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Abstract: This article discusses the problem of estimation with step stress partially accelerated life
tests using Type-II progressively censored samples. The lifetime of items under use condition follows
the two-parameters inverted Kumaraswamy distribution. The maximum likelihood estimates for the
unknown parameters are computed numerically. Using the property of asymptotic distributions for
maximum likelihood estimation, we constructed asymptotic interval estimates. The Bayes procedure
is used to calculate estimates of the unknown parameters from symmetrical and asymmetric loss
functions. The Bayes estimates cannot be obtained explicitly, therefor the Lindley’s approximation and
the Markov chain Monte Carlo technique are used to obtaining the Bayes estimates. Furthermore, the
highest posterior density credible intervals for the unknown parameters are calculated. An example is
presented to illustrate the methods of inference. Finally, a numerical example of March precipitation
(in inches) in Minneapolis failure times in the real world is provided to illustrate how the approaches
will perform in practice.
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1. Introduction

As a result of significant advancements in high technology, today’s products are becoming more
and more reliable, and product lifetimes are increasing. A product’s failure may take a long period,
such as several years, making it difficult, if not impossible, to gather failure information for products
that are as reliable under normal settings. While running at a higher stress level shortens the product's
life, the accelerated life test (ALT) is utilized to induce more failures and then derive the reliability
information under normal conditions. ALT enables the researcher to change the stress level factors to
in order to gain information on the parameters of lifetime distributions more quickly than under regular
operating conditions. The main assumption in ALT is that the mathematical model in which species
the relationship between the average lifetime and the stress is known or the acceleration factor is known.
In some cases, such a model does not exist or is very difficult to suppose. So, partially ALT (PALT) is
a good nominee to carry out the life test in such cases. Various types of stress loading may be applied
when performing PALT. Constant-stress and step-stress are the two most common types. A test unit
runs under constant-stress PALT (CSPALT) in one of two modes: normal use or accelerated use.
However, with step-stress PALT (SSPALT), a test item is run under normal conditions first, if it does
not fail, it is then run under accelerated conditions until it fails or the observation is censored. The
various types of PALT models have been the interest of many researchers see [1-17].

In many lifetime studies, it is common for the lifetime of test units to be inaccurately recorded.
In practice, investigators need to process the censored data, as they rarely have the time to record and
watch all of the people involved in the experience during their course of lifetime. There are various
censoring patterns. Type-I and Type-II censoring are the most prevalent censoring techniques used in
life testing or reliability experiments. Lately, the Type-II progressive censoring scheme has become
popular enough to analyze highly reliable data. This kind of censoring scheme can be described as:
suppose n identical items are put to test, the integer m < n is a prespecified number of failures and
Ry, R,, ..., R, are m prefixed integers satisfying R; + R, + -+ R,;, + m = n. At the time of the
first failure t;.,.,, Ry of the surviving units are randomly withdrawn. Likewise, at the time of the
second failure t,.,.,, R, of the surviving units are randomly withdrawn, and so on. At the time of the
mth failure t,;..., the experiment is stopped and all surviving R,, =n— R —R, —+*—Rp_1 —
m units are withdrawn. Conventional Type-II censoring is a special case when Ry = R, = =
R,y—1 =0 and R,, = n — m. For more details about Type-II progressive censoring, see [18-21].

The inverted Kumaraswamy (IKum) distribution with the parameters «, f > 0, will be denoted
by IKum (a, ). IKum distribution was derived from Kumaraswamy distribution (Kum) using the
transformation X = 1/Y — 1, when Y has a Kum distribution. Three special cases of IKum («, )
distribution are Lomax distribution (when B = 1), inverted beta Type-II distribution (when a = 1)
and log-logistic (Fisk) distribution (when a = f =1). The corresponding cumulative density
distribution (CDF), probability density function (PDF) and hazard rate function (HRF) are given,
respectively, by

Flx)=[1-1+x)"%%, x>0,a0,>0,
f) =ap(1+x)"@D[1 - (1 +x)"9]F 1,

h(x) = af(1+x)"@D[1 — (1 +x)"9F1[1 - [1 - (1 +x)"*]F] .

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.



1676

a=05f=03 =05 =03

=l f=0s — a=)f=05

a=1f=1 —  a=2p-3

Figure 1. The PDF and HRFplots for the IKum distribution.

Figure 1 shows that the IKum distribution has a lengthy right tail when compared to other
commonly used distributions based on the PDF and HRF curves. As a result, it will influence long-
term reliability predictions, producing optimistic predictions of uncommon events that occur in the
right tail of the distribution when compared to other distributions. Furthermore, the IKum distribution
fits various data sets from the literature quite well. IKum distribution was introduced by reference [22].
They investigated various structural properties with the application. They also addressed the problem
of estimation of parameters of the IKum distribution based on Type-II censoring. Reference [23] used
general progressive censored samples to evaluate the unknown parameters of the IKum distribution.
Reference [24] studied relations for moments of dual generalized order statistics for IKum. For more
details about IKum distribution see [25,26]

The motivation of this paper is to apply SSPALT to items whose lifetimes under normal stress
conditions follow the IKum distribution under Type-II progressive censoring, and to estimate the
involved parameters using ML and Bayes methods (under squared error (SE) and linear exponential
(LINEX) loss functions). To demonstrate and evaluate the performance of the given estimating
methods, an actual data set is investigated. The rest of this article is planned as follows. Section 2
presents the description of the model. In Section 3, both the ML estimates (MLEs) and observed Fisher
information matrix are presented. In addition, Lindely’s approximation and the Markov chain Monte
Carlo (MCMC) technique are used to get the Bayes estimates (Bes) and the highest posterior density
(HPD) credible intervals of the model parameters as given in Section 4. illustrative example and Monte
Carlo (MC) simulation results are presented in Sections 5 and 6, respectively. Section 7 presents a
numerical example to illustrate all methods of inference established in the article in hand. Finally, we
make some concluding remarks in Section 8.

