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Abstract: Motor imagery (MI) brain-computer interface (BCI) assist users in establishing direct 
communication between their brain and external devices by decoding the movement intention of 
human electroencephalogram (EEG) signals. However, cerebral cortical potentials are highly rhythmic 
and sub-band features, different experimental situations and subjects have different categories of 
semantic information in specific sample target spaces. Feature fusion can lead to more discriminative 
features, but simple fusion of features from different embedding spaces leading to the model global 
loss is not easily convergent and ignores the complementarity of features. Considering the similarity 
and category contribution of different sub-band features, we propose a multi-band centroid contrastive 
reconstruction fusion network (MB-CCRF). We obtain multi-band spatio-temporal features by 
frequency division, preserving the task-related rhythmic features of different EEG signals; use a multi-
stream cross-layer connected convolutional network to perform a deep feature representation for each 
sub-band separately; propose a centroid contrastive reconstruction fusion module, which maps 
different sub-band and category features into the same shared embedding space by comparing with 
category prototypes, reconstructing the feature semantic structure to ensure that the global loss of the 
fused features converges more easily. Finally, we use a learning mechanism to model the similarity 
between channel features and use it as the weight of fused sub-band features, thus enhancing the more 
discriminative features, suppressing the useless features. The experimental accuracy is 79.96% in the 
BCI competition IV-IIa dataset. Moreover, the classification effect of sub-band features of different 
subjects is verified by comparison tests, the category propensity of different sub-band features is 
verified by confusion matrix tests and the distribution in different classes of each sub-band feature and 
fused feature are showed by visual analysis, revealing the importance of different sub-band features 
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for the EEG-based MI classification task. 

Keywords: brain computer interface (BCI); motor imagery (MI); electroencephalogram (EEG); 
feature reconstruction; feature fusion 
 

1. Introduction  

The brain-computer interface (BCI) system is a new approach to human-computer interaction that 
works by decoding brain activity patterns that generate user-specific imagery tasks [1] and translating 
these patterns into computer commands that control external devices [2]. Motor imagery 
electroencephalogram (MI-EEG) is the electrical activity signal in motor-related neurons due to the 
triggering of intercellular communication between associated neurons of the brain when users imagine 
that a part of their body is moving. It has the advantages of being non-invasive and having high 
temporal resolution [3]. The decoding algorithm has become a popular research topic in the field of brain-
computer interfaces to extract brain activity information to achieve control of external devices in MI-EEG. 
Therefore, decoding EEG signals effectively is crucial in the practical application of MI-BCI systems. 

The decoding of MI-EEG signals remains challenging due to the non-smooth dynamic and 
complex nature [4]. Considering the changes in relevant the temporal and frequency domain, Pham et 
al. [5] combined the wavelet-time and wavelet-image scattering features of brain signals for learning 
feature characterization of EEG signals. Hsu et al. [6] proposed wavelet-based temporal-spectral-
attention correlation coefficient (WTS-CC), to consider the features and their weighting in spatial, 
EEG-channel, temporal and spectral domains. Liu et al. [7] proposed a SincNet-based hybrid neural 
network (SHNN) that splits the data into different time windows and maps them to the common spatial 
pattern (CSP) feature space for feature representation. Yin et al. [8] propose an optimal channel-based 
sparse time-frequency block common spatial pattern (OCSB-CSP) method, which uses the one-
dimensional EEG data of the optimal channel to calculate the discriminant ability of each time-
frequency block. These algorithms that fuse features from various sub-bands not only consider the 
frequency characteristics of EEG but also retain its temporal features, which can solve the information 
loss caused by only using single modal features, all of which enhanced feature expression to different 
degrees and were effective ways to improve the final recognition performance. 

However, the electrical signals collected on the cerebral cortex are not potential changes in a 
single neuron but generated by the activity of many neurons, so that the EEG signal consists of 
superimposed signals of different frequencies and is highly rhythmic [9–11]. Considering the 
discriminative information contained in different sub-bands, traditional EEG signal feature extraction 
methods usually use band-pass filters to extract the main frequency range of the EEG signal from 8–30 Hz 
or select the µ and β bands of sensorimotor rhythms [12,13]. Herman et al. [14] used power spectral 
density (PSD) to extract power features in the 8–12 Hz and 18–25 Hz bands for the motor imagery 
classification task. Orset et al. [15] proposed a method for decoding the termination of a motor imagery 
task by extracting the frequency features in both the µ (8–13 Hz) and β (20–26 Hz) rhythms. Zhang et 
al. [16] developed a temporally constrained sparse group spatial pattern (TSGSP) algorithm to derive 
spectrum-specific signals that have multiple overlapping sub-bands from raw EEG data through 
bandpass filter. Lee et al. [17] selected the weighted phase lag index (wPLI) and the directed transfer 
function (DTF) of EEG signals in the 8–12 Hz and 13–30 Hz frequency bands, which were related with 
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motor imagery as functional connectivity characteristics of the brain network. Miao et al. [18] presented 
a common time-frequency-spatial pattern (CTFSP) algorithm for extracting and filtering features from 
multi-band filtered EEG data with multiple time windows. These methods map the complete time 
series signal to the feature space, ignoring the dynamic time characteristics of the signal that may 
contain valuable information. 

