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Abstract: Skin cutaneous melanoma (SKCM) is one of the most malignant forms of skin cancer, 
characterized by its high metastatic potential and low cure rate in advanced stages. Despite 
advancements in clinical therapies, the overall cure rate for SKCM remains low due to its resistance 
to conventional treatments. Inflammation is associated with the activation and regulation of 
inflammatory responses and plays a crucial role in the immune system. It has been implicated in 
various physiological and pathological processes, including cancer. However, the mechanisms of 
inflammasome activation in SKCM remain largely unexplored. In this study, we quantified the 
expression level of six inflammasome-related gene sets using transcriptomic data from SKCM patients. 
As a result, we found that inflammasome features were closely associated with various clinical 
characteristics and served as a favorable prognostic factor for patients. A functional enrichment 
analysis revealed the oncogenic role of inflammasome features in SKCM. Unsupervised clustering 
was applied to identify immune clusters and inflammatory subtypes, revealing a significant overlap 
between immune cluster 4 and SKCM subtype 2. The CASP1, GSDMD, NLRP3, IL1B, and IL18 
features could predict immune checkpoint blockade therapy response in various SKCM cohorts. In 
conclusion, our study highlighted the significant association between the inflammasome and cancer 
treatment. Understanding the role of inflammasome signaling in SKCM pathology can help identify 
potential therapeutic targets and improve patient prognosis. 
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immunotherapy 
 



19913 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19912–19928. 

1. Introduction 

Skin cutaneous melanoma (SKCM) is one of the most aggressive skin cancers, which has become a 
significant public health problem [1,2]. Its highly metastatic and invasive nature has led to a poor patient 
prognosis [3]. Despite significant advancements in clinical treatment approaches, including targeted therapies 
and immunotherapy, SKCM remains a severe clinical challenge [4]. Therefore, understanding the molecular 
mechanisms of SKCM is crucial for the effective prevention and improvement of patient prognosis [5]. 

Inflammation is a vital physiological response of the immune system, playing an essential role in both 
immune regulation and cancer [6]. The inflammasome, which is a multiprotein complex, serves as a critical 
mediator in the inflammatory process [7]. It is involved in various biological processes, including immune 
responses and cancer development [8]. Aberrant inflammasome activation can contribute to tumor 
development, progression, and metastasis [9,10]. NLRP3, CASP1, GSDMD, IL1B, and IL18 are 
interconnected components of inflammasome signaling, working together to regulate the inflammatory 
response [11]. Upon activation, NLRP3 recruits CASP1 and cleaves GSDMD, releasing IL1B and 
IL18 [12,13]. In turn, IL1B can promote the expression of NLRP3 and CASP1, thereby establishing a 
positive feedback loop in the inflammatory signaling cascade [14–16]. This intricate interplay between 
inflammation features highlights their coordinated involvement in mediating inflammation and suggests 
their potential as therapeutic targets for cancer [8]. Despite the recognized importance of inflammasome in 
cancer, there is a lack of comprehensive characterization of the inflammasome complex in SKCM. 

Immune checkpoint blockade (ICB) therapy has become a breakthrough in cancer treatments, which 
involves targeting key regulatory checkpoints, including PD-1/PD-L1 and CTLA-4, to restore and enhance 
anti-tumor immune responses [17,18]. ICB therapy has demonstrated remarkable efficacy across multiple 
malignancies, including SKCM [19,20]. ICB therapy has revolutionized treatment options for SKCM 
patients, leading to durable clinical benefits and an improved overall survival in patients [21]. Despite the 
remarkable achievements of ICB therapy, the emergence of immune resistance poses a significant 
challenge to its effectiveness [22–24]. Therefore, there is a pressing need to elucidate the mechanisms 
underlying ICB therapy resistance. The inflammasome complex represents an intriguing target for immune 
checkpoint therapy [25,26]. Modulating the inflammasome pathway has the potential to augment antitumor 
immune responses and enhance the effectiveness of immune checkpoint inhibitors [27]. Exploring the 
interplay between inflammasome activation and ICB in melanoma could provide valuable insights into 
novel therapeutic strategies and improve patient outcomes. 