2. Model description

In this Section, for Type-II progressive censoring, we develop the following assumptions under
SSPALT:

1) The SSPALT is composed of two stress levels, s, and s; (s, < s;), where sgrepresents
normal stress conditions and s;represents accelerated stress conditions.

2) Suppose n independent and identical distribution units are placed on a life test and at least
one failure must be observed for each stress s, and sj.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.
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3) All n units are subjected to an initial stress level sj. At the fixed pre-specified time 7 the
stress level is increased to s;.

4) The lifetime distributions at the stress levels s, and s; are assumed to be IKum distribution
with shape parameters a; and @, respectively, and a common additional shape parameter f5.

Under the assumption of the cumulative exposure model (CEM), the CDF of the lifetime of a test
unit under SSPALT is given by

G1(t) = F1 (D), 0<t<r,

G(t) = (1
G,(t) =F,(s+t—r1), t>1,

where s is the solution of the equation F;(t) = F,(s) (see [27]). So, it is evident that s =
(1+1)*/% —1,
The corresponding PDF of the lifetime of a test unit is

a; B (1+t)~ @D [1— (14 )" %]f1, 0<t<r,

1 )

9(t) = —(ay+1) —a,\B
a, B [A+D/%2 4t —1] {1—[(1+1:)“1/“2+t—r] 2} , =T

3. Maximum likelihood estimation

This part derives the MLEs of unknown model parameters. Also, we obtain the observed Fisher
information matrix. Based on the Type-II progressively censored sample, we have n identical units
under an initial stress level s,. The stress level is changed to s; at a pre-fixed time 7, and the life-
testing experiment is terminated when the mth failure time t,,.,,., occurs, where 2 < m < n. Let
n; be the number of units that fail before time t at stress levels,. With these notations the observed
progressive censored data is t1.mm < tamin < < tpimn < T < lps1mn < < tpanen. With the
corresponding progressive censoring scheme R = (Ry, ..., Ry,), Where Y7L, R; =n—m.

From the CEM in (1) and the corresponding PDF in (2), the likelihood function (LF) of a4, a,
and [ are obtained based on the Type-II progressively censored sample as follows:

nq ) R;
L(alra2',8|t) =C nalﬂ(l + ti:m:n)_(a1+1) (lpl(ti:m:n))ﬁ ! [1 - (lpl(ti:m:n))ﬁ]
i=1

—(ay+1) R;
)

X M1 @B Cima)) 0 2 Ciman)) 1= (W2 Cimn)” | (3)

where 170(ti:m:n) = (1 + T)al/az ttimn — T, wl(ti:m:n) =1- (1 + ti:m:n)_w1 > lpz(ti:m:n) =1-
($(imn)) % and C=n(n—1=R)(—2—Ry —Ry) . (n—m—1—3PR,).
The logarithm of LF may be written as
l(a,a5,B) =InC+n;lna; +(m—ny) Ina, + minp
— 3, [Cen + DI + i) = (B = DIy (Cimn) = Riln (1= (91 i)' )]
= S [ (@2 + DI Ciman) — B = DIy i) — Rl (1= (o i)’ )| @)

The likelihood equations of a4, a; and [ as

9 a iimn
o= 2= T [InCL + tmn) + (1= B+ BRAD3 (bimen)) 5 g ]

da;  ag Y1 (timn) daq

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.
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a lp(ti:m:n) oz 1 6¢(ti:m:n)
" ZEnn K(az + 0+ (1= + BRputimn) Z(wzm-m.n)) )zp(ti-m-n) oa; ] )

a_L —_mn — 1 alp(ti:m:n)
da, | ay = ny+1 [lm/)(tl mn) +(az — )w(ti;m;n) e,
1 allJ (ti:m:n)
Z:Zn1+1 [(1 - B + BRI,I/)4 (tlmn)) lpz(ti:m;n) zaaz ) (6)

o2 = 2 T [(1 = Rtps (Cimen)) I 91 (limen)] + Zkn, 2 [(1 = Ritba Cimn)) I i) (7)

(Y1 (timn)” (P2timn))’  OW(timm) _ 1 /
where; (timm) = — 2 — W, (timem) = , =—1+1)%/%]n(1+
1’03 e 1_(1p1(ti:m:n))ﬁ ¢4 e 1_(1p1(ti:m:n))ﬁ aal a2

0 (tlmn) 0 (ti:m:n) —(az+1) 9 (ti:m:n)
7) 1.01— 1+ t;. mn) “In(1 + t;. mn) 9Pz Limn) =y (w(ti:m:n)) ’ 9P timn) >

Jda a 6a1 60{1

0 (ti:m:n) 0 (ti:m:n) 0 (tlmn) 0 (tlmn)
ll)— =-4 i and e (lp(tlmn)) l 1l’(tlmn) L

da, a daq
It can be seen that (5)—(7) cannot be solved explicitly, hence the MLEs of i, @, and [ must
be obtained using an appropriate numerical method. The iterative algorithm such as the Newton—
Raphson (NR) can be utilized to obtain &;, @&, and f.
Asymptotic confidence interval
The observed Fisher information matrix on a4, a, and £, I, can be obtained by using (5)—(7).

