑡 : : ) ln(1 + 𝑡 : : ) , 
( : : )

= 𝛼 𝜓(𝑡 : : )
( ) ( : : )

 , 

( : : )
= −

( : : )
 and 

( : : )
= 𝜓(𝑡 : : ) ln 𝜓(𝑡 : : )

( : : )
. 

It can be seen that (5)–(7) cannot be solved explicitly, hence the MLEs of 𝛼 , 𝛼  and 𝛽 must 
be obtained using an appropriate numerical method. The iterative algorithm such as the Newton–
Raphson (NR) can be utilized to obtain 𝛼 , 𝛼  and 𝛽. 

Asymptotic confidence interval 
The observed Fisher information matrix on 𝛼 , 𝛼  and 𝛽, 𝑰, can be obtained by using (5)–(7). 

If Θ = (𝛼 , 𝛼 , 𝛽), then 

𝑰 = −
𝜕 𝑙

𝜕Θ Θ
 , 𝑖, 𝑗 = 1, 2, 3, 

where the information matrix 𝑰  is calculated at 𝛼 , 𝛼 , 𝛽  . The asymptotic variance-covariance 
matrix may be approximated as the inverse of 𝑰. That is, 

𝑰 𝟏 = 𝑐𝑜𝑣 Θ Θ .                                (8) 

Based on the asymptotic theory of MLEs, the sampling distribution of Θ − Θ 𝜎   is 

asymptotically standard normal distribution, where 𝜎 = 1 𝑣𝑎𝑟 Θ   is calculated from (8). 

Therefore, the 100 (1 − 𝛾)% approximate confidence interval (ACI) of Θ  can then be constructed 
as 

Θ − 𝑍 ⁄  𝜎  , Θ + 𝑍 ⁄  𝜎 , 𝑖 = 1, 2, 3. 

where 𝑍 ⁄  is the upper (𝛾 2⁄ ) percentile of the standard normal distribution. 

4. Bayes estimation 

This section used SE and LINEX loss functions to obtain BEs of the parameters 𝛼 , 𝛼  and 𝛽. 
Unfortunately, in many cases, the BEs are not always able to be described explicitly forms. As a result, 
using Lindley’s approximation and MCMC approach, approximate BEs are obtained under 
informative prior. 

Suppose all the unknown parameters are stochastically independent. Assume that the prior 
distribution for the parameters  𝛼   and 𝛼   are taken 𝐺𝑎𝑚𝑚𝑎(𝜇 , 𝜈 )  and 𝐺𝑎𝑚𝑚𝑎(𝜇 , 𝜈 ) 
receptively. While the prior distribution of the parameter 𝛽  is taken 𝐺𝑎𝑚𝑚𝑎(𝜇 , 𝜈 ) . Hence, the 
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joint prior distribution for 𝛼 , 𝛼  and 𝛽 is 

𝜋(𝛼 , 𝛼 , 𝛽) = 𝛼 𝛼 𝛽 exp − + + .               (9) 

Combining (3) and (9) to obtain the joint posterior density function of the parameters 𝛼 , 𝛼  
and 𝛽 as 

 𝜋∗(𝛼 , 𝛼 , 𝛽) = 𝛼 𝛼 𝛽 exp − + +  

 ∏   (1 + 𝑡 : : ) ( ) 𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : )  

∏   𝜓(𝑡 : : )
( )

𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : ) .          (10) 

The BEs of the function of the parameters 𝑈(Θ) = (𝛼 , 𝛼 , 𝛽) denting by 𝑈 , we observe that 
under SE loss function the BE of 𝑈(Θ) is the posterior mean given by 

𝑈 = 𝐸(𝑈(Θ)|𝑡) = ∫ 𝑈(Θ) 𝜋∗ 
(Θ|𝑡) dΘ.                      (11) 

The SE loss is an asymmetric loss function that puts equal weight to the underestimation and 
overestimation. In many cases, underestimating a problem is more significant than overestimation a 
problem, and vice versa. In these circumstances, a LINEX loss can be recommended as an alternative 
to the SE loss which is given by reference [28] 

𝑈(Θ) , 𝑈(Θ) = 𝑒 ( ) ( ) − 𝐶 𝑈(Θ) − 𝑈(Θ) − 1. 

where 𝑐 ≠ 0 is a shape parameter. Here 𝑐 > 1 proposes that an overestimation is more serious than 
the underestimation, and vice versa for 𝑐 < 0. Further 𝑐 approaching to zero replicates the SE loss 
function itself. One may refer to references [28] and [29] for more details in this regard. The BE of 
𝑈(Θ) under this loss can be derived as 

𝑈 = 𝐸(𝑒 |𝑡) = − ln ∫ 𝑒  𝜋∗ 
(Θ|𝑡)   𝑑Θ .                (12) 

It is seen that estimates given by (11) and (12) cannot be simplified into closed form expressions. 
Therefore, we next apply Lindley’s approximation method and MCMC technique to obtain the desired 
BEs. 

