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Abstract: The present study discussed a model to describe the SARS-CoV-2 viral kinetics in the pres-
ence of saturated antiviral responses. A discrete-time delay was introduced due to the time required
for uninfected epithelial cells to activate a suitable antiviral response by generating immune cytokines
and chemokines. We examined the system’s stability at each equilibrium point. A threshold value
was obtained for which the system switched from stability to instability via a Hopf bifurcation. The
length of the time delay has been computed, for which the system has preserved its stability. Numer-
ical results show that the system was stable for the faster antiviral responses of epithelial cells to the
virus concentration, i.e., quick antiviral responses stabilized patients’ bodies by neutralizing the virus.
However, if the antiviral response of epithelial cells to the virus increased, the system became unstable,
and the virus occupied the whole body, which caused patients’ deaths.
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1. Introduction

Since January 2020, a deadly pandemic known as COVID-19 has spread from person to person,
wreaking havoc across the globe. The virus responsible for the illness is SARS-CoV-2, also known
as the 2019-ncov [1]. Multiple cases of pneumonia, dry cough, fever, fatigue, breathing difficulty
and bilateral lung infiltration have been reported due to the virus’s spread within the human body
[2,3]. According to the World Health Organization (WHO), as of March 18, 2023 there have been 760
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million cases reported worldwide, with 6.8 million fatalities. Vaccines like Pfizer-BioNTech, Moderna
(mRNA-1273), and COVAXIN are available for hospitality and to control the pandemic.

Mathematical models give more insight and knowledge into the dynamics of infectious diseases,
which may help control the pandemic. Several researchers [4–9] have investigated the human-to-
human transmission dynamics of the COVID-19 pandemic using mathematical modeling. Mathemat-
ical models incorporating time delays are also used for understanding infectious disease dynamics
because they are more realistic and accurate due to the memory effect. Yang et al. [10] proposed a
COVID-19 model with a time delay that characterized the viral infection cycle and treatment time.
They fitted their model with the data from Beijing and Wuhan and suggested that early detection and
isolation are the most important ways to prevent the spread of the epidemic. In [11], the effect of the
time delay of the immune response on COVID-19 transmission dynamics has been investigated. A
mathematical model has been designed in [12] to explore the importance of time lag in precautionary
measures to control the COVID-19 pandemic. Babasola et al. [13] explored the role of time delay with
a convex incidence rate in the COVID-19 epidemic. They observed that time delay destabilizes the
system and generates periodic solutions. The effects of time delay in using vaccinations for COVID-19
spread dynamics has been investigated in [14].

Moreover, controlling the COVID-19 pandemic also requires a thorough understanding of the
within-host dynamics of the SARS-CoV-2 virus. For this purpose, numerous modeling studies have
been performed to predict the behavior of the SARS-CoV-2 virus at the cellular level. Both viral and
host factors play a significant role in SARS-CoV-2 infections. Host factors during infection trigger
an immune response that combats the virus. The host’s innate immune system can identify viral in-
fections by utilizing pattern recognition receptors to identify pathogen-associated molecular patterns.
As the innate immune system detects the viruses, it typically triggers the pulmonary and systemic in-
flammatory reactions linked to the SARS-CoV-2 virus. According to a modeling study [15], the innate
immune response may be able to clear the virus more effectively if the adaptive immune response is
temporarily suppressed. The kinetics of the human SARS-CoV-2 infection have been mathematically
modeled in [16]. Prakash et al. [17] proposed a multi-scale model that incorporates both the intra-
host and inter-host dynamics of COVID-19. Their findings suggest that treatment with antiviral drugs,
immunotherapies, and improved sanitation and social isolation was proposed as the most effective
method for lowering the virus’s basic reproduction number and environmental spread in a population.
Chhetri et al. [18] studied the role of various drugs at various stages of COVID-19 pathogenesis using
a mathematical model of the complex interaction of virus replication and the host immune response.
The effector T cell response to SARS-CoV-2 and the dynamics of the virus were studied in [19]. The
dynamics of SARS-CoV-2 in infected patients were simulated in [20]. Chowdhury et al. [21] analyzed
a mathematical model to investigate the impact of natural killer cells and T cells on SARS-CoV-2
kinetics. Li et al. [22] proposed a within-host SARS-CoV-2 model to observe drug effects on virus
growth and the immunity effect of patients. In [23], dynamical analysis of the model [22] was stud-
ied. Ghosh et al. [24] observed the within-host dynamics of SARS-CoV-2 in the presence of innate
and adaptive immune responses and then observed the effect of vaccination and antiviral treatments.
Stochastic dynamics of the within-host COVID-19 epidemic with discrete time delay and noise have
been studied in [25] and showed the impact of delay tactics and noise on the extinction of the disease.
Staroverov et al. [26] proposed a novel mathematical model for SARS-CoV-2 dynamics that explicitly
modeled intracellular events like the exhaustion of cellular resources needed for virus production and
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innate immune responses. Pillis et al. [27] showed a mathematical model of how SARS-CoV-2 spreads
within a host and how neutralizing antibodies react to vaccination.

It is found in the above literature that during the infection by the virus, the epithelial cells resist the
viral infection by activating the immune system. Thus, considering this fact, we modified the model
discussed in [22, 23]. So, in this study, we consider a model incorporating the antiviral responses of
uninfected epithelial cells in terms of Michaelis-Menten, which is suitably described as the “saturated
responses”. In addition, it takes some time for uninfected epithelial cells to develop a suitable antiviral
response after contracting a virus. Therefore, we introduce a time delay into the saturated response
term. The rest of the manuscript is assembled as follows: In Section 2, we have formulated our model.
The basic characteristics of the solution of the model have been discussed in Section 3. The stability
of the model and estimation of the time lag for preserving a stable limit cycle have been investigated in
Section 4. The numerical simulation has been performed in Section 5. A concluding remark has been
made in Section 6.

2. Model formulation

This section will formulate a model that describes the within-host SARS-CoV-2 viral kinetics. The
considered model was originally proposed by Li et al. [22], and the model is described by the following
equations:

dE(t)
dt
= d1(E(0)–E(t)) − βE(t)v(t),

dI(t)
dt
= βE(t)v(t) − d2I(t),

dv(t)
dt
= µI(t) − d3v(t).

