
MBE, 20(11): 19468–19484.

DOI: 10.3934/mbe.2023862

Received: 06 July 2023

Revised: 15 September 2023

Accepted: 06 October 2023

Published: 20 October 2023

http://www.aimspress.com/journal/MBE

Research article

A lightweight path consistency verification based on INT in SDN

Ping Wu1,*, Yuwei Shang2, Shuaitao Bai2, Lingjian Cheng2 and Huilin Tang1

1 Beijing Yungu Kechuang Information Technology Co.,Ltd. Beijing 100036, China
2 China Electric Power Research Institute Co.,Ltd. Beijing 100192, China

* Correspondence: Email: wpieucs@sina.com.

Abstract: The existing path consistency verification solutions in software-defined networking (SDN)
were implemented by proactive injecting large number of probing packets or by embedding linear-
scale tags as the path lengthens, which incurred significant bandwidth and communication overhead.
A lightweight path consistency validation mechanism based on in-band network telemetry (INT) in
SDN is proposed. Based on INT, in the scheme, the ingress switch inserts a telemetry instruction header
with probability, each subsequent switch updates the telemetry data using a uniform sampling
algorithm and only carries partial path information in INT packet to keep the head space size constant,
the egress switch reports the final sampled telemetry data to the controller to verify the path compliance
according to aggregated telemetry data. A heuristic flow selection algorithm is proposed to implement
network-level path consistency validation. The proposed scheme was implemented and evaluated. The
analyses and experiments demonstrate the proposed mechanism effectively limits the packet head
overhead and introduces less than 7% of additional forwarding delays and 6% of throughput
degradation at most.

Keywords: software-defined networking; path consistency verification; in-band network telemetry;
uniform sampling algorithm

1. Introduction

Software-defined networking [1] (SDN) is one of the most promising architectures for next-
generation computer networks. SDN decouples the rigid network infrastructure into a control plane
and data plane to dynamically control network traffic via a programmable control plane. In SDN, the
centralized control plane acts as the “brain” of the network to manage and control the network traffic,

19469

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

while the data plane acts as the “limb” of the network to process each flow according to the decision
of the control plane, the control plane and the data plane interacts through the south interface protocol.

Open network programming interface in SDN promotes the innovation of network technology,
and also greatly accelerates the development of the next generation of network technology. Owing to
the decoupling of the control plane and the data plane, SDN always assumes that the rules installed by
the control plane can be correct and enforced by the data plane. However, this assumption is broken
by possible hardware or software drawbacks of switches and operating systems, or errors caused by
network configuration. The serious consequence is that packets of a flow may deviate from their
authorized path to violate critical network security policies such as access control [2]. The current
network architecture of SDN does not guarantee that packets of a flow follow the path authorized by
the controller. The controller is ignorant about the true forwarding path of the packets, the reason is
that SDN networks lack tools to ensure that the data plane follows policies or proactively verify
network behavior.

In SDN, most of the existing path consistency verification solutions are implemented by injecting
a large number of probing packets into the network, or embedding linear-scale fields into the packet
header space as the forwarding path lengthens. However, there exist many differences between active
probing packets injected into the network with the real network traffic. The observed value cannot
represent the real situation of the network operation, nor can it reflect the real-time status of the
network. A large number of probing packets injected is not the actual traffic, so additional network
communication overhead is introduced [3]. Embedding linear-scale network status tags in the header
space as the path lengthens also significantly increases the computing and bandwidth overhead of the
network [4].

To address the issue of higher network communication overhead produced via injecting a large
number of probing packets and the computation and bandwidth overhead introduced by embedding
linear-scale fields into the header space as the path lengthens, making use of the typical traits of
programmability and centralized control of SDN, LPV, a lightweight path consistency verification
mechanism based on in-band telemetry (INT) [5] in SDN is proposed. To summarize, the contributions
of the paper include the following threefold.

1) We proposed LPV, a lightweight path consistency verification mechanism in SDN. LPV is
based on in-band network telemetry technology, which combines packet forwarding with network
measurement, limiting the length of tags inserted in the packet header space efficiently, and
implementing path consistency validation. LPV overhead is constant and is independent of the path
length, which can efficiently forward the packets and verify path consistency in approximately real
time.

2) We propose a heuristic-based flow selection algorithm to realize the network-level path
consistency verification.

3) By extending the programmable protocol-independent packet processor model P4 [6], we
implement LPV, evaluate its performance in a virtual network environment and demonstrate the
effectiveness of the proposed mechanism.