Convolutional neural networks can capture the feature representation of EEG signals from 
different modalities and facilitate the exchange of information between heterogeneous features. The 
discriminative ability of the model can be improved by fusing the multi-source information of EEG 
signals, which is a direct solution to break the performance bottleneck of a single model [19–22]. To 
retain the dynamic time characteristics of EEG signals while to fuse the multi-source information of 
EEG signals and ensure the complementarity of multi-band information, Zhang et al. [23] 
supplemented frequency and time dimensions for EEG feature maps based on the Morlet wavelet 
transform and proposed the R3DCNN algorithm to learn EEG features simultaneously from three 
dimensions: spatial, spectral and temporal. Sakhavi et al. [24] utilized FBCSP to obtain multi-band 
spatial features of EEG signals and extracted spatial-temporal data representations of EEG signals 
through multiple one-dimensional convolutions. Brenda et al. [25] spliced the spatial features of the 
refined and optimal sub-bands filtered by the CSP method and extracted their convolutional neural 
network (CNN) features. Ma et al. [26] proposed a time-distributed attention network (TD-Atten) to 
improve the representativeness of the final features to the target task by increasing the attention of the 
time series and fusing multi-band CSP features. Zhang et al. [27] proposed a CNN, combined with a 
frequency-time band common spatial pattern (FTBCSP), to fuse multi-band features and obtain 
channel weights and enhance spatial information. However, due to the differences in experimental 
conditions and subjects, the EEG frequency bands of the corresponding rhythm are not the same [28–32]. 
Even for the same subject, these rhythm bands fluctuate according to physical health and mental state. 
It is possible that the discriminatory information is provided by some specific sub-bands more than 
others or the overall data [33,34]. The fusion task can be completed by utilizing multiple priori features, 
but large distribution gaps between different features can affect the effectiveness of fusion [35]. Fusing 
sub-band features by splicing not only fails to consider the similarities and differences between sub-
bands features, but also ignores the degree of their contribution to the recognition task, resulting in an 
exponential increase in feature dimensionality and affecting the computational efficiency of the 
network model [36,37]. 

The cerebral cortical potentials are highly rhythmic and sub-band features, and different subjects 
have different categories of semantic information in specific frequency bands. To improve the 
decoding performance of the MI-EEG-BCI-based motor imagery recognition task, the 
complementarity of feature multi-source information is considered. In this paper, we propose a multi-
band centroid contrastive reconstruction fusion network (MB-CCRF) for EEG signal decoding. More 
specifically, our contribution can be summarized as follows: 

1) Considering the task-related rhythmic features in different EEG signals, a multi-stream cross-
layer connected convolutional network is used to represent the deep features of each sub-band 
separately, integrating the features of different sub-bands and making full use of the multi-source 
information of EEG signals. 

2) We propose the centroid contrastive reconstruction module, which maps different sub-band 
and category features into the same shared embedding space by centroid contrast in a single sub-band 
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feature domain, helping to assign a similar semantic structure to each sub-band feature in the shared 
embedding space and thus enhancing the feature discrimination. 

3) The model establishes correlation between different features, which is weighted and fused 
according to the classification contribution of these features. It helps to highlight more discriminative 
features and suppress useless features. 

The rest of the paper is organized as follows: Section 2 introduces the data preparation phase and 
describes the model of the multi-band centroid contrastive reconstruction fusion network (MB-CCRF), 
including the parameters and implementation details of the model. The experimental results are 
described in Section 3, including ablation experiments and the comparison of the classification results 
of different sub-band features and other baseline algorithms. The visualization analysis is presented in 
Section 4. Finally, the paper is concluded in Section 5. 

2. Methods 

In this section, we first describe the multi-band EEG data representation process, which focuses 
on features in the frequency, temporal and spatial domains. Then, we proceed the multi-band centroid 
contrastive reconstruction fusion network MB-CCRF, including the pre-trained feature extractor 
modules and centroid contrastive reconstruction fusion modules. Finally, the parameters and 
implementation details of the network are presented. Figure 1 illustrates the structure of MB-CCRF. 

 

Figure 1. Graphical representation depicting the methods used for processing the 
imagined digits from multichannel EEG signals and classifying the multiclass EEG 
signals using the MB-CCRF network. 
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2.1. EEG representation 

In EEG representation stage, we considered the information in each EEG signal frequency band and 
extracted data representations in the temporal and spatial domains from each frequency band signal. First, 
the EEG temporal domain signals are extracted for five frequency bands, 8–12 Hz, 12–16 Hz, 16–20 
Hz, 20–24 Hz and 24–30 Hz. Then, the CSP spatial filtering algorithm [13,38,39] is used to spatially 
filter the EEG signals in each frequency band to obtain a multi-band data representation. 

CSP is a data-driven filtering algorithm widely used in brain-computer interfaces, which tries to 
find spatial filters by linear transformation to maximize the differences of the two types of 
characteristics from multichannel EEG data. The one-vs-rest (OVR) strategy is used as an assistant of 
the CSP filtering methods to process multi-band temporal signals 𝑋 , 𝑛 1,2,3,4,5 . The optimal 
CSP filter can be achieved by maximizing the following objective function [24]. 

