
http://www.aimspress.com/journal/mbe

MBE, 20(12): 21467–21498.
DOI: 10.3934/mbe.2023950
Received: 19 September 2023
Revised: 19 November 2023
Accepted: 22 November 2023
Published: 05 December 2023

Research article

An improved memetic algorithm to solve the energy-efficient distributed
flexible job shop scheduling problem with transportation and start-stop
constraints

Yifan Gu, Hua Xu*, Jinfeng Yang and Rui Li

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China

* Correspondence: Email: xuhua@jiangnan.edu.cn.

Abstract: In the current global cooperative production environment, modern industries are
confronted with intricate production plans, demanding the adoption of contemporary production
scheduling strategies. Within this context, distributed manufacturing has emerged as a prominent trend.
Manufacturing enterprises, especially those engaged in activities like automotive mold production and
welding, are facing a significant challenge in managing a significant amount of small-scale tasks
characterized by short processing times. In this situation, it becomes imperative to consider the
transportation time of jobs between machines. This paper simultaneously considers the transportation
time of jobs between machines and the start-stop operation of the machines, which is the first time
to our knowledge. An improved memetic algorithm (IMA) is proposed to solve the multi-objective
distributed flexible job shop scheduling problem (MODFJSP) with the goal of minimizing maximum
completion time and energy consumption. Then, a new multi-start simulated annealing algorithm
is proposed and integrated into the IMA to improve the exploration ability and diversity of the
algorithm. Furthermore, a new multiple-initialization rule is designed to enhance the quality of
the initial population. Additionally, four improved variable neighborhood search strategies and two
energy-saving strategies are designed to enhance the search ability and reduce energy consumption.
To verify the effectiveness of the IMA, we conducted extensive testing and comprehensive evaluation
on 20 instances. The results indicate that, when faced with the MODFJSP, the IMA can achieve better
solutions in almost all instances, which is of great significance for the improvement of production
scheduling in intelligent manufacturing.
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strategy; start-stop constraint

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023950


21468

1. Introduction

With the development of economic globalization, scheduling problems are pervasive in a growing
number of application domains, which is a critical decision-making issue in the manufacturing
system. The classical job shop scheduling problem (JSP) is widely studied because it can model
various situations in the scheduling process [1, 2]. However, as the flexibility of processing in the
shop continues to increase, each machine is becoming increasingly able to process multiple
operations. Hence, this problem has been named the flexible JSP (FJSP) [3].

In the context of advancing global economic integration, contemporary factory operational
scheduling introduces new imperatives for enhanced flexibility. The symbol of this transformation is
the gradual shift from traditional single-factory manufacturing to distributed multi-factory
manufacturing [4]. Flexible distributed factory scheduling will allocate jobs reasonably for factories
and machines to reduce production costs. It is worth noting that the complexity of distributed
scheduling not only lies in job sequencing and machine selection, but it also involves the factory
allocation of jobs [5], which makes solving multi-objective distributed FJSPs (MODFJSP) a
challenging task [6].

With the acceleration of industrialization processes, the increasing energy demand in industrial
production has become an important issue of global concern in contemporary times [7]. Driven by the
imperatives of environmental consciousness and the looming specter of energy scarcity, an expanding
array of enterprises are now incorporating energy consumption considerations into their production
strategies. It is important to emphasize that factory operational scheduling is emerging to play a pivotal
role in this evolving landscape [8]. Therefore, for manufacturing enterprises, excellent scheduling also
needs to balance energy consumption, taking into account energy conservation and sustainability.

Flexible systems are widely used in various industries, such as aerospace, cutting tools and molds,
automotive, medical, optical- and engineering machinery. However, today’s constantly changing
customer demands and increasingly fierce market competition conflict with inefficient traditional
machining methods. This situation is becoming increasingly severe in small- and medium-sized
factories. Therefore, the manufacturing industry has gradually formed a market-oriented demand for
“multi-variety, small batch” production, characterized by short processing times for many operations.
In this production situation, the time spent transporting operations between machines becomes very
important, as it has a significant impact on the entire production cycle and process, and this is
precisely what many other studies have overlooked.

This paper presents an improved memetic algorithm (IMA), designed to address the MODFJSP.
We propose a multi-start simulated annealing algorithm (MSSA) that selects the starting point by
judging the similarity of chromosomes, and, for each selected point, we implement three perturbation
strategies. Based on different acceptance probabilities, we choose whether to accept the new solution.
This strategy effectively enhances the exploration ability of the IMA, enriches the diversity of the
population and avoids the problem of the algorithm falling into local optima too early. Moreover, the
proposed hybrid initialization rule, denoted as MIR, along with four efficient neighborhood structures,
significantly enriches both the quality and diversity of the population. We conducted extensive testing
and a comprehensive evaluation on Mk01-10 and DP01-10 instances, demonstrating the superior
efficacy of the IMA across the majority of scenarios.

This paper builds upon the foundations of the multi-objective energy-efficient DFJSP (MOEDFJSP),
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integrating the transport duration between different machines within the same factory, the time needed
for machine startup and shutdown and energy consumption, all simultaneously. This holistic approach
aims to align more closely with practical demands. The contributions of this paper encompass the
following facets:

1) A multi-objective distributed flexible job shop scheduling model with transportation time and
start-stop constraints is established.

2) A new MSSA is proposed and integrated into the IMA to improve the exploration ability and
diversity of the algorithm.

3) Four new hybrid initialization rules have been designed to improve the quality and diversity of
the initial population.

4) Four efficient neighborhood structures have been designed to enhance the exploration ability for
optimal solutions.

5) Two effective energy-saving strategies have been designed to significantly reduce
energy consumption.

6) Comparative experiments of different combinations were performed on 20 instances to describe
the improved performance of the IMA.

The remaining sections of this paper are organized as follows. Section 2 reviews the relevant
research work on the MODFJSP in recent years. In Section 3, fundamental concepts underpinning the
FJSP are elucidated. Section 4 delineates the developed MODFJSP model. Section 5 describes the
overall framework and details of the IMA. Experimental results and analysis are given in Section 6.
Finally, the conclusions and future research work are given in Section 7.

2. Literature review

The production scheduling problem stands as a pivotal concern within manufacturing systems to
facilitate effective production planning and the enhancement of overall production efficiency. Among
the array of scheduling challenges, the JSP looms large as one of the most prevalent and practical [9].
As factory machinery’s demand for versatility surges, the FJSP emerges, characterized by each
operation’s potential to be accommodated by one or multiple machines. This extends the classical JSP
into a realm more attuned to the discrete manufacturing environment [10].