(2.1)

The numbers of pulmonary epithelial cells that are uninfected, infected and the virus concentra-
tion are represented here as E(t), I(t), and v(t), respectively. The rate at which virus-free epithelial
cells are infected by the virus is indicated by the symbol β. The virus-free pulmonary epithelial cells
are produced at a rate of d1E(0) and die at a rate of d1. The term d2 represents the death rate of
virus-infected epithelial cells. Also, µ and d3 represent the production rate and death rate of viruses,
respectively. The epithelial cells are infected once the virus comes into contact with a human being.
In addition, epithelial cells can fight off the virus during infection by triggering the immune system to
control antiviral responses. Since uninfected epithelial cells resist viral infection by secreting immune
cytokines and chemokines, we modified the model (2.1) to describe this behavior by the nonlinear term
βE(t)v(t)

1+v(t) [28–30]. In addition, uninfected epithelial cells need time to develop a proper antiviral response
after infection by the virus. Therefore, there is a time lag to regulate the antiviral response and this
time delay can be introduced as a discrete-time delay, τ into the term, βE(t)v(t)

1+v(t) . Thus, the considered
model becomes,

dE(t)
dt
= d1(E(0)–E(t)) −

βE(t − τ)v(t − τ)
1 + v(t − τ)

,

dI(t)
dt
=
βE(t − τ)v(t − τ)

1 + v(t − τ)
− d2I(t),

dv(t)
dt
= µI(t) − d3v(t),

(2.2)
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subject to the initial conditions:

E(θ) = ϕ1(θ), I(θ) = ϕ2(θ), v(θ) = ϕ3(θ),
ϕ1(θ) ≥ 0, ϕ2(θ) ≥ 0, ϕ3(θ) ≥ 0, θ ∈ [−τ, 0],

also ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0,

where
ζ+ = {(ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ S ([−θ, 0] ∈ R3

+)}, (2.3)

where the continuous functions ϕi are defined on the interval θ ∈ [−τ, 0].

3. Nonnegativity and boundedness

In this section, we will discuss the nonnegativity and boundedness of solutions for the considered
model.

Proposition 3.1. Corresponding to initial conditions (2.3), all solutions of the system (2.2) are in R3
+

and bounded for all t > 0.

Proof. The epithelial cells are subdivided into uninfected and infected epithelial cells. Thus the first
two equations of the system (2.2) give us

d
dt
{E(t) + I(t)} = d1(E(0)–E(t)) − d2I(t),

≤ d1(E(0) − E(t)) − d2I(t),
= d1E(0) − δ(E(t) + I(t)),

where δ = min{d1, d2}. Thus, an upper bound always exists for uninfected and infected epithelial cells.
It is easy to see from the model’s third equation that the free virus population v is also bounded above.

Now, the system (2.2) can be re-written in vector notation as

Ẋ = Γ(X), (3.1)

with X = [E(t), I(t), v(t)]T ∈ R3
+ and

Γ(X) =


Γ1(X)
Γ2(X)
Γ3(X)

 =

d1(E(0)–E(t))–βE(t−τ)v(t−τ)

1+v(t−τ)
βE(t−τ)v(t−τ)

1+v(t−τ) − d2I(t)
µI(t) − d3v(t)

 ,
where, Γ ∈ C∞(R3

+) and Γ : R3
+ → R

3
+. The righthand side of system (2.2) is locally Lipchitz, thus the

derivatives are bounded and satisfy

Γi(X)|Xi(t)=0,X∈R3
+
= Γi(0); for all i = 1, 2, 3.

Also, using the second lemma of [31], the solution of system (2.2) remains positive throughout the
domain R3

+, ∀t > 0 corresponding to initial conditions (2.3). Thus, the solutions of model (2.2) are
nonnegative and bounded for time t > 0. This completes the proof. □
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4. Stability analysis

4.1. Basic reproduction number

The basic reproduction number in virus dynamics determines whether the disease will persist or
die. It also controls disease spread in the population. We will use the method described in Driessche
and Watmough [32] to calculate the basic reproduction number of model (2.2).

The two infected compartments in the model (2.2) are I and v. If Fi andVi denote the appearance
rate of new infections in the ith compartment and the transfer rate of individuals from the ith compart-
ment, respectively, then we have two matrices F andV as follows:

F =

(βE(t)v(t)
1+v(t)

0

)
,V =

(
d2I(t)

d3v(t) − µI(t)

)
. (4.1)

The Jacobian matrices of F andV at the virus-free equilibrium point, denoted by F and V respec-
tively, are evaluated as

F =
(
0 βE(0)
0 0

)
,V =

(
d2 0
−µ d3

)
. (4.2)

Now, we compute the next generation matrix FV−1 as follows

FV−1 =
1

d2d3

(
0 βE(0)
0 0

) (
d3 0
µ d2

)
=

1
d2d3

(
µβE(0) βd2E(0)

0 0

)
.

Following Driessche and Watmough [32], the basic reproduction number χ0 of the model (2.2) is
the spectral radius of the matrix FV−1 which is given by χ0 =

µβE(0)
d2d3

.

4.2. Equilibrium points and local stability

In this section, we will investigate the existence of the equilibrium points for the model (2.2) and
study their local stability. As the time delay τ neither affects the number nor the type of equilibrium
points; the existing equilibrium points of the model (2.2) are

• P′(E(0), 0, 0), uninfected or virus-free equilibrium point, which always exists.
• P∗(E∗, I∗, v∗), coexisting equilibrium point; where,

E∗ =
d2I∗(1 + v∗)
βv∗

=
E(0)
χ0

(
1 +

(χ0 − 1)d1

β + d1

)
,

I∗ =
d3v∗

µ
=

d3d1

µ(β + d1)
(χ0 − 1),

and v∗ =
d1

(β + d1)
(χ0 − 1).

Clearly, the coexisting equilibrium P∗(E∗, I∗, v∗) exists if χ0 > 1.

For local stability analysis, we consider two cases:
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Case 1: τ = 0

(i) The Jacobian matrix of the system (2.2) at uninfected or virus-free equilibrium point P′(E(0), 0, 0)
is

J0
P′ =


−d1 0 −βE(0)

0 −d2 βE(0)
0 µ −d3

 .
The characteristic equation of the matrix J0

P′ is

λ3 + A11λ
2 + A12λ + A13 = 0, (4.3)

where
A11 = d1 + d2 + d3,

A12 = d1(d2 + d3) + d2d3(1 − χ0),
A13 = d1d2d3(1 − χ0).

The Routh-Hurwitz stability criterion states the equilibrium point P′(E(0), 0, 0) is locally asymp-
totically stable if A11 > 0, A12 > 0, A13 > 0 and A11A12 − A13 > 0. These inequalities imply that
P′(E(0), 0, 0) is locally asymptotically stable if χ0 < 1 =⇒ µ < d2d3

βE(0) ; otherwise, it is unstable.
Thus, if the production rate of the virus is less than the ratio between the product of the decay
rate of infected epithelial cells and virus concentration and the product of the infection rate of the
virus and density of uninfected epithelial cells, then the virus-free equilibrium point P′(E(0), 0, 0)
is locally asymptotically stable.