4.1. Lindley’s approximation 

Reference [30] proposed an approximation procedure to evaluate the expressions like (11) and 
(12). Reference [31] applied this method to obtain BEs under the considered prior distribution. For the 
three-parameter case 𝑈(Θ|𝑡), we observe that 𝐸 𝑈(Θ|𝑡)  can be approximated as 

𝐸 𝑈(Θ|𝑡) = 𝑈 + [𝑈 𝑎 + 𝑈 𝑎 + 𝑈 𝑎 + 𝑎 + 𝑎 ] 

+ [𝜙 (𝑈 𝜎 + 𝑈 𝜎 + 𝑈 𝜎 ) + 𝜙 (𝑈 𝜎 + 𝑈 𝜎 + 𝑈 𝜎 ) + 𝜙 (𝑈 𝜎 + 𝑈 𝜎 + 𝑈 𝜎 )]. (13) 

where; 𝑈 =  , 𝜎   is the element (𝑖, 𝑗)  in the variance-covariance matrix −𝐿  , 𝑖, 𝑗 = 1,2,3 , 

and  
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𝑎 = 𝜌 𝜎 + 𝜌 𝜎 + 𝜌 𝜎 , 𝑖 = 1, 2, 3, 

𝑎 = 𝑈 𝜎 + 𝑈 𝜎 + 𝑈 𝜎 , 𝑎 = (𝑈 𝜎 + 𝑈 𝜎 + 𝑈 𝜎 ), 

𝜙 = 𝜎 𝐿 + 2(𝜎 𝐿 + 𝜎 𝐿 + 𝜎 𝐿 ) + 𝜎 𝐿 + 𝜎 𝐿 , 

𝜙 = 𝜎 𝐿 + 2(𝜎 𝐿 + 𝜎 𝐿 + 𝜎 𝐿 ) + 𝜎 𝐿 + 𝜎 𝐿 , 

𝜙 = 𝜎 𝐿 + 2(𝜎 𝐿 + 𝜎 𝐿 + 𝜎 𝐿 ) + 𝜎 𝐿 + 𝜎 𝐿 , 

𝜌 = , 𝑈 =
 

, 𝐿 =
  

. 

Form the prior distribution in (9) and (13), the values of the BEs of various parameters under SE 
loss function are 

𝛼 = 𝛼 + 𝑎 + (𝜙 𝜎 + 𝜙 𝜎 + 𝜙 𝜎 ),                  (14) 

𝛼 = 𝛼 + 𝑎 + (𝜙 𝜎 + 𝜙 𝜎 + 𝜙 𝜎 ),                  (15) 

𝛽 = 𝛽 + 𝑎 + (𝜙 𝜎 + 𝜙 𝜎 + 𝜙 𝜎 ).                    (16) 

the BEs of various parameters under LINEX loss function are 

𝛼 = − ln 𝑒 1 + 𝜎 − 𝑐𝛼 − (𝜙 𝜎 + 𝜙 𝜎 + 𝜙 𝜎 ) ,       (17) 

𝛼 = − ln 𝑒 1 + 𝜎 − 𝑐𝛼 − (𝜙 𝜎 + 𝜙 𝜎 + 𝜙 𝜎 ) ,       (18) 

𝛽 = − ln 𝑒 1 + 𝜎 − 𝑐𝛽 − (𝜙 𝜎 + 𝜙 𝜎 + 𝜙 𝜎 ) .         (19) 

The forms (14)–(16) and (17)–(19) are evaluated at the MLEs of the parameters 𝛼 , 𝛼  and 𝛽 
respectively. 

4.2. Markov chain Monte Carlo 

The MCMC techniques are a general simulation method for sampling from posterior distributions 
and computing posterior quantities of interest. Indeed, the MCMC samples may be used to completely 
summarize the posterior uncertainty about the parameters 𝛼 , 𝛼  and 𝛽 through a kernel estimate 
of the posterior distribution. From the joint posterior density function in (10), the conditional posterior 
distributions of 𝛼 , 𝛼  and 𝛽 can be written, respectively, as 

𝜋∗(𝛼 |𝛼 , 𝛽, 𝑡) ∝ 𝛼 𝑒 (1 + 𝑡 : : ) 𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : )  

∏   𝜓(𝑡 : : )
( )

𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : ) , 

𝜋∗(𝛼 |𝛼 , 𝛽, 𝑡) ∝ 𝛼 𝑒 exp −
𝛼

𝜈
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∏   𝜓(𝑡 : : )
( )

𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : ) , 

𝜋∗(𝛽|𝛼 , 𝛼 , 𝑡) ∝ 𝛽 𝑒 𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : )  

  𝜓 (𝑡 : : ) 1 − 𝜓 (𝑡 : : ) . 