In this study, we quantified the expression level of six inflammasome features, including CASP1, 
GSDMD, NLRP3, IL1B, IL18, and inflammasome complexes (IC) features, based on transcriptomic 
data, to comprehensively characterize the role of inflammasome features in tumorigenesis and 
progression. These inflammasome features exhibited a strong correlation with clinical characteristics. 
They were all dysregulated and served oncogenic roles in SKCM samples. The unsupervised clustering 
method identified four immune clusters and two SKCM subtypes, and significant overlaps were found 
between immune clusters and SKCM subtypes. Lastly, inflammasome features were implicated in the 
ICB immunotherapy response. In conclusion, our study highlighted the significant role of 
inflammasomes in SKCM, shedding light on their potential implications for SKCM progression, 
therapeutic strategies, and survival outcomes of patients. Furthermore, investigating the interplay 
between inflammasomes and ICB resistance is crucial for unraveling the underlying mechanisms in 
SKCM treatment. 
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2. Materials and methods 

2.1. Collection of inflammasome-related gene sets 

Six gene sets representing distinct inflammasome features were collected from previous studies: 
1) 30 NLRP3-related genes [28]; 2) 15 IC-related genes [14]; 3) 34 CASP1-related genes [29] 4) 72 
IL1B-related genes [14]; 5) 8 IL18-related genes [30]; and 6) 13 GSDMD-related genes [30]. Each 
gene set represents different steps of inflammasome signaling. 

2.2. Acquisition of gene expression profile and clinical information 

Fragments Per Kilobase of transcript per Million mapped reads upper quartile (FPKM-UQ) of 
RNA-seq data from the Cancer Genome Atlas data portal (TCGA) of SKCM patients and non-
cancerous tissues from the Genotype-Tissue Expression (GTEx) consortium [31] were downloaded 
from the University of California, Santa Cruz (UCSC) Xena platform [32] (https://xenabrowser.net/). 
Approximately 19,724 protein-coding genes were obtained. Expression profile was log-transformed 
for analysis. Clinical patient information, including age, gender, TNM staging, Clark level, and cancer 
type (metastatic/primary), were obtained from UCSC Xena. 

2.3. Identification of dysregulated inflammasome features and genes 

A single-sample gene-set enrichment analysis (ssGSEA) was used to quantify the expression level 
of each inflammasome feature across various samples. We applied the R “limma” v3.54.2 package [33] 
to identify dysregulated inflammasome features and protein-coding genes. Features with a Benjamini-
Hochberg (BH) adjusted p-value < 0.01 were defined as dysregulated; genes with a BH adjusted p-
value < 0.01 and fold change > 2 were defined as dysregulated. 

2.4. Tumor immune microenvironment (TIME) of SKCM 

The tumor purity, stromal and immune cell abundances describing the TIME of SKCM were 
inferred by the Estimation of Stromal and Immune Cells in Malignant Tumours using Expression data 
(ESTIMATE) [34]. Four TIME classifications defined by 29 transcriptomic-based gene expression 
signatures, including angiogenesis fibrosis, anti-tumor microenvironment, malignant cell properties, 
and pro-tumor microenvironment, were obtained from a previous study [35]. A ssGSEA was used to 
quantify the enrichment level of each TIME signature. Distinct immune subtypes of SKCM patients 
were identified by an unsupervised hierarchical clustering method. 

2.5. Inflammasome feature-defined SKCM patient subtypes 

The R ‘Consensus ClusterPlus’ v1.62.0 package was applied to perform unsupervised consensus 
clustering on SKCM samples [36]. The clustering procedure using the inflammasome features matrix was 
repeated 5,000 times, thereby subsampling 80% of the samples. The optimal number of clusters was 
determined by the relative change in the area under the cumulative distribution function (CDF) curves and 
the Calinski criterion. 
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2.6. Survival analysis 

Patients’ overall survival (OS) and progression-free survival (PFS) information were downloaded for 
the USCS Xena platform. The R “survival” v3.5.5 and “survminer” v0.4.9 packages were applied to conduct 
uni and multi-variate Cox proportional hazards regression models. Inflammasome features with a Cox p-
value < 0.05 were defined as significant. A hazard ratio (HR) < 1 was defined as a protective feature, while 
an HR > 1 was defined as a risky feature. Then, Kaplan-Meier curves were utilized to compare the survival 
status of different groups. A log-rank p-value < 0.05 was identified as a prognosis-related feature. A 
nomogram was constructed by the R “rms” v6.6.0 package and evaluated by a calibration plot. 