If ® = (a],az,ﬂ), then
I= : i,j=1,2,3
i)@i@j b Y

where the information matrix I is calculated at (c’fl,c’fz, B) The asymptotic variance-covariance

matrix may be approximated as the inverse of I. That is,
= (cov(@iej)). (8)
Based on the asymptotic theory of MLEs, the sampling distribution of (@i - @i) / 6;j is

asymptotically standard normal distribution, where 6;; =1 / var(@i) is calculated from (8).

Therefore, the 100 (1 —y)% approximate confidence interval (ACI) of ©; can then be constructed
as

(@i - Zl—]//Z 6'11 '@i + Zl—]//Z 6.ij)' i = 1, 2,3

where Z;_,/, is the upper (y/2) percentile of the standard normal distribution.

4. Bayes estimation

This section used SE and LINEX loss functions to obtain BEs of the parameters a;, a, and f.
Unfortunately, in many cases, the BEs are not always able to be described explicitly forms. As a result,
using Lindley’s approximation and MCMC approach, approximate BEs are obtained under
informative prior.

Suppose all the unknown parameters are stochastically independent. Assume that the prior
distribution for the parameters a; and @, are taken Gamma(u,,v,) and Gamma(u,,Vv,)
receptively. While the prior distribution of the parameter f is taken Gamma(us,vs;). Hence, the

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.
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joint prior distribution for a;, a, and f is

s, e ) = ol e e = (4 524 )] )

2 Vs
Combining (3) and (9) to obtain the joint posterior density function of the parameters a4, @,

and B as

* _ o Hatng—1 _ppt+m-n; -1 +m—1 a , a B
m*(ay, az,B) = af a, pHs exp [— (; + - + ”

- R;
H::l (1 + ti:m:n)_(a1+1) (lpl (ti:m:n))ﬁ ! [1 - (lpl(ti:m:n))B]
?in1+1 (lp(ti:m:n))_(wﬂ—l) (IIJZ (tl':m:n))ﬁ_1 [1 - (l/)Z (ti:m:n))ﬁ] (10)

The BEs of the function of the parameters U(®) = (a;, @, ) dentingby Ugg;, we observe that
under SE loss function the BE of U(0) is the posterior mean given by

R;

Ugs, = E(U(O)|t) = Jo U(®) m*(0]t) de. (11)

The SE loss is an asymmetric loss function that puts equal weight to the underestimation and
overestimation. In many cases, underestimating a problem is more significant than overestimation a
problem, and vice versa. In these circumstances, a LINEX loss can be recommended as an alternative
to the SE loss which is given by reference [28]

(U(G)) ,U(@)) = eU@-U®) _( (U(@) - U(@)) ~1.

where ¢ # 0 is a shape parameter. Here ¢ > 1 proposes that an overestimation is more serious than
the underestimation, and vice versa for ¢ < 0. Further ¢ approaching to zero replicates the SE loss
function itself. One may refer to references [28] and [29] for more details in this regard. The BE of
U(®) under this loss can be derived as

Upu = E(e™V|t) = —ZIn[[y e~V 7" (0t) ~ de]. (12)

It is seen that estimates given by (11) and (12) cannot be simplified into closed form expressions.
Therefore, we next apply Lindley’s approximation method and MCMC technique to obtain the desired
BEs.

4.1. Lindley’s approximation

Reference [30] proposed an approximation procedure to evaluate the expressions like (11) and
(12). Reference [31] applied this method to obtain BEs under the considered prior distribution. For the
three-parameter case U(@|t), we observe that E (U (0] t)) can be approximated as

E(U(@lt)) =U+ [U1a1 + Uzaz + U3a3 + Ay + a5]
1
+E[¢1(U1U11 + Up045 + U3013) + ¢2(U1021 + Uy 025 + Uz033) + ¢3(Uy031 + Up03, + Uzoz3)]. (13)

U . Do . . . ..
where; U; = —, oy is the element (i,j) in the variance-covariance matrix (—Li]-), i,j =123,

&’
and

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.
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a; = p10j1 + P20 + Pp3033,i =1,2,3,
a4 = Uyp012 + Uyz013 + U303, as = %(U11011 + Uz2022 + Us3033),
$1 = 011L111 + 2(012L121 + 013L131 + 023L331) + 022L321 + 033L331,
¢2 = 0111112 + 2(012L122 + 013L133 + 023L332) + 0221327 + 0331332,

¢3 = 011L113 + 2(012L123 + 013L133 + 023L233) + 0321223 + 0331333,
T I T
Pi="%¢> YU T o5 agy MUk T ag; o0t ok

Form the prior distribution in (9) and (13), the values of the BEs of various parameters under SE
loss function are

(1ps, = @1 + a4 +%(¢1011 + 2015 + P3013), (14)
g =0+ a +%(¢1012 + 207, + P3023), (15)
Bes. = B + as +%(¢1013 + 20,3 + P3033). (16)

the BEs of various parameters under LINEX loss function are

R 2
GipLr, = —%111 [e_cal <1 + C7011 —cy _§(¢1011 + ¢2012 + ¢30-13)>]9 (17)
AoprLL = —%ln [e_caz <1 + %022 —c@, —§(¢1012 + P05, + ¢3023)>], (18)
BsLL = —%ln [E_CB <1 + %033 —cp —§(¢1013 + ¢0,3 + 4’3033))]- (19)

The forms (14)—(16) and (17)—(19) are evaluated at the MLEs of the parameters «;, a, and f
respectively.