It can be seen that the conditional posterior distributions of 𝛼 , 𝛼  and 𝛽 cannot be reduced 
analytically to well-known distribution, but the plot of them shows that they are similar to normal 
distribution see Figures 2–7. So, the Metropolis-Hastings (MH) method is used to generate random 
samples from this distribution, with normal proposal distribution. 

The following MCMC procedure is proposed to compute BEs for the function 𝑈 ≡ 𝑈(𝛼  , 𝛼 , 𝛽) 

Step 1: Start with 𝛼
( )

= 𝛼  , 𝛼
( )

= 𝛼  and 𝛽( ) = 𝛽. 

Step 2: Set 𝑖 = 1. 

Step 3: Generate 𝛼∗ from proposal distribution 𝑁 𝛼
( )

, 𝑣𝑎𝑟 𝛼
( ) . 

Step 4: Calculate the acceptance probability 

𝑆 𝛼
( )

𝛼∗ = min 1,
𝜋∗ 𝛼∗ 𝛼

( )
, 𝛽( ), 𝑡

𝜋∗ 𝛼∗ 𝛼
( )

, 𝛽( ), 𝑡
. 

Step 5: Generate 𝑈~𝑈(0, 1). 

Step 6: If 𝑈 ≤ 𝑆 𝛼
( )

𝛼∗ , accept the proposal distribution and set 𝛼
( )

= 𝛼∗ . Otherwise, 

reject the proposal distribution and set 𝛼
( )

= 𝛼
( ). 

Step 7: To generate 𝛼∗ and 𝛽∗ do the Steps 2–6 for 𝛼  and 𝛽. 
Step 8: Set 𝑖 = 𝑖 + 1. 
Step 9: Repeat Steps 3–8 𝑁 times. 
Step 10: Obtain the BEs of 𝑈(𝛼  , 𝛼 , 𝛽) using MCMC under SE and LINEX loss functions as 

𝑈 = 𝐸 𝑈(𝛼  , 𝛼 , 𝛽|𝑡) =
1

𝑁 − 𝑀
 𝑈 𝛼

( )
, 𝛼

( )
, 𝛽( ) , 

𝑈 = 𝐸 𝑒 𝛼  , 𝛼 , 𝛽 𝑡 = − ln ∑ 𝑒
( )

,
( )

, ( )

, 

where 𝑀 is the burn-in period. 

Step 11: 𝑈( ) ⁄ 𝛼
( )

, 𝛼
( )

, 𝛽( ) ,  𝑈( )( ⁄ ) 𝛼
( )

, 𝛼
( )

, 𝛽( )   yields an approximate 

100(1 − 𝛾)% credible interval for 𝑈 𝛼
( )

, 𝛼
( )

, 𝛽( ) . 
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Figure 2. Posterior density function of 𝛼 . 

 
Figure 3. Posterior density function of 𝛼 . 

 
Figure 4. Posterior density function of 𝛽. 
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Figure 5. Simulation number of 𝛼  generated by the MCMC method. 

 

Figure 6. Simulation number of 𝛼  generated by the MCMC method. 

 

Figure 7. Simulation number of β generated by the MCMC method. 

5. Illustrative example 

This section presents an example to illustrate the estimation procedure and the CIs for the 
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parameters (𝛼 , 𝛼 , 𝛽) . Generate the Type-II progressive censoring from (3) with true value for 
parameters (𝛼 , 𝛼 , 𝛽)  as (1.50, 2.51, 1.71)  when (𝑛, 𝑚, 𝜏) = (20, 15, 0.8)  with censoring 
scheme (𝑚 , 𝑚 , … , 𝑚 ) = (5, 0, … , 10). The simulated data is listed in Table 1. 

Table 1. SSPALT simulation data. 

Failure times under normal condition Failure times under accelerated condition 
0.161522 0.221959 0.236070 0.329451 0.809535 0.883767 0.95693 0.967955 
0.522292 0.524396 0.566979  1.942770 2.307990 4.18468 5.613810 

We obtain the average and mean square error (MSE) for Θ = (𝛼 , 𝛼 , 𝛽)  in Table 2. Also, 
Approximate and HPD CIs and their lengths are listed in Table 3. 

Table 2. The average and MSE for Θ = (𝛼 , 𝛼 , 𝛽). 

Θ ML Bayes 
Lindley’s MCMC 
BSL BLL1 BLL2 BSM BLM1 BLM2 

𝛼  2.37129 0.97264 1.12533 1.44004 1.72924 1.58455 1.26443 
(0.75915) (0.2781)  (0.14038) (0.00359) (0.05255) (0.00715) (0.05549) 

𝛼  2.37717 1.9153 1.87413 1.86157 2.13492 2.0524 1.84584 
(0.01765) (0.35367) (0.40433) (0.42046) (0.14068) (0.20939) (0.44111) 

𝛽 2.49709 1.15864 1.21243 1.49745 1.96639 1.80225 1.50235 
(0.61951) (0.3040) (0.24757) (0.04518) (0.06573) (0.00851) (0.04312) 

Table 3. Approximate and HPD CIs and their lengths of the parameters (𝛼 , 𝛼 , 𝛽). 