𝑊∗ arg 𝑚𝑎𝑥 ,  (1)

where Σ , Σ  are the covariance matrices for classes 𝑐  and 𝑐  from 𝑋  and 𝑊 is the spatial 
filtering projection matrix learned from the two classes of sub-band features. This objective function 
came from generalized Rayleigh quotient and has an analytical solution, which is equivalent to solving 
a generalized eigenvalue decomposition problem. The result 𝑊 is the eigenvectors corresponding to 
the maximum and minimum eigenvalues of the two covariance matrices. Using the filter 𝑊 to extract 
spatial features can maximize the feature difference between the two types of data. So, we choose the 
first 𝑚 rows and the last 𝑚 rows 𝑚 2  of the spatial filter matrix 𝑊 as the spatial filters [33]. 
Finally, the spatial features of the EEG signal in each frequency band are obtained by using the CSP 
spatial filter 𝑊 . The final data representation is expressed as: 

𝐹 𝑊 𝑋 .  (2)

2.2. Pretrained feature extractor module 

Traditional neural network models generally use layer-by-layer connected convolutional layers 
to extract deep features. When the number of network layers is shallow, the features have a more 
detailed representation ability, but the receptive field is smaller, the semantics are weaker and there is 
more noise. As the number of network layers increases, the receptive field of the network gradually 
becomes more extensive, and the semantic expressiveness increases, but the perception of details 
worsens [40]. However, there are shallow and deep features in the MI-EEG, which both characterize 
the abstract representations of the input data at their own levels. Therefore, we choose the ResNet 
model [41] to fuse the shallow detail information and deep global structure of the input data by 
supplemented cross-layer connection paths to the layer-by-layer connected CNN network. It ensures 
maximum information flow and enhances the feature representation of small-scale targets. 

As shown in Figure 1, the input of the pre-trained network is EEG features 𝐹 ∈ ℝ , where 𝐸 
denotes the number of feature channels after data representation and 𝑇 denotes the sample points. We 
extract the feature in the temporal and spatial domains by using two kinds of one-dimensional 
convolution operations, respectively, as shown in Figure 2. For the spatial domain convolution 𝐶𝑜𝑛𝑣1, 
a convolution layer of 𝐸 1  kernel size is used to learn the spatial information of multi-electrodes; 
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for the temporal domain information, we construct multiple layer basic residual modules including 
𝐶𝑜𝑛𝑣2 and 𝐶𝑜𝑛𝑣3. The output of the 𝑙𝑡ℎ layer is represented as [41]: 

𝑌 ℎ 𝐹 ℱ 𝐹 , 𝑊 ,  (3)

where ℎ ∙  is the direct mapping, i.e., the part of the curve in Figure 2. Since the feature dimension 
of 𝑌  may be different from 𝐹  after the convolution operation, ℎ ∙   uses 1 1  convolution 
mapping to raise or reduce the dimension of the feature 𝐹. ℱ ∙  is the residual part consisting of the 
convolutions 𝐶𝑜𝑛𝑣2 and 𝐶𝑜𝑛𝑣3, i.e., the straight-line part in Figure 2. The temporal domain feature 
representation is extracted using a convolutional layer with kernel size 1 25 . 

Figure 2. The structure of the specific pre-training feature extraction module. 

Through forward propagation of the network, the final output of the residual module can be 
expressed as [41]: 

𝑌 𝐹 ℱ 𝐹 , 𝑊   

𝑓 𝑌 ℱ 𝑓 𝑌 , 𝑊 .  
(4)

Finally, we use two fully connected (FC) layers 1024, 𝑐𝑙𝑠   to generate depth features 
represented as 𝑓. Details of the network parameters are shown in Table 1. 

To ensure that the features are discriminative and to prevent overfitting during training, we used 
cross-entropy classification loss ℒ  with labeled smoothing to minimize the difference between the 
predictions of the network model and the corresponding ground-truth. The equation of the loss function 
is as follows: 

𝑦 𝑦 1 𝛼 ,  (5)

ℒ ∑ ∑ 𝟙 log 𝑝 ,  (6)

where 𝑦  denotes the smoothed label, 𝛼 denotes the hyperparameter of the smoothed quantity, 𝐾 
denotes the category label, 𝟙 is the indicator function, which is set to be 1 if 𝑦  𝑐 is satisfied 
or 0 if not, and 𝑝  denotes the predicted probability that sample 𝑖 belongs to category 𝑐. 

v

FC

Pretrained Feature Extractor Module

v
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Table 1. The MB-CCRF network parameters. 

Layers MB-CCRF network 

Conv 1 16 1 , 128, stride 16, 1  

Conv 2 
1 25, 128
1 25, 128 2 

Max-pooling1 1 25，stride 1, 25  

Conv 3 
1 25, 256
1 25, 256 2 

Max-pooling2 1 20 , 𝑠𝑡𝑟𝑖𝑑𝑒 1, 20  

FC 1024; 4 ，SoftMax 

2.3. Centroid contrastive reconstruction fusion module 

In the pre-trained network model, the output of each branch is the EEG feature of each frequency 
band, respectively. However, the sensorimotor rhythms of different subjects may be presented in 
different frequency bands. Fusing multi-band features by stitching will increase the dimensions and 
affect the computational efficiency of the network. Also, it can negatively affect the final recognition 
effect of features in the shared embedding space due to the influence of bands with weaker 
discriminative information. To make extensive use of the discriminative information in multi-band 
features, we consider the differences and complementarities between features, recode them in the 
shared embedding space using a self-supervised k-means model, reconstruct their category semantic 
structure and fuse multi-band features with a learning mechanism to improve the feature representation 
capability of the network model. 