(ii) Corresponding to the co-existing equilibrium point P∗(E∗, I∗, v∗), the Jacobian matrix of system
(2.2) is

J0
P∗ =


−d1 −

βv∗

1+v∗ 0 −
βE∗

(1+v∗)2

βv∗

1+v∗ −d2
βE∗

(1+v∗)2

0 µ −d3

 .
The characteristic equation of the matrix J0

P∗ is

λ3 + B11λ
2 + B12λ + B13 = 0, (4.4)

where
B11 = d1 + d2 + d3 +

βv∗

1 + v∗
,

B12 = d2d3 −
µβE∗

(1 + v∗)2 + (d2 + d3)(d1 +
βv∗

1 + v∗
)

= d2d3(
v∗

1 + v∗
) + (d2 + d3)(d1 +

βv∗

1 + v∗
)

[substituting E∗ =
d2I∗(1 + v∗)
βv∗

and
I∗

v∗
=

d3

µ
],

B13 = (d1 +
βv∗

1 + v∗
)(d2d3 −

µβE∗

(1 + v∗)2 ) +
βE∗

(1 + v∗)2

µβv∗

1 + v∗

= (d1 + β)
d2d3v∗

1 + v∗

[substituting E∗ =
d2I∗(1 + v∗)
βv∗

and
I∗

v∗
=

d3

µ
].
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According to the Routh-Hurwitz stability criteria, whenever χ0 > 1, the equilibrium point
P∗(E∗, I∗, v∗) is locally asymptotically stable if B11 > 0, B12 > 0, B13 > 0 and B11B12 − B13 > 0;
otherwise it is unstable. However, clearly B11 > 0, B12 > 0, B13 > 0 and B11B12 − B13 > 0 if
χ0 > 1. Thus, for the stability of the coexisting equilibrium point P∗(E∗, I∗, v∗), the system (2.2)
must have the production rate of the virus greater than the ratio between the product of the decay
rate of infected epithelial cells and virus concentration and the product of the infection rate of the
virus and density of uninfected epithelial cells.

Case 2: τ , 0

(i) The Jacobian matrix of system (2.2) at uninfected or virus-free equilibrium point P′(E(0), 0, 0) is

JP′ =


−d1 0 −βE(0)e−λτ

0 −d2 βE(0)e−λτ

0 µ −d3

 .
The one eigenvalue of the matrix JP′ is λP′,1 = −d1 < 0, and the other two eigenvalues will be
calculated from the following quadratic equation:

λ2 + (d2 + d3)λ + (d2d3 − µβE(0)e−λτ) = 0. (4.5)

Let τ > 0. Since Eq (4.5) is transcendental with an infinite number of solutions, we assume that
λ = ιω, and without loss of generality we may assume that ω = 0 is a root of (4.5). Therefore,
putting λ = ιω in (4.5), we get

−ω2 + (d2 + d3)ιω + d2d3 − µβE(0)(cosωτ − ιsinωτ) = 0. (4.6)

Separating the real and imaginary parts of Eq (4.6), we have the following system:−ω2 + d2d3 = µβE(0)cos(ωτ)
(d2 + d3)ω = −µβE(0)sin(ωτ).

(4.7)

Squaring both the equations of (4.7) and then adding them, we obtain

ω4 + (d2
2 + d2

3)ω2 + d2
2d2

3 − [µβE(0)]2 = 0, (4.8)

Since ω , 0, Eq (4.8) is equivalent to

ω2 = −
1
2

(d2
2 + d2

3) +
1
2

√
(d2

2 − d2
3)2 + 4[µβE(0)]2. (4.9)

If χ0 < 1, then
d2

2d2
3 − [µβE(0)]2 > 0,

and
(d2

2 + d2
3)2 − 4[d2

2d2
3 − [µβE(0)]2] < (d2

2 + d2
3)2,

so that √
(d2

2 − d2
3)2 + 4[µβE(0)]2 < d2

2 + d2
3.
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Therefore, we have ω2 < 0, which is a contradiction. Hence, whenever χ0 < 1, according
to Rouché’s theorem [33, 34], Eq (4.5) cannot have pure imaginary roots and the virus-free
equilibrium P′(E(0), 0, 0) is locally asymptotically stable, for any strictly positive time-delay τ.

Suppose χ0 > 1. We already know that the one eigenvalue of the matrix JP is λP′,1 = −d1 < 0,
and the other two eigenvalues are the zeroes of the following expression:

Γ(λ) := λ2 + (d2 + d3)λ + (d2d3 − µβE(0)e−λτ). (4.10)

As λP,1 = −d1 < 0, for stability, we need to check whether the other two eigenvalues have negative
real parts or not. However, Γ(0) = d2d3 − µβE(0) < 0 for χ0 > 1 and also lim

λ→+∞
Γ(λ) = +∞.

Therefore, by continuity of Γ(λ), there is at least one positive zero for the expression (4.10).
Hence, we conclude that the virus-free equilibrium P′(E(0), 0, 0) is unstable when χ0 > 1 i.e., also
for the case of τ , 0, the virus-free equilibrium P′(E(0), 0, 0) is stable if χ0 < 1 =⇒ µ < d2d3

βE(0) .
(ii) At coexisting equilibrium point P∗(E∗, I∗, v∗), the Jacobian matrix of the system (2.2) is

JP∗ =


−d1 −

βv∗e−λτ

1+v∗ 0 −
βE∗e−λτ

(1+v∗)2

βv∗e−λτ

1+v∗ −d2
βE∗e−λτ

(1+v∗)2

0 µ −d3

 .
The characteristics equation of the matrix JP∗ is

Γ(λ, τ) = λ3 + (d1 + d2 + d3 +
βv∗e−λτ

1 + v∗
)λ2 +

[
d2d3 −

µβE∗e−λτ

(1 + v∗)2 + (d2 + d3)
(
d1 +

βv∗e−λτ

1 + v∗
)]
λ

+
(
d1 +

βv∗e−λτ

1 + v∗
)(

d2d3 −
µβE∗e−λτ

(1 + v∗)2

)
+
βE∗e−λτ

(1 + v∗)2

βµv∗e−λτ

1 + v∗
= 0

=⇒ λ3 + (d1 + d2 + d3)λ2 + (d2d3 + d1d2 + d1d3)λ + d1d2d3 + e−λτ
[
(
βv∗

1 + v∗
)λ2−( βµE∗

(1 + v∗)2 − (d2 + d3)
βv∗

1 + v∗
)
λ +

(
d2d3

βv∗

1 + v∗
− d1

βµE∗

(1 + v∗)2

)]
= 0

=⇒ λ3 + P11λ
2 + P12λ + P13 + e−λτ(Q11λ

2 + Q12λ + Q13) = 0, (4.11)

where

P11 = d1 + d2 + d3, P12 = d2d3 + d1d2 + d1d3, P13 = d1d2d3,

Q11 =
βv∗

1 + v∗
, Q12 = −

βµE∗

(1 + v∗)2 + (d2 + d3)
βv∗

1 + v∗
, Q13 = d2d3

βv∗

1 + v∗
− d1

βµE∗

(1 + v∗)2 .