(𝑛, 𝑚) Θ 
Cis Lengths of CIs 
Appr. CI HPD CI Appr. CI HPD CI 

(40, 30) 𝛼  (0.11836, 4.62423) (0.45268, 3.49434) 4.50588 3.04166 
𝛼  (1.07654, 3.67779) (1.12724, 3.43897) 2.60125 2.31173 
𝛽 (-0.17125, 5.16542) (0.75421, 4.22058) 5.33667 3.46637 

6. Simulation study 

This part conducts a simulation analysis to examine the performance of proposed estimates for 
the Type-II progressive censoring schemes in terms of average estimates and MSE values. We mention 
that Mathematica 7 software is used, and the simulation is based on 1000 repetitions. The schemes 
used are as follows: 

Scheme I: 𝑅 = 𝑛 − 𝑚 and 𝑅 = 0 for 𝑖 ≠ 1. 
Scheme II: 𝑅 = 𝑛 − 𝑚 and 𝑅 = 0 for 𝑖 ≠ 2. 
Scheme III: 𝑅 = 𝑛 − 𝑚 and 𝑅 = 0 for 𝑖 ≠ 𝑚. 
The recommended estimates for each scheme are computed using the Type-II progressive 

censored samples obtained from the IKum distribution using the algorithm given by reference [32]. 
We select the hyper-parameters (𝜇 = 0.5, 𝜈 = 1.2, 𝜇 = 0.9, 𝜈 = 1.8, 𝜇 = 1.5, 𝜈 = 1.5)  in (9) 
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that allow us to generate the values of 𝛼 , 𝛼   and 𝛽 . These generated values are (𝛼 , 𝛼 , 𝛽 ) =

(1.50, 2.51, 1.71). The stress change time 𝜏 is chosen to be equal to 0.8. 
The MLEs and BEs of 𝛼 , 𝛼  and 𝛽 are obtained based on these censoring schemes. Also, the 

95% CIs are computed based on the asymptotic distribution of the MLEs and Bayesian CIs for 𝛼 , 𝛼  
and 𝛽. We replicate the process 1000 times and then compute the average and MSEs of the resulting 
estimates as well as the average lengths Appr. and HPD CIs. We consider BLL1, BLL2, BLM1 and 
BLM2 with a notation that 𝑐 = 0.5, 2. The respective results are reported up to 5 decimal places in 
Tables 4–9. 

Table 4. The average and MSE of 𝛼 , 𝛼 , 𝛽 for scheme I. 

(𝑛, 𝑚) Θ ML Bayes 
Lindley’s MCMC 
BSL BLL1 BLL2 BSM BLM1 BLM2 

(40, 30) 𝛼  1.65543 1.28705 1.2519 1.21992 1.42057 1.3590 1.20177 
(0.42999) (0.21481) (0.24574) (0.32018) (0.21822) (0.21371) (0.23893) 

𝛼  2.65326 2.44264 2.38662 2.3049 2.50495 2.43849 2.26092 
(0.33867) (0.22183) (0.22122) (0.25676) (0.23316) (0.21504) (0.22047) 

𝛽 1.97409 1.57305 1.54014 1.5136 1.74602 1.66684 1.49469 
(0.70691) (0.14638) (0.16539) (0.30586) (0.25685) (0.20506) (0.17016) 

(40, 35) 𝛼  1.64862 1.30962 1.27755 1.24229 1.42521 1.36892 1.22295 
(0.39323) (0.19826) (0.22037) (0.28567) (0.20355) (0.19970) (0.22091) 

𝛼  2.64346 2.45204 2.40356 2.32678 2.50473 2.44703 2.28995 
(0.31550) (0.21374) (0.21219) (0.23924) (0.22513) (0.21044) (0.21137) 

𝛽 1.99358 1.58682 1.57038 1.54711 1.75867 1.68156 1.51260 
(0.81505) (0.20465) (0.18208) (0.34996) (0.28678) (0.22754) (0.17760) 

(60, 50) 𝛼  1.62312 1.41280 1.37516 1.31596 1.45844 1.41501 1.29831 
(0.26361) (0.15324) (0.16263) (0.19733) (0.16181) (0.15786) (0.16666) 

𝛼  2.62169 2.49885 2.46070 2.38683 2.51963 2.47823 2.36218 
(0.20820) (0.15756) (0.15314) (0.16136) (0.16234) (0.15376) (0.15071) 

𝛽 1.89337 1.68729 1.63844 1.57146 1.74089 1.68618 1.55662 
(0.43261) (0.15993) (0.15977) (0.20976) (0.21772) (0.18392) (0.14811) 

(60, 55) 𝛼  1.59519 1.40350 1.36644 1.30551 144190 1.40112 1.29076 
(0.21686) (0.13908) (0.14671) (0.17629) (0.14217) (0.14075) (0.15416) 

𝛼  2.57916 2.46693 2.43251 2.36330 2.48441 2.44729 2.34256 
(0.18811) (0.15289) (0.15072) (0.16101) (0.15414) (0.14883) (0.15115) 

𝛽 1.86461 168288 1.63200 1.55915 1.72537 1.67403 1.55043 
(0.32666) (0.14426) (0.13634) (0.16560) (0.17773) (0.15357) (0.13120) 
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Table 5. The average and MSE of 𝛼 , 𝛼 , 𝛽 for scheme II. 