The rest of the article is organized as follows. Section 2 introduces the related works. In Section 3,
we present the lightweight in-band telemetry-based path consistency verification mechanism LPV in
SDN. In Section 4, we implement and perform experiments to evaluate the performance of LPV via
the extended P4 software switch, and Section 5 concludes the paper.

19470

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

2. Related works

The traits of centralized control and the decoupling of the control plane and the data plane in SDN
make the network programmable, but also accelerate the issue of path consistency between the control
plane with the data plane, i.e., the actual forwarding path of the data plane is not consistent with the
path intended or authorized by the control plane. To address the problem, many solutions have been
proposed in the past years.

Monocle [7] transforms the switch forwarding rules to a boolean satisfiability problem, which
injects probing packets into the network for specific flow rules and can implement consistency
verification of installed flow rules in the steady status of the network. VeriDP [8] injects probing
packets into the network and collects the path information of the probing data, comparing it with the
expected path in the control plane, which can effectively verify the transmission path of the real packets
transferred. Based on P4, P4Consist [9] proposed a consistency verification method of the control and
data plane for SDN, the method is similar to [7,8], and a large number of probing packets need to be
injected into the network to validate all rules installed and transmission paths. ATPG [10] checks data
reachability from source to destination by injecting probing data into the network and cannot be used
to validate packet transmission path consistency, while RuleChecker [11] checks consistency between
the real data plane switch rules with the control plane rules expected. The literature [7–11] all verify
the flow transmission path or validate the consistency of rules installed by injecting probing packets
into the network, which degrade the communication efficiency of the network, and increase data plane
overhead. While the status of the network that packets injected and the status of network of actual
traffic are not the same, the detection result is not real-time.

The P4-based in-band telemetry technology (INT) in SDN has attracted much attention in
academia and industry in recent years [12]. INT collects the status of switches in the data plane and
embeds the status information into packets forwarded, which has the advantages of real-time
measurement and fine granularity.

By partitioning network status into two categories: count-based network status and threshold-
based network status, Wang [13] proposed a mechanism for tracing the packet rule matched. The
database in the scheme records all the rules issued to the switches, and the rule manager assigns a
unique ID to each rule issued in the network, when an INT package matches a rule on the switch, the
switch copies the unique rule ID to the corresponding field of the INT header and controller collect all
IDs to validate consistency of rules. To reduce the network communication overhead, sINT [14]
maintains a ratio table at the INT source node to adjust the packet sampling probability and insert
telemetry instructions according to the variation of the network status.

FS-INT [15] classifies network measurement methods into two types of rate-based and event-
based. The strategy of rate-based is similar to sINT, and the event-based is similar to [13], which inserts
telemetry information into the packet header space according to the policies to detect the data
transmission path.

Based on probing and in-band telemetry technology, Fast-INT [16] realizes an efficient network
monitoring framework combined with reinforcement learning, whose goal is to design a lightweight
INT network collection framework by implementing a dynamic collection of network status
information.

The path consistency verification mechanisms above are based on in-band telemetry which
embeds the telemetry data into the packet header space and acquires the network status of each switch

19471

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

on the path, all can accurately collect and verify the real path of packet transmission. However, these
INT-based methods are implemented by increasing the size of the packet header that is linear to the
path length. First, it reduces network communication goodput for a lesser fraction of the bytes in a packet
now becoming usable for transferring real traffic. Second, the header space size increasing beyond MTU
(Maximum Transport Unit) fragments the packet, which introduces significant overhead of packet
reassembly and potentially forwarding latency, resulting in degradation of network performance [3].

In the paper, we aim to verify path compliance while reducing the network overhead of the data
plane as much as possible. We propose a lightweight path consistency validation mechanism LPV in
SDN. Based on in-band telemetry, LPV effectively limits the header space overhead via the uniform
telemetry data sampling algorithm proposed, and we design a heuristic flow selection algorithm,
implementing network-level path consistency verification.

3. Design of LPV

The probe-based mechanisms increase the network communication overhead of the data plane
and cannot reflect the network real-time status, while the linear-scale tags inserted in INT header space
based on in-band telemetry mechanism will inevitably increase the flow forwarding delay and degrade
network service performance [4]. How to address the above problems, by introducing limited network
overhead and realizing approximate real-time verification of flow path consistency is the main goal of
this paper, this section will elaborate on how to solve these design challenges.

Section 3.1 summarizes the proposed mechanism of LPV, and Sections 3.2 and 3.3 respectively
elaborate on the path consistency verification based on a uniform sampling algorithm and network-
level path verification based on a heuristic flow selection algorithm.