4.2. Markov chain Monte Carlo

The MCMC techniques are a general simulation method for sampling from posterior distributions
and computing posterior quantities of interest. Indeed, the MCMC samples may be used to completely
summarize the posterior uncertainty about the parameters a;, @, and f through a kernel estimate
of the posterior distribution. From the joint posterior density function in (10), the conditional posterior
distributions of @y, a, and B can be written, respectively, as

—(% m - R;
Tr*(“ll“Z' ﬁr t) X a;l[ll-'-nl_le (vl) 1_[(1 + ti:m:n)_a1 (1/}1 (ti:m:n))ﬁ ! [1 - (lpl(ti:m:n))B]
i=1

(a+1) R;
b

(IPZ (ti:m:n))ﬁ_1 [1 - (I/JZ (ti:m:n))ﬁ]

Upt+m—n,—1 —(ﬁ) a,
o 0 <t g ()
2

?=ln1+1 (lp(ti:m:n))_

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.
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—(az+1)

- R
?=ln1+1 (lp(ti:m:n)) (7102 (ti:m:n))ﬁ ' [1 - (1/’2 (ti:m:n))ﬁ] 5

LBV T ;
T[*(ﬁlalr ay, t) x ﬁ#3+m_1e <v3) n(lpl(ti:m:n))ﬁ [1 - (lpl(ti:m:n))B]R
i=1

m

[ Oaton) [1-@emn) ]

i=n1+1

It can be seen that the conditional posterior distributions of @y, a, and B cannot be reduced
analytically to well-known distribution, but the plot of them shows that they are similar to normal
distribution see Figures 2—7. So, the Metropolis-Hastings (MH) method is used to generate random
samples from this distribution, with normal proposal distribution.

The following MCMC procedure is proposed to compute BEs for the function U = U(a; , a5, )

Step 1: Start with a(o) =Q; ,aéo) =a&, and B = g.
Step 2: Set i = 1.
Step 3: Generate a; from proposal distribution N <a§._ ) var(ai‘ 1))),

n*(a{ al™P, g, t)

n*(a{ a - ,t)
®

a’{), accept the proposal distribution and set a; = aj. Otherwise,

Step 4: Calculate the acceptance probability

S(a1 ) min| 1,

Step 5: Generate U~U(0, 1).

Step 6: 1f U < 5(af"”

reject the proposal distribution and set a(l) = ail v,

Step 7: To generate a; and B* do the Steps 2—6 for a, and p.

Step 8: Set i =i + 1.

Step 9: Repeat Steps 3-8 N times.

Step 10: Obtain the BEs of U(a; , @5, ) using MCMC under SE and LINEX loss functions as

N
~ 1 .
Upsu = E(U(ay ,az,B10)) = 7 o agw’ﬂm),

i=M+1
_ I CINCING,
_ —cu(ay ,a,,BIt)) — _1 1 N cU(ay’ay’,B
UBLM_E(eC(l Zﬂl))——gln(m i=mM+1€ (e ))

where M is the burn-in period.

Step 11: [U(N_M)y/z(af),agl),ﬁ(i)), U(N—M)(l—y/z)(a1 ,agl),ﬁ(‘))] yields an approximate

b

100(1 — y)% credible interval for U ( @ aél),ﬁ("))_

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674—1694.
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2000 4000 6000 8000 10000

Figure 5. Simulation number of a; generated by the MCMC method.

; 2000 4000 " 6000 8000 10000

Figure 6. Simulation number of a, generated by the MCMC method.
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Figure 7. Simulation number of 8 generated by the MCMC method.

5. Illustrative example

This section presents an example to illustrate the estimation procedure and the Cls for the

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674-1694.
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parameters (aq, @, ). Generate the Type-II progressive censoring from (3) with true value for
parameters (a4, a5, ) as (1.50,2.51,1.71) when (n,m,t) = (20,15,0.8) with censoring
scheme (m,,m,,...,m;s) = (5,0, ...,10). The simulated data is listed in Table 1.

Table 1. SSPALT simulation data.

Failure times under normal condition Failure times under accelerated condition
0.161522 0.221959 0.236070 0.329451 0.809535 0.883767 0.95693 0.967955
0.522292  0.524396 0.566979 1.942770 2.307990 4.18468 5.613810

We obtain the average and mean square error (MSE) for © = (a4, a,, f) in Table 2. Also,
Approximate and HPD ClIs and their lengths are listed in Table 3.

Table 2. The average and MSE for © = (ay, ay, B).

® ML Bayes
Lindley’s MCMC
BSL BLL1 BLL2 BSM BLMI BLM?2

a, 237129 097264  1.12533 144004  1.72924 1.58455  1.26443
(0.75915)  (0.2781)  (0.14038)  (0.00359)  (0.05255)  (0.00715)  (0.05549)
a, 237717 19153 1.87413  1.86157  2.13492  2.0524 1.84584
(0.01765)  (0.35367)  (0.40433)  (0.42046)  (0.14068)  (0.20939)  (0.44111)
B 249709  1.15864 121243  1.49745  1.96639 1.80225  1.50235
(0.61951)  (0.3040)  (0.24757)  (0.04518)  (0.06573)  (0.00851)  (0.04312)

Table 3. Approximate and HPD CIs and their lengths of the parameters (a4, a3, B).