(𝑛, 𝑚) Θ ML Bayes 
Lindley’s MCMC 
BSL BLL1 BLL2 BSM BLM1 BLM2 

(40, 30) 𝛼  1.68862 1.29947 1.26764 1.241690 1.43982 1.37699 1.21666 
(0.43057) (0.21428) (0.23551) (0.30259) (0.21065) (0.20411) (0.22597) 

𝛼  2.66861 2.45134 2.39578 2.31587 2.51442 2.44717 2.26779 
(0.33133) (0.21266) (0.21032) (0.24253) (0.22553) (0.20601) (0.20951) 

𝛽 2.01308 1.57484 1.56057 1.54242 1.76780 1.68805 151427 
(0.77083) (0.30166) (0.16461) (0.32316) (0.25854) (0.20274) (0.16110) 

(40, 35) 𝛼  1.65135 1.31154 1.27931 1.24215 1.42709 1.37048 1.22409 
(0.34735) (0.19456) (0.20292) (0.26069) (0.17793) (0.17578) (0.20172) 

𝛼  2.62027 2.43070 2.38256 2.30568 2.48129 2.42432 2.26923 
(0.27903( (0.20208) (0.20078) (0.22693) (0.20463) (0.19348) (0.20321) 

𝛽 1.96691 1.56982 1.55748 1.52932 1.73960 1.66554 1.50225 
(0.69979) (0.38616) (0.15731) (0.30310) (0.23953) (0.19178) (0.15897) 

(60, 50) 𝛼  1.60625 1.39965 1.36213 1.30233 1.44417 1.40106 1.20507 
(0.26531) (0.16239) (0.17236) (0.20804) (0.16985) (0.16675) (0.17770) 

𝛼  2.60057 2.48035 2.44261 2.36890 2.50041 2.45968 2.34547 
(0.18288) (0.14292) (0.14011) (0.15048) (0.14607) (0.13983) (0.14263) 

𝛽 1.88494 1.68365 1.63859 1.56933 1.73673 1.68342 1.55592 
(0.41470) (0.15605) (0.15761) (0.21082) (0.20395) (0.17375) (0.14270) 

(60, 55) 𝛼  1.61851 1.42172 1.38574 1.32649 1.46185 1.42079 1.30954 
(0.23619) (0.13926) (0.14718) (0.17751) (0.14668) (0.14335) (0.15183) 

𝛼  2.59645 2.48323 2.44889 2.37962 2.50084 2.46374 2.35885 
(0.16439) (0.12894) (0.12704) (0.13638) (0.13043) (0.12576) (0.12920) 

𝛽 1.89490 1.69924 1.65377 1.58544 1.74823 1.69593 1.57028 
(0.40487) (0.14542) (0.14846) (0.19649) (0.19938) (0.16804) (0.13378) 

Table 6. The average and MSE of 𝛼 , 𝛼 , 𝛽 for scheme III. 

(𝑛, 𝑚) Θ ML Bayes 
Lindley’s MCMC 
BSL BLL1 BLL2 BSM BLM1 BLM2 

(40, 30) 𝛼  1.67468 1.33963 1.30954 1.27582 1.44789 1.39401 1.25246 
(0.38210) (0.18888) (0.20886) (0.26779) (0.19642) (0.19114) (0.20608) 

𝛼  2.71109 2.45218 2.38609 2.30586 2.52052 2.43673 2.22214 
(0.52014) (0.28634) (0.28811) (0.35025) (0.31761) (0.27747) (0.27014) 

𝛽 2.00940 1.59348 1.58277 1.56234 1.76239 1.68673 1.51879 
(0.84333) (0.23874) (0.19153) (0.36994) (0.28759) (0.22777) (0.17522) 

(40, 35) 𝛼  1.68589 1.35414 1.32299 1.28701 1.45995 1.40578 1.26368 
 (0.37445) (0.17471) (0.19429) (0.25425) (0.18654) (0.18062) (0.19413) 
      Continued on next page 
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(𝑛, 𝑚) Θ ML Bayes 
Lindley’s MCMC 
BSL BLL1 BLL2 BSM BLM1 BLM2 

 𝛼  2.66805 2.45790 2.40602 2.32949 2.51081 2.44812 2.27892 
(0.35275) (0.23424) (0.23040) (0.25831) (0.24459) (0.22541) (0.22312) 