2.7. Functional enrichment analysis 

Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Reactome 
gene sets enrichment were conducted by the Metascape platform (https://metascape.org/) [37]. Ten 
oncogenic signaling pathways were obtained from a previous study [38]. Cancer hallmark gene sets 
were obtained from a previous study [39]. GO Biological Process (BP) and functional pathway gene 
sets were downloaded from MSigDB [40,41] (https://www.gsea-msigdb.org/gsea/msigdb). The R 
“fgsea” v1.24.0 package was applied to conduct a Gene Set Enrichment Analysis (GSEA). 

2.8. Prediction of ICB therapy response 

Three cohorts of SKCM patients who received ICB therapy were collected from previous 
studies [42,43] (Table 1). Patients who either partially or completely responded (P/CR) to ICB therapy 
were considered as responders, while patients with either a stable disease (SD) or progressive disease 
(PD) status were considered as non-responders. The R “pROC” v1.18.0 package was used to calculate 
the area under the curve (AUCs) of the receiver operating characteristic (ROC) curve for 
discriminating responders vs non-responders. Then, we used the R “e1071” v1.7.13 package to train 
the support vector machines (SVM) classifier based on the Gide cohort to predict the response of 
TCGA SKCM patients. 

Table 1. Datasets used for ICB response analysis. 

Cohort Treatment Patients R NR PMID 
Gide et al. [42] anti-PD-1 41 19 22 30753825 
Gide et al. [42] anti-CTLA-4 + PD-1 51 35 16 30753825 
GSE91061 anti-CTLA-4 + PD-1 105 23 82 29033130 

2.9. Statistical analysis 

A Mann-Whitney U test was used to compare the ssGSEA level in different groups. The Kruskal-
Wallis test was used to compare ssGSEA levels among multiple groups. Spearman’s correlation test 
was used to perform a correlation analysis. A P-value < 0.05 was considered as statistically significant. 
The statistical analysis in this study was performed by the R 4.2.3 software. 
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3. Results 

3.1. Clinical relevance of inflammasome features in SKCM 

The overall workflow of this study is displayed in Figure S1. To quantify the expression level of six 
inflammasome features, ssGSEA was performed on TCGA and GTEx samples. A differential expression 
analysis showed that CASP1, GSDMD, and NLRP3 features were upregulated in cancer samples, while 
IL18, IL1B, and IC features were downregulated in cancer samples (Figure 1(A), Figure S2(A)). Next, we 
investigated the associations between the clinical characteristics and the inflammasome features. Results 
showed that the expression level of the CASP1, GSDMD, NLRP3, and IC features decreased with the 
progression of the T stage (Figure 1(B) and (C), Figure S2(B) and (C)). 

 

Figure 1. Correlations between inflammasome features and clinical characteristics in SKCM. 
(A) The violin plot illustrates the expression levels of inflammasome features in SKCM and 
normal samples. (B) The correlations between inflammasome feature levels and clinical 
characteristics, with samples sorted in ascending order based on inflammasome expression 
levels. (C) The violin plot illustrates the differences in the expression levels of inflammasome 
features among different groups of clinical characteristics. 

These four features were upregulated in the metastatic samples compared to the primary tumor 
samples. The CASP1, GSDMD, NLRP3, and IL1B features demonstrated significant differences across 
pathological stages. Regarding the Clark level, we found that the GSDMD, NLRP3, and IC features first 
increased and then decreased with the progression of the Clark level. As for any gender differences, the 
GSDMD, IL1B, and IC features exhibited higher expression levels in female samples compared to male 
samples. The only age-related difference was found in the CASP1 feature, whose expression level 
decreased with age. No significant differences were found in the M and N stages. Patients with different 
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survival statuses exhibited significant differences in the levels of inflammasome features, whether OS or 
PFS. In conclusion, the expression levels of the inflammasome features were significantly associated with 
various clinical characteristics of SKCM. 