In the domain of the FJSP, there are two key sub-problems: machine selection and process
sequencing. Researchers have harnessed the power of meta-heuristic algorithms like the genetic
algorithm (GA) [11, 12], simulated annealing (SA) [13], particle swarm optimization (PSO) [14] and
ant colony optimization [15] to grapple with these intricacies. Additionally, other meta-heuristic
algorithms, such as the artificial immune system-based algorithm [16], the artificial bee colony
algorithm [17] and imperialist competitive algorithms [18], are also used. One particularly notable
advancement of the GA is the memetic algorithm (MA), pioneered by Moscato [19] to mirror the
evolution of human civilization. This innovation ingeniously fuses global and local search strategies.
Across scholarly efforts, the MA has gained prominence in addressing FJSP-related conundrums. For
instance, Phu-ang and Thammano [20] introduced an MA founded on bee marriages to sidestep local
optima. Zhang et al. [21] leveraged an MA to resolve multi-objective FJSPs, incorporating worker
flexibility. Li et al. [22] proposed a knowledge-driven MA for distributed green flexible scheduling.
Lu et al. [23] proposed a knowledge-based multi-objective memetic optimization algorithm to solve
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the sustainable distributed permutation flow-shop scheduling problem with non-identical factories.
In the swiftly evolving landscape of the manufacturing industry, the bedrock of traditional

centralized manufacturing confronts substantial challenges [24]. In response, the ascent of distributed
manufacturing is reshaping conventions, ushering in swifter and leaner production paradigms.
Notably, in practical scenarios, prominent manufacturers of large-scale engineering equipment
frequently adopt multi-plant parallel production strategies, a configuration that can be abstracted into
the framework of a distributed FJSP (DFJSP) [25]. In the last decade, the MODFJSP has garnered
increasing amounts of attention among researchers [26]. Among notable contributions, Chang and
Liu [27] introduced a hybrid GA tailored for the DFJSP, incorporating an innovative coding
mechanism alongside effective crossover and mutation operators. Zhu et al. [28] proposed a hybrid
genetic tabu search algorithm to solve a dynamic DFJSP with operation inspection.
Marzouki et al. [29] proposed an innovative approach rooted in chemical reaction meta-heuristics to
address DFJSPs, specifically focusing on the minimization of completion time.

Simultaneously, the discourse on global warming propels sustainable and energy-efficient
manufacturing into the forefront [30]; within this context, the pursuit of energy-saving scheduling for
DFJSPs garners significant attention. They presented a hyper-heuristic algorithm with Q-learning to
address the energy efficiency of the distributed blocking flow-shop scheduling problem [31].
Lu et al. [32] designed a hybrid multi-objective optimization algorithm to solve the problem of the
energy-efficient scheduling for a distributed flow shop with heterogeneous factories. Within the realm
of MOEDFJSP research, a distinctive trend has emerged, involving the utilization of incentives
derived from time-varying pricing schemes for electricity as a means to optimize energy costs [33].
This line of research also encompasses strategic decisions such as machine shutdown during idle
periods [34, 35] and machine transition into standby mode [36]. Several of these studies extend their
focus to include the interplay between machine switch-on times, power requirements and the
machine’s previous standby or switched-off state [37].

3. Multi-objective optimization model of the DFJSP

3.1. Problem description

The FJSP is characterized by n jobs being processed across m machines, with varying operation
quantities per job. Each operation is potentially executed on any machine within a group of optional
machines [38, 39]. In cases in which neighboring operations of the same job unfold on distinct
machines, a transfer process arises, introducing additional transportation time [40].

It must be acknowledged that each machine calculates the time and energy consumption required
to start before processing the initial job, and it subsequently shuts down after completing all of the
jobs. The optimization objectives include minimizing the maximum completion time and energy
consumption, considering the transportation time of jobs between machines and accounting for the
state of machine startup and shutdown. The subsequent discussion in this paper is based on the
following assumptions:

1) One job can only be processed on one machine simultaneously, precluding any interruption
once commenced.

2) Multiple processes of a job can be processed by one machine.
3) Job preemption is not allowed, and each machine is only allowed to process one job at any time.
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4) Upon job completion, swift transport to the subsequent machine takes place, accompanied by the
corresponding transportation time.

5) The transportation time is only related to the machine number, and all transportation times
are predefined.

6) The processing time of the job depends on the machine and is predefined.
7) The time and energy consumption required for machine startup and shutdown are predefined.

3.2. Notations

To facilitate clarity in subsequent discussions, we introduce symbol definitions in Table 1.

Table 1. Notations and indices for various parameters of the IMA.
Type Symbol Instruction
Indices

i, u Index of jobs, i = 1, 2, 3, ..., I
j, v Index of operations, j = 1, 2, 3, ..., J
m,m′ Index of machines, m = 1, 2, 3, ..., M
f Index of factories, f = 1, 2, 3, ..., F

Parameters
I Total number of jobs
J Total number of operations
M Total number of machines
M f Total number of machines in factory f
F Total number of factories
O j Total number of operations for job j
C j Completion time of job j
Oi, j(Ou,v) jth (vth) process of job i (u)
S i, j,m, f Start time of jth process of job i works on machine m in factory f
Ci, j,m, f Completion time of jth process of job i works on machine m in factory f
Cmax Makespan
TC f Total makespan of factory f

Variables
Xi, j,m, f Binary variable that is equal to 1 if machine m of factory f is selected

for Oi, j, and 0 otherwise
Yi, j,u,v, f Binary variable that is equal to 1 if Ou,v is not processed directly after

Oi, j on machine m in factory f , and 0 otherwise
Zm, f Binary variable that is equal to 1 if machine m in factory f needs to

start up and 0 otherwise
Pi, j,m, f Processing time of Oi, j on machine m of factory f
PEi, j,m, f Unit energy consumption of machine m of factory f to processes Oi, j

IEi, j,m, f Unit energy consumption of idle waiting Oi, j for m of factory f
T Ei, j Unit energy consumption of transportation Oi, j

Ti, j, f Time required for Oi, j to transfer to Oi, j+1 in factory f
OEm, f Unit energy consumption for the machine m to turn on or off in factory f
TS m, f Time required for machine m to start up in factory f
TCm, f Time required for machine m to shut down in factory f
MS m, f Start time of machine m in factory f
MEm, f Shutdown time of machine m in factory f
AE f Unit auxiliary energy consumption in factory f
PE Energy consumption of machine processing
IE Energy consumption of machine idletime
T E Energy consumption of operation transportation
OOE Energy consumption of on/off machine
AE Energy consumption of auxiliary purposes
ET Energy consumption
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3.3. Mathematical model

Regarding the mathematical model of the DFJSP, we have developed a mixed-integer linear
programming (MILP) model to minimize both the makespan and energy consumption. The MILP
model encompasses the objective function and various constraints. In addition, we introduced energy
consumption modules for the production workshop. These modules account for different aspects of
energy consumption, including the energy consumption module in the processing state (PE), the
energy consumption module in the idle state (IE), the energy consumption module in the
transportation state (T E), the energy consumption module in the on/off machine state (OOE) and the
auxiliary energy consumption (AE) module for the entire production workshop. It is worth noting
that, when two consecutive operations of a job are executed on different machines, we must also
consider the energy consumption incurred during the movement of the job between these machines.

1) Energy consumption module for the PE. PE is the energy consumption generated by all machine
processing jobs, and it is related to the time that each machine takes to process the job and the energy
consumption required for processing per unit time. We take Figure 1 as an example, and, referring to
Tables 2–4, we can calculate that PE = 11 × 4 = 44 in this example.

PE =
I∑

i=1

O j∑
j=1

F∑
f=1

M f∑
m=1

Pi, j,m, f PEi, j,m, f Xi, j,m, f (3.1)

 !"