𝛽 2.02579 1.61455 1.60452 1.57674 1.78200 1.70581 1.53676 
(0.83181) (0.34268) (0.18228) (0.36377) (0.27424) (0.21447) (0.16139) 

(60, 50) 𝛼  1.60030 1.41001 1.37509 1.31679 1.44653 1.40723 1.30017 
(0.21965) (0.14099) (0.14861) (0.17702) (0.14551) (0.14381) (0.15526) 

𝛼  2.61698 2.48318 2.44130 2.36411 2.50299 2.45715 2.32968 
(0.24871) (0.19030) (0.18436) (0.19556) (0.19353) (0.18235) (0.17888) 

𝛽 1.87625 1.68946 1.641710 1.57152 1.73156 1.68095 1.55817 
 (0.34566) (0.14527) (0.14214) (0.17674) (0.18279) (0.15742) (0.13209) 

(60, 55) 𝛼  1.61398 1.42225 1.38779 1.32984 1.45989 1.42045 1.31294 
(0.21681) (0.13114) (0.13831) (0.16568) (0.13753) (0.13484) (0.14381) 

𝛼  2.60790 2.48732 2.45145 2.38085 2.50462 2.46549 2.35508 
(0.18854) (0.14604) (0.14322) (0.15220) (0.14838) (0.14218) (0.14344) 

𝛽 1.88892 1.69278 1.65098 1.58316 1.74135 1.69007 1.56630 
(0.40552) (0.14335) (0.15024) (0.20478) (0.19462) (0.16359) (0.13086) 

Table 7. Approximate and HPD CIs and their lengths of the parameters (𝛼 , 𝛼 , 𝛽) for scheme I. 

(𝑛, 𝑚) Θ Cis Lengths of CIs 
Appr. CI HPD CI Appr. CI HPD CI 

(40, 30) 𝛼  (0.44842, 2.86243) (0.57881, 2.51126) 2.41400 1.93245 
𝛼  (1.57289, 3.73362) (1.58029, 3.59153) 2.16073 2.01124 
𝛽 (0.56166, 3.38652) (0.89460, 3.05901) 2.82485 2.16441 

(40, 35) 𝛼  (0.51150, 2.78575) (0.61392, 2.46083) 2.27425 1.84690 
𝛼  (1.64491, 3.64201) (1.63511, 3.50903) 1.99710 1.87392 
𝛽 (0.61090, 3.37626) (0.91712, 3.03803) 2.76536 2.12091 

(60, 50) 𝛼  (0.68488, 2.56136) (0.72896, 2.35349) 1.87648 1.62453 
𝛼  (1.79284, 3.45054) (1.77264, 3.36206) 1.65770 1.58942 
𝛽 (0.83455, 2.95220) (1.00713, 2.79542) 2.11765 1.78829 

(60, 55) 𝛼  (0.69241, 2.49797) (0.73149, 2.30604) 1.80556 1.57456 
𝛼  (1.79774, 3.36058) (1.77490, 3.27798) 1.56284 1.50307 
𝛽 (0.84745, 2.88178) (1.00683, 2.7615) 2.03434 1.73932 

Table 8. Approximate and HPD CIs and their lengths of the parameters (𝛼 , 𝛼 , 𝛽) for scheme II. 

(𝑛, 𝑚) Θ 
Cis Lengths of CIs 
Appr. CI HPD CI Appr. CI HPD CI 

(40, 30) 𝛼  (0.46780, 2.90944) (0.58824, 2.5402) 2.44164 1.95197 
𝛼  (1.58403, 3.75319) (1.58524, 3.60722) 2.16915 2.02198 

   Continued on next page 
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(𝑛, 𝑚) Θ 
Cis Lengths of CIs 
Appr. CI HPD CI Appr. CI HPD CI 

 𝛽 (0.58767, 3.43848) (0.90980, 3.07903) 2.85081 2.16922 
(40, 35) 𝛼  (0.50841, 2.79430) (0.61227, 2.46790) 2.28589 1.85563 

𝛼  (1.62795, 3.61259) (1.61686, 3.47999) 1.98464 1.86313 
𝛽 (0.61274, 3.32109) (0.91109, 2.99448) 2.70834 2.08340 

(60, 50) 𝛼  (0.67377, 2.53872) (0.71706, 2.33422) 1.86496 1.61716 
𝛼  (1.77842, 3.42272) (1.75907, 3.33550) 1.64431 1.57643 
𝛽 (0.84327, 2.92661) (1.00736, 2.77472) 2.08334 1.76736 

(60, 55) 𝛼  (0.71446, 2.52256) (0.74751, 2.32754) 1.80809 1.58002 
𝛼  (1.81359, 3.37931) (1.78876, 3.29593) 1.56572 1.50717 
𝛽 (0.86825, 2.92154) (1.02278, 2.77349) 2.05329 1.75071 

Table 9. Approximate and HPD CIs and their lengths of the parameters (𝛼 , 𝛼 , 𝛽) for scheme III. 