Cis Lengths of Cls
(n,m) 0
Appr. CI HPD CI Appr. CI HPD CI
(40,30) o (0.11836, 4.62423) (0.45268, 3.49434) 4.50588 3.04166
a, (1.07654, 3.67779) (1.12724, 3.43897) 2.60125 231173
B (-0.17125, 5.16542) (0.75421, 4.22058) 5.33667 3.46637

6. Simulation study

This part conducts a simulation analysis to examine the performance of proposed estimates for
the Type-II progressive censoring schemes in terms of average estimates and MSE values. We mention
that Mathematica 7 software is used, and the simulation is based on 1000 repetitions. The schemes
used are as follows:

SchemeI: Ry =n—m and R; =0 for i # 1.

Scheme II: R, =n—m and R; =0 for i # 2.

Scheme III: R,, =n—m and R; =0 for i # m.

The recommended estimates for each scheme are computed using the Type-II progressive
censored samples obtained from the IKum distribution using the algorithm given by reference [32].
We select the hyper-parameters (u; = 0.5,v; = 1.2,u, = 0.9,v, = 1.8, u3 = 1.5,v3 = 1.5) in (9)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1674-1694.
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that allow us to generate the values of aq,a, and . These generated values are (aq,a,, B ) =
(1.50,2.51,1.71). The stress change time 7 is chosen to be equal to 0.8.

The MLEs and BEs of a4,a, and [ are obtained based on these censoring schemes. Also, the
95% Cls are computed based on the asymptotic distribution of the MLEs and Bayesian CIs for a4, a;
and f. We replicate the process 1000 times and then compute the average and MSEs of the resulting
estimates as well as the average lengths Appr. and HPD Cls. We consider BLL1, BLL2, BLMI and
BLM2 with a notation that ¢ = 0.5, 2. The respective results are reported up to 5 decimal places in
Tables 4-9.

Table 4. The average and MSE of a4, a,, f for scheme L.

(nnm) © ML Bayes
Lindley’s MCMC
BSL BLLI1 BLL2 BSM BLMI1 BLM?2

(40,30) «, 1.65543 128705 12519 121992 142057 13590  1.20177
(0.42999) (0.21481) (0.24574) (0.32018) (0.21822) (0.21371) (0.23893)

a, 2.65326 244264 238662 23049  2.50495  2.43849 226092
(0.33867) (0.22183) (0.22122) (0.25676) (0.23316) (0.21504) (0.22047)

B 197409 157305 1.54014 15136  1.74602  1.66684  1.49469
(0.70691) (0.14638) (0.16539) (0.30586) (0.25685) (0.20506) (0.17016)

(40,35) @, 1.64862 130962 127755 124229 142521 136892  1.22295
(0.39323) (0.19826) (0.22037) (0.28567) (0.20355) (0.19970) (0.22091)

a, 2.64346 245204 240356 232678 250473  2.44703  2.28995
(0.31550) (0.21374) (0.21219) (0.23924) (0.22513) (0.21044) (0.21137)

B 1.99358  1.58682  1.57038 154711 1.75867 1.68156  1.51260
(0.81505) (0.20465) (0.18208) (0.34996) (0.28678) (0.22754) (0.17760)

(60,50) a, 1.62312 141280 137516 131596 145844 141501  1.29831
(0.26361) (0.15324) (0.16263) (0.19733) (0.16181) (0.15786) (0.16666)

a, 2.62169 249885 246070 2.38683  2.51963 247823 236218
(0.20820) (0.15756) (0.15314) (0.16136) (0.16234) (0.15376) (0.15071)

B 1.89337 1.68729  1.63844  1.57146  1.74089  1.68618  1.55662
(0.43261) (0.15993) (0.15977) (0.20976) (0.21772) (0.18392) (0.14811)

(60,55) @, 1.59519 140350 136644 130551 144190 140112  1.29076
(0.21686) (0.13908) (0.14671) (0.17629) (0.14217) (0.14075) (0.15416)

a, 257916 246693 243251 236330 248441 244729 234256
(0.18811) (0.15289) (0.15072) (0.16101) (0.15414) (0.14883) (0.15115)

B 1.86461 168288  1.63200 155915  1.72537  1.67403  1.55043
(0.32666) (0.14426) (0.13634) (0.16560) (0.17773) (0.15357) (0.13120)
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Table 5. The average and MSE of a4, a;, f for scheme II.

