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Abstract: In this paper, we investigate a time-delayed vector-borne disease model with impulsive
culling of the vector. The basic reproduction number R0 of our model is first introduced by the theory
recently established in [1]. Then the threshold dynamics in terms of R0 are further developed. In
particular, we show that if R0 < 1, then the disease will go extinct; if R0 > 1, then the disease will
persist. The main mathematical approach is based on the uniform persistent theory for discrete-time
semiflows on some appropriate Banach space. Finally, we carry out simulations to illustrate the analytic
results and test the parametric sensitivity on R0.
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1. Introduction

Vector-borne disease involves a vector (an organism) that transmits infectious pathogens from the
infected host to the uninfected host. For example, the malaria parasites are transmitted through the
bite of infected female mosquitoes, spreading the disease from mosquitoes to humans and back to
mosquitoes [2]. West Nile virus (WNv) is another vector-borne disease caused by Flavivirus and
transmitted primarily by mosquitoes (Culex species) to vertebrate hosts, such as humans, birds and
horses [3]. Those vector-borne diseases have caused a significant threat to public health as well as
wildlife worldwide.

Mathematical models give insights to predict the spread of vector-borne diseases, and to test con-
trol strategies. Impulsive (delayed) differential systems are widely used in population biology and
epidemiology to study the various factors: birth pulses [4, 5], effectiveness of vaccination [6–10], and
elimination of vector insects [11, 12], see also [13, 14] for stochastic effects. To investigate the con-
trol strategies against vector-borne diseases, Gourley et al. [11] used two time-delayed models with
impulses to evaluate the effectiveness of age-structured culling strategies. Yang et al. [10] studied the
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effect of impulsive controls in multiple patch models with age-structure. Xu and Xiao [9] considered
the impacts of periodic impulsive culling of mosquitoes for control of WNv transmission. Based on [9],
the incubation period of mosquitoes was furthered incorporated in [15].

To describe the disease transmission between vector and host as well as the strategy of periodically
culling the vector, we use a set of impulsive delayed differential equations to incorporate the extrinsic
incubation period (EIP) of vector and host. By the theory recently developed in [1], the basic reproduc-
tion ratio R0 of the model is first established. The global dynamics of the model are further investigated
in terms of R0. The uniform persistence theory based on dynamical systems is used extensively in pop-
ulation biology and epidemiology models, see for instance [16–19] and references therein. However,
it seems like this dynamical system approach is rarely adapted to time-delayed impulsive systems to
study the threshold dynamics. There are two possible issues: first, it is not an easy task to find an appro-
priate phase space for time-delayed impulsive systems so that the evolution operators are well-defined,
which was recently solved by [1] for a large class of time-delayed impulsive systems; second, the solu-
tions of the time-delayed impulsive systems may not be continuous in t, and hence, such systems might
not generate continuous periodic semiflows (see [20]), which brings trouble for direct application of
the uniform persistence theory in [21] to investigate the sharp permanence of infectious compartments
when R0 > 1. Meanwhile, the analytic method developed in [1, 6, 7] for the uniform persistence of a
time-delayed impulsive system is quite useful for a form like Susceptible-Exposed-Infected-Removed
(SEIR), but it would not be easy to apply to the vector-borne model (including multiple infected com-
partments). We refer to [9, 15] for attempts in this direction. Combing the ideas in [1] and [21], we
establish the sharp persistence of infectious compartments, by using the uniform persistence theory
of discrete-time semiflows on some appropriate phase space. It is worth pointing out that our current
approach would be easily applied to the models where the period of model coefficients is the same as
that of fixed impulsive moments.

The rest of this paper is organized as follows: In Section 2, we formulate a time-delayed impulsive
differential model including several factors: EIP and the strategy of periodically culling the vector, EIP
and vertical transmission of host. In Section 3, we first introduce the basic reproduction number R0 for
the model and then study the threshold dynamics in terms of R0. In Section 4, we use numerical sim-
ulations to test the differences with and without culling, and further explore the impacts of parameters
such as time delays and vertical transmission rate on R0. A brief discussion then concludes the paper.

2. Model formulation

Inspired by the WNv infection process in [9, 15, 18], we consider an impulsive delay differential
equation model to describe the periodic culling of the vector with two differnt EIPs. Let S v(t), Iv(t),
S h(t), Eh(t) and Ih(t) be the the total numbers of the susceptible adult vector, infected adult vector,
susceptible host, exposed host and infected host at time t, respectively. The total number of the adult
vector is given by Nh(t) = S h(t) + Eh(t) + Ih(t). Let Λv and Λh be the recruitment rate of the vector
and (susceptible) host, respectively, µv and µh be the natural death rate of vector and host, and dh be
the disease-induced death rate of the host. Similar to [7], we suppose that the birth rate of the vector
equals its natural death rate. Vertical transmission of the virus in the host population is incorporated
by a fraction rvt ∈ (0, 1). For the virus transmission, we assume that the susceptible host becomes
infectious given contact with the infected vector, and the susceptible vector can receive the infection
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by biting a virus-carrying host. By similar arguments to those in [2,17,19], we simply assume that the
numbers of newly occurred infectious host and newly occurred infected vector per unit time at time t
are given by

bβ
Ih(t)
Nh(t)

S v(t) and cβ
S h(t)
Nh(t)

Iv(t),

respectively, where β is the average biting rate of the vector, b and c are the transmission probabilities
of the virus from vector to host and from host to vector, respectively. However, the newly infected
vector and infected host need to survive the EIP to become infectious. We denote the finite constants
τ1 and τ2 to represent the length of the EIP in the vector and host, respectively. The probability that
the vector and host survive the EIP is e−µvτ1 and e−µhτ2 , then of those vectors and hosts infected τ1 and
τ2 unit times ago, only the proportions

bβ
Ih(t − τ1)
Nh(t − τ1)

S v(t − τ1)e−µvτ1 and cβ
S h(t − τ2)
Nh(t − τ2)

Iv(t − τ2)e−µhτ2

are infectious at time t. Throughout this paper, we suppose that culling occurs at certain particular
times, and denote T to be the period of culling. We also assume that spraying reduces both the suscep-
tible and infected vector, p ∈ [0,+∞) is the culling intensity of those killed, where p = 0 means that
there is no culling.