(𝑛, 𝑚) Θ Cis Lengths of CIs 
Appr. CI HPD CI Appr. CI HPD CI 

(40, 30) 𝛼  (0.57373, 2.77563) (0.64412, 2.45263) 2.20190 1.80851 
𝛼  (1.48642, 3.93577) (1.50360, 3.74638) 2.44935 2.24278 
𝛽 (0.64792, 3.37089) (0.92108, 3.01884) 2.72297 2.09776 

(40, 35) 𝛼  (0.58083, 2.79095) (0.65407, 2.46931) 2.21012 1.81524 
𝛼  (1.62504, 3.71106) (1.60794, 3.55714) 2.08601 1.94920 
𝛽 (0.65645, 3.39514) (0.93527, 3.05102) 2.73868 2.11575 

(60, 50) 𝛼  (0.72122, 2.47937) (0.74526, 2.29158) 1.75815 1.54631 
𝛼  (1.74578, 3.48818) (1.72035, 3.38819) 1.74240 1.66784 
𝛽 (0.87150, 2.88100) (1.01345, 2.7403) 2.00950 1.72685 

(60, 55) 𝛼  (0.73253, 2.49543) (0.75623, 2.30571) 1.76290 1.54948 
𝛼  (1.80380, 3.41201) (1.77484, 3.32044) 1.60821 1.54560 
𝛽 (0.87613, 2.90170) (1.02087, 2.75243) 2.02557 1.73156 

7. Real data analysis 

This section analyzes a real data set given by reference [33]. It consists of thirty successive values 
of March precipitation (in inches) in Minneapolis/St Paul. The data are as follows: 

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 
1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

Reference [22], verified that the IKum distribution provides a good fit for the given data set. The 
calculated Kolmogorov-Smirnov (𝐾 − 𝑆) distance between the empirical and the fitted for the IKum 
distribution was 0.1105 and its p-value is 0.8571 where 𝛼 = 3.0038  and 𝛽 = 8.7984  which 
indicates that this distribution can be considered as an adequate model for the given data set. 

Now, using SSPALT, we will analyze the supplied data by setting the value of 𝜏 to be 1.3. From 
the original data, three Type-II progressive censored schemes are generated with number of stages 
𝑚 =  20  from a total of 𝑛 =  30  observations and removed items 𝑅  , where 𝑗 = 1, 2, … , 𝑚 . 
These different schemes can be described as follows: 
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Scheme I: 𝑅 = 𝑛 − 𝑚 and 𝑅 = 𝑅 = ⋯ = 𝑅 = 0. 
Scheme II: 𝑅 = 𝑅 = 𝑅 = ⋯ = 𝑅 = 0 and 𝑅 = 𝑛 − 𝑚. 
Scheme III: 𝑅 = 𝑅 = 𝑅 = ⋯ = 𝑅 = 0 and 𝑛 = 𝑚. 

Note that Type-II censoring (Scheme II) and complete sampling (Scheme III) can be considered as 
a special case of Type-II progressive censoring when 𝑛 = 𝑚 and 𝑅 = 𝑅 = 𝑅 = ⋯ = 𝑅 = 0. 

We calculate the MLEs of the parameters 𝛼 and 𝛽 and their associated 95% asymptotic CIs. 
We also compute BEs utilizing the MH algorithm under the non-informative prior. Note that the non-
informative prior is assumed where 𝜇 = 𝜈 = 0 , 𝑖 = 1, 2, 3 . It is indicated that, while generating 
samples from the posterior distribution utilizing the MH algorithm, initial values of (𝛼, 𝛽)  are 
considered as 𝛼( ), 𝛽( ) = (𝛼, 𝛽) , where 𝛼  and 𝛽  are the MLEs of the parameters 𝛼  and 𝛽 
respectively. Thus, we considered the variance–covariance matrix 𝑆  of ln(𝛼), ln 𝛽 , that can be 
easily obtained utilizing the delta method. Finally, we discarded 2000 burn-in samples among the total 
10000 samples created from the posterior density, and subsequently obtained Bayes estimates, and 
HPD interval estimates utilizing the technique of [34]. 

All the estimated values of MLEs and associated standard errors (St.Er) are presented in Table 10. 
Also, Bayesian estimation using Lindley’s approximations and MCMC by applying MH algorithm and 
its St.Er are computed. Approximate CIs for MLEs and HPD for Bayesian estimates using MCMC are 
presented in Table 11 under SE loss function. 

Table 10. ML and Bayesian estimates with associated St.Er (in practices) based on 
different Type-II progressive censoring schemes scheme for a given real data set. 