2.3.1. Centroid contrastive reconstruction module 

First, we obtain the features 𝑓  of the entire training set by invoking the pre-training model. The 
step is repeated over five frequency band branches. 

𝑓 𝑓 , ⋯ , 𝑓 , (7)

where 𝑓  is the feature vector of 𝑋 . 𝑁  represents the number of features in the training set. 
Then, in order to rebuild the semantic features by embedding multi-band features into the same 

feature space, k-means clustering [42] is performed for the training set features 𝑓 , finding each sub-

band feature cluster 𝑪 𝐶 , 𝐶 , … , 𝐶  with normalized feature prototypes 𝜇 . Specifically, 

𝜇
𝐮

∥𝐮 ∥
, where 𝐮 ∑ 𝑓∈ . 

Finally, we compare the features from the training set with the category prototypes to construct 
the affinity matrix and reconstruct the semantic structure of the features. The final feature 𝑓   is 
expressed as: 
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𝑍 ,
∙

∥ ∥∥ ∥
, (8)

𝑓 𝑍 ; 𝑍 ; ⋯ ; 𝑍 . (9)

2.3.2. Weighted fusion module 

After reconstructing the features, each band’s preloaded model output features are mapped into 
the same shared embedding space, providing unique feature discriminative information for each band. 
To better fuse them, we weight the reconstructed features to increase the impact of feature channels 
that are more useful for the current task and to suppress the less helpful features. Figure 1 shows a 
detailed process diagram of the weighted fusion module. 

First, to learn the interrelationships from frequency band features, we fuse the multi-band 
convolutional features 𝑓  of the five branches using row dimensional splicing and denote them as 𝑆. 

where the recoded features 𝑆 ∈ ℝ ，𝑁 5 𝐾. 

Then, to learn the non-linear relationship between channels, we use a feature weight learning 
strategy, which can automatically obtain the weight corresponding to the classification contribution of 
each feature channel by recoding the features 𝑆. 

𝑆 ′ 𝐹 𝑆, 𝛺 𝜎 𝜔 ⋅ 𝑅𝑒𝐿𝑈 𝐵𝑁 𝜔 𝑆   

𝑆 ′ 𝑆 ′ 𝑆 ′ 𝑆 ′ 𝑆 ′ ,  
(11)

where 𝜔 ∈ ℝ , 𝜔 ∈ ℝ . 𝜔  is the weight of the dimensionality-reducing layer to decrease 

the dimensions of the feature data and 𝑟 is the dimensionality-reducing hyperparameter. 𝜔  is the 
weight of dimensionality-increasing layer to recover the original data dimensions by 1 1 
convolution. Sigmoid function (denoted as 𝐹  ) is used to activate and learn the global dynamic 
attention mechanism. And the global dymanic weights 𝑆   are repartitioned into 𝑆 ∈ ℝ  
corresponding to the attention of each branch feature 𝑓 . 

Finally, we use the weights 𝑆  to sequentially boost the semantic structure of branch features 
𝑓  to obtain the weighted fusion feature 𝐹𝑒𝑎𝑡, as shown in Eq (12). 

𝐹𝑒𝑎𝑡 ∑ 𝑆 ⋅ 𝑓 ′. (12)

By weighted fusing five branches frequency band features 𝑓  , the final feature 𝐹𝑒𝑎𝑡  has 
stronger discriminative ability than each branch feature 𝑓 . 

𝑆 𝑓 ′ 𝑓 ′ 𝑓 ′ 𝑓 ′ 𝑓 ′   

𝑆 , 𝑆 , 𝑆 , ⋯ , 𝑆 ,
(10)
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2.4. Optimization training 

In the pre-training of the MB-CCRF network, we set the smoothing hyperparameter 𝛼 0.2 for 
the cross-entropy loss function ℒ  for labelled smoothing, and the training process is as follows: 

ℒ ℒ 𝑓 ,  (13) 

𝜃 𝑎𝑟𝑔 𝑚𝑖𝑛 ℒ 𝑓 |𝜃 ,  (14) 

where 𝜃  denotes the parameters of the MB-CCRF network, and the network model of five bands are 
trained independently. 

In the centroid contrastive reconstruction module, we obtain the centroids of each frequency band 
data by self-supervised k-means and minimize the cross-entropy loss function ℒ  to optimize the 
fusion network parameters 𝜃 . 

𝜃 𝑎𝑟𝑔𝑚𝑖𝑛ℒ 𝐹𝑒𝑎𝑡 𝜃 , 𝜃 ,  (15) 

where 𝜃  is the dimensionality-reducing layer parameter for constructing the global feature 𝑆 and 
𝜃  is the dimensionality-increasing layer parameter for constructing the attention mechanism 𝑆 . 

During the testing process, we acquire the category centroid from the training dataset and reconstruct 
the final semantic structure of the testing dates by comparing them with the category centroid. 