The transmission of cross-infection between vector and host is shown in Figure 1. Consequently,
our model takes the form:

dS v(t)
dt = Λv − bβ Ih(t)

Nh(t)S v(t) − µvS v(t),
dIv(t)

dt = bβ Ih(t−τ1)
Nh(t−τ1)S v(t − τ1)e−µvτ1 − µvIv(t),

dS h(t)
dt = Λh − cβ S h(t)

Nh(t) Ih(t) − µhS h(t) + (1 − rvt)µhIh(t),
dEh(t)

dt = cβ S h(t)
Nh(t) Ih(t) − cβ S h(t−τ2)

Nh(t−τ2) Iv(t − τ2)e−µhτ2 − µhEh(t),
dIh(t)

dt = cβ S h(t−τ2)
Nh(t−τ2) Iv(t − τ2)e−µhτ2 − (µh + dh − rvtµh)Ih(t),


a.e. t , nT, n ∈ N,

S v(t+) = 1
1+pS v(t), Iv(t+) = 1

1+p Iv(t),

S h(t+) = S h(t), Eh(t+) = Eh(t), Ih(t+) = Ih(t),

 t = nT, n ∈ N.

(2.1)

All the parameters in model (2.1) are positive. In view of the biological meaning of τ2, we impose the
following compatibility condition:

ϕ4(0) =
∫ 0

−τ2

cβ
ϕ2(s)ϕ3(s)∑5

i=3 ϕi(s)
eµh sds. (2.2)

To investigate the long time behavior of system (2.1) from the point view of dynamical systems, we
first introduce a few notations related to the phase space (see also [1, 22]). Given two constants a < b,
let

PC([a, b],Rm) :=
{
ϕ : [a, b]→ Rm | ϕ(t−) = ϕ(t),∀t ∈ (a, b] , ϕ(t+) exists for t ∈ [a, b)

and ϕ(t+) = ϕ(t) for all but at most a finite number of points t ∈ [a, b)
}
,

PC([a, b),Rm) :=
{
ϕ : [a, b)→ Rm | ϕ(t−) = ϕ(t),∀t ∈ (a, b), ϕ(t+) exists for t ∈ [a, b)

and ϕ(t+) = ϕ(t) for all but at most a finite number of points t ∈ [a, b)
}
,
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Figure 1. Chain of infection.

where ϕ(t+) = lim
s→t+

ϕ(s) and ϕ(t−) = lim
s→t−

ϕ(s). Then for any r > 0, PC([−r, 0],Rm) is a Banach space

with the norm ∥ · ∥r given by ∥ϕ∥r = sup
−r≤θ≤0

|ϕ(θ)|. Set τ̂ = max {τ1, τ2} > 0, J̃ = [−τ̂, 0) ∩ {tn = nT : n ∈

Z}(possibly empty) and J = [−τ̂, 0)\J̃ . Denote

PCJ := {ϕ : [−τ̂, 0]→ R | ϕ(t−) = ϕ(t),∀t ∈ (−τ̂, 0] , ϕ(t+) exists for t ∈ [−τ̂, 0)
and ϕ(t+) = ϕ(t) for t ∈ J},

and PC+J := {ϕ ∈ PCJ : ϕ(t) ≥ 0,∀t ∈ [−τ̂, 0]}. It then follows that PCJ is a Banach space endowed
with the norm ∥ · ∥τ̂, and PC+J is a closed cone of PCJ, which induces a partial ordering on PCJ.
Clearly, PCJ ⊂ PC([−τ̂, 0],R). For any u = (u1, u2, ..., u5) ∈ PC([−τ̂, η),R5) with η > 0, define
ut ∈ PC([−τ̂, 0],R5) by

ut(θ) = (u1(t + θ), u2(t + θ), ..., u5(t + θ)), ∀θ ∈ [−τ̂, 0], t ∈ [0, η).

Define

X :=

ϕ = (ϕ1, ϕ2, ..., ϕ5) ∈ PC+J × PC+J × PC+J × PC+J × PC+J :
5∑

i=3

ϕi(θ) > 0, θ ∈ [−τ̂, 0]

 ,
and

Dϵ :=

ϕ ∈ X :
5∑

i=3

ϕi(θ) > ϵ,∀θ ∈ [−τ̂, 0], ϕ4(0) =
∫ 0

−τ2

cβ
ϕ2(s)ϕ3(s)∑5

i=3 ϕi(s)
eµh sds

 (2.3)

for any ϵ ∈
(
0, Λh

µh+dh

)
. Now we are ready to state the well-posed result on the solutions of system (2.1).

Theorem 2.1. For any ϕ ∈ Dϵ , system (2.1) exists a unique non-negative solution u (t, ϕ) on [0,+∞)
with the initial value u0 = ϕ, unT ∈ Dϵ for any n ∈ N. Moreover, ut+T (ϕ) = ut(uT (ϕ)) for all t ≥ 0 and
Φ := uT admits a global attractor in Dϵ .
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Proof. For convenience, we denote

(u1(t), u2(t), u3(t), u4(t), u5(t)) = (S v(t), Iv(t), S h(t), Eh(t), Ih(t)) .

For any t ≥ 0, t , nT, n ∈ N, ϕ ∈ Dϵ , define

f (t, ϕ) := ( f1(ϕ), f2(ϕ), f3(ϕ), f4(ϕ), f5(ϕ)) ,

where
f1(ϕ) =Λv − bβ

ϕ5(0)∑5
i=3 ϕi(0)

ϕ1(0) − µvϕ1(0),

f2(ϕ) =bβ
ϕ5(−τ1)∑5
i=3 ϕi(−τ1)

ϕ1(−τ1)e−µvτ1 − µvϕ2(0),

f3(ϕ) =Λh − cβ
ϕ3(0)∑5
i=3 ϕi(0)

ϕ3(0) − µhϕ5(0) + (1 − rvt) µhϕ5(0),

f4(ϕ) =cβ
ϕ3(0)∑5
i=3 ϕi(0)

ϕ5(0) − cβ
ϕ3(−τ2)∑5
i=3 ϕi(−τ2)

ϕ5(−τ2)e−µhτ2 − µhϕ4(0),

f5(ϕ) =cβ
ϕ3(−τ2)∑5
i=3 ϕi(−τ2)

ϕ5(−τ2)e−µhτ2 − (µh + dh − rvtµh)ϕ5(0).