Since Eq (4.11) is a transcendental equation with an infinite number of solutions, we cannot apply
the classical Routh-Hurwitz criterion to Eq (4.11). To determine the stability of P∗, we consider
λ = ±ιΩ (where, Ω > 0), then Eq (4.11) can be written as

−ιΩ3 − P11Ω
2 + P12(ιΩ) + P13 + (cosΩτ − ιsinΩτ)(−Q11Ω

2 + Q12ιΩ + Q13) = 0.

Separating real and imaginary parts, we getP11Ω
2 − P13 = cosΩτ(−Q11Ω

2 + Q13) + ΩQ12sinΩτ
Ω3 −ΩP12 = ΩQ12cosΩτ − sinΩτ(−Q11Ω

2 + Q13).
(4.12)
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Squaring both the equations of (4.12) and then adding them, we obtain,

Ω6 + (P2
11 − 2P12 − Q2

11)Ω4 + (P2
12 − 2P11P13 + 2Q11Q13 − Q2

12)Ω2 + P2
13 − Q2

13 = 0.

For simplification, we can rewrite it as

Ω6 + p1Ω
4 + p2Ω

2 + p3 = 0. (4.13)

Here,

p1 = P2
11 − 2P12 − Q2

11

= (d1 + d2 + d3)2 − 2(d2d3 + d1d2 + d1d3) −
( βv∗
1 + v∗

)2
,

p2 = P2
12 − 2P11P13 + 2Q11Q13 − Q2

12

= (d2d3 + d1d2 + d1d3)2 − 2d1d2d3(d1 + d2 + d3)+

2
( βv∗
1 + v∗

)(
d2d3

βv∗

1 + v∗
− d1

βµE∗

(1 + v∗)2

)
−

(
(d2 + d3)

βv∗

1 + v∗
−
βµE∗

(1 + v∗)2

)2
,

and p3 = P2
13 − Q2

13

= (d1d2d3)2 −
(
d2d3

βv∗

1 + v∗
− d1

βµE∗

(1 + v∗)2

)2
.

It can be verified that P2
11 − 2P12 − Q2

11 = 28.6852 > 0, and P2
13 − Q2

13 = −0.010076 < 0 for
the parameter values prescribed in Table (1). Hence, there exists at least one nonnegative real
root Ω0 for Eq (4.13). Therefore, we found a purely imaginary root ±Ω0ι for Eq (4.11). So, the
stability of system (2.2) may switch at P∗ as τ changes.

We eliminate sin(Ωτ) from both the equations of (4.12) and obtain

cosΩτ =
(P13 − P11Ω

2)(Q11Ω
2 − Q13) + Ω2Q12(Ω2 − P12)

Ω2Q2
12 + (Q11Ω2 − Q13)2

.

Then, τ∗n corresponding to Ω0 is given by

τ∗n =
2nπ
Ω0
+

1
Ω0

arccos
[ (P13 − P11Ω

2
0)(Q11Ω

2
0 − Q13) + Ω2

0Q12(Ω2
0 − P12)

Ω2
0Q2

12 + (Q11Ω
2
0 − Q13)2

]
,

where n is an integer.

For τ = 0, P∗(E∗, I∗, v∗) is stable. Hence, P∗ will remain stable for τ < τ0, where τ0 = τ
∗
0 and

n = 0 [35].

Now, we will verify the transversality condition[dRe(λ(τ))
dτ

]−1

τ=τ0

, 0,

for the occurrence Hopf bifurcation.
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As Eq (4.11) has purely imaginary roots λ0 = ιΩ0 and λ̄0 = −ιΩ0 at τ0

∂Γ(λ0, τ0)
∂λ

= 3λ2
0 + 2P11λ0 + P12 + e−τ0λ0[2Q11λ0 + Q12 − τ0(Q11λ

2
0 + Q12λ0 + Q13)]

= −3Ω2
0 + 2ιP11Ω0 + P12 + e−ιτ0Ω0[2ιQ11Ω0 + Q12 − τ0(−Q11Ω

2
0 + ιQ12Ω0 + Q13)].

So, the implicit function theorem states that in a neighborhood of τ0, there must exist a complex
function λ = λ(τ) such that λ0(τ0) = λ0 and Γ(λ(τ), τ) = 0, and dλ

dτ = −
∂Γ(λ(τ),τ)/∂τ
∂Γ(λ(τ),τ)/∂Φ for τ in a

neighborhood of τ0. Thus,

dλ
dτ
=

λe−τλ(Q11λ
2 + Q12λ + Q13)

3λ2 + 2P11λ + P12 + e−τλ[2Q11λ + Q12 − τ(Q11λ2 + Q12λ + Q13)]
. (4.14)

By using Eqs (4.11) and (4.12) in (4.14), we obtain the following expression,

[dλ
dτ

]−1

=
−(3λ2 + 2P11λ + P12)

λ(λ3 + P11λ2 + P12λ + P13)
+

2Q11λ + Q12

λ(Q11λ2 + Q12λ + Q13)
−
τ

λ
. (4.15)

Let λ(τ) = Re(λ(τ)) + ιIm(λ(τ)).
Then, from Eq (4.15), we have

[dRe(λ(τ))
dτ

]−1

τ=τ0

=

[3Ω4
0 + 2Ω2

0(P2
11 − 2P12) + P2

12 − 2P11P13

(P13 − P11Ω
2
0)2 + (Ω3

0 − P12Ω0)2
−

2Ω2
0Q2

11 + Q2
12 − 2Q11Q13

(Ω2
0Q11 − Q13)2 + Ω2

0Q2
12

]
.

By using the prescribed parameter values in Table (1), we get
[

dRe(λ(τ))
dτ

]−1

τ=τ0

= 27.255 > 0, which

verifies the transversality condition for the Hopf bifurcation.

Therefore, at τ = τ0 system (2.2) undergoes a Hopf bifurcation around the point P∗. It implies
that an isolated periodic orbit emerges in the neighborhood P∗. Thus, P∗ is locally asymptotically
stable for τ = 0. Moreover, if there exists a threshold value of τ (say τ0) then P∗ is locally
asymptotically stable for 0 < τ < τ0 and unstable for τ > τ0. Also, a Hopf bifurcation occurs
around the point P∗ when τ = τ0.