Scheme Θ ML Bayesian 
Lindley’s MCMC 
BSL BLL1 BLL2 BSM BLM1 BLM2 

Scheme I 𝛼  1.9162 1.9288 1.9365 1.9540 1.9137 1.9103 1.9032 
(0.6442)    (0.0924)   

𝛼  3.0628 3.0634 3.0684 3.0706 3.0623 3.0583 3.0498 
(0.6638)    (0.0995)   

𝛽 4.7644 4.7605 4.7652 4.7646 4.7602 4.7562 4.7478 
(2.2619)    (0.1007)   

Scheme II 𝛼  24812 2.4862 2.4904 2.998 2.4771 2.4737 2.4666 
(0.6410)    (0.0924)   

𝛼  2.5023 2.5041 2.5066 2.5103 2.5015 2.4979 2.4901 
(0.4429)    (0.0934)   

𝛽 7.8787 7.8778 7.8788 7.8787 7.8810 7.8770 7.8685 
(3.7634)    (0.9982)   

Scheme III 𝛼  2.9300 2.9331 2.9367 2.9443 2.9259 2.9224 2.9149 
(0.6427)    (0.0851)   

𝛼  3.3399 3.3405 3.3420 3.3442 3.3358 3.3319 3.3237 
(0.5232)    (0.0724)   

𝛽 7.7583 7.7577 7.7582 7.7582 7.7558 7.7518 7.7433 
(3.3666)    (0.0905)   
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Table 11. Approximate and HPD CIs and their lengths based on different Type-II 
progressive censoring schemes for a given real data set. 

Scheme Θ 
CIs Lengths of CIs 
Appr. CI HPD CI Appr. CI HPD CI 

Scheme I 𝛼  (0.6536, 3.1788) (1.7411, 2.1002) 2.5252 0.3591 
𝛼  (1.7617, 4.3638) (2.8737, 3.2645) 2.6021 0.3908 
𝛽 (0.3312, 9.1975) (4.5711, 4.9614) 8.8663 0.3903 

Scheme II 𝛼  (1.2249, 3.7376) (2.2932, 2.6537) 2.5127 0.3605 
𝛼  (1.6341, 3.3706) (2.3091, 2.6851) 1.7365 0.3760 
𝛽 (0.5025, 15.2549) (7.6931, 8.0797) 14.7524 0.3866 

Scheme III 𝛼  (1.6702, 4.1897) (2.7439, 3.1108) 2.5195 0.3669 
𝛼  (2.3144, 4.3655) (3.1494, 3.5284) 2.0510 0.3790 
𝛽 (1.15987, 14.3568) (7.5501, 7.9403) 13.1969 0.3902 

The convergence of MCMC estimation in case of scheme II of Type-II progressive censoring for 
the given real data set. As shown in Figure8, the Bayesian estimates using MCMC are convergence 
through three sub-graphs: scatter plot, histogram, and cumulative mean of the 10,000 estimates. 

 

Figure 8. Convergence of MCMC estimates for 𝛼 , 𝛼  and 𝛽 using MH algorithm for 
given real data set under Type-II progressive and SSPALT model. 
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8. Conclusions 

In this study, the statistical inferences procedure for the unknown parameters of the IKum 
distribution and the acceleration factor, when the data are Type-II progressive censored from SSPALT 
were considered. We studied this problem under CEM. Since it is impossible to compute the MLEs in 
closed form, the Newton-Raphson approach is suggested as an alternative. We develop the approximate 
confidence interval length of the parameters and acceleration factor based on the asymptotic 
distribution of MLEs. We investigated the Bayes estimation approach in order to obtain an alternate 
estimate procedure. Bayesian estimates are achieved by Lindley’s approximation the MCMC method, 
based on SE and LINEX loss functions. Under the premise that the priors of 𝛼 , 𝛼   and 𝛽  are 
Gamma density, the Metropolis-Hastings sampling technique is shown to produce Bayesian estimates. 
In addition, HPD CIs have been acquired. The Monte Carlo simulation study was utilized to get 
numerical point and interval estimates of the parameters. 

From the results in Tables 4–9, we observe the following: 
1) when the sample size increases, the MSEs of MLEs and BEs of the considered parameters 

decrease. 
2) The BEs of the considered parameters obtained from both Lindley’s approximation and 

MCMC method give more accurate results through the MSEs than MLEs. 
3) The BEs of 𝛽 obtained from Lindley’s approximation give more accurate results through the 

MSEs than the BEs obtained from MCMC method. 
4) The BEs of the considered parameters based on LINEX loss function (𝑐 = 2) are smaller 

than that based on SE loss function. 
5) In most cases, the HPD CIs give more accurate results than the approximate CIs since the 

lengths of the former are less than the lengths of latter, for different sample sizes, observed failures, 
and censoring schemes. 

A real-life numerical example of March precipitation (in inches) in Minneapolis failure times is 
used to demonstrate the usefulness of the recommended estimation technique under SSPALT based on 
Type-II progressive censored. As per the K–S distance and the p-value, the data set presents a good 
match for the IKum distribution. To confirm that the distribution matches the data. 
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