 !!

 #"

 #!

 ##

 ""

 "!

 "# transfer time

On/Off Time

J2

J1

J3

J3 J1

f1=10 

f2=73.5

Figure 1. A feasible scheduling method.

Table 2. Processing times of different processes.

O11 O12 O13 O21 O22 O31 O32 O33

M1 2 – – 2 3 – 2 –
M2 3 1 2 2 – 1 – 1
M3 – 3 1 1 – 2 1 2
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Table 3. Transportation time between machines.

M1 M2 M3
M1 0 2 1
M2 2 0 1
M3 1 1 0

Table 4. Explanation of various energy consumption modules (unit time).

PE IE T E OOE AE
4 2 1 0.5 0.5

2) Energy consumption module for the IE. IE represents the energy consumption while waiting to
process the next operation when a machine is in the idle running state. Idle time is the duration between
two consecutive operations on the same machine, and it depends on machine selection, the operation
sequence and the associated transportation time. We take Figure 1 as an example, and, referring to
Tables 2–4, we can calculate that IE = 7 × 2 = 14 in this example.

IE =
I∑

i=1

O j∑
j=2

F∑
f=1

M f∑
m=1

(S i, j,m, f −Ci, j−1,m, f )IEi, j,m, f (3.2)

3) Energy consumption module for the T E. T E is the energy consumption of the transportation
resources for transporting a job whenever it needs to move from one machine tool to another.
Transportation time depends on the distance between different machines. We take Figure 1 as an
example, and, referring to Tables 2–4, we can calculate that T E = 6 × 1 = 6 in this example.

T E =
I∑

i(u)=1

O j∑
j(v)=2

F∑
f=1

T Ei, jTi, j−1, f Yi, j,u,v, f (3.3)

4) Energy consumption module for the OOE. OOE is the energy consumption when the
machines are turned on and off, and it is related to the number of machines being activated and the
time required for the activation and deactivation process. We take Figure 1 as an example, and,
referring to Tables 2–4, we can calculate that OOE = 9 × 0.5 = 4.5 in this example.

OOE =
F∑

f=1

M f∑
m=1

(TS m, f + TCm, f )OEm, f Zm, f (3.4)

5) AE module for the production workshop. AE is the auxiliary energy required to support the
production environment, such as lighting, heating and air conditioning. We take Figure 1 as an
example, and, referring to Tables 2–4, we can calculate that AE = 10 × 0.5 = 5 in this example.

AE =
F∑

f=1

AE f TC f (3.5)
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In this paper, the two objectives of the scheduling optimization are to minimize two critical factors:
the maximum completion time for all operations (commonly known as ‘makespan’) and the total
energy consumption. Therefore, the MILP model of the DFJSP, which requires the minimization of
the makespan and energy consumption, is formulated as follows.

1) Minimization of Cmax( f1):

f1 = max{C j| j = 1, 2, ..., J} (3.6)

2) Minimization of ET ( f2):

f2 =PE + IE + T E + OOE + AE

=

I∑
i=1

O j∑
j=1

F∑
f=1

M f∑
m=1

Pi, j,m, f PEi, j,m, f Xi, j,m, f

+

I∑
i=1

O j∑
j=2

F∑
f=1

M f∑
m=1

(S i, j,m, f −Ci, j−1,m, f )IEi, j,m, f

+

I∑
i(u)=1

O j∑
j(v)=2

F∑
f=1

T Ei, jTi, j−1, f Yi, j,u,v, f

+

F∑
f=1

M f∑
m=1

(TS m, f + TCm, f )OEm, f Zm, f

+

F∑
f=1

AE f TC f

(3.7)

subject to the following:

F∑
f=1

M f = M , f = 1, 2, ...F (3.8)

0 ≤ Ti, j, f ≤ 4 , i = 1, 2, ...I; j = 1, ...O j; f = 1, 2, ...F (3.9)

F∑
f=1

M f∑
m=1

Xi, j,m, f = 1 , i = 1, 2, ...I; j = 1, 2, ...O j; m = 1, 2, ...M f ; f = 1, 2, ...F (3.10)

I∑
i=1

O j∑
j=1

F∑
f=1

Yi, j,u,v, f ≤ J − I , i = 1, 2, ...I; j = 1, ...O j (3.11)
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F∑
f=1

M f∑
m=1

Zm, f ≤ M , m = 1, 2, ...M f ; f = 1, 2, ...F (3.12)

I∑
i=1

O j∑
j=1

Oi, j = J , i = 1, 2, ...I; j = 1, 2, ...O j (3.13)

MEm, f + TCm, f ≤ Cmax , m = 1, 2, ...M f ; f = 1, 2, ...F (3.14)

Ci, j,m, f −Ci, j−1,m, f ≥ Pi, j,m, f ∗ Xi, j,m, f + Ti, j, f , i = 1, 2, ...I; j = 2, ...O j (3.15)

S i, j,m, f ≥ min(MS m, f ) + TS m, f ,

i = 1, 2, ...I; j = 1, ...O j; m = 1, 2, ...M f ; f = 1, 2, ...F
(3.16)

Ci, j,m, f ≤ max(MEm, f ) + TCm, f ,

i = 1, 2, ...I; j = 1, ...O j; m = 1, 2, ...M f ; f = 1, 2, ...F
(3.17)

S i, j,m, f ≥ Ci, j−1,m, f + Ti, j, f ,

i = 1, 2, ...I; j = 2, ...O j; m = 1, 2, ...M f ; f = 1, 2, ...F
(3.18)

0<S i, j,m, f ≤ Cmax − PEi, j,m, f − MEm, f − TCm, f ,

i = 1, 2, ...I; j = 2, ...O j; m = 1, 2, ...M f ; f = 1, 2, ...F
(3.19)

MS m, f + TS m, f + PEi, j,m, f<Ci, j,m, f ≤ Cmax − MEm, f − TCm, f ,

i = 1, 2, ...I; j = 2, ...O j; m = 1, 2, ...M f ; f = 1, 2, ...F
(3.20)

3.4. Example problem

For ease of description, we provide a concise example of an FJSP involving three jobs and three
machines. The processing times for distinct operations on each machine, corresponding to the
processing of different jobs, are delineated in Table 2. Note that ‘–’ indicates that this process cannot
be executed on the corresponding machine. For example, the second process of Job 1, denoted as O1,2,
cannot be executed on the M1 machine; instead, it has a processing time of 1 on the M2 machine
and 3 on the M3 machine. Additionally, Table 3 displays the transportation time between different
machines. For example, the transportation time from M1 to M2 for a task is 2, and the transportation
time from M1 to M3 requires a value of 1. Table 4 outlines the unit energy consumption for each
energy-consuming element. Subsequently, Figure 1 illustrates a viable scheduling approach based on
this context. With this scheduling, the completion time is 10 and the energy consumption is 73.5.
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4. The proposed IMA for the MODFJSP

In the realm of multi-objective optimization problems, the NSGA-II algorithm possesses robust
global search capabilities, but has limitations in terms of local search efficiency [41]. This aspect may
be enhanced through the utilization of MAs. Furthermore, the domain of multi-objective flexible job
shop scheduling, which includes considerations for job transport between machines and machine
switching operations, features a notably intricate solution space compared to traditional
single-objective flexible job shop scheduling. Based on these considerations, this paper presents an
IMA to solve the MODFJSP. The algorithm flowchart is shown in Figure 2, and its core process is
as follows.