It is easy to check that f (t, ϕ) satisfies Lipschitz condition for ϕ on any compact subset of R+ × X. It
follows from [22, Theorems 3.1 and 3.3] that system (2.1) admits a unique solution u (t, ϕ) satisfying∑5

i=3 ui(t, ϕ) > ϵ on the maximal existence interval
[
0, tϕ

)
with u0 = ϕ ∈ Dϵ and tϕ ∈ (0,∞).

Next we prove the solution of system (2.1) is non-negative on [0, tϕ). Given ϕ ∈ Dϵ and t ∈ [0,T ),
we see that fi(t, ϕ) := fi(ϕ) ≥ 0 provided i ∈ {1, 2, 3, 5} and ϕi(0) = 0. It follows from [23, Theorem
5.2.1] and its proof that for ui(t, ϕ) ≥ 0, i ∈ {1, 2, 3, 5}, ∀t ∈ [0,T ) ∩ [0, tϕ). If T < tϕ, then by the
formulas of system (2.1) at the impulsive points, we have ui(t, ϕ) ≥ 0, i ∈ {1, 2, 3, 5}, t ∈ [0,T ]. It
then follows from the method of steps that ui(t, ϕ) ≥ 0, i ∈ {1, 2, 3, 5}, t ∈ [0, tϕ). Meanwhile, by the
uniqueness of solutions of system (2.1) and the compatibility condition (2.2), we obtain that

u4(t) =
∫ t

t−τ2

cβ
u2(s)u3(s)∑5

i=3 ui(s)
e−µh(t−s)ds. (2.4)

Therefore, u4(t, ϕ) ≥ 0 for t ∈ [0, tϕ).
Notice that the total host population (Nh(t) :=

∑5
i=3 ui(t)) satisfies

dNh(t)
dt

= Λh − µhNh(t) − (dh − µh)Ih(t) ≥ Λh − (µh + dh)Nh(t), (2.5)

which implies Nh(t) is an upper solution of

x′(t) = Λh − (µh + dh)x(t). (2.6)

Denote x(t; Nh(0)) as the unique solution of (2.6) with x(0) = Nh(0), then Nh(t) ≥ x(t; Nh(0)) for any
t ∈

[
0, tϕ

)
. This further yields that Nh(t) ≥ x(t; Nh(0)) ≥ ϵ for any t ∈

[
0, tϕ

)
provided Nh(0) ≥ ϵ with

ϵ ∈
(
0, Λh

µh+dh

)
. Furthermore,

dNh(t)
dt

≤ Λh −min{µh, dh}Nh(t), (2.7)
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which implies that if ϵ ≤
∑5

i=3 ϕi(0) ≤ Λh
min{µh,dh}

, then ϵ ≤
∑5

i=3 ui(t) ≤ Λh
min{µh,dh}

for any t ∈
[
0, tϕ

)
.

Since ϵ ≤ Nh(t) and u5(t) ≤ Nh(t) for any t ∈ [0, tϕ), by comparison, we have

u′1(t) ≤ Λv − µvu1, t > 0,
u′2(t) ≤ bβu1(t − τ1)e−µvτ1 − µvu2, t > 0,

which yields that,

lim sup
t→∞

u1(t) ≤
Λv

µv
, lim sup

t→∞
u2(t) ≤

bβΛve−µvτ1

µ2
v

and lim sup
t→∞

Nh(t) ≤
Λh

min{µh, dh}
.

Therefore, the solutions of system (2.1) with initial data in Dϵ exist globally on [0,∞) and are ultimately
bounded. By similar argument to that in [1, Lemma 4] (see also [24, Page 192]), we infer that for each
n > τ̂

T , unT is compact. It then follows from [21, Theorem 1.1.3] that UT : Dϵ → Dϵ admits a global
attractor. Moreover, since if ut(ϕ) is a solution of (2.1), then ut+T (ϕ) is also a solution (2.1). By the
uniqueness of the solution, we then have ut+T (ϕ) = ut(uT (ϕ)).

3. Threshold dynamics in terms of R0

In this section, we first introduce the basic reproduction number R0 for system (2.1) and then inves-
tigate its threshold dynamics in terms of R0.

3.1. Basic reproduction number

The basic reproduction number R0 is defined as the expected number of secondary infections pro-
duced by a typical infectious individual in a completely susceptible population. We will use the theory
developed in [1] to give the definition of R0. In order to obtain the disease-free periodic solution of
system (2.1), we recall a lemma (see [6, Lemma 1] for detail).

Lemma 3.1. Consider the following impulsive differential equation:du
dt = a − bu(t), t , nT, n ∈ N,

u(t+) = (1 − θ)u(t), t = nT, n ∈ N,
(3.1)

where a, b > 0, θ ∈ (0, 1). Then system (3.1) admits a unique positive periodic solution ûe(t) :=
a
b +

(
u∗ − a

b

)
e−b(t−nT ), nT < t < (n+1)T, which is globally asymptotically stable. Here u∗ = a(1−θ)(1−e−bT )

b(1−(1−θ)e−bT ) .

Letting Iv = Ih = 0 in system (2.1), we then get the following disease-free system:
dS v(t)

dt = Λv − µvS v(t),
dS h(t)

dt = Λh − µhS h(t),

 a.e.t , nT, n ∈ N,

S v(t+) = 1
1+pS v(t),

S h(t+) = S h(t),

 t = nT, n ∈ N.

(3.2)

By Lemma 3.1, system (3.2) exists a unique positive T -periodic solution û(t) := (Ŝ v(t), Ŝ h), with
Ŝ h =

Λh
µh

and

Ŝ v(t) =
(
1 −

pe−µv(t−nT )

1 + p − e−µvT

)
Λv

µv
, nT < t ≤ (n + 1)T, n ∈ N, (3.3)
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which is globally asymptotically stable.
Let E = PC([−τ̂, 0],R2), E+ = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [−τ̂, 0]}, and

XT = {v : R→ R2|v is continuous in (tn, tn+1), tn = nT, n ∈ Z, v(t−n ), v(t+n ) exist
v(t−n ) = v(tn), v(t + T ) = v(t) for t ∈ R, and v(t+n+1) = v(t+n )},

with the norm ∥v∥XT = sup
t∈[0,T ]

|v(t)|. It then follows that XT is a Banach space. Linearizing system (2.1)

at its disease-free periodic solution E0(t) = (Ŝ v(t), 0, Ŝ h(t), 0, 0), we obtain the following linear system
for the infectious compartments:

dIv(t)
dt = −µvIv(t) + bβe−µvτ1 µh

Λh
Ŝ v(t − τ1)Ih(t − τ1),

dIh(t)
dt = −(µh + dh − rvtµh)Ih(t) + cβe−µhτ2 Iv(t − τ2),

 t , nT, n ∈ N,

Iv(t+) = 1
1+p Iv(t),

Ih(t+) = Ih(t),

 t = nT, n ∈ N.