Now, we will investigate the dynamics of appearing periodic solutions and compute the time lag
to preserve the limit cycles. In order to do this, we consider model (2.2) that satisfies the initial
conditions (2.3) on the interval [−τ, 0) and also the space of all continuous real-valued functions defined
on [−τ,+∞). Linearizing model (2.2) around P∗(E∗, I∗, v∗), we get

dE
dt
= −d1E −

βv∗E(t − τ)
1 + v∗

−
βE∗v(t − τ)

(1 + v(t − τ))2 ,

dI
dt
=
βv∗E(t − τ)

1 + v∗
−
βE∗v(t − τ)

(1 + v(t − τ))2 − d2I,

dv
dt
= µI − d3v.

(4.16)
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By using Laplace transformation of (4.16), leading to

ηLE(η) − Ē(0) = −d1LE(η) −
βv∗

1 + v∗
e−ητLE(η) −

βE∗e−ητ

(1 + v)2 Lv(η)

−
βv∗e−ητ

1 + v∗
KE(η) −

βE∗

(1 + v)2 e−ητKv(η),

ηLI(η) − Ī(0) =
βv∗

1 + +v∗
e−ητLE(η) +

βv∗

1 + v∗
e−ητKE(η) −

βE∗

(1 + v)2 e−ητLv(η)

−
βE∗

(1 + v)2 e−ητKv(η) − d2LI(η),

ηLv(η) − v̄(0) = µLI(η) − d3Lv(η),

(4.17)

with

KE(η) =
∫ 0

−τ

e−ηtE(t)dt, Kv(η) =
∫ 0

−τ

e−ηtv(t)dt,

where LE(η), LI(η), and Lv(η) are the respective Laplace transformations of E(t), I(t), and v(t). Accord-
ing to the well-known theory described in [35, 36] and using classical Nyquist criteria stated in [37],
the coexistence equilibria P∗ is asymptotically stable, for

ReΓ(ιξ0) = 0, (4.18)

ImΓ(ιξ0) > 0, (4.19)

with
Γ(η) = η3 + P11η

2 + P12η + P13 + e−ητ(Q11η
2 + Q12η + Q13),

and ξ0 > 0 is the smallest root of the expressions (4.18) and (4.19).

We can rewrite the expressions (4.18) and (4.19) as

−P11ξ
2
0 + P13 = −Q12ξ0sin(ξ0τ) − (Q13 − Q11ξ

2
0)cos(ξ0τ), (4.20)

−ξ3
0 + P12ξ0 > (Q13 − Q11ξ

2
0)sin(ξ0τ) − Q12ξ0cos(ξ0τ), (4.21)

which gives sufficient conditions for the stability of coexisting equilibrium P∗.

To calculate time lag τ, we will determine an upper bound ξ+ on ξ0 that is independent from τ. To
do this, we assume that at ξ = ξ0, ∀ values of ξ satisfy Eq (4.21) such that 0 ≤ ξ ≤ ξ+.

Expression (4.20) gives

P11ξ
2
0 = P13 + Q12ξ0sin(ξ0τ) + Q13cos(ξ0τ) − Q11ξ

2
0cos(ξ0τ). (4.22)

Now, we maximize the right side of (4.22) as

P13 + Q12ξ0sin(ξ0τ) + Q13cos(ξ0τ) − Q11ξ
2
0cos(ξ0τ),
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subject to the conditions,
|cos(ξ0τ)| ≤ 1, |sin(ξ0τ)| ≤ 1.

Therefore, we obtain that

|P11|ξ
2
0 ≤ |P13| + |Q12|ξ0 + |Q13| + |Q11|ξ

2
0.

Hence, it can be expressed as

ξ+ ≤
1

2(|P11| − |Q11|)

[
|Q12| +

√
Q2

12 + 4(|P11| − |Q11|)(|P13| + |Q13|)
]
. (4.23)

From (4.23), it can be verified that ξ0 ≤ ξ+.

Also, (4.21), gives

ξ2
0 < P12 + Q12cos(ξ0τ) + Q11ξ0sin(ξ0τ) −

Q13sin(ξ0τ)
ξ0

. (4.24)

Thus, if τ = 0, then (4.21) becomes ξ2
0 < P12+Q12, and from (4.22), P11ξ

2
0 = P13+Q13−Q11ξ

2
0; that

is, ξ2
0 =

P13+Q13
P11+Q11

. Therefore, we confirm that at τ = 0, the equilibrium point P∗ where all the populations
exist is locally asymptotically stable if (P13 +Q13) < (P11 +Q11)(P12 +Q12) holds. However, for small
τ > 0, (4.24) must hold.

Putting (4.22) into (4.24) and rearranging the expressions, we get

(Q13 − Q11ξ
2
0 − P11Q12)[cos(ξ0τ) − 1] +

[
(Q12 − P11Q11)ξ0 +

P11Q13

ξ0

]
sin(ξ0τ)

< P11P12 − P13 + P11Q12 − Q13 + Q11ξ
2
0

=⇒ (Q13 − Q11ξ
2
0 − P11Q12)[cos(ξ0τ) − 1] +

[
(Q12 − P11Q11)ξ0 +

P11Q13

ξ0

]
sin(ξ0τ)

< (P11 + Q11)(P12 + Q12) − (P13 + Q13). (4.25)

Using the bounds, we obtain

(Q13 − Q11ξ
2
0 − P11Q12)[cos(ξ0τ) − 1] = 2(Q11ξ

2
0 + P11Q12 − Q13)sin2(ξ0τ

2
)

≤
1
2
ξ2
+|(Q11ξ

2
+ + P11Q12 − Q13)|τ2,

and [
(Q12 − P11Q11)ξ0 +

P11Q13

ξ0

]
sin(ξ0τ) ≤

[
|(Q12 − P11Q11|ξ

2
+ + |P11||Q13|

]
τM.

From (4.25), we obtain that Ψ1τ
2 + Ψ2τ ≤ Ψ3, with

Ψ1 =
1
2
|(Q11ξ

2
+ + P11Q12 − Q13)|ξ2

+,

Ψ2 = |(Q12 − P11Q11|ξ
2
+ + |P11||Q13|,

Ψ3 = (P11 + Q11)(P12 + Q12) − (P13 + Q13).
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Thus, we get the expression

τ+ =
1

2Ψ1

[
− Ψ2 +

√
Ψ2

2 + 4Ψ1Ψ3

]
,

then the Nyquist criteria [37] holds for 0 ≤ τ ≤ τ+. This τ+ is the estimated maximum length of the
time lag to preserve the stability of the limit cycle.