Step 1: Formulate a population, Pt, with size Ps by using four distinct initialization strategies.

Figure 2. The main flowchart of the IMA.

Step 2: Execute the energy-saving strategy (ESS) on Pt, subsequently evaluating fitness.
Step 3: Employ tournament selection to choose individuals from Pt to populate the mating pool Qt.
Step 4: Traverse Qt, probabilistically selecting individuals and members of Pt for crossover and

mutation (with probabilities of Pc and Pm) , and integrating them into the sub-population Ct.
Step 5: Combine Qt and Ct to form Ht, calculate the similarity and apply an MSSA to individuals

exceeding the threshold to generate Ht′.
Step 6: Implement the ESS and compute the fitness for the new individuals within Ht′ by using

Eqs (3.6) and (3.7), followed by a fast non-dominated sorting operation.
Step 7: Within Ht′, choose individuals into the elite archive O. Concurrently, apply four distinct
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forms of variable neighborhood search and update the elite archive O.
Step 8: Preserve the non-dominated solutions within O. If the stipulated termination condition is

not met, proceed to Step 2 to continue the iterative process.

4.1. Chromosome coding

In this paper, a three-layer coding method containing operation sequencing (OS) , factory
assignment (FA) and machine assignment vectors is designed. Figure 3 gives an example of this
coding method. In this figure, the first row of 2, 4, 4, 3, 2, 1, 1, 1, 2, 2, 3, 4 represents the OS vector.
Here, 1, 2, 3 and 4 represent jobs 1, 2, 3 and 4, respectively. The first 2 represents the first operation
of job 2, and the second 2 represents the second operation of job 2. The operation, factory and
machine sequence in this example are as follows: (O21, F1, M2), (O41, F2, M5), (O42, F2, M5),
(O31, F1, M1), (O22, F2, M5), (O11, F1, M1), (O12, F2, M4), (O13, F2, M4), (O23, F2, M4), (O24,
F2, M4), (O32, F1, M2) and (O43, F1, M3). Here, (O21, F1, M2) means that operation 1 of job 2
(O21) is processed by machine 2 of factory 1; similarly, (O41, F2, M5) means that operation 1 of job
4 (O41) is processed by machine 5 of factory 2, etc.

2 4 4 3 2 1 1 1 2 2 3 4

1 2 2 1 2 2 2 1 1 2 2 1

1 4 4 2 5 4 4 1 2 5 5 3

 !"  #"  #!  $"  !!  ""  "!  "$  !$  !#  $!  #$

 ""  "!  "$  !"  !!  !$  !#  $"  $!  #"  #!  #$

Figure 3. An example of encoding method; MA: machine assignment.

4.2. Initialization

Initialization plays a crucial role in algorithmic optimization. Commonly employed methods
include first-in-first-out, shortest processing time first (SPT) and longest processing time first (LPT).
However, most of these initialization methods yield single results, and a single initialization rule may
not adapt well to various instances, resulting in a lack of diversity in the initial population.

To tackle this problem, we introduce an innovative initialization approach called the
multi-initialization rule (MIR). The MIR employs four distinct initialization rules, each emphasizing
unique aspects. This strategy aims to generate high-quality initial populations while maintaining
essential diversity within the population’s composition.

The first rule within the MIR is improved SPT (ISPT). Its implementation process is as follows.
Step 1: Assuming that the order of each process is the same (for example, it is the first process), the

process with the shortest processing time has the highest priority.
Step 2: When multiple processes have the same processing time, their order will be

randomly disrupted.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21467–21498.



21478

For convenience of explanation, we will use the data in Table 2 as an example. Figure 4(a) shows
a set of chromosomes obtained via ISPT. At this point, if ISPT regenerates into a set of identical
chromosomes, it will randomly disrupt the sequence of processes with the same processing time. As
shown in Figure 4(b), O2,1 and O3,1, O1,2 and O3,2, O3,1 and O3,3 will randomly disrupt the order. This
avoids the disadvantage of only generating one chromosome per initialization rule and enhances the
diversity of the population.

The second rule within the MIR is improved LPT (ILPT). Its implementation process is as follows.
Step 1: Assuming that the order of each process is the same (for example, it is the first process), the

process with the longest processing time has the highest priority.
Step 2: When multiple processes have the same processing time, their order will be

randomly disrupted.
Figure 5 also provides a visual example.
The third rule within the MIR is the shortest transportation time first (MTT). Under the constraint

of 3.3, the process with the shortest transportation time takes priority.
The fourth rule, known as random initialization, involves generating each chromosome by using a

random method.
The initialization process assigns the following percentages to the aforementioned rules: 0.3, 0.3,

0.3 and 0.1.

2 3 1 1 3 2 1 3

 !"  #"  ""  "!  #!  !!  "#  ##

1 2 3 3 1 2 3 2

 ""  "!  "#  !"  !!  !#  !$
 #"

(a) Step 1 of ISPT

3 2 1 3 1 2 1 3

 !"  #"  ""  !#  "#  ##  "!  !!

1 2 3 3 1 2 3 2

 ""  "#  "!  #"  ##  #!  #$
 !"

(b) Step 2 of ISPT

Figure 4. An initialization example of ISPT.

1 2 3 2 1 3 1 3

 !!  "!  #!  ""  !"  #"  !#  ##

1 2 3 3 1 2 3 2

 !!  !"  !#  "!  ""  "#  "$
 #!

(a) Step 1 of ILPT

1 3 2 3 1 2 3 1

 !!  "!  #!  "#  !#  ##  ""  !"

1 2 3 3 1 2 3 2

 !!  !#  !"  #!  ##  #"  #$
 "!

(b) Step 2 of ILPT.

Figure 5. An initialization example of ILPT.
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4.3. ESS

Energy efficiency has become a significant concern for manufacturing enterprises. Enhancing
energy efficiency not only reduces energy consumption, it also lowers production costs. In the field of
MODFJSPs, the pursuit of better energy efficiency relies on three key strategies: the modulation of
machine working speeds, task scheduling informed by time-dependent energy pricing and the
strategic engagement of energy-efficient machine modes, such as machine shutdown during
idle periods.

It is worth noting that there has been a lack of prior research in the area of energy-saving
scheduling that considers both transportation times and the on/off states of machines. This absence of
an effective ESS in this important and widespread domain emphasizes the need for the development
of more effective energy-saving approaches. In response, we have created the ESS, which consists of
two distinct yet complementary energy-saving tactics:

The first optimization method (ESS1) is to maximize the delay in machine startup and job start time
without affecting the completion time. This goal first involves determining the start and end times of
the last process on each machine, and then conducting reverse calculations to find the latest feasible
start time for the previous process. It is worth noting that, if a machine is not assigned a task, it will
not start. We take Figure 1 as an example, where Figure 6 is the scheduling scheme generated after
ESS1. It can be seen that, with the same scheduling order, the energy consumption decreased from 73.5
to 71.5 after using ESS1.