The method in this paper is implemented using the PyTorch library in Python, an AMD 5900X 
CPU and a GTX 3080ti GPU. In the proposed MB-CCRF network, the pre-training batch size is 64, 
the ReLU function is chosen as the activation function and the dimensionality reducing hyperparameter 
𝑟 4  in the weighted fusing module is determined by training iteratively. In addition, batch 
normalization is added at each layer connection. The number of iterations (Epoch) is set to 600, the 
initial learning rate is set to 10  and the learning rate in the Optimizer is updated and adjusted by 
using the Scheduler. 

3. Experiments and results 

In this section, we verify the effectiveness of the proposed MB-CCRF method. First, we present 
the multi-class EEG dataset of the BCI Competition IV IIa used in the experiments. Second, we 
compare the MB-CCRF method proposed in this paper with other baseline methods. Finally, we 
analyze the performance of each module through ablation experiments. 

3.1. Dataset and pre-processing 

The Brain-Computer Interface Competition IV IIa dataset contains 22-channel EEG signals from 
nine subjects with a sampling frequency of 250 Hz (refer to A1–A9). The dataset was collected on four 
different motor imagery tasks, including left hand (class0), right hand (class1), feet (class2) and tongue 
(class3). The timing scheme consists of a fixed 2 s, a reminder time of 1.25 s, followed by a period of 
MI of 4 s. For each subject, two sessions of data were collected with 288 trials (72 trials per MI task) 
for each session. More details of the dataset can be seen in [43] and it is available to download at 
http://www.bbci.de/competition/iv/#dataset2a. 



20633 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20624–20647. 

The motor imagery signals from the time segment of 0.5 to 2.5 s after the cue instructed in each 
trial are used for the experiments. We remove the data from erroneous experiments. For the null-value 
problem, we chose linear interpolation to fill in the missing values. In this study, the hold-out strategy 
is used to divide the dataset, which randomly divides the available trials into 8 sections. Six sections 
are used as the training set and the remaining two sections are used as the testing set. The best pre-
trained model for each subject is selected to verify the testing set, and the performance of the MB-
CCRF network model proposed in this paper is evaluated using the classification accuracy of the 
testing set.  

3.2. Analysis of experimental results 

To verify the effectiveness of the MB-CCRF algorithm proposed in this paper, we use the BCI 
Competition IV IIa dataset to analyze the classification effect of the algorithm and compare it with 
other baseline methods, as shown in Table 2, where the classification results are from the original 
manuscript [12,24,25,44,45].  

Table 2. Classification accuracy of different frequency band features and fusion features 
of THE BCI Competition IV IIa dataset. 

Subject A1 A2 A3 A4 A5 A6 A7 A8 A9 Ave 

8–12 Hz 77.37 55.47 94.03 61.16 46.62 57.94 77.04 83.46 79.03 70.24 

12–16 Hz 82.48 61.31 58.96 70.25 50.38 45.79 80.00 74.44 80.65 67.14 

16–20 Hz 56.20 55.47 70.15 65.29 56.39 51.40 80.74 80.45 82.26 66.48 

20–24 Hz 76.64 58.39 77.61 57.85 61.65 53.27 77.78 71.43 77.42 68.00 

24–30 Hz 79.56 51.09 87.31 58.68 48.12 55.14 70.37 87.97 87.10 69.48 

8–30 Hz 81.02 62.77 89.55 66.12 56.39 64.49 84.44 86.47 83.06 74.92 

MB-CCRF 88.32 72.26 89.55 76.86 65.41 61.68 87.41 90.22 87.90 79.96 

1) FBCSP-SVM [24] and GLRCSP [12] are the improved algorithms of CSP, and they both use 
CSP to maximize the variance between features in different classes. Among them, the average 
classification accuracy of the GLRCSP algorithm differs from the MB-CCRF algorithm by only 1.76%. 
But it is less effective for some subjects due to individual differences in EEG signals that cause the 
algorithm to bias towards certain datasets. Compared with FBCSP-SVM, the MB-CCRF algorithm 
incorporates a cross-layer connected network training module and a centroid contrastive reconstruction 
fusion module based on the refined frequency bands, which improves the average accuracy by 8.78%. 
The MB-CCRF algorithm not only enhances the classification accuracy in general, but also improves 
the classification results of the subject’s dataset with poor classification and has higher generalizability. 

2) ConvNet [44] is a traditional CNN algorithm, and Multi-Branch 3D CNN is an improved 
algorithm of CNN. The MB-CCRF algorithm appends cross-layer connection paths to the traditional 
CNN network for learn deeping and shallow features in sub-bands. Comparing with the two algorithms, 
the average classification accuracy of the MB-CCRF algorithm is improved by 7.43% and 4.94%, 
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respectively. It shows that constructing data representation for the EEG signal and fusing the shallow 
and deep features of the network are beneficial to retain more discriminative information, thus 
improving the classification performance. 

3) CW-CNN, C2CM [24] and monolithic [25] network are integrated algorithms of CSP and CNN. 
Comparing with these three networks, the MB-CCRF algorithm has a better average accuracy with 
6.89%, 5.50% and 1.55% differences, respectively. It implies that mapping the features into the shared 
embedding space and weighting the fusion based on the difference in contribution of each band feature 
can ensure the maximum fusion gain. 

Table 3. Classification accuracy comparison with other published results applied to the 
BCI Competition IV IIa dataset. 