(n,m) ® ML Bayes
Lindley’s MCMC

BSL BLL1 BLL2 BSM BLMI1 BLM2
(40,30) @, 1.68862 129947 1.26764  1.241690 1.43982 1.37699  1.21666
(0.43057) (0.21428) (0.23551) (0.30259) (0.21065) (0.20411) (0.22597)
a, 2.66861 245134 239578  2.31587 2.51442 244717  2.26779
(0.33133) (0.21266) (0.21032) (0.24253) (0.22553) (0.20601) (0.20951)
B 2.01308 1.57484  1.56057 1.54242 1.76780  1.68805 151427
(0.77083) (0.30166) (0.16461) (0.32316) (0.25854) (0.20274) (0.16110)
(40,35) a; 1.65135 1.31154  1.27931  1.24215  1.42709 1.37048  1.22409
(0.34735) (0.19456) (0.20292) (0.26069) (0.17793) (0.17578) (0.20172)
a, 2.62027 243070 238256  2.30568  2.48129 242432  2.26923
(0.27903( (0.20208) (0.20078) (0.22693) (0.20463) (0.19348) (0.20321)
B 196691 156982  1.55748  1.52932  1.73960  1.66554  1.50225
(0.69979) (0.38616) (0.15731) (0.30310) (0.23953) (0.19178) (0.15897)
(60,50) a; 1.60625 1.39965 1.36213  1.30233  1.44417 1.40106  1.20507
(0.26531) (0.16239) (0.17236) (0.20804) (0.16985) (0.16675) (0.17770)
a, 2.60057 248035 2.44261 236890  2.50041  2.45968  2.34547
(0.18288) (0.14292) (0.14011) (0.15048) (0.14607) (0.13983) (0.14263)
B 1.88494  1.68365 1.63859  1.56933  1.73673 1.68342  1.55592
(0.41470) (0.15605) (0.15761) (0.21082) (0.20395) (0.17375) (0.14270)
(60,55) a; 1.61851 142172 1.38574 1.32649  1.46185 1.42079  1.30954
(0.23619) (0.13926) (0.14718) (0.17751) (0.14668) (0.14335) (0.15183)
a, 2.59645 248323 244889 237962  2.50084 246374  2.35885
(0.16439) (0.12894) (0.12704) (0.13638) (0.13043) (0.12576) (0.12920)
B 1.89490 1.69924  1.65377  1.58544  1.74823 1.69593  1.57028
(0.40487) (0.14542) (0.14846) (0.19649) (0.19938) (0.16804) (0.13378)

Table 6. The average and MSE of a4, a;, 8

for scheme 111.

(n,m) ® ML Bayes
Lindley’s MCMC
BSL BLL1 BLL2 BSM BLMI1 BLM2
(40,30) a; 1.67468 1.33963  1.30954  1.27582  1.44789 1.39401  1.25246
(0.38210) (0.18888) (0.20886) (0.26779) (0.19642) (0.19114) (0.20608)
a, 2.71109 245218 2.38609 230586  2.52052  2.43673 2.22214
(0.52014) (0.28634) (0.28811) (0.35025) (0.31761) (0.27747) (0.27014)
B 2.00940 1.59348  1.58277  1.56234  1.76239 1.68673  1.51879
(0.84333) (0.23874) (0.19153) (0.36994) (0.28759) (0.22777) (0.17522)
(40,35) a; 1.68589  1.35414  1.32299 1.28701  1.45995 1.40578  1.26368
(0.37445) (0.17471) (0.19429) (0.25425) (0.18654) (0.18062) (0.19413)
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(n,m) ® ML Bayes
Lindley’s MCMC
BSL BLL1 BLL2 BSM BLM1 BLM2
a, 2.66805 245790 240602  2.32949  2.51081 244812  2.27892
(0.35275) (0.23424) (0.23040) (0.25831) (0.24459) (0.22541) (0.22312)
B 2.02579  1.61455 1.60452  1.57674  1.78200 1.70581 1.53676
(0.83181) (0.34268) (0.18228) (0.36377) (0.27424) (0.21447) (0.16139)
(60,50) a; 1.60030 1.41001 1.37509  1.31679  1.44653 1.40723  1.30017
(0.21965) (0.14099) (0.14861) (0.17702) (0.14551) (0.14381) (0.15526)
a, 2.61698  2.48318 2.44130 236411  2.50299 245715  2.32968
(0.24871) (0.19030) (0.18436) (0.19556) (0.19353) (0.18235) (0.17888)
B 1.87625 1.68946  1.641710 1.57152  1.73156 1.68095  1.55817
(0.34566) (0.14527) (0.14214) (0.17674) (0.18279) (0.15742) (0.13209)
(60,55) a; 1.61398  1.42225 1.38779  1.32984  1.45989 1.42045  1.31294
(0.21681) (0.13114) (0.13831) (0.16568) (0.13753) (0.13484) (0.14381)
a, 2.60790  2.48732 245145 238085  2.50462  2.46549  2.35508
(0.18854) (0.14604) (0.14322) (0.15220) (0.14838) (0.14218) (0.14344)
B 1.88892  1.69278  1.65098  1.58316  1.74135 1.69007  1.56630
(0.40552) (0.14335) (0.15024) (0.20478) (0.19462) (0.16359) (0.13086)

Table 7. Approximate and HPD Cls and their lengths of the parameters (a;, a,, ) for scheme I.