 !"

 !!

 #"

 #!

 ##

 ""

 "!

 "# transfer time

On/Off Time

J2

J1

J3

J3 J1

f1=10

f2=71.5

Figure 6. An example of ESS1.

The second optimization method is to temporarily shut down the machine when the idle time
between two processes on the same machine is too long, and then restart it before the next process
begins. This clever pause saves energy by reducing the accumulated waiting time of the machine. It
should be noted that the switch operation of the machine cannot affect the start time of the next
process. In addition, considering the potential impact of frequent machine switches on the lifespan of
the machine, this strategy allows for, at most, one occurrence throughout the entire scheduling
process. We take Figure 1 as an example, where Figure 7 is the scheduling scheme generated after
ESS2. It can be seen that, with the same scheduling order, the energy consumption decreased
from 73.5 to 69 after using ESS2.
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Figure 7. An example of ESS2.

4.4. Crossover and mutation operator

4.4.1. Crossover operator

The purpose of crossover is to exchange information between parents and retain good information
in the parental generation to generate new individuals. For two chromosomes, a direct “crossover” of
information from factories, jobs and machines would produce an infeasible solution, because not all
factories, jobs and machines can handle all operations. Here, we use the classic POX crossover:

Step 1: First, randomly take the fragment of the gene that needs to be crossed on the
chromosome,and then the parent P1; the fragment taken is copied to C1; similarly, P2 is also the
same operation.

Step 2: In P1, take out the job containing J2 and copy the remaining job to C2 in the original order;
in P2, remove the job containing J1 and copy the remaining job to C1 in the original order. The specific
process is shown in Figure 8.

3 2 1 4 2 1 3 4

1 2 4 2 1 3 3 4

2 4 2 4

3 1 1 3

(a) Step1 of POX crossover

3 2 1 4 2 1 3 4

1 2 4 2 1 3 3 4

3 2 4 2 4

3 1 1 3

3 1 1 3

2 4 2 4

(b) Step2 of POX crossover

Figure 8. An example of POX crossover.

4.4.2. Mutation operator

In this work, we use commutative mutation operators to expand the solution space and maintain
good solutions. The main process of exchanging mutation operators is described as follows (P1 and
O1 are used to represent parents and children, respectively).

Step 1: Randomly select two different positions of chromosomes in P1 (if they are the same, then
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randomly select again until they are different).
Step 2: Swap the elements at the selected position to generate O1.

4.5. The proposed MSSA

Combining the MA and SA is a relatively new method, especially when the proposed MSSA is
used after the population merging process. This method involves selecting individuals with excessive
similarity for the MSSA to improve individuals from the MA.

Traditional MAs usually choose to delete duplicate individuals after the operation of population
merging as a way to avoid the algorithm from falling into local optimum prematurely, but this operation
often has the following problems. First, most of the results generated by the initialization rules in other
studies are unique, and even if multiple initialization rules are combined, there are very many duplicate
individuals in its initial population, which leads to a lack of diversity, and it is very easy to fall into
local optima even if duplicate individuals are deleted. Second, some studies on repetitive individual
judgments only consider their fitness values, which is not perfect. It is likely to delete individuals with
the same fitness value but different OS, FA and machine assignment, leading to a decrease in diversity
and a tendency to fall into local optima.

4.5.1. Chromosome similarity

We propose a method for calculating the similarity between two chromosomes, Eq (4.1) below is
used to calculate the similarity between two chromosomes, where J represents the length of a
chromosome, and S j can be calculated by using Eq (4.2).

S =

∑J
j=1 S j

J
(4.1)

S j =

{
1 , genes o f two chromosomes on position j are the same
0 , otherwise

(4.2)

Taking P1 ([3,2,1,4,2,1,3,4]) and P2 ([1,2,4,2,1,3,3,4]) as examples, after POX crossover, C1 and
C2 are [3,2,1,4,2,1,3,4] and [3,2,4,2,1,1,3,4], respectively. At this point, the similarity values for P1
and C1 are the same, while the similarity values for P2 and C2 are 0.75.

4.5.2. Implementation process of MSSA

Then, we propose an MSSA. After population merging, we first select individuals with the same
fitness values (maximum completion time and energy consumption), and then determine whether the
the similarity value S is 1; if so, we use these individuals as the starting point of the MSSA. We use
the following three perturbation strategies for the selected point:

1) Randomly exchange the values of two points on the chromosome, as shown in Figure 9;
2) Move the chromosome to the left by three distances, as shown in Figure 10;
3) Utilize the N5 neighborhood structure to change the processing order of two adjacent critical

processes at the head or tail of the block, as shown in Figure 11.
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3 2 1 4 2 1 3 4

3 2 1 4 2 1 3 41 2

12

Figure 9. Perturbation strategy 1.

3 2 1 4 2 1 3 4

4 2 1 3 4 3 1 2123

Figure 10. Perturbation strategy 2.

first process of  the key block

Process of the 

key block

final process of the key block

Exchange two processes Exchange two processes

Figure 11. Perturbation strategy 3.

We search in three different directions with different focuses at the selected point to enhance
diversity and avoid falling into local optima too early. Figure 12 shows the possible results of the
three perturbation strategies.

f1

f2
Initial individual

Possible outcomes after 

perturbation strategies

Figure 12. Schematic diagram of perturbation strategies.

However, SA is essentially a serial method, and running SA multiple times requires a long
computational time, which does not meet our expectations. Therefore, for each selected individual,
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we execute the above three perturbation strategies once and calculate their respective fitness.
Assuming the original solution is A, we select the best individual from the three new solutions as B. If
the fitness values of both objectives of B ( f1(B), f2(B)) are better than those of A ( f1(A), f2(A)), then
SA accepts B. Otherwise, SA accepts B based on a decreasing probability (p(B)):

△E = [ f1(B) − f1(A)] + [ f2(B) − f2(A)] (4.3)

p(B) = exp△E/T (4.4)

where ∆ is the difference between the fitness values of A and B, T is the reciprocal of the current
number of iterations and exp is the exponential value. The core pseudo code of the MSSA is shown in
Algorithm 1:

Algorithm 1: MSSA
Input: P, OS, MA, FA, fitness

1 for i = 1:P-1 do
2 sim = Calculate similarity(P,Pi);
3 if sim >0.95 then
4 P1 = Perturbation strategy 1(P, OS, MA, FA, fitness);
5 P2 = Perturbation strategy 2(P, OS, MA, FA, fitness);
6 P3 = Perturbation strategy 3(P, OS, MA, FA, fitness);
7 end
8 PN = best(P1,P2,P3);
9 if fitness(PN) >fitness(Pi) then

10 Pi = PN;
11 else
12 if p(P) <exp△E/T then
13 Pi = PN;
14 else
15 delete(PN);
16 end
17 end
18 end

4.6. The proposed IVNS strategy

In this section, we have designed four IVNS strategies, each capable of generating four
neighborhood solutions. The first neighborhood structure, VNS1, randomly exchanges two different
values on a chromosome. A visual representation of this process is illustrated in Figure 13. The
second neighborhood structure, VNS2, involves the random selection of a chromosome value,
followed by its repositioning to the subsequent process. A visual representation of this process is
illustrated in Figure 14. The third neighborhood structure, VNS3, is designated as N6, a proven
effective approach, exemplified in Figure 15. The fourth structure, an N6 variant depicted in

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21467–21498.