3.2. Inflammasome features served as favorable factors for patient prognosis 

To explore the associations between patient prognosis and the expression level of inflammasome 
features, we performed a survival analysis on TCGA SKCM patients. As shown in the K-M curves, 
patients with high expression of the CASP1, GSDMD, NLRP3, IL1B, and IC features exhibited 
improved prognoses (Figure 2(A)). The univariate Cox regression model results showed that these five 
features could serve as favorable factors for the patients’ OS (Figure S3). Only the IL1B and IC features 
were associated with the patients’ PFS. Next, we performed a multivariate Cox regression model to 
identify independent prognostic factors. Among the six inflammasome features, only the CASP1 and 
IC features remained significantly associated with overall survival (Figure 2(B)). Therefore, we 
constructed a nomogram based on these two independent prognostic factors and the age of patients. 
The nomogram was used to predict three- and five-year survival probabilities and the median survival 
time of SKCM patients (Figure 2(C)). Then, we used a calibration plot to assess the predictive accuracy 
of the nomogram. Results showed that only minor differences were found between the predicted and 
observed overall survival, suggesting the excellent predictive accuracy of the nomogram (Figure 2(D)). 
In summary, high levels of inflammasome features indicated a prolonged survival in patients. 

 

Figure 2. Association between inflammasome features and overall survival in SKCM 
patients. (A) The K-M curves compare the survival difference between high and low 
inflammasome groups. (B) The forest plot illustrates independent prognostic factors 
identified by the multi-variable Cox regression model. (C) The nomogram shows the 
prediction model constructed using independent prognostic factors. (D) The calibration 
curves evaluate the predictive performance of the nomogram. 
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3.3. The oncogenic role of inflammasome features in SKCM 

Here, we calculated the overall inflammasome feature score (IM score) using ssGSEA based on all 
the inflammasome-related genes in the aforementioned six gene sets. All samples were divided into two 
subgroups according to the median value of the IM score (Figure 3(A)). K-M curves showed that patients 
with higher levels of an IM score presented better OS and PFS than those with lower scores (Figure 3(B)). 
Therefore, we sought to explore the differences between the two subgroups.  

 

Figure 3. Oncogenic role of inflammasome features. (A) Heatmap shows the expression 
patterns of dysregulated genes between high and low inflammasome groups. (B) Survival 
differences between high and low inflammasome groups. (C) Expression levels of cancer 
hallmarks and oncogenic pathways in high and low inflammasome groups. (D) Functional 
enrichment results for up-regulated genes. (E) Functional enrichment results for down-
regulated genes. 

First, we quantified the enrichment level of ten oncogenic pathways and ten cancer hallmark gene sets 
using ssGSEA (Figure 3(C), Figure S4). As a result, the NRF2 pathway was upregulated in the high IM 
score subgroup, while the Hippo, MYC, and PI3K pathways were downregulated in the high IM subgroup. 
As for the cancer hallmark gene sets, except for Reprogramming Energy Metabolism, all hallmarks 
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exhibited significant expression differences between the two subgroups. The Genome Instability and 
Mutation and Limitless Replicative Potential gene set showed a higher level in the low IM subgroup, while 
other hallmarks showed an opposing pattern. Next, we performed a differential expression analysis on all 
protein-coding genes to further investigate the differences between the two subgroups (Figure 3(A)). As a 
result, 643 dysregulated genes were identified (13 downregulated and 630 upregulated genes). We 
performed a functional enrichment analysis on upregulated and downregulated genes. As a result, 
downregulated genes were enriched in melanin- and pigment-related biological processes (Figure 3(E)). 
The upregulated genes were associated with various immune response-related biological processes 
(Figure 3(D)). In conclusion, our analysis revealed the oncogenic role of inflammasome features in SKCM. 