3.1. Sketch of the LPV

As mentioned above, accurate and detailed path information can be obtained by INT of per-flow
per-packet. INT enables network devices to embed telemetry information directly into delivered
packets and can obtain the near-real-time microscopic visibility of the network. Of course, it also incurs
significant overhead. However, most applications should not need accurate results, but only the sketchy
results of path sequence operation.

Based on INT, we aim at verifying path consistency as well as reducing the network overhead of
the data plane as much as possible, especially the packet bandwidth cost of the network. Under the
circumstances of any packet transmission path length L, the size of its INT packet header space in LPV
is fixed and remains constant, and will not increase the telemetry data linearly due to path length
increasing.

In short, LPV fragments the complete path information into multiple INT packets by uniformly
telemetry data sampling, each INT packet carries a fragment of the path information to compress
packet head overhead, and the controller verifies path consistency through these aggregated partial
path fragments. Table 1 below shows some of the relevant notations used in the paper.

The overall architecture of LPV is shown in Figure 1.

19472

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Table 1. Some notations in LPV.

Notation Description

isw Switch identification in data plane

inport Ingress port of packet passing through a switch

egport Egress port of packet passing through a switch

hops Total hops of a packet forwarding so far

nhop Hops of when a packet passing through a switch sw

L Path length a packet transferring

random() Random function

P A packet

flow Flow identification

 Set of active flows in the network

F Set of selected active flows in the network

Flow Table Entry Module

Probability Table Module

Uniform Sampling Module

Forwarding Devices

Control Plane

Data Plane

Flow Rules Module

Statistics
Retrieval

Rule
Installation

Path Consistency Verification Module

Flow Selection Module

Figure 1. The architecture of LPV.

In the data plane, there are three core modules.
Probability Table Module: The INT source switch maintains a probability table, and according

to the table, the INT source switch inserts telemetry instruction with probability.
Uniform Sampling Module: If a packet is an INT packet, according to the uniform sampling

algorithm, the switch updates the telemetry data or keeps the telemetry data unchanged.
Flow Table Entry Module: The module stores flow rules installed by the control plane, and the

switch forwards packets based on the rules installed.
In the control plane, there are three modules also.
Flow Rules Module: For a new flow, the control layer computes the path of flow transmission

and installs flow forwarding rules for the switches in the data plane.
Path Consistency Verification Module: The controller retrieves aggregated INT packets of a

19473

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

flow from the INT sink, to verify the real forwarding path.
Flow Selection Module: By a heuristic flow selection algorithm, the control plane implements

network-level path consistency validation.

3.2. Flow-level path validation

As shown in Figure 2, a packet of a flow transfers from source S to destination D, and the
controller calculates the forwarding path for the flow and installs the flow rules.

A packet enters the INT source node, the first network device on the packet forwarding path,
which starts INT and embeds the telemetry command (INT header) (Based on predefined probability)
and data (telemetry info or telemetry data) in the packet header space.

INT transit node is a network switch located on the packet forwarding path. By sampling, based
on probability, the transit node updates the telemetry information in the received INT packet header
space or keeps the telemetry information of the packet unchanged. INT sink Node (INT receiver), as
the last INT node on the packet forwarding path, the INT receiver executes the same operation as the
INT transit node, and removes all the telemetry information from the packet, constructing an INT
report and sending the INT report to the controller. The INT sink node can be configured to send all or
selective partial reports to the controller according to a predefined policy. The controller verifies the
packet forwarding path consistency after aggregating a certain amount of partial path information of
the flow.

S D

To controller

INT
 source

INT
 transit

INT
 transit

INT
sink

packet INT header Telemetry info

Figure 2. Packet forwarding of LPV.

egport-2

port-x

inport-1

port-y

Port of switch

A flowswitch sw

egport-1inport-2

flow-1

flow-2

Port vector

Figure 3. A packet passing port vector of switch sw.

19474

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Definition 1: The transferring path of a packet consists of a series of nodes from the source to the
destination)},(,),,(),,{(21 nhopRnhopRnhopR L , and here),,(egportinportswR ii , isw is switch
identification, inport and egport are ingress port and egress port of a switch when a packet passing
through, and nhop is hops when the packet has reached isw .

As shown in Figure 3 above, the switch sw contains several network interfaces, there exist two
flows of flow-1 and flow-2 passing through the switch sw. The two flows’ ingress and egress port
vector are 1,1 egportinport and 2,2 egportinport , respectively.

During in transmission, only when a packet passes through the network in order as
)},(,),,(),,{(21 nhopRnhopRnhopR L , the real forwarding path of the