(n,m) 0 Cis Lengths of CIs
Appr. CI HPD CI Appr. CI HPD CI
(40,30) a; (0.44842, 2.86243) (0.57881, 2.51126) 2.41400 1.93245
a, (1.57289, 3.73362) (1.58029, 3.59153) 2.16073 2.01124
B (0.56166, 3.38652) (0.89460, 3.05901) 2.82485 2.16441
(40,35) a; (0.51150, 2.78575) (0.61392, 2.46083) 2.27425 1.84690
a, (1.64491, 3.64201) (1.63511, 3.50903) 1.99710 1.87392
B (0.61090, 3.37626) (0.91712, 3.03803) 2.76536 2.12091
(60,50) (0.68488, 2.56136) (0.72896, 2.35349) 1.87648 1.62453
a, (1.79284, 3.45054) (1.77264, 3.362006) 1.65770 1.58942
B (0.83455, 2.95220) (1.00713, 2.79542) 2.11765 1.78829
(60,55) a; (0.69241, 2.49797) (0.73149, 2.30604) 1.80556 1.57456
a, (1.79774, 3.36058) (1.77490, 3.27798) 1.56284 1.50307
B (0.84745, 2.88178) (1.00683, 2.7615) 2.03434 1.73932

Table 8. Approximate and HPD CIs and their lengths of the parameters (a4, a5, ) for scheme IL

Cis Lengths of Cls
(n,m) 0
Appr. CI HPD CI Appr. CI HPD CI
(40,30) ay (0.46780, 2.90944) (0.58824, 2.5402) 2.44164 1.95197
a; (1.58403, 3.75319) (1.58524, 3.60722) 2.16915 2.02198
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Cis Lengths of Cls
(n,m) 0
Appr. CI HPD CI Appr. CI HPD CI
B (0.58767, 3.43848) (0.90980, 3.07903) 2.85081 2.16922
(40,35) ay (0.50841, 2.79430) (0.61227, 2.46790) 2.28589 1.85563
a, (1.62795, 3.61259) (1.61686, 3.47999) 1.98464 1.86313
B (0.61274, 3.32109) (0.91109, 2.99448) 2.70834 2.08340
(60,50) a, (0.67377,2.53872) (0.71706, 2.33422) 1.86496 1.61716
a, (1.77842, 3.42272) (1.75907, 3.33550) 1.64431 1.57643
B (0.84327,2.92661) (1.00736, 2.77472) 2.08334 1.76736
(60,55) a, (0.71446, 2.52256) (0.74751, 2.32754) 1.80809 1.58002
a; (1.81359, 3.37931) (1.78876, 3.29593) 1.56572 1.50717
B (0.86825,2.92154) (1.02278, 2.77349) 2.05329 1.75071

Table 9. Approximate and HPD ClIs and their lengths of the parameters (a4, a,, f) for scheme III.

(n,m) 0 Cis Lengths of Cls
Appr. CI HPD CI Appr. CI  HPD CI
(40,30) a; (0.57373, 2.77563) (0.64412, 2.45263) 2.20190 1.80851
a, (1.48642, 3.93577) (1.50360, 3.74638) 2.44935 2.24278
B (0.64792, 3.37089) (0.92108, 3.01884) 2.72297 2.09776
(40,35) o (0.58083, 2.79095) (0.65407, 2.46931) 2.21012 1.81524
a, (1.62504, 3.71106) (1.60794, 3.55714) 2.08601 1.94920
B (0.65645, 3.39514) (0.93527, 3.05102) 2.73868 2.11575
(60,50) (0.72122, 2.47937) (0.74526, 2.29158) 1.75815 1.54631
a, (1.74578, 3.48818) (1.72035, 3.38819) 1.74240 1.66784
B (0.87150, 2.88100) (1.01345, 2.7403) 2.00950 1.72685
(60,55) a; (0.73253, 2.49543) (0.75623, 2.30571) 1.76290 1.54948
a, (1.80380, 3.41201) (1.77484, 3.32044) 1.60821 1.54560
B (0.87613, 2.90170) (1.02087, 2.75243) 2.02557 1.73156

7. Real data analysis

This section analyzes a real data set given by reference [33]. It consists of thirty successive values

of March precipitation (in inches) in Minneapolis/St Paul. The data are as follows:
0.77,1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52,
1.62,1.31,0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.

Reference [22], verified that the IKum distribution provides a good fit for the given data set. The
calculated Kolmogorov-Smirnov (K —§) distance between the empirical and the fitted for the IKum
distribution was 0.1105 and its p-value is 0.8571 where & = 3.0038 and f = 8.7984 which
indicates that this distribution can be considered as an adequate model for the given data set.

Now, using SSPALT, we will analyze the supplied data by setting the value of t to be 1.3. From
the original data, three Type-II progressive censored schemes are generated with number of stages
m = 20 from a total of n = 30 observations and removed items R;, where j =1,2,..,m.
These different schemes can be described as follows:
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Schemel: Ry =n—m and R, =R; =--=R,, =0.
SchemeII: Ry =R, =R;=+--=R,;,_1 =0 and R,, =n—m.
Scheme III: Ry =R, =R3;=++=R,;, =0 and n=m.
Note that Type-II censoring (Scheme II) and complete sampling (Scheme III) can be considered as
a special case of Type-II progressive censoring when n =m and Ry =R, =R; =--=R,;, =0.

We calculate the MLEs of the parameters @ and [ and their associated 95% asymptotic Cls.
We also compute BEs utilizing the MH algorithm under the non-informative prior. Note that the non-
informative prior is assumed where y; =v; =0, i = 1,2,3. It is indicated that, while generating
samples from the posterior distribution utilizing the MH algorithm, initial values of (a,f) are
considered as (a(o),ﬁ(o)) = (&, ), where @ and f are the MLEs of the parameters a and 8
respectively. Thus, we considered the variance—covariance matrix Sg of (ln(c’f), ln(ﬁ)), that can be
easily obtained utilizing the delta method. Finally, we discarded 2000 burn-in samples among the total
10000 samples created from the posterior density, and subsequently obtained Bayes estimates, and
HPD interval estimates utilizing the technique of [34].