5. Numerical simulations

This section demonstrates a few numerical examples to verify our analytical results. Also, we will
visualize the role of time delay τ on the system’s stability (2.2). In order to do a numerical study of
system (2.2), we will use the values of the parameters given in Table (1) that are obtained in [22] using
Chest radiograph score data. We would like to refer to [22] for an explanation of the range, values of
the parameters, and their units.

Table 1. Explanation of the parameters, their units and values.

Name Definition Range Source
β virus infection rate (0.44, 0.66) [22]

E(0) number of uninfected epithelial cells (20, 30) [22]
µ production rate of virus (day)−1 (0.192, 0.288) [22]
d1 death rate of uninfected pulmonary epithelial cells (day)−1 10−1 assumed
d2 death rate of infected pulmonary epithelial cells (day)−1 (0.088, 0.132) [22]
d3 decay rate of virus concentration (day)−1 (4.288, 6.432) [22]

First, we will verify that whatever the value of time delay τ, the virus-free equilibrium point is
locally asymptotically stable if χ0 < 1, i.e., µ < d2d3

βE(0) . In order to verify this, we take the fixed
parameter set as: d1 = 10−1, β = 0.65, d2 = 0.11, µ = 0.03 < d2d3

βE(0) , d3 = 5.36 and the initial condition
as: E(0) = 22.41, I(0) = 2.59, v(0) = 0.061. From Figure (1), it is clearly observed that in the presence
or absence of time delay, the virus-free equilibrium point is locally asymptotically stable if µ < d2d3

βE(0) .
Thus, whatever the value of time delay in the process of antiviral responses of uninfected epithelial
cells against the virus, if the virus production rate µ is lower than a threshold value d2d3

βE(0) , then the
system itself is capable of clearing the virus.

Now, we will check the stability of system (2.2) at the coexisting equilibrium point for τ = 0 and
τ , 0. For this, we take the fixed parameter set as: d1 = 10−1, β = 0.65, d2 = 0.11, µ = 0.24 > d2d3

βE(0) ,
d3 = 5.36 and the initial condition as: E(0) = 22.41, I(0) = 2.59, v(0) = 0.061. For the above
parameter set and the initial condition, system (2.2) has two equilibrium points: P′(22.41, 0, 0) and
P∗(6.26356, 14.6786, 0.65725). In absence of time delay, i.e., τ = 0, the eigenvalues associated with
virus-free equilibrium P′(22.41, 0, 0) are −5.958, 0.4878, and −0.1, which indicates that P′ is an unsta-
ble saddle-node with no oscillating behavior. Hence, around the equilibrium point P′, the system (2.2)
shows unstable behavior. On the other hand, corresponding to the equilibrium P∗(6.265, 14.68, 0.6578),
the eigenvalues are −5.431, −0.284, −0.114, which indicates that P∗ is a stable node with no oscillat-
ing behavior. Thus, system (2.2) is stable around the equilibrium P∗. It is clearly observed from
Figure (2) that all the populations exist over finite time with stable natures around the equilibrium
P∗(6.26356, 14.6786, 0.65725).
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Figure 1. Depicting time series plot of the system (2.2) with (a) τ = 0 and (b) τ = 20 for
µ = 0.03.
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Figure 2. Depicting (a) time series plot and (b) 3D plot of the system (2.2) with τ = 0 and
µ = 0.24.
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Figure 3. Depicting (a) Time series plot and (b) 3D plot of the system (2.2) with τ = 1 and
µ = 0.24.
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Figure 4. Depicting (a) time series plot and (b) 3D plot of the system (2.2) with τ = 12 and
µ = 0.24.

After checking the stability of system (2.2) in the absence of delay, we are now interested in check-
ing the stability by varying the time delay parameter τ. For τ = 1, the system (2.2) shows similar
stability behavior like the case τ = 0 around the coexisting equilibrium P∗(6.26356, 14.6786, 0.65725)
(see Figure (3)). However, when τ = 12, the system exhibits oscillatory behavior at first. It stabilizes
as time increases (see Figure (4)), which indicates that as time delay increases, i.e., the time required
for uninfected epithelial cells to respond to free virus increases, the cell populations oscillate first and
are then able to stabilize themselves.
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Figure 5. Depicting (a) time series plot and (b) 3D plot of the system (2.2) with τ = 12.7646
and µ = 0.24.

We further increase the value of τ to 12.7646, at which point we have found that the system expe-
riences a Hopf bifurcation, i.e., for this critical value of τ = 12.7646 system stability is switched to
instability via a limit cycle solution. Thus, we have observed a stable limit cycle around the coexisting
equilibrium P∗ (see Figure (5)). Moreover, we numerically computed the values of p1 = 28.6852,
p2 = −0.4165, and p3 = −0.010076 for which Eq (4.13) has a real root, Ω0 = 0.16535 and thus
τ0 = 12.7646. Hence, Eq (4.13) has a purely imaginary eigenvalue. So, an isolated periodic solution,
i.e., a limit cycle has appeared at τ0 = 12.7646. The effect of τ on system stability is shown in Fig-
ure (8). Also, from Figure (8) it can be confirmed that system (2.2) bifurcates from one solution to two
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solutions (called maximum and minimum solutions) at τ0 = 12.7646. Further, the system collapses
for an approximate value of τ > 45.5. A limit cycle solution of system (2.2), i.e., periodic oscillation
of the population, has been observed for τ = 20 > 12.7646 (see Figure (6)). For τ = 30 > 12.7646,
system (2.2), shows unstable behavior with an aperiodic nature (see Figure (7)).
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Figure 6. Depicting (a) time series plot and (b) 3D plot of the system (2.2) with τ = 20 and
µ = 0.24.
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Figure 7. Depicting (a) time series plot and (b) 3D plot of the system (2.2) with τ = 30 and
µ = 0.24.

Biologically, if the response time of uninfected epithelial cells toward the free virus increases to
12.7646, then the cell population can control the free virus through competition. However, with further
increases in the antiviral response time of uninfected epithelial cells to the virus, the cell populations
are unable to stabilize the virus infection, and the body loses its stability, which also collapses as
response time increases.
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Figure 8. Maximum and minimum solutions of each population with respect to τ and µ =
0.24.