Methods FBCSP 

-SVM 

[24] 

GLR 

CSP 

[12]

ConvNet 

[44] 

Multi-branch 

3D CNN 

[45]

CW-CNN 

[24] 

C2CM 

[24] 

Monolithic 

network 

[25] 

MB-CCRF 

A1 82.29 86.11 76.39 77.40 86.11 87.5 83.13 88.32 

A2 60.42 58.33 55.21 60.14 60.76 65.28 65.45 72.26 

A3 82.99 93.75 89.24 82.93 86.81 90.28 80.29 89.55 

A4 72.57 67.36 74.65 72.29 67.36 66.67 81.60 76.86 

A5 60.07 55.56 56.94 75.84 62.50 62.5 76.70 65.41 

A6 44.10 65.28 54.17 68.99 45.14 45.49 71.12 61.68 

A7 86.11 81.25 92.71 76.04 90.63 89.58 84.00 87.41 

A8 77.08 93.75 77.08 76.85 81.25 83.33 82.66 90.22 

A9 75.00 88.19 76.39 84.67 77.08 79.51 80.74 87.90 

Ave 71.18 78.20 72.53 75.02 73.07 74.46 78.41 79.96 

To analyze the effect of multi-band features on classification performance, we compared the 
classification accuracy of five sub-bands features, 8–30 Hz band features and centroid contrast 
reconstruction fusion features for nine subjects, respectively, as shown in Table 3. For different band 
features in the same subjects, the classification accuracies varied widely. It indicates that the MI-EEG 
features have different abilities to express motor imagery task in different frequency bands. The 
optimal classification bands also differed for different subjects. It shows that the differences in the 
classification contribution of features in different frequency bands are caused by the different response 
frequencies of EEG signals when different subjects perform the motor imagery task. 

In the same subject, the classification accuracy of some sub-band features is improved compared 
with the 8–30 Hz features, but the fusing features achieved more significant classification results. In 
A2, A4 and A5 datasets with poor classification, the fused classification effects improved by 9.49%, 10.74% 
and 9.02%, respectively, compared with 8–30 Hz features. Therefore, refining the frequency bands of 
MI-EEG, reconstructing the semantic structure of features by centroid contrast and fusing multi-band 
features weighted according to the classification contribution can obtain more significant sensory-motor 
related information and be more competitive in the classification recognition of MI-EEG. 
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3.3. Results of ablation experiment 

To analyze the performance of new-added modules in the model, we constructed three ways 
through ablation experiments to compare and analyze the classification accuracy of nine subjects with 
added fusion model, weighted fusion model and reconstruction weighted fusion model, as shown in 
Figure 3. We fused the pre-trained multi-band features by directly adding the MB-CCRF model without 
the other module, named as added fusion model. In weighted fusion model, we weighted and fused the 
multi-band features by using the learning mechanism, that is the MB-CCRF without the reconstruction 
module. In MB-CCRF model, both modules are used to fuse features from the centroid contrastive 
reconstruction module and weighted fusion module. 

The average decoding accuracies of the three models are 69.6%, 76.8% and 79.9%, respectively. 
The weighted fusion model and MB-CCRF model improved by 7.2–10.3% over the added fusion 
model, which is due to the discriminative information contained in the multi-band features being fully 
utilized. In particular, the discriminative characteristics of the sub-band features are enhanced by 
weighted reconstruction, which strengthens the decoding accuracy of the model. On the contrary, the 
added fusion approach is affected by the sub-band features with less discriminative information, which 
weaken the representation of the strong semantic sub-band features after embedding in the common 
space, and negatively affect the final recognition effect of the model. 

 

Figure 3. Compare the accuracy of different methods with added fusion, weighted fusion 
and MB-CCRF. 

4. Analysis 

In this section, we use three methods to discuss the effectiveness of the MB-CCRF network, 
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specifically modeling complexity and computation time, the feature clustering visualization, the 
confusion matrix and the sub-band feature activation interval. 

4.1. Analysis of model complexity and computation time 

In practice, large models can lead to overfitting of simple samples, while small models are not 
enough to cope with complex samples. For EEG signals, we need to ensure model performance and 
practical efficiency. Table 4 shows the number of parameters and computational complexity of the 
model. The MACs (multiply accumulate calculations) are the cumulative number of multiplications 
and additions performed per second, which can be used to measure the computational complexity of 
the model. It is independent for the environment in which the model is running (CPU, GPU or TPU). 
Where the MAC of the model is proportional to the inference time and the computational 
complexity, and the number of parameters for each part of the model’s modules are small and 
suitable for real-world environments. 

Table 4. The number of parameters and computational complexity of the MB-CCRF. 

Model MACs (G) Parameters (M) 

Pre-trained feature extracted 0.94 7.68 

Weighted fusion  4e-08 4e-05 

In addition, we analyze the computation time of the MB-CCRF model and the pre-trained 
model for different frequency bands, as shown in Table 5. The training time is the average training 
time of 100 iterations for one batch sample and the inference time is the average testing time for 100 
random test samples. The training and testing times of the pre-trained models are roughly the same 
because the framework and the parameter number of pre-trained models are roughly the same. The 
computational time for the MB-CCRF model is the time to recall the pre-trained model and to build 
the reconstructed fusion model, so it does not increase exponentially. 

Table 5. The training time and inference time of the MB-CCRF model. 