(3.4)

Define F(t) : E → R2, where

F(t)
(
ϕ1

ϕ2

)
:=

(
bβe−µvτ1 µh

Λh
Ŝ v(t − τ1)ϕ2(−τ1)

cβe−µhτ2ϕ1(−τ2) + rvtµhϕ2(0)

)
,∀t ∈ R, ϕ = (ϕ1, ϕ2) ∈ E.

Set Y(t, s), t ≥ s as the Cauchy matrix [24, Section 1.2] of
du1(t)

dt = −µvu1(t),
du2(t)

dt = −(µh + dh)u2(t),

 t , nT, n ∈ N,

u1(t+) = 1
1+pu1(t),

u2(t+) = u2(t),

 t = nT, n ∈ N,

(3.5)

that is,

Y(t, s) = e−V(t−s)
∏

k:tk∈[s,t)

diag (
1

1 + p
, 1),

where each tk denotes the impulsive point on [s, t) and V =
(
µv 0
0 µh + dh

)
. It is easy to check that

F(t) and Y(t, s) satisfy the following properties: (a) for each t ∈ R, F(t) is a positive operator; (b) the
matrix −V is cooperative and r(Y(T, 0)) < 1, where r(Y(T, 0) is the spectral radius of Y(T, 0).

Consequently, the linear impulse periodic differential system (3.5) could be rewritten as: du(t)
dt = F(t)ut − Vu(t), a.e. t > 0, t , tn,

u(t+) = Pu(t), t = tn, n ∈ N,
(3.6)

where P = diag ( 1
1+p , 1).

After the above settings, we can apply the theory and method in [1] to define basic the reproduction
number for system (2.1). Let v(t) be the initial distribution of infected individuals with period T . For t ≥
s, then F(t−s)vt−s is the distribution of newly infected individuals at time t−s. It is produced by infected
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individuals introduced during the time interval [t − s − τ̂, t − s], which means it is the distribution of
newly infected at time t − s and still infected at time t. Define the linear operator L on XT :

[Lv] (t) :=
∫ ∞

0
Y(t, t − s)F(t − s)v(t − s + ·)ds, t ∈ R,∀v ∈ XT .

We define the basic reproduction number as

R0 := r(L),

where r(L) is the spectral radius of the linear operator L. Denote

EJ = PCJ × PCJ, E+J = PC+J × PC+J .

For any ϕ ∈ EJ, let w(t, ϕ) = (w1(t, ϕ),w2(t, ϕ)) be the unique solution of (3.4) with the initial value
w0 = ϕ, and

wt(ϕ)(θ) = (w1t(ϕ)(θ),w2t(ϕ)(θ)) = (w1(t + θ, ϕ),w2(t + θ, ϕ)), ∀θ ∈ [−τ̂, 0] .

Let Q(t) : EJ → E = PC([−τ̂, 0],R2) be the solution map of (3.4), then

Q(t)ϕ = (w1t(ϕ),w2t(ϕ)),∀t ≥ 0, ϕ ∈ EJ.

In view of the definition of PCJ, we infer that Q := Q(T ) is the operator from EJ to EJ (in other words,
they have the same number of discontinuous points), and set r(Q) to be the spectral radius of Q on EJ.
By [1, Theorem 1], we have the following observation:

Lemma 3.2. R0 − 1 has the same sign as r(Q) − 1.

Let
Z := PCτ2 × PCτ1 , Z+ := PC+τ2

× PC+τ1
,

where PCτi is understood as PCJ with τ̂ replaced by τi, and then (Z,Z+) is an ordered Banach space.
For any ψ ∈ Z+, system (3.4) admits a unique non-negative solution z(t, ψ) with the intial value z0 = ψ.
For all t ≥ 0, we have zt(ψ) = (z1t(ψ),Z2t(ψ)), for all θi ∈ [−τi, 0], and then Zit(ψ)(θi) = zi(t + θi, ψ),
i = 1, 2. For any given t ≥ 0, let Q̂(t) be the solution map of system (3.4) on Z, that is,

Q̂(t)ψ = zt(ψ), ∀ψ ∈ Z.

We remark that z1t ∈ PC([−τ2, 0],R) and z2t ∈ PCτ1 for all t ≥ 0 as z2(t, ψ) is continuous for all t ≥ 0
even if ψ is piecewise continuous. Therefore, Q̂(T ) is a map from Z to Z. Next, we will illustrate that
Q̂(t) is eventually strongly positive on Z+.

Lemma 3.3. Q̂(t)φ ≫ 0 for any t > 3τ̂ provided φ = (φ1, φ2) ∈ Z+\ {0}.

Proof. For convenience, denote

(z1(t), z2(t)) := (z1(t, φ), z2(t, φ)).

By the similar argument to that in Theorem 2.1, we obtain that zi(t) ≥ 0 for any t ≥ 0, i = 1, 2.
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In the case that φ1 > 0. We argue that there exists t̂ ∈ [0, τ̂] such that z2(t̂) > 0. Assume, by
contradiction, that z2(t) = 0 for all t ∈ [0, τ̂], that is, z′2(t) = 0 for all t ∈ [0, τ̂]. Then we deduce from
the second equation of system (3.4) that:

z1(t − τ2) = 0, ∀t ∈ [0, τ̂].

This yields φ1(t) ≡ 0 for any t ∈ [−τ2, 0], which is a contradiction. Moreover, from the second equation
of system (3.4) and z1(t) ≥ 0 for all t ≥ −τ2, we obtain

z2(t) ≥ z2(t̂)e−(µh+dh−rvtµh)(t−t̂) > 0 for all t ≥ t̂.