3.4. IM score was correlated with the TIME 

Given the enrichment analysis result, we sought to investigate the relationship between the 
inflammasome features and TIME. A previous study collected 29 knowledge-based gene expression 
signatures to describe the functional and cellular components of TIME. Here, we quantified the enrichment 
level of 29 signatures using ssGSEA on SKCM samples. Then, we performed an unsupervised hierarchical 
clustering method on TIME signatures. As a result, four immune clusters were identified (Figure 4(A)). 

 

Figure 4. Associations between TIME and inflammasomes. (A) Expression patterns of 29 
TIME signatures. (B) Correlations between the 29 TIME signatures and IM score. (C) 
Correlations between ESTIMATE-calculated TIME scores and IM score. (D) Differences in 
TIME scores among four immune clusters. 
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As shown in the figure, the IM score exhibited the highest level in cluster 4 and the lowest level in 
cluster 2 (Figure 4(D)). Additionally, anti-and pro-tumor microenvironment-related signatures were higher 
in cluster 4 compared to other clusters (Figure 4(A)). Spearman’s correlation analysis showed that all TIME 
signatures were positively correlated with the IM score, except for EMT and tumor proliferation rate-
related signatures (Figure 4(B)). However, the expression levels of all TIME signatures exhibited 
significant differences across four immune clusters (Figure S5). As for the ESTIMATE-generated TIME 
patterns, the immune, stromal, and ESTIMATE scores showed positive correlations with the IM score 
(Figure 4C) and exhibited the highest level in cluster 4. However, tumor purity was negatively correlated 
with the IM score and showed the lowest level in cluster 4 (Figure 4(D)). In summary, the different clusters 
defined by TIME signatures were closely associated with inflammasome features. 

3.5. Identification of two inflammasome-related subtypes 

Here, we applied the consensus clustering method on TCGA SKCM patients using inflammasome 
feature scores. Based on the Calinski criterion and the relative change in the area under the CDF curves, 
two SKCM subtypes were identified: subtype 1 included 313 patients (66.88%), and subtype 2 
included 155 patients (33.12%) (Figure 5(A), (C) and (D)). First, a survival analysis revealed distinct 
survival outcomes between two subtypes: patients from subtype 2 had a better overall survival 
compared to those from subtype 1. Regarding PFS, subtype 2 patients only showed better survival 
outcomes within the 3000–6000-day interval. However, there was no significant difference in PFS 
across the entire time range (Figure 5(B)). Next, a sample overlap analysis suggested that immune 
cluster 2 was entirely classified with subtype 1, while immune cluster 4 was classified with subtype 2 
(Figure 5(E) and (F)). The majority of immune cluster 3 was in subtype 1, whereas immune cluster 1 
was almost evenly distributed between the two subtypes. Furthermore, subtype 1 demonstrated 
relatively lower levels of the IM score, while subtype 2 exhibited relatively higher levels of the IM 
score (Figure 5(E)). TCGA defined three melanoma subtypes [44]; here, we found that most keratin 
and MTF-low samples belonged to subtype 1, while most immune samples were in subtype 2 
(Figure 5(F)). The results from the overlap analysis suggested potential correlations between the 
subtypes defined by the IM score and the SKCM immunity. In addition, we performed a differential 
expression analysis between two SKCM subtypes and identified 692 dysregulated genes (Figure 5(E)). 
Almost all dysregulated genes exhibited significantly higher expression in subtype 2 (8 upregulated 
genes and 684 downregulated genes in subtype 1). Lastly, we performed a GSEA enrichment on 
dysregulated genes between two subtypes. As a result, dysregulated genes were enriched in essential 
immune functions, including the immune response, cytokine-cytokine receptor interaction [45], the 
apoptotic process, and the T cell receptor signaling pathway [46] (Figure 5(G)). These pathways 
represent the core functions and crucial regulatory processes of the immune system. The results of the 
functional enrichment analysis further validated the correlations between the IM score-defined 
subtypes and the immune response of SKCM patients. This provided additional support for the notion 
that inflammasome features could potentially serve as predictive indicators of the patients’ responses 
to ICB therapy. 
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Figure 5. Identification of two inflammasome-associated subtypes. (A) Two SKCM subtypes 
identified by consensus clustering. (B) Survival differences between the two SKCM subtypes. 
(C) The relative change in the area under the CDF curve (from k = 2 to 8). (D) Optimal 
clustering k calculated by Calinski criterion. (E) Differentially expressed genes between two 
subtypes. (F) Overlap analysis between samples generated by different classification methods. 
(G) GSEA for differentially expressed genes. 