6. Conclusions

In this study, we have developed a modified delay differential model to describe the within-host viral
kinetics of SARS-CoV-2. The response of uninfected epithelial cells to the virus or the interaction
of the virus with uninfected epithelial cells was incorporated as a nonlinear process into the model.
Furthermore, a discrete-time delay has been introduced to describe the time required for uninfected
epithelial cells to activate suitable antiviral responses by generating immune cytokines and chemokines.
We have found that all the solutions to the formulated model are nonnegative and bounded. The basic
reproduction number, χ0 was computed and found as µβE(0)

d2d3
. In the absence of time delay, the virus-

free equilibrium point P′ was asymptotically stable for χ0 < 1, and the co-existing equilibrium P∗

was stable for χ0 > 1, provided that few certain conditions hold. However, in the presence of a time
delay, the virus-free equilibrium point P′ is locally asymptotically stable for χ0 < 1, and the coexisting
equilibrium P∗ loses its stability via a Hopf bifurcation. In addition, we have calculated the time lag
over which the system maintains its stability around the co-existing equilibrium, P∗. The main finding
of this study was that the considered system was stable for faster antiviral responses of epithelial cells
to the virus, i.e., quick antiviral responses of epithelial cells stabilized patients’ bodies by neutralizing
the virus. However, if the antiviral response time of uninfected epithelial cells lengthens, the virus
infects all the uninfected epithelial cells and may spread the disease over the body, which may require
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other treatment strategies to neutralize the virus’s efficacy.
The main limitation of this study was that the model was straightforward and considered only two

cell populations along with the virus concentration. However, while the SARS-CoV-2 virus interacted
with the human body, other immune cells, such as natural killer cells, CD4+ T cells and CD8+ T cells,
were also responsible for their antiviral responses. Thus, the model can be extended to explore the
immune system’s role by considering the effect of these immune cells [15, 20, 38, 39]. To measure the
vaccine or any other treatment effect that can be used in the model for eliminating the virus from the
body [17, 24]; this will be carried out in our future study.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. K. Liang, Mathematical model of infection kinetics and its analysis for COVID-19, SARS and
MERS, Infect. Genet. Evol., 82 (2020), 104306. https://doi.org/10.1016/j.meegid.2020.104306

2. C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China,
Math. Biosci. Eng., 17 (2020), 2708–2724. https://doi.org/10.3934/mbe.2020148

3. S. K. Biswas, J. K. Ghosh, S. Sarkar, U. Ghosh, COVID-19 pandemic in India: a mathematical
model study, Nonlinear Dyn., 102 (2020), 537–553. https://doi.org/10.1007/s11071-020-05958-z

4. A. A. Arjani, Md. T. Nasseef, S. M. Kamal, B. V. S. Rao, M. Mahmud, Md. S. Uddin, Application
of mathematical modeling in prediction of COVID-19 transmission dynamics, Arab. J. Sci. Eng.,
47 (2022), 10163–10186. https://doi.org/10.1007/s13369-021-06419-4

5. A. J. Kucharski, T. W. Russell, C. Diamond, Early dynamics of transmission and control
of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558.
https://doi.org/10.1016/S1473-3099(20)30144-4

6. M. Zamir, F. Nadeem, M. A. Alqudah, T. Abdeljawad, Future implications of
COVID-19 through Mathematical modeling, Results Phys., 33 (2022), 105097.
https://doi.org/10.1016/j.rinp.2021.105097

7. F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for
COVID-19, Adv. Differ. Equ., 502 (2020), 502(2020). https://doi.org/10.1186/s13662-020-02964-
8

8. S. R. Bandekar, M. Ghosh, C. Rajivganthi, Impact of vaccination on the dynamics of COVID-
19: A mathematical study using fractional derivatives, Int. J. Biomath., 17 (2024), 2350018.
https://doi.org/10.1142/S1793524523500183

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20025–20049.

http://dx.doi.org/https://doi.org/10.1016/j.meegid.2020.104306
http://dx.doi.org/https://doi.org/10.3934/mbe.2020148
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05958-z
http://dx.doi.org/https://doi.org/10.1007/s13369-021-06419-4
http://dx.doi.org/https://doi.org/10.1016/S1473-3099(20)30144-4
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.105097
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02964-8
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02964-8
http://dx.doi.org/https://doi.org/10.1142/S1793524523500183


20047

9. H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vacci-
nation and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800.
https://doi.org/10.1155/2022/4247800

10. C. Yang, Y. Yang, Z. Li, L. Zhang, Modeling and analysis of COVID-19 based on a time delay
dynamic model, Math. Biosci. Eng., 18 (2020), 154–165. https://doi.org/10.3934/mbe.2021008

11. M. Radha, S. Balamuralitharan, A study on COVID-19 transmission dynamics: stability analysis
of SEIR model with Hopf bifurcation for effect of time delay, Adv. Differ. Equ., 2020 (2020), 523.
https://doi.org/10.1186/s13662-020-02958-6

12. A. Raza, A. Ahmadian, M. Rafiq, M. C. Ang, S. Salahshour, M. Pakdaman, The impact of delay
strategies on the dynamics of coronavirus pandemic model with nonlinear incidence rate, Fractals,
30 (2022), 2240121. https://doi.org/10.1142/S0218348X22401211

13. O. Babasola, O. Kayode, O. J. Peter, F. C. Onwuegbuche, F. A. Oguntolu, Time-delayed modelling
of the COVID-19 dynamics with a convex incidence rate, Inform. Med. Unlocked., 35 (2022),
101124. https://doi.org/10.1016/j.imu.2022.101124

14. S. M. Al-Tuwairqi, S. K. Al-Harbi, A time-delayed model for the spread of COVID-19 with vac-
cination, Sci. Rep., 12 (2022), 19435. https://doi.org/10.1038/s41598-022-23822-5

15. S. Q. Du, W. Yuan, Mathematical modeling of interaction between innate and adaptive immune
responses in COVID-19 and implications for viral pathogenesis, J. Med. Virol., 92 (2020), 1615–
1628. https://doi.org/10.1002/jmv.25866

16. E. A. Hernandez-Vargas, J. X. Velasco-Hernandez, In-host Mathematical Mod-
elling of COVID-19 in Humans, Annu. Rev. Control, 50 (2020), 448–456.
https://doi.org/10.1016/j.arcontrol.2020.09.006

17. D. B. Prakash, D. K. K. Vamsi, D. B. Rajesh, C. B. Sanjeevi, Control Intervention Strategies for
within-host, between-host and their efficacy in the treatment, spread of COVID-19 : a multi scale
modeling approach, Comput. Math. Biophys., 8 (2020), 198–210. https://doi.org/10.1515/cmb-
2020-0111

18. B. Chhetri, V. M. Bhagat, D. K. K. Vamsi, V. S. Ananth, B. Prakash, R. Mandale, et al., Within-host
mathematical modeling on crucial inflammatory mediators and drug interventions in COVID-19
identifies combination therapy to be most effective and optimal, Alex. Eng. J., 60 (2021), 2491–
2512. https://doi.org/10.1016/j.aej.2020.12.011

19. A. E. S. Almocera, G. Quiroz, E. A. Hernandez-Vargas, Stability analysis in COVID-19 within-
host model with immune response. Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105584.
https://doi.org/10.1016/j.cnsns.2020.105584