Then by the integral form of the first equation of system (3.4), we have

z1(t) = T (t, 0)z1(0) + bβe−µvτ1
µh

Λh

∫ t

0
T (t, s)Ŝ v(s − τ1)z2(s − τ1)ds,

where
T (t, s) = e−µv(t−s)

∏
k:kT∈[s,t)

1
1 + p

.

Since t̂ ∈ [0, τ̂], it follows that z1(t) > 0 for all t > 2τ̂. The result as follows.
In the case that φ2 > 0. We have

z1(t) ≥ bβe−µvτ1
µh

Λh

∫ t

0
T (t, s)Ŝ v(s − τ1)z2(s − τ1)ds > 0

provided t > τ̂. Then by the integral form of the second equation of system (3.4), we have

z2(t) = e−(µh+db−rvtµh)tz2(0) + cβe−µhτ2

∫ t

0
e−(µh+dh−rvtµh)(t−s)z1(s − τ2)ds,

≥ cβe−µhτ2

∫ t

0
e−(µh+db−rvtµh)(t−s)z1(s − τ2)ds > 0,

whenever t ≥ 2τ̂. Therefore, Q̂(t)φ ≫ 0 for t > 3τ̂.

Denote r(Q̂) as the spectral radius of Q̂ := Q̂(T ). One might perform the same argument as in [16,
Lemma 3.8] to obtain r(Q) = r(Q̂). Moreover, we have the following observation:

Lemma 3.4. Let µ = ln r(Q)
T . Then there exists a positive T-periodic function ṽ(t) = (ṽ1(t), ṽ2(t)) such

that eµtv̂(t) is a solution of system (3.4) with the feasible domain either Z+ or E+J for any t ≥ 0.

Proof. Resembling the arguments in [1, Lemma 4], we infer that for each t > τ̂, Q(t) and Q̂(t) are
compact on EJ and Z, respectively.

In the case that the feasible domain is Z+, fix an integer n0 > 0 such that n0T > 3τ̂. It follows that
Q̂n0 = Q̂(n0T ) is compact and strongly positively on Z. By [25, Lemma 3.1], we obtain that there is
a strongly positive eigenvector φ∗ = (φ∗1, φ

∗
2) such that Q̂(φ∗) = r(Q̂)φ∗. Let v(t, φ∗) be the solution of

system (3.4) with the initial value

(v1(θ1), v2(θ2)) = (φ∗1(θ1), φ∗2(θ2)), (θ1, θ2) × [−τ2, 0] × [−τ1, 0].
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Since φ∗ ≫ 0, it is easy to see that vt(φ∗) ≫ 0 for any t ≥ 0. Let v̂(t) = e−µtv(t, φ∗). Then v̂(t) ≫ 0
satisfies 

dv̂1(t)
dt = −µvv̂1(t) + bβe−µvτ1 µh

Λh
Ŝ v(t − τ1)v̂2(t − τ1) − µv̂1,

dv̂2(t)
dt = cβe−µhτ2 v̂1(t − τ2) − (µh + dh − rvtµh)v̂2(t) − µv̂2,

 t , nT, n ∈ N,

v̂1(t+) = 1
1+p v̂1(t),

v̂2(t+) = v̂2(t),

 t = nT, n ∈ N.

(3.7)

For θ2 ∈ [−τ1, 0] and θ1 ∈ [−τ2, 0], we have

v̂i(θi) = e−µθivi(θi, φ
∗) = e−µθiφ∗i (θi),

v̂i(T + θi) = e−µ(T+θi)vi(T + θi, φ
∗) = e−µ(T+θi)[Q̂(φ∗)]i = e−µ(T+θi)r(Q̂)φ∗i (θi) = e−µθiφ∗i (θi),

This implies v̂i(θi) = v̂i(T + θi), i = 1, 2. Therefore, v̂(t) is a T -periodic solution satisfying ṽi(θi) =
e−µθiφ∗i (θi), i = 1, 2.

In the case that the feasible domain is E+J , since eµtv̂(t) given in the above is a function for t ∈ R.
We denote ϕ̂ = (ϕ̂1, ϕ̂2) as:

ϕ̂i(θ) = eµθv̂i(θ), ∀θ ∈ [−τ̂, 0] , i = 1, 2,
ϕ̂i(θ+) = eµθv̂i(θ+), whenever θ ∈ J.

By the uniqueness of solutions, we have that w(t, φ̂) := eµtv̂(t) satisfies (3.4) for all t ≥ 0 with the initial
value w0 = ϕ̂ ∈ E+J .

3.2. Threshold dynamics

We are now in a position to prove a threshold-type result of system (2.1) in terms of R0.

Theorem 3.5. If R0 < 1 and µh ≥ dh, then the disease-free periodic solution E0(t) = (Ŝ v(t), 0,
Ŝ h(t), 0, 0) is globally attractive for system (2.1) with respect to Dϵ .

Proof. By the first and sixth equations of system (2.1), we have dS v(t)
dt ≤ Λv − µvS v(t), t , nT, n ∈ N,

S v(t+) = 1
1+pS v(t), t = nT, n ∈ N.

Consider the following auxiliary system dx(t)
dt = Λv − µvx(t), t , nT, n ∈ N,

x(t+) = 1
1+p x(t), t = nT, n ∈ N.

According to Lemma 3.1 and the comparison theorem on impulsive differential equations, we have
S v(t, a) ≤ x(t, a) with the same initial condition S v(0) = x(0) = a > 0, ∀t ≥ 0 and |x(t) − Ŝ v(t)| → 0 as
t → ∞ with Ŝ v(t) given in (3.3). Then for any δ ∈ (0, Λh

µh
), there exists t̂1 > 0 such that

S v(t) ≤ x(t) ≤ Ŝ v(t) + δ, ∀t ≥ t̂1. (3.8)
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When µh ≥ dh, in view of system (2.1), we have

dNh(t)
dt

= Λh − µhNh(t) + (µh − dh)Ih(t) ≥ Λh − µhNh(t).

It then follows that for the above δ, there exists t̂2 > t̂1 such that

Nh(t) ≥
Λh

µh
− δ, ∀t > t̂2.