3.6. Inflammasome features predicted ICB therapy response 

Here, we collected three cohorts of SKCM patients who received ICB therapy (Table 1). First, we 
found higher expression levels of inflammasome features in responders among all three cohorts 
compared to non-responders (Figure 6(A), (H) and (I)). More specifically, in the Gide (anti-PD-1) 
cohort, the expression levels of the GSDMD, IL1B, IL18, and NLRP3 features were significantly 
correlated with the ICB response (Figure 6(A)). A similar pattern was found in the Gide (anti-CTLA-
4 + PD-1) cohort (Figure 6(H)). Moreover, in the GSE91061 cohort, the expression level of the CASP1 
feature showed significant differences between the two types of patients (Figure 6(I)). 

Next, we performed a ROC analysis on the features with expression differences between responders 
and non-responders of the three cohorts. As a result, all four features showed high AUC values in the Gide 
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(anti-PD-1) cohort, with the IL18 feature achieving the highest AUC of 0.837, suggesting its excellent 
predictive ability (Figure 6(B)). Additionally, the IL1B, IL18, and NLRP3 features demonstrated a strong 
discriminatory ability among patients in the Gide (anti-PD-1 + CTLA4) cohort and the GSE91061 cohort 
(Figure 6(F) and (G)). Moreover, we trained an SVM classifier using the Gide (anti-PD-1) cohort to predict 
the ICB therapy response of TCGA SKCM patients. The expression level of inflammasome features could 
effectively discriminate between the predicted responders and non-responders (Figure 6(C)). As shown in 
the K-M curve, the predicted responders had better overall survival than the predicted non-responders 
(Figure 6(D)), further suggesting the predictive ability of the inflammasome features. Lastly, among the 
three TCGA SKCM subtypes, the immune subtype exhibited the highest possibility of response, consistent 
with the predicted results (Figure 6(E)). In summary, inflammasome features could predict the response to 
ICB therapy in SKCM patients. 

 

Figure 6. Prediction of ICB therapy response by inflammasome features. (A) Expression 
levels of inflammasome features in responders vs non-responders. (B) ROC curves 
corresponding to each inflammasome feature. (C) UMAP plot depicting sample 
dimensionality reduction using inflammasome features. (D) Differences in overall survival 
between predicted responders and non-responders. (E) Possibilities of response in patients 
across the three TCGA subtypes. (F) ROC curves corresponding to each inflammasome feature 
(Gide anti-CTLA-4 + PD-1 cohort). (G) ROC curves corresponding to each inflammasome 
feature (GSE91061). (H) Expression levels of inflammasome features in responders vs non-
responders (Gide anti-CTLA-4 + PD-1 cohort). (I) Expression levels of inflammasome 
features in responders vs non-responders (GSE91061). 
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4. Conclusions 

Our study provided a systematic insight into the dysregulation of the inflammasomes in 
aggressive SKCM. We observed elevated expression levels of inflammasome activation markers, 
suggesting increased inflammasome activity in SKCM. Our findings also revealed a strong correlation 
between inflammasome activation and the immune cell composition within the tumor 
microenvironment, highlighting its role in shaping the immune response in SKCM. Importantly, we 
found a significant association between inflammasome activation and the response to immune 
checkpoint blockade therapy in SKCM. Overall, our study emphasized the critical role of the 
inflammasomes in SKCM, from tumor development and immune microenvironment modulation to 
therapeutic response. 

5. Discussion 

SKCM is one of the most aggressive forms of skin cancer, characterized by its high metastatic 
potential and resistance to conventional therapies [1,2]. The emerging link between inflammation and 
SKCM has gained significant attention [47], with previous studies demonstrating the involvement of 
inflammatory processes in the progression and metastasis of SKCM [48]. The inflammasome, which is a 
vital complex composed of multiple proteins, exerts its role during inflammatory immune reactions [49]. 
The inflammasome detects pathogens and triggers inflammatory responses. The coordinated actions 
in inflammasome signaling collectively contribute to regulating inflammation and the immune 
response mediated by the inflammasome. 