21484

Figure 16, where, for the intermediate critical block, the intermediate process, or the head process, is
randomly chosen to be inserted after the tail process.

3 2 1 4 2 1 3 4

3 2 1 4 2 1 3 43

3

2

2

Figure 13. An example of VNS1.

VNS2
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f1=11

f2=76

(a) The original scheduling Gantt chart

 !"

 !!

 #"

 #!
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 ""

 "!

 "#

f1=10

f2=73.5

(b) The Gantt chart after VNS2 strategy.

Figure 14. An example of VNS2.

Taking the data in Table 4 as an example, we can see from Figure 14 that, after VNS2, the
completion time has changed from 11 to 10, and the energy consumption has been reduced from 76
to 73.5.

Taking the data in Table 4 as an example, we can see from Figure 15 that, after VNS3, the
completion time has changed from 12 to 11, and the energy consumption has been reduced from 83.5
to 79.

Taking the data in Table 4 as an example, we can see from Figure 16 that, after VNS4, the
completion time has changed from 11 to 9, and the energy consumption has been reduced from 70
to 65.
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(a) The original scheduling Gantt chart.
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(b) The Gantt chart after VNS3 strategy.

Figure 15. An example of VNS3.
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(a) The original scheduling Gantt chart.
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(b) The Gantt chart after VNS4 strategy.

Figure 16. An example of VNS4.

5. Comprehensive experiments

This section describes the IMA in detail. All codes in this paper were programmed in Matlab2022a,
running on Windows 11, AMD Ryzen 5 5600U, 2.30 GHz, 16 GB RAM.
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5.1. Experimental instances and metrics

In order to measure the performance of the multi-objective optimization algorithm, this study
adopts the hypervolume metric (HV) and the inverse generational distance (IGD) to represent the
comprehensive performance, convergence and diversity of the IMA. The HV metric is used to
measure the volume of the region in the objective space that is surrounded by the set of
non-dominated solutions obtained via the algorithm and the reference points. The larger the value of
HV , the better the comprehensive performance of the algorithm. The IGD metric measures the
average distance from each reference point to the nearest solution; the smaller the IGD value, the
better the algorithm’s overall performance. HV and IGD are the most commonly used and intuitive
metrics to reflect the overall performance of an algorithm [42].

5.2. Parameter settings

To validate the efficacy of the proposed algorithm, we have applied Mk01-10 and DP01-10 as
instances. Additionally, all instances are constructed with two isomorphic plants equipped with
identical sets of machines. The various energy consumption is shown in Table 4, and the
transportation time between machines is shown in Table 5.

Table 5. Transportation times of jobs between different machines.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
M1 0 4 2 4 2 4 3 4 2 2 1 1 3 4 1
M2 4 0 4 3 3 3 2 4 3 1 4 4 4 4 3
M3 2 4 0 4 3 4 1 3 4 4 3 3 2 3 4
M4 4 3 4 0 2 2 4 2 1 3 3 2 3 3 3
M5 2 3 3 2 0 1 3 3 2 1 4 2 2 3 2
M6 4 3 4 2 1 0 2 2 4 4 4 3 2 3 3
M7 3 2 1 4 3 2 0 3 1 4 2 3 2 3 3
M8 4 4 3 2 3 2 3 0 4 4 3 2 4 4 4
M9 2 3 4 1 2 4 1 4 0 1 2 3 4 4 2
M10 2 1 4 3 1 4 4 4 1 0 4 1 3 3 2
M11 1 4 3 3 4 4 2 3 2 4 0 4 4 4 4
M12 1 4 3 2 2 3 3 2 3 1 4 0 4 4 3
M13 3 4 2 3 2 2 2 4 4 3 4 4 0 3 4
M14 4 4 3 3 3 3 3 4 4 3 4 4 3 0 3
M15 1 3 4 3 2 3 3 4 2 2 4 3 4 3 0

Different parameter settings will affect the performance of the algorithm. Three parameters need
adjustment: the population size (ps), the crossover rate (pc) and the mutation rate (pm). A Taguchi
approach to the design of experiment was used to determine the parameters. The parameter level
settings are as follows:
• ps = 50, 100, 200
• pc = 0.6, 0.8, 1
• pm = 0.1, 0.2, 0.3
An orthogonal array was used in the experiment. For fairness, we ran each parameter combination

10 times and recorded the average HV . Table 6 presents the HV calculation results for each
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combination. To quantify the statistical results, the average HV was calculated by using three tests
within the same layer, and Figure 17 shows the factor-level trends of different parameters.

In addition, Figure 17 shows that ps has the highest values of HV at level2 , and pc and pm have
the highest HV at level2 and level1. The final parameter combination was determined as ps = 100, pc
= 0.8 and pm = 0.1.

Table 6. Factor levels of the three key parameters.

Trial
Factor levels HV

ps pc pm
1 1 1 1 0.67715
2 1 2 3 0.66834
3 1 3 2 0.67064
4 2 1 3 0.66768
5 2 2 2 0.70689
6 2 3 1 0.69632
7 3 1 2 0.66431
8 3 2 1 0.70967
9 3 3 3 0.67571
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Figure 17. Parameter levels.

5.3. Performance analysis

Our proposed IMA comprises four primary components: 1) MIR, 2) ESS, 3) MSSA and 4) IVNS.
These components are evaluated across a comprehensive set of 20 instances, including Mk01-10 and
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DP01-10. To ensure impartiality, each algorithm was autonomously executed 20 times on each
instance, spanning a maximum of 200 iterations.

In this paper, HV and IGD are used to verify the performance of the proposed IMA. HV evaluates
the overall performance of the algorithm, while IGD assesses the convergence and uniformity of the
distribution. A higher HV is desirable, whereas a lower IGD is preferred. The relevant equations for
HV and IGD are as follows:

1) HV metric:

HV(P) = volume(
P⋃

i=1

vi) (5.1)

where P is the obtained non-dominated solution set, and vi is the hypercube formed between P and the
reference point.

2) IGD metric:

IGD(P, P∗) =
1
|P∗|

∑
x∈P∗

min
y∈P

dis(x, y) (5.2)

where P is the non-dominated solution set; P∗ is the Pareto front solution set; dis(x, y) is the Euclidean
distance between x and y.

In addition, before calculating IGD and HV , we should use method to convert it and normalize it
afterward, as shown below:

f̃i(x) =
fi(x) − f min

i

f max
i − f min

i

, i = 1, 2 (5.3)

where f max
i and f min

i are the maximum and minimum of the ith objective in all solutions.

5.3.1. Effect of the MIR

First, we compared the performance of the proposed IMA with its variant, IMA1, which excludes
the MIR component. The results of these ablation experiments are presented in Table 7.