Thus, we have
dIv(t)

dt ≤ bβe−µvτ1 µh
Λh−µhδ

(Ŝ v(t − τ1) + δ)Ih(t − τ1) − µvIv(t),
dIh(t)

dt ≤ −(µh + dh − rvtµh)Ih(t) + cβIv(t − τ2),

 a.e. t ≥ t̂2 + τ̂, t , nT,

Iv(t+) = 1
1+p Iv(t),

Ih(t+) = Ih(t),

 t ≥ t̂2 + τ̂, t = nT.

We consider the following impulsive differential equations with parameter δ:

dy1(t)
dt = bβe−µvτ1 µh

Λh−µhδ
(Ŝ v(t − τ1) + δ)y2(t − τ1) − µvy1(t),

dy2(t)
dt = −(µh + dh − rvtµh)y2(t) + cβy1(t − τ2),

 t , nT, n ∈ N,

y1(t+) = 1
1+py1(t),

y2(t+) = y2(t),

 t = nT, n ∈ N.

(3.9)

From Lemma 3.2, we know that R0 < 1 if and only if r(Q) < 1. Let Qδ be the Poincaré map of system
(3.9). Observe that lim

δ→0+
r(Qδ) = r(Q) < 1 (as r(Qδ) is non-decreasing and upper semi-continuous

in δ ≥ 0 but close to 0 (see [26, 27] for example), we can fix a small positive number δ such that
r(Qδ) < 1. By Lemma 3.4, there is a positive T -periodic function v̂δ(t) = (v̂δ1(t), v̂δ2(t)) such that eµδtv̂δ(t)
is a positive solution of system (3.9), where µδ =

ln r(Qδ)
T < 0. Choose a positive constant Kδ such that:

(Iv(t), Ih(t)) ≤ Kδeµδtv̂δ(t), ∀t ∈ [t̂2, t̂2 + τ̂].

Applying the comparison principle for cooperative impulsive delay differential systems [28, Lemma
2.2], we obtain that

(Iv(t), Ih(t)) ≤ Kδeµδtv̂δ(t), ∀t ∈ [t̂2,+∞). (3.10)

Letting t → ∞ in (3.10), we have (Iv(t), Ih(t))→ (0, 0). It then follows from the fourth equation or (2.4)
that Eh(t) → 0 as t → ∞. In view of the theories of asymptotically periodic semiflows and internally
chain transitive sets [21], we further deduce from the third equation of system (2.1) that

lim
t→∞

S h(t) =
Λh

µh
.

Then for any given δ1 ∈ (0, δ), there exists t̂3 > t̂2 + τ̂ such that

Ih(t) ≤ δ1, S h(t) ≥
Λh

µh
− δ1, ∀t ≥ t̂3,
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and hence,
dS v(t)

dt
≥ Λv − (bβ

µhδ1

Λh − µhδ1
+ µv)S v(t), ∀t ≥ t̂3.

For this inequality, we consider the following impulsive differential equation: dS v(t)
dt = Λv − (bβ µhδ1

Λh−µhδ1
+ µv)S v(t), t , nT, n ∈ N,

S v(t+) = 1
1+pS v(t), t = nT, n ∈ N.

(3.11)

By Lemma 3.1, system (3.11) admits a globally stable T -periodic solution, denoted as Ŝ δ1
v (t), which

depends continuously on δ1. It follows that for the above δ, there exists a t̂4 > t̂3 such that

S v(t) ≥ Ŝ δ1
v (t) − δ, ∀t ≥ t̂4. (3.12)

This, together with (3.8), yields for any δ1 ∈ (0, δ)

Ŝ δ1
v (t) − δ ≤ S v(t) ≤ Ŝ v(t) + δ, ∀t ≥ t̂4.

Letting δ1 → 0+, we obtain for any small δ > 0, that there holds

Ŝ v(t) − δ ≤ S v(t) ≤ Ŝ v(t) + δ, ∀t ≥ t̂4, (3.13)

which implies that lim
t→∞

(S v(t) − Ŝ v(t)) = 0. The result follows.

In the remainder of this section, we investigate the uniform persistence of system (2.1).

Theorem 3.6. Assume that (S v(t, ϕ), Iv(t, ϕ), S h(t, ϕ), Eh(t, ϕ), Ih(t, ϕ)) is the unique solution of system
(2.1) through ϕ ∈ X0 := {(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ Dϵ : ϕ2(0) > 0, ϕ5(0) > 0}. If R0 > 1, then there exists
ρ∗ > 0 such that lim inft→∞ Ii(t, ϕ) ≥ ρ∗, i = v, h.

Proof. Let ∂X0 := {ϕ ∈ Dϵ : ϕ2(0) = 0 or ϕ5(0) = 0}. For any ϕ ∈ X0, it is easy to check that

Ii(t, ϕ) > 0,∀t > 0, i = v, h,

that is, Φn(X0) ⊂ X0 for any n ∈ N with Φ := uT given in Theorem 2.1 having a global attractor in Dϵ .
Define

M∂ = {ϕ ∈ ∂X0 : Φn(ϕ) ∈ ∂X0 for any n ∈ N},

let ω(ψ) be the omega limit set of the forward orbit Γ = {Φnψ : n ∈ N}, and

M = {(Ŝ v(·), 0, Ŝ h, 0, 0}.

Claim 1: For any ψ ∈ M∂, ω(ψ) =M, which is locally stable in M∂.
For any given ψ ∈ M∂, it follows from the definition of M∂ that for each n ∈ N, there holds

Iv(nT, ψ) = 0 or Ih(nT, ψ) = 0. Consequently, we infer that either Iv(t, ψ) ≡ 0 or Ih(t, ψ) ≡ 0 for any
t ≥ 0 (as if there exists t0 ≥ 0 such that Ii0(t0, ψ) , 0 for some i0 ∈ {v, h}, then Ii0(t, ψ) > 0 for all t ≥ t0).

In the case that Iv(t, ψ) ≡ 0 for each t ≥ 0, it follows from the second equation of system (2.1) that
Ih(t − τ1)S v(t − τ1) = 0 for any t ≥ 0. By the first and sixth equations of (2.1), we have

S ′v(t) ≥ Λv − (µv + bβ)S v(t), t > 0, t , nT and S v(t+) =
1

1 + p
S v(t), t = nT, n ∈ N.
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This implies there exists t̄1 > 0, such that S v(t) > 0 for all t > t̄1+τ1, and hence, Ih(t) = 0 and Eh(t) = 0
for all t ≥ 0. Since disease-free system (3.2) admits a globally stable T periodic solution (Ŝ (·), Ŝ h), we
obtain that ω(ψ) =M.