In this study, we comprehensively investigated the expression patterns of the inflammasome 
features and their correlations with clinical characteristics in SKCM patients, revealing significant 
dysregulation of the inflammasome in SKCM. Specifically, we observed elevated expression levels of 
CASP1 and NLRP3, which are responsible for inflammasome activation, suggesting increased 
inflammasome activity in SKCM (Figure 1(A)). Additionally, we found that the expression level of 
GSDMD, which is a downstream effector of inflammasome activation, was lower than other features, 
indicating a potential disruption of pyroptosis in SKCM. These findings highlighted the perturbation 
of inflammasome components in SKCM and provided insights into the potential involvement of the 
inflammasome in the pathogenesis and progression of this aggressive skin cancer. In addition, we 
observed a decrease in the expression of IL-1β and IL-18 in the cancer samples, indicating a potential 
disruption of their pro-inflammatory functions in SKCM [29]. The decreased expression of IL-1β and 
IL-18 suggests a potential impairment in the activation of downstream inflammatory signaling 
pathways, which could impact immune responses and contribute to the tumor microenvironment’s 
immune evasion mechanisms. It is worth noting that in Result 4, we found various correlations between 
inflammasome features and TIME signatures. Future studies should investigate the impact of TIME 
components disturbances in the inflammasome. 

The inflammasome has been shown to play a crucial role in shaping the tumor microenvironment 
by modulating the immune response [29]. Activation of the inflammasome can induce programmed 
cell death in cancer cells and inhibit tumor growth. Dysregulation of the inflammasome has been 
associated with developing immune escape mechanisms, leading to tumor progression and poor clinical 
outcomes [25]. In this study, we employed the TIME signature derived from a previous study [35] to 
perform unsupervised clustering of SKCM patients. We investigated the association between immune 
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clusters and inflammasome feature scores. The results revealed that immune cluster 4 exhibited the 
highest inflammasome feature scores and TIME signature levels. This finding suggested a strong 
correlation between the activation of the inflammasome and the immune cell composition within 
immune cluster 4, as indicated by the TIME signature (Figure 4(A)). These results provided valuable 
insights into the potential role of inflammasome activation in shaping the immune microenvironment 
of SKCM. They highlighted the importance of further investigating the functional implications of this 
association. The identification of two IM score-defined subtypes further proved the association 
between the inflammasome and SKCM immunity, as the results showed significant overlaps between 
IM subtypes and distinct SKCM immune clusters. Collectively, these results implied the potential of 
using inflammasome features to predict the patients’ ICB therapy response. 

Immunotherapy, particularly ICB, has emerged as a promising treatment approach for SKCM [50]; 
however, only a limited number of patients benefit from the treatment [43,51,52]. There is growing 
evidence suggesting a significant association between inflammasome activation and the response to 
ICB therapy in SKCM [53], highlighting the potential of targeting inflammasome pathways to enhance 
the efficacy of immunotherapy [54]. Our study revealed a close association between the inflammasome 
and immune function in SKCM (Figures 4 and 5). Consequently, we further explored the correlation 
between the inflammasome and the patients’ response to ICB therapy. In the ICB cohorts, we identified 
significant upregulation of inflammasome expression in responders. This finding suggested that 
inflammasome activation may play a crucial role in enhancing the efficacy of ICB by promoting 
immune activation [55]. Furthermore, the increased expression of the inflammasome in responders 
highlights the potential of targeting inflammasome components as a promising strategy to enhance the 
clinical benefits of immunotherapy in SKCM patients. In conclusion, our study revealed the significant 
association of dysregulated inflammasome expression with tumor development, the immune 
microenvironment, and immune therapy response in SKCM. These findings underscored the critical 
role of the inflammasome in SKCM. Additionally, they lay the foundation for developing potential 
therapeutic strategies and prognostic markers in SKCM. 
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