Model 8–12 Hz 12–16 Hz 16–20 Hz 20–24 Hz 24–30 Hz MB-CCRF 

Training time (ms) 237.55 232.55 237.98 233.99 234.45 471.61 

Inference time (ms) 3.59 3.64 3.59 3.59 3.54 41.18 

4.2. Visualization of feature clustering effects 

In this paper, t-distributed stochastic neighbor embedding (t-SNE) is a reduction and data 
visualization technique that transforms the similarity relationship between high-dimensional data into 
probability distributions to map them into a low-dimensional space for easier visual analysis of features. 
In the t-SNE visualization graph, we map the high-dimensional features of the EEG signal to two-
dimensional spatial coordinates, as shown in Figure 4. Each colored spot in the graph represents the 
feature vector of the data sample that has been mapped into the low-dimensional space. The relative 
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distances of these points in the visualization graph reflect the similarity relationship between the 
original high-dimensional data samples. 

Figure 4. T-SNE visibility graph: sub-band features that are obtained by the centroid 
contrastive reconstruction module and fusion feature that is obtained by the weighted 
fusion model, mapped to 2-D plane. (a) 8–12 Hz; (b) 12–16 Hz; (c) 16–20 Hz; (d) 20–24 
Hz; (e) 24–30 Hz; (f) MB-CCRF. 

In Figure 4, we compare the classification effects of sub-band features and fusing features by 
visualizing the features of the A3 dataset that have significant differences in the classification effects 
of sub-band features. Among them, in the feature frequency bands of 8–12 Hz and 24–30 Hz, the 
distribution clusters of the four classes are clearly divided, but the intra-class distances are compact. 
In 16–20 Hz and 20–24 Hz bands, there is less distinction between left and right hand category clusters, 
and the features of the foot and tongue were heavily confounded. In the 12–16 Hz band, the category 
clusters of the left and right hand were severely confused, and some of the three category features, 
which are left hand, right hand and foot, entered the tongue class cluster. In contrast, as shown in 
Figure 4(f), the fusing features after the MB-CCRF network were not affected by the heavily confused 
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band features. They absorbed the advantages of the sub-bands with better classification effects, 
aggregated the same category features and separated the different category features, so that each class 
feature formed its own class cluster and improved its recognizability. 

4.3. Confusion matrix of sub-band features 

In this section, we use confusion matrices to discuss the classification results of different 
frequency band features and MB-CCRF features. In Figure 5, we choose the sub-band features and 
MB-CCRF fusion features of the A8 subject for discussion analysis. As shown in Figure 5(a)–(e), the 
categories with the best classification accuracy are different for different frequency band features, but 
they are often accompanied by spurious improvement of classification accuracy due to 
misclassification. This leads to a category propensity for single band features. In Figure 5(f), the 
classification accuracies are improved for four motor imagery tasks compared with single sub-band 
features. There is no such thing as an increase of the classification accuracy in a category due to 
category propensity. 

 

 

Figure 5. Confusion matrix analysis diagrams of different sub-band features: (a) 8–12 Hz; 
(b) 12–16 Hz; (c) 16–20 Hz; (d) 20–24 Hz; (e) 24–30 Hz; (f) MB-CCRF. 
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Figure 6. Confusion matrices of the subject A1: (a) the feature of 8–30 Hz; (b) the fusion feature. 

 

Figure 7. Confusion matrices of the subject A2: (a) the feature of 8–30 Hz; (b) the fusion feature. 

As shown in Figures 6 and 7, we compare the 8–30 Hz band features and MB-CCRF fusion 
features of two subjects, which are A1 and A2. The recall rates of four classes have improved 
significantly. Moreover, for the difficult category samples, such as the left hand motor imagery task 
category samples of A2 subjects, the MB-CCRF algorithm not only improves the classification 
accuracy of this category but also reduces the misrecognition. It indicates that the MB-CCRF algorithm 
can neutralize the sensorimotor information in each sub-band feature, reduce the confusion between 
soft and hard samples and more precisely respond to the subject’s brain activity. 

4.4. Sub-band feature activation interval 

Grad-CAM (gradient-weighted class activation mapping) is a technique for producing visual 
explanations for decisions made by convolutional neural network (CNN)-based models. It uses the 
gradients of target concept flowing into the final convolutional layer to produce an energy localization 
map, highlighting the regions of the image that are most relevant for a particular class prediction. It 
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assigns importance values to each neuron in the last convolutional layer based on the gradient 
information flowing into it, allowing for the explanation of output layer decisions [46]. 

     

     

Figure 8. Grad-CAM heat map for sub-band feature activation interval: (a) left hand class; 
(b) right hand class; (c) foot class; (d) tongue class. 

To observe the discriminative information of each sub-band in different motor imagery classes, 
we used Grad-CAM to visualize and to discuss the feature map based on the last layer of the pre-
trained network, which is rich in highly abstracted class features. Deeper convolutional layers in the 
network capture more advanced signal features and retain some spatial information compared to fully 
connected layers. As a result, the final convolutional layer achieves an optimal balance between high-
level semantics and detailed spatial information. To obtain class activation mapping (CAM), we 
replace the CNN classifier with global average pooling (GAP) and a fully connected layer equal to the 
class number, and then retrain the model features to account for the degree of category correlation 
between different regions. The portion of the original input data corresponding to highly correlated 
features can be determined by up-sampling. By the above method, we were able to explain the 
distribution of attention and the category correlation of the rhythm signal features extracted by the 
CNN model. 