In the case that Ih(t, ψ) ≡ 0 for each t ≥ 0, it follows from the fifth equation of system (2.1) that
S h(t − τ2)Iv(t − τ2) = 0 for any t ≥ 0. By the third equation of (2.1), we have S ′h(t) ≥ Λh − (µv +

cβ)S h(t), t > 0. This implies there exists t̄2 > 0, such that S h(t) > 0 for all t > t̄2 + τ2, and hence,
Iv(t) = 0 and Eh(t) = 0 for all t ≥ 0. For the same reason, we obtain that ω(ψ) =M. Therefore, Claim
1 is valid.

For σ ∈
(
0,min{mint∈(0,T ] Ŝ v(t), Ŝ h}

)
, let Qσ(t) be the solution map of the following system and

Qσ = Qσ(T ) be the associated Poincaré map

dIσv (t)
dt = bβe−µvτ1 Ŝ v(t−τ1)−σ

Ŝ h+3σ
Iσh (t − τ1) − µvIσv (t),

dIσh (t)
dt = cβe−µhτ2 Ŝ h−σ

Ŝ h+3σ
Iσv (t − τ2) − (µh + dh − rvtµh)Iσh (t),

 t , nT, n ∈ N,

Iσv (t+) = 1
1+p Iσv (t),

Iσh (t+) = Iσh (t),

 t = nT, n ∈ N.

(3.14)

For σ close to 0+, by the comparison principle, it follows that the spectral radius r(Qσ) is non-
increasing in σ, which implies lim

σ→0+
r(Qσ) exists and lim

σ→0+
r(Qσ) ≤ r(Q). Note that r(Qσ) is upper

semi-continuous in σ ≥ 0 (see [26, 27]), which further yields lim supσ→0+ r(Qσ) ≥ r(Q), and hence,
lim
σ→0+

r(Qσ) = r(Q) > 1. Thus, we can fix a sufficiently small number σ > 0 such that r(Qσ0) > 1. By

Lemma 3.4, there exists a positive T -periodic function v̂σ = (v̂σ1 , v̂
σ
2 ) such that eµσtv̂σ(t) is a positive

solution of system (3.14), where µσ =
ln r(Qσ)

T > 0.
By the continuous dependence of the solution (see [20]) on the initial value, we have for the above

chosen σ > 0, and there exists σ∗ ∈ (0, σ) such that ∥ut(ϕ) − ut(M)∥ < σ for any t ∈ [0,T ] provided
∥ϕ −M∥ < σ∗. Next we prove the following claim:

Claim 2: For all ϕ ∈ X0, there holds lim sup
n→∞

∥Φnϕ −M∥ ≥ σ∗.

Assume, by contradiction, that lim sup
n→∞

∥Φnϕ̂ −M∥ < σ∗ for some ϕ̂ ∈ X0. Then there exists n1 ≥ 1

such that ∥Φnϕ̂ − M∥ < σ∗ for any n ≥ n1. For any t ≥ n1T , letting t = nT + t′ with n = [ t
T ] and

t′ ∈ [0,T ), by Theorem 2.1, we have

∥ut(ϕ̂) −M∥ = ∥ut(ϕ̂) − ut(M)∥ = ∥ut′(Φnϕ̂) − ut′(M)∥ < σ. (3.15)

It then follows that for any t > n1T − τ̂, 0 < Ii(t) < σ, i = v, h, S v(t) > Ŝ v(t) − σ, Ŝ h − σ < S h(t) ≤
Nh(t) < Ŝ h + 3σ. And hence, S v(t−τ1)

Nh(t−τ1) ≥
Ŝ v(t−τ1)−σ

Ŝ h+3σ
> 0 and S h(t−τ2)

Nh(t−τ2) ≥
Ŝ h−σ

Ŝ h+3σ
> 0 for any t > n1T . By the

comparison principle for cooperative systems, it follows that Iv(t, ϕ̂) and Ih(t, ϕ̂) in system (2.1) satisfy

dIv(t)
dt ≥ bβe−µvτ1 Ŝ v(t−τ1)−σ

Ŝ h+3σ
Ih(t − τ1) − µvIv(t),

dIh(t)
dt ≥ cβe−µhτ2 Ŝ h−σ

Ŝ h+3σ
Iv(t − τ2) − (µh + dh − rvtµh)Ih(t),

 t > n1T, t , nT,

Iv(t+) = 1
1+p Iv(t),

Ih(t+) = Ih(t),

 t = nT, n ≥ n1.

(3.16)

Recall that Keµσtv̂σ(t) is a positive solution of (3.14) for any K > 0. Choose Kσ > 0 such that

(Iv(t, ϕ̂), Ih(t, ϕ̂)) ≥ Kσeµσtv̂σ(t), ∀t ∈ [n1T, n1T + τ̂].
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Then the comparison theorem for cooperative impulsive delay differential systems implies that

(Iv(t, ϕ̂), Ih(t, ϕ̂)) ≥ Kσeµσtv̂σ(t), ∀t ≥ n1T + τ̂.

Since µσ > 0, we get Iv(t, ϕ̂), Ih(t, ϕ̂)→ ∞ as t → ∞, which leads to a contradiction.
The above claims indicate that M cannot form a cycle for Φ in Dϵ and W s(M) ∩ X0 = ∅, where

W s(M) is the stable set ofM for Φ. Now we define a continuous distance function p : Dϵ → R+ by
p(ϕ) = min{ϕ2(0), ϕ5(0)}. In view of Claim 1, we have W s(M) ∩ p−1(0,∞) = ∅. Now by [21, Lemma
1.2.1 and Theorem 1.3.2] and Theorem 2.1, it then follows that Φ is uniformly persistent with respect
to (X0, ∂X0, p), that is, there exists ρ1 > 0 such that

lim inf
n→∞

p(Φnϕ) = lim inf
n→∞

min{Iv(nT, ϕ), Ih(nT, ϕ)} ≥ ρ1 > 0, ∀ϕ ∈ X0.