Table 7. Comparison of HV and IGD values in ablation experiments.
Instance HV IGD

IMA IMA1 IMA2 IMA3 IMA4 IMA IMA1 IMA2 IMA3 IMA4
Mk01 0.697008 0.686350 0.687158 0.678451 0.513899 0.063059 0.292920 0.269982 0.242755 0.225158
Mk02 0.650904 0.685495 0.652535 0.643115 0.539922 0.064975 0.313251 0.278411 0.234520 0.207354
Mk03 0.672812 0.623755 0.663073 0.643935 0.433202 0.123285 0.481062 0.414504 0.440899 0.474141
Mk04 0.720483 0.775424 0.726553 0.713493 0.491821 0.172815 0.426255 0.368692 0.348434 0.388389
Mk05 0.612882 0.607545 0.590346 0.593566 0.482244 0.067436 0.300838 0.237517 0.229288 0.242625
Mk06 0.775788 0.480569 0.513005 0.503795 0.445338 0.020985 0.439600 0.411603 0.420604 0.473418
Mk07 0.595262 0.588811 0.575125 0.570323 0.526268 0.092555 0.300407 0.238518 0.239293 0.248495
Mk08 0.525119 0.511179 0.469968 0.499948 0.301304 0.198234 0.476992 0.416335 0.426463 0.458929
Mk09 0.547976 0.440694 0.527078 0.525860 0.416216 0.192776 0.614409 0.549823 0.611572 0.617453
Mk10 0.714032 0.490423 0.675172 0.683258 0.567387 0.020126 0.674355 0.534824 0.640007 0.671195
DP01 0.636001 0.612112 0.595021 0.602130 0.232656 0.144596 0.555473 0.510615 0.515116 0.485194
DP02 0.727061 0.703321 0.712612 0.707359 0.517330 0.130037 0.440501 0.396732 0.312478 0.369240
DP03 0.635148 0.610721 0.593201 0.610985 0.444586 0.063712 0.402861 0.407035 0.367904 0.385437
DP04 0.656419 0.673828 0.643144 0.640646 0.385900 0.153222 0.503065 0.476446 0.433544 0.443414
DP05 0.681177 0.660793 0.655967 0.645409 0.493956 0.102756 0.347240 0.354396 0.271796 0.291469
DP06 0.720815 0.685001 0.724594 0.728559 0.555081 0.118611 0.407591 0.360225 0.317026 0.384421
DP07 0.483865 0.570962 0.478514 0.456368 0.494673 0.311614 0.545135 0.475118 0.453076 0.313972
DP08 0.860201 0.803648 0.813537 0.832922 0.846796 0.297039 0.431122 0.384083 0.366257 0.249901
DP09 0.845015 0.798354 0.797557 0.817717 0.822851 0.350830 0.459478 0.400401 0.392729 0.223465
DP10 0.783946 0.778010 0.766020 0.761243 0.773076 0.250989 0.507426 0.492891 0.435765 0.353606
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The findings from Table 7 indicate that the IMA outperforms the MIR-absent version (IMA1) in
terms of the HV metric across 80 percent of the instances. Furthermore, across all examined
instances, the IMA consistently demonstrates superior IGD metrics compared to the MIR-absent
version (IMA1). This substantiates that our devised MIR mechanism enhances the algorithm’s
convergence and diversity.

These results unequivocally affirm the affirmative influence of the proposed MIR as a means to
enhance the algorithm’s performance.

5.3.2. Effect of the ESS

Next, we compared the performance of the proposed IMA with its variant, IMA2, which excludes
the ESS component. The outcomes of these ablation experiments are summarized in Table 7.

The results from Table 7 are indicative: across 19 instances, the IMA consistently outperforms the
version devoid of an ESS (IMA2) in terms of the HV metric. Particularly notable is the significant
metric discrepancy across a majority of instances, underscoring the effectiveness and reliability of our
ESS. Furthermore, the IMA consistently exhibited superior IGD metrics compared to IMA2, signifying
that our introduced ESS augments the algorithm’s overall performance.

5.3.3. Effect of the MSSA

Subsequently, we compared the performance of the proposed IMA with its variant, IMA3, which
excludes the MSSA component. The results of these ablation experiments are summarized in Table 7.

From the data presented in Table 7, it becomes evident that the IMA slightly lags behind the version
without the MSSA (IMA3) solely on the Mk02, Mk04 and Mk06 instances. However, across the
remaining instances, the IMA consistently showcases commendable performance. This is especially
apparent in the significant reduction of the IGD metric in the IMA across all instances compared to
IMA3. Such observations affirm the pivotal role of our proposed MSSA in enhancing quality and
promoting diversity.

5.3.4. Effect of the IVNS

Finally, we compared the performance of the proposed IMA with its variant, IMA4, which
excludes the IVNS component. The results of these ablation experiments are summarized in Table 7.
The findings from Table 7 indicate that, across nearly all instances, the IMA outperforms its
counterpart without the IVNS (IMA4) in terms of both HV and IGD metrics. This observation
strongly suggests that our proposed IVNS significantly enhances the algorithm’s potential to explore
and uncover improved solutions.

Figure 18 shows the Pareto frontier results obtained by running each component on the Mk06
instance 10 times. It is evident that each component has a certain impact on algorithm performance,
with the MSSA and IVNS having the most significant impact. This suggests that the MSSA and
IVNS have the greatest improvement in algorithm performance on this instance.
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Figure 18. Pareto front results for ablation experiments on the Mk06 instance.

5.4. Comparison with other algorithms

To rigorously validate the efficacy of the proposed IMA in this research, we conducted a
comprehensive comparison against a selection of classical and contemporary algorithms. The
selected algorithms include the widely recognized multi-objective optimization algorithms, namely,
NSGA-II and NSGA-III. These algorithms are established instances in the field due to their
effectiveness and ease of replication. Additionally, we compared the proposed algorithms with two
relatively recent algorithms, the HMMA [22] and SPAMA [25], both designed for MODFJSP
optimization with the same objectives as this study. These algorithms are recognized for their
excellence in multi-objective optimization.

To ensure a level playing field, all algorithms were independently executed on all test sets for 20
runs, using a consistent stopping condition of 200 maximum iterations. The comparative outcomes are
presented in Table 8.

In Table 8, we have highlighted the largest HV metric in bold for each instance. It is evident that,
for most instances, the HV metric of the IMA is the best and significantly ahead of the other four
comparison algorithms, especially on the Mk03, Mk08 and DP04 instances.

This indicates that our proposed IMA is highly effective in solving the MODFJSP, and that our
ESS also plays a very important role in reducing energy consumption and improving HV indicators.
Although the HV metric on the DP07 and DP10 instances are lower than those for the SPAMA, the
difference on DP10 is not significant. We analyzed that our IMA performed poorly on DP07 instance
due to the unique nature of the DP07 instance, which resulted in our algorithm not fully leveraging
its advantages.

Overall, the HV metric of our proposed IMA is optimal on most instances, indicating that the IMA
exhibits superior algorithm performance.

Taking the Mk01 instance as an example, we recorded the average Pareto solution set obtained by
each iteration of the five algorithms mentioned above. The horizontal axis in Figure 19 represents the
number of iterations, and the vertical axis represents the maximum completion time.

We can see that the completion time of the IMA in the initial iteration stage is significantly lower
than that of the other comparative algorithms, indicating that our proposed MIR strategy has played a
very positive role in the population’s initialization stage of the population.
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Table 8. Statistical results for the HV metric for all algorithms in all instances.