20. R. Ghostine, M. Gharamti, S. Hassrouny, I. Hoteit, Mathematical modeling of immune re-
sponses against SARS-CoV-2 using an ensemble Kalman Filter, Mathematics, 9 (2021), 2427.
https://doi.org/10.3390/math9192427

21. S. M. E. K. Chowdhury, J. T. Chowdhury, S. F. Ahmed, P. Agarwal, I. A. Badrud-
din, S. Kamangar, Mathematical modelling of COVID-19 disease dynamics: interaction be-
tween immune system and SARS-CoV-2 within host, AIMS Math., 7 (2021), 2618–2633.
https://doi.org/10.3934/math.2022147

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20025–20049.

http://dx.doi.org/https://doi.org/10.1155/2022/4247800
http://dx.doi.org/https://doi.org/10.3934/mbe.2021008
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02958-6
http://dx.doi.org/https://doi.org/10.1142/S0218348X22401211
http://dx.doi.org/https://doi.org/10.1016/j.imu.2022.101124
http://dx.doi.org/https://doi.org/10.1038/s41598-022-23822-5
http://dx.doi.org/https://doi.org/10.1002/jmv.25866
http://dx.doi.org/https://doi.org/10.1016/j.arcontrol.2020.09.006
http://dx.doi.org/https://doi.org/10.1515/cmb-2020-0111
http://dx.doi.org/https://doi.org/10.1515/cmb-2020-0111
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.12.011
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105584
http://dx.doi.org/https://doi.org/10.3390/math9192427
http://dx.doi.org/https://doi.org/10.3934/math.2022147


20048

22. C. Li, J. Xu, J. Liu, Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng.,
17 (2020), 2853–2861. https://doi.org/10.3934/mbe.2020159

23. B. J. Nath, K. Dehingia, V. N. Mishra, Y. M. Chu, H. K. Sarmah, Mathematical
analysis of a within-host model of SARS-CoV-2, Adv. Differ. Equ., 2021 (2021), 113.
https://doi.org/10.1186/s13662-021-03276-1

24. I. Ghosh, Within host dynamics of SARS-CoV-2 in humans: modeling immune responses and
antiviral treatments, SN comput. sci., 2 (2021), 482. https://doi.org/10.1007/s42979-021-00919-8

25. I. M. Elbaz, M. A. Sohaly, H. El-Metwally, Modeling the stochastic within-host dy-
namics SARS-CoV-2 infection with discrete delay, Theor. Biosci., 141 (2020), 365–374.
https://doi.org/10.1007/s12064-022-00379-5

26. V. Staroverov, S. Nersisyan, A. Galatenko, D. Alekseev, S. Lukashevich, F. Polyakov, et al., Devel-
opment of a novel mathematical model that explains SARS-CoV-2 infection dynamics in Caco-2
cells, PeerJ, 11 (2023), e14828. https://doi.org/10.7717/peerj.14828

27. L. G. de Pillis, R. Caffrey, G. Chen, et al., A mathematical model of the within-host kinetics
of SARS-CoV-2 neutralizing antibodies following COVID-19 vaccination, J. Theor. Biol., 556
(2023), 111280. doi:10.1016/j.jtbi.2022.111280

28. T. A. Miura, Respiratory epithelial cells as master communicators during viral infections, Curr.
Clin. Microbiol., 6 (2019), 10–17. https://doi.org/10.1007/s40588-019-0111-8

29. A. N. Chatterjee, F. A. Basir, M. A. Almuqrin, J. Mondal, I. Khan, SARS-CoV-2 infection with
lytic and non-lytic immune responses: a fractional order optimal control theoretical study, Results
in Physics, 26 (2021), 104260. https://doi.org/10.1016/j.rinp.2021.104260

30. H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system
with Monod-Haldane and holling type II functional responses, Appl. Math. Comput., 397 (2021).
https://doi.org/10.1016/j.amc.2020.125919

31. X. Yang, L. Chen, J. Chen, Permanence and positive periodic solution for the single-
species non-autonomous delay diffusive models, Comput. Math. Applic., 32 (1996), 109–116.
https://doi.org/10.1016/0898-1221(96)00129-0

32. P. V. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilib-
ria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

33. J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, Pa, USA, 1976.
https://doi.org/10.21236/ADA031020

34. Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press,
Inc.: Boston, MA, USA, 1993.

35. H. I. Freedman, V. S. H. Rao, Stability criteria for a system involving two-time delays, SIAM J.
Appl. Math., 46 (1986), 552–560. https://doi.org/10.1137/0146037

36. L. H. Erbe, H. I. Freedman, V. S. H. Rao, Three species food chain models with mutual interference
and time delays, Math. Biosci., 80 (1986), 57–80. https://doi.org/10.1016/0025-5564(86)90067-2

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20025–20049.

http://dx.doi.org/https://doi.org/10.3934/mbe.2020159
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03276-1
http://dx.doi.org/https://doi.org/10.1007/s42979-021-00919-8
http://dx.doi.org/https://doi.org/10.1007/s12064-022-00379-5
http://dx.doi.org/https://doi.org/10.7717/peerj.14828
http://dx.doi.org/https://doi.org/10.1007/s40588-019-0111-8
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104260
http://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125919
http://dx.doi.org/https://doi.org/10.1016/0898-1221(96)00129-0
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.21236/ADA031020
http://dx.doi.org/https://doi.org/10.1137/0146037
http://dx.doi.org/https://doi.org/10.1016/0025-5564(86)90067-2


20049

37. H. I. Freedman, V. S. H. Rao, The trade-off between mutual interference and time lags in predator-
prey systems, Bull. Math. Biol., 45 (2019), 1983, 991–1004. https://doi.org/10.1016/S0092-
8240(83)80073-1

38. Y. Fadaei, F. A. Rihan, C. Rajivganthi, Immunokinetic model for COVID-19 patients, Complexity,
2022 (2022), 8321848. https://doi.org/10.1155/2022/8321848

39. G. Li, Y. Fan, Y. Lai, T. Han, Z. Li, P. Zhou, et al., Coronavirus infections and immune responses,
J. Med. Virol., 92 (2020), 424–432. https://doi.org/10.1002/jmv.25685

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20025–20049.

http://dx.doi.org/https://doi.org/10.1016/S0092-8240(83)80073-1
http://dx.doi.org/https://doi.org/10.1016/S0092-8240(83)80073-1
http://dx.doi.org/https://doi.org/10.1155/2022/8321848
http://dx.doi.org/https://doi.org/10.1002/jmv.25685
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Nonnegativity and boundedness
	Stability analysis
	Basic reproduction number
	Equilibrium points and local stability

	Numerical simulations
	Conclusions