Consequently, there exists n2 ≥ 1, such that

min{Iv(nT ), Ih(nT )} ≥
ρ1

2
, ∀n ≥ n2, n ∈ N.

Now for any t ≥ n2T , letting t = nT + t̄ with n = [ t
T ] and t̄ ∈ [0,T ), we obtain from the equation of Iv

that
I′v(t) ≥ −µvIv(t), t ∈ (nT, (n + 1)T ].

Therefore,

Iv(t) ≥
1

1 + p
Iv(nT )e−µvT =

ρ1e−µvT

2(1 + p)
.

Similarly, we see from Ih(t) ≥ −(µh + dh)Ih(t), t ≥ nT that

Ih(t) ≥ Ih(nT )e−(µh+dh)T =
ρ1e−(µh+dh)T

2
.

Now set ρ∗ = min
{
ρ1e−µvT

2(1+p) ,
ρ1e−(µh+dh)T

2

}
> 0, we see that lim inft→∞ Ii(t) ≥ ρ∗, i = v, h.

4. Numerical simulations

In this section, we perform illustrative numerical simulations to verify theoretical results and explore
the influences of key model parameters on the disease transmission. Note that the following simulations
were based on the WNv disease transmission process studied in [9, 15], where vector and host are
mosquito and bird, respectively, and some of parameters were chosen only for the test of parameter
sensitivity on the basic reproduction number.

Below, we take day as the time unit. Following the work in [9], we choose the baseline parameters
as Λv = 100,Λh = 2.1, µv = 0.05, µh = 0.001, β = 0.16, c = 0.6, dh = 0.005. Since the EIP of vector
(mosquito) is about 8–12 days, and the EIP of the host (bird) is about 3–5 days, we set τ1 = 8, τ2 = 3
unless stated otherwise.

Similar to [15], choose T = 10, p = 0.6 while R0 = 1.1490. Figure 2(a) shows that the number
of infected vectors tends to the periodical oscillation when culling occurs, whereas it tends to a equi-
librium without culling. In addition, we see from Figure 2(a) that culling significantly reduces the
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amount of infections of the vector compared to the case of no culling. Choose T = 10, p = 2 while
R0 = 0.7142. As shown in the Figure 3(b), the number of infected hosts that are not culled will con-
tinue to increase, and after the action of culling, the number of infected hosts will decrease, and the
disease will eventually die out.

(a) (b)

Figure 2. While R0 > 1, comparison of the long-term behavior of infectious vector (the left
plot) and host (the right plot) in different scenarios: culling and without culling.

(a) (b)

Figure 3. While R0 < 1, comparison of the long-term behavior of infectious vector (the left
plot) and host (the right plot) in different scenarios: culling and without culling.

Next, we use PRCCs (partial rank correlation coefficients) to obtain the sensitivity analysis of R0.
We take Λv,Λh, µv, µh, β, b, c, p, dh and rvt as the input variables and the value of R0 as the output
variable. Figure 4 illustrates that parameters Λh, µv, µh, p and dh are negatively correlated with R0 and
the others are positively correlated. We also see that R0 is more sensitive to µh, β, b, c and p. Thus, the
corresponding control measures should be taken for these sensitive parameters. For instance, to reduce
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mosquito-bird contact and further control the disease spread, we could burn repellent plants in the bird
habitat or at their water sources.

Figure 4. Sensitivity analysis of R0.

In Figure 5, we investigate the joint effects of β, p on R0. It shows that when the biting rate β is large,
it requires very strong culling effect. In Figure 6 we also choose different rvt = 0.01, r = 0.05, r = 0.1,
while β = 0.05, and get R0 increasing in rvt (compare (a)–(c)). Both Figures 5 and 6 indicate that when
all parameters are equal, R0 is decreasing in p. All the results are consistent with the conclusion in
sensitivity analysis.
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Figure 5. The contour plot of R0 with respect to p and β with rvt = 0.001.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20939–20958.



20955

(a) rvt = 0.1 (b) rvt = 0.2 (c) rvt = 0.3

Figure 6. The curve of R0 with respect to τ1 with β = 0.05. The vertical transmission rate rvt

for subplots (a), (b) and (c) is 0.1, 0.2 and 0.3, respectively.

Finally, we examine the impact of the EIP on R0. We let τ1 vary from 0 to 10 and τ2 vary from 0 to
5. Figure 7 describes the dependence of R0 on τ1 and τ2 for three different frequencies of culling (i.e.
1
T ). As we see from this figure, R0 is decreasing with respect to τ1 as well as τ2 and it increases as T
increases for fixed τ2 and τ1. This suggests that culling during the EIP and prolonging the EIP would
be beneficial for disease control, while infrequent culling might be counterproductive.

(a) R0 vs τ1 (b) R0 vs τ2

Figure 7. The curve of R0 with respect to τ1 (the left panel) and τ2 (the right panel) for
different culling intervals.

5. Discussion and conclusions

In this paper, we have formulated an impulsive vector-borne disease model with time delays to
investigate the joint effects of the EIP and impulsive intervention. The basic reproduction number R0

is first derived by the theory in [1], which serves as a threshold value to determine the extinction and
uniform persistence of the disease. Unlike most existing works [1, 6, 9, 15], we utilize the dynamical
system approach to show the sharp uniform persistence as R0 > 1. As is well known, the uniform
persistence theory often gives rise to the existence of a positive periodic solution (see [21, Theorem
1.3.10]). As a complement, we could also show the existence of a positive periodic solution in [1,9,15]
via our strategy. However, we emphasize that since our feasible domain Dϵ in (2.3) is non-convex, we
could not directly utilize it to verify the existence of the positive periodic solution, and we will leave
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the general existence and its stability for further investigation.
In addition, there are several possible extensions of this work. For example, EIP is often sensitive

to temperature, which would lead to study of the time-varying delay (especially time-periodic delays
as in [16]), whose periods might be different from the fixed impulsive moments, and so it requires a
more careful and delicate deviation of the theory in [1,21]. At the moment, we are working on a time-
periodic impulsive model with constant delays, where the impulsive moments are different from the
real-time periods. In a different work, one could elaborate our model by incorporating the stochastic
effects, and perform the stability analysis of the model system using some recent results in [29–31].
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