All the estimated values of MLEs and associated standard errors (St.Er) are presented in Table 10.
Also, Bayesian estimation using Lindley’s approximations and MCMC by applying MH algorithm and
its St.Er are computed. Approximate Cls for MLEs and HPD for Bayesian estimates using MCMC are
presented in Table 11 under SE loss function.

Table 10. ML and Bayesian estimates with associated St.Er (in practices) based on
different Type-II progressive censoring schemes scheme for a given real data set.

Scheme ® ML Bayesian
Lindley’s MCMC
BSL BLL1 BLL2 BSM BLM1 BLM?2
Schemel a; 1.9162 1.9288 1.9365 1.9540 1.9137 1.9103 1.9032
(0.6442) (0.0924)
a, 3.0628 3.0634 3.0684 3.0706 3.0623 3.0583 3.0498
(0.6638) (0.0995)
B 4.7644 4.7605 4.7652 4.7646 4.7602 4.7562 4.7478
(2.2619) (0.1007)
Scheme Il  a; 24812 2.4862 2.4904 2.998 24771 2.4737 2.4666
(0.6410) (0.0924)
a, 2.5023 2.5041 2.5066 2.5103 2.5015 2.4979 2.4901
(0.4429) (0.0934)
g 7.8787 7.8778 7.8788 7.8787 7.8810 7.8770 7.8685
(3.7634) (0.9982)
Scheme III a; 2.9300 2.9331 2.9367 2.9443 2.9259 2.9224 2.9149
(0.6427) (0.0851)
a, 3.3399 3.3405 3.3420 3.3442 3.3358 3.3319 3.3237
(0.5232) (0.0724)
B 7.7583 7.7577 7.7582 7.7582 7.7558 7.7518 7.7433
(3.3666) (0.0905)
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Table 11. Approximate and HPD Cls and their lengths based on different Type-II
progressive censoring schemes for a given real data set.

Scheme 0 Cls Lengths of Cls
Appr. CI HPD CI Appr. CI HPD CI
Scheme | a, (0.6536, 3.1788) (1.7411, 2.1002) 2.5252 0.3591
a, (1.7617, 4.3638) (2.8737, 3.2645) 2.6021 0.3908
B (0.3312,9.1975) (4.5711,4.9614) 8.8663 0.3903
Scheme 11 aq (1.2249, 3.7376) (2.2932, 2.6537) 2.5127 0.3605
a, (1.6341, 3.3706) (2.3091, 2.6851) 1.7365 0.3760
B (0.5025, 15.2549) (7.6931, 8.0797) 14.7524 0.3866
Scheme I11 aq (1.6702, 4.1897) (2.7439, 3.1108) 2.5195 0.3669
a, (2.3144, 4.3655) (3.1494, 3.5284) 2.0510 0.3790
B (1.15987, 14.3568) (7.5501, 7.9403) 13.1969 0.3902

The convergence of MCMC estimation in case of scheme II of Type-II progressive censoring for
the given real data set. As shown in Figure8, the Bayesian estimates using MCMC are convergence
through three sub-graphs: scatter plot, histogram, and cumulative mean of the 10,000 estimates.
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Figure 8. Convergence of MCMC estimates for a;,a, and [ using MH algorithm for
given real data set under Type-II progressive and SSPALT model.
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8. Conclusions

In this study, the statistical inferences procedure for the unknown parameters of the IKum
distribution and the acceleration factor, when the data are Type-II progressive censored from SSPALT
were considered. We studied this problem under CEM. Since it is impossible to compute the MLEs in
closed form, the Newton-Raphson approach is suggested as an alternative. We develop the approximate
confidence interval length of the parameters and acceleration factor based on the asymptotic
distribution of MLEs. We investigated the Bayes estimation approach in order to obtain an alternate
estimate procedure. Bayesian estimates are achieved by Lindley’s approximation the MCMC method,
based on SE and LINEX loss functions. Under the premise that the priors of a4,a, and [ are
Gamma density, the Metropolis-Hastings sampling technique is shown to produce Bayesian estimates.
In addition, HPD CIs have been acquired. The Monte Carlo simulation study was utilized to get
numerical point and interval estimates of the parameters.

From the results in Tables 4-9, we observe the following:

1) when the sample size increases, the MSEs of MLEs and BEs of the considered parameters
decrease.

2) The BEs of the considered parameters obtained from both Lindley’s approximation and
MCMC method give more accurate results through the MSEs than MLEs.

3) The BEsof [ obtained from Lindley’s approximation give more accurate results through the
MSE:s than the BEs obtained from MCMC method.

4) The BEs of the considered parameters based on LINEX loss function (¢ = 2) are smaller
than that based on SE loss function.

5) In most cases, the HPD ClIs give more accurate results than the approximate Cls since the
lengths of the former are less than the lengths of latter, for different sample sizes, observed failures,
and censoring schemes.

A real-life numerical example of March precipitation (in inches) in Minneapolis failure times is
used to demonstrate the usefulness of the recommended estimation technique under SSPALT based on
Type-II progressive censored. As per the K-S distance and the p-value, the data set presents a good
match for the IKum distribution. To confirm that the distribution matches the data.
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