Instance HV
IMA NSGA2 NSGA3 HMMA SPAMA

Mk01 0.697008 0.464748 0.491488 0.522957 0.526256
Mk02 0.650904 0.491129 0.499831 0.542956 0.554878
Mk03 0.672812 0.302156 0.349842 0.349869 0.312427
Mk04 0.720483 0.468479 0.407806 0.486376 0.458702
Mk05 0.612882 0.394725 0.464664 0.489076 0.478961
Mk06 0.775788 0.350489 0.401084 0.319675 0.396394
Mk07 0.595262 0.460001 0.402988 0.488427 0.468144
Mk08 0.525119 0.198186 0.252408 0.300457 0.289718
Mk09 0.547976 0.136676 0.206897 0.176770 0.166425
Mk10 0.714032 0.167183 0.268791 0.194755 0.187758
DP01 0.636001 0.270433 0.214674 0.338950 0.326819
DP02 0.721251 0.425650 0.499945 0.556388 0.541867
DP03 0.635148 0.335208 0.386179 0.407674 0.395859
DP04 0.656419 0.358512 0.326319 0.436426 0.410603
DP05 0.681177 0.459597 0.409586 0.511175 0.498390
DP06 0.720815 0.466103 0.524809 0.548868 0.533089
DP07 0.483865 0.161575 0.132184 0.261754 0.702817
DP08 0.860201 0.276720 0.316925 0.364385 0.819594
DP09 0.845015 0.281028 0.342986 0.374806 0.817958
DP10 0.783946 0.217221 0.197483 0.280048 0.838089
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Figure 19. Convergence curve for makespan on Mk01.

Simultaneously, our proposed MSSA and IVNS strategies also, to some extent, prevent the
population from falling into local optima too early; particularly, they maintain a certain degree of
diversity in the middle and later stages of iteration.

The combination of the above multiple strategies has resulted in a more excellent Pareto solution
set, demonstrating the effectiveness and excellent performance of the IMA.

In Table 9, we have highlighted the lowest IGD metric in bold for each instance. It is evident that,
for most instances, the IGD metric of the IMA is the best and significantly ahead of the other four
comparison algorithms, especially on the Mk01, Mk06 and DP03 instances.

This indicates that our proposed IMA is highly effective in solving the MODFJSP, and that our
proposed MIR and IVNS strategies have played a crucial role in reducing IGD indicators. We infer that
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this is mainly due to increasing population diversity and improving population quality. Although the
IGD indicators of the DP07 and DP09 instances are higher than those for the HMMA and SPAMA, the
difference is small. Considering the normal volatility of the algorithm, these differences are acceptable.

Table 9. Statistical results for the IGD metric for all algorithms in all instances.

Instance IGD
IMA NSGA2 NSGA3 HMMA SPAMA

Mk01 0.063059 0.230736 0.206119 0.192480 0.183226
Mk02 0.064975 0.209623 0.196690 0.150108 0.145771
Mk03 0.123285 0.384320 0.334850 0.342889 0.381302
Mk04 0.172815 0.233802 0.283277 0.216536 0.236514
Mk05 0.067436 0.245554 0.202496 0.191190 0.198707
Mk06 0.020985 0.438512 0.392742 0.407719 0.418003
Mk07 0.092555 0.180762 0.223791 0.166870 0.175088
Mk08 0.198234 0.391884 0.319164 0.297213 0.311293
Mk09 0.192776 0.532957 0.450175 0.481913 0.494134
Mk10 0.020126 0.659510 0.527398 0.634435 0.635972
DP01 0.144596 0.348890 0.396574 0.303244 0.316380
DP02 0.130037 0.285027 0.235042 0.186577 0.207190
DP03 0.063712 0.295624 0.279151 0.242072 0.263713
DP04 0.153222 0.269625 0.311625 0.209851 0.221640
DP05 0.102756 0.236842 0.254926 0.177740 0.190551
DP06 0.118611 0.251474 0.188846 0.171989 0.194196
DP07 0.311614 0.442047 0.506629 0.384155 0.292972
DP08 0.297039 0.391482 0.340065 0.298025 0.323837
DP09 0.350830 0.337049 0.275563 0.250337 0.363403
DP10 0.250989 0.423222 0.431548 0.347289 0.319615

Overall, the IGD metric of the proposed IMA is optimal on most instances, indicating that the IMA
exhibits better diversity and convergence.

Taking the Mk01 instance as an example, we recorded the average Pareto solution set obtained by
each iteration of the five algorithms mentioned. The x axis in Figure 20 represents the number of
iterations and the y axis represents the energy consumption.

0 50 100 150 200

iteration

800

900

1000

1100

1200

1300

1400

e
n
e
rg

y
 c

o
n
s
u

m
p

ti
o
n

ESMA

NSGA2

NSGA3

HMMA

SPAMA

Figure 20. Convergence curve for energy consumption on Mk01.

It is evident that the energy consumption of the IMA in the initial iteration stage is significantly
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lower than that in the case of the other comparison algorithms, indicating that our proposed MIR and
ESS have played a very positive role in the population initialization stage.

Simultaneously, our proposed MSSA and IVNS strategies also prevent the population from falling
into local optima too early, thus providing more diversity during the iteration process.

From the Figure 20, it is evident that the energy consumption of the IMA is significantly lower than
that for the other comparative algorithms at all stages of the iteration, indicating that our proposed ESS
has played a significant role in effectively reducing energy consumption.

Figure 21 shows the Pareto front comparison of different algorithms. The solution set obtained
via the IMA is closer to the coordinate origin, indicating that the IMA can yield a better solution set.
Figures 22 and 23 provide Gantt charts for two factories on the Mk08 instance.

The combination of the above multiple strategies has resulted in a better Pareto solution set, proving
the effectiveness and excellent performance of the IMA.
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Figure 21. Pareto front results for different algorithms on the Mk06 instance.
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Figure 22. Gantt chart for Factory 1 based on Mk08 instance.
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Figure 23. Gantt chart for Factory 2 based on Mk08 instance.

6. Conclusions and future studies

This paper introduces an IMA to tackle the challenges posed by the MODFJSP with transportation
and start-stop constraints. The optimization objectives are defined as the maximum completion time
and energy consumption. Considering the characteristics of the problem, we have formulated a multi-
objective distributed flexible job shop scheduling model that incorporates transportation time and start-
stop constraints. Subsequently, we have introduced an MIR and a novel multistart SA algorithm,
integrating them into the IMA to enhance the algorithm’s exploration ability and diversity. Moreover,
we have designed four efficient neighborhood structures and two ESSs to improve search ability and
decrease energy consumption. The effectiveness of the algorithm has been validated through evaluation
and testing on 20 classic instances with diverse characteristics. Our aim with this research was to
contribute to the improvement of the multi-objective distributed job shop scheduling system and offer
guidance to workshop production managers.

Future work will focus on the application of the multi-objective FJSP in dynamic production
scheduling environments, including scenarios such as machine failures and new order insertion.
Additionally, we aspire for the algorithm to possess greater adaptability to confront more complex
and ever-changing situations.
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