Figure 8(a)–(d) show the feature expression ability of the four classes of A1 subject in the original 
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signal interval. In the figure, the features extracted in the sub-band model are mapped into the intervals 
carrying key discriminative information in the original signal. It shows that the peak value of feature 
activation is mostly around the 200th time point. But the feature activation regions were significantly 
different for different motor imagery tasks, and it was significantly higher for left and right hand 
compared to tongue. Moreover, the activation regions of different sub-bands are varied under the same 
motor imagery task, but the regions with higher activation levels were partially overlapping and 
complementary. It indicates that with the MB-CCRF approach, sub-band features can complement 
each other to provide complete category information. 

4.5. Validity analysis of the training module 

 

Figure 9. Kernel density estimation graph of different methods: (a) added fusion model; 
(b) weighted fusion model; (c) MB-CCRF model. 

In this section, we use kernel density estimation to analyze the effectiveness of the weighted 
fusion module and centroid contrastive reconstruction module in the MB-CCRF model. Three different 
fusion models were used to analyze the EEG data of A1 subjects. The probability dense distributions 
of their predicted and actual labels are visualized, as shown in Figure 9. In Figure 9(a), the dense 
distribution of predicted labels is mainly clustered in the foot class region. There is also a slightly 
increased number of predicted labels in other classes, while the predicted labels in the tongue class are 
empty. It indicates that the added fusion features lead to a spurious increase in single class accuracy 
due to the categorization tendency. In Figure 9(b), it can focus more on the sub-bands of strong 
semantic categories by weighted fusion of the different sub-bands features, effectively avoiding the 
influence of anomalous features. In Figure 9(c), by utilizing the centroid comparative reconstruction 
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features, there is a large overlap in the distribution regions of the predicted and actual labels, and the 
distribution of multiple peaks is more even. It indicates that the centroid comparative reconstruction 
module can make full use of the pre-trained sub-band features to further improve the recognition effect 
of the weighted fusion model. 

5. Conclusions 

This paper proposes a multi-band centroid contrastive reconstruction fusion network, MB-CCRF, 
for the intention recognition task of MI-EEG signals. First, considering the individual band variability 
of EEG signals, we compensate for the incompleteness of the single-band data information by 
extracting the spatiotemporal feature matrices of the five sub-bands of MI-EEG. Second, we pre-train 
the multi-band features using a multi-branch cross-layer connected network model. The cross-layer 
connected feature extraction approach not only enhances the receptive field of the model and the detail 
sensibility of the network, but also ensures the maximum information flow of the network is 
transmitted. Then, we extract category centroid features for each class feature in a single sub-band and 
reconstruct the categorical semantic structure of the features by comparing with the centroid to ensure 
the similarity of features in a shared embedding space. Finally, considering the redundancy and 
variability among different features, we build a weighted fusion model according to the correlations 
between multiband features and class labels, thus adaptively adjusting the weight of each band feature 
so that the generated fused features are more discriminative. 

In this paper, we demonstrated three issues through ablation experiments and visualization 
analysis. First, the single-band features do not provide complete sensorimotor information because the 
best response frequency of MI-EEG varies between different subjects or experimental settings. The 
MB-CCRF fusion algorithm can compensate for the information loss and overcome the problem of 
different subjects with different best response bands. Second, recognizing features within a single 
frequency band tends to a certain category. These tendentious optimal accuracies cannot be used as an 
evaluation criterion for the effectiveness of recognition in that category. The MB-CCRF fusion 
algorithm improves the category tendency problem, reduces the confusion between soft and hard 
samples and reflects the subject’s current motor intention accurately. Third, MI-EEG features carry 
different discriminative information in each frequency band. The MB-CCRF network adopts a learning 
mechanism to adaptively align the sub-band features and learns more information from sub-band 
features with more important discriminative information, which effectively improves the 
recognizability of the fused feature. 

In conclusion, the MB-CCRF model shows great potential in decoding MI-EEG signals, but also 
faces some important challenges. Its main disadvantage is the complexity of the model, which requires 
careful tuning of multiple steps and many hyperparameters, and increases the cost of development and 
maintenance. Then, the method requires a large amount of high-quality, multi-band MI-EEG data. This 
limits its availability for practical applications, especially when data collection is difficult or expensive. 
In addition, it can lead to poor generalization ability of deep learning models that lack data samples with 
diversity information and feature representations with high generalization capabilities [22,47]. Therefore, 
it is unclear whether the MB-CCRF model has sufficient cross-subject generalization performance. 

In the future, we need to explore some methods to reduce the complexity of the model, such as 
transforming regularization parameters into trainable parameters to decrease the requirements for 
manual hyperparameter tuning [20]. Moreover, we can improve the data processing techniques to 
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increase data availability or enhance the cross-subject generalization performance of the MB-CCRF 
method. The MB-CCRF method is applicable not only for EEG but also for non-invasive optical 
techniques for imaging and monitoring of brain and retinal neurology, such as optical coherence 
tomography (OCT) and other biomedical imaging applications [48–51]. Therefore, future research and 
experiments will be necessary to comprehensively evaluate the performance of the MB-CCRF method 
and determine its applicability in different fields and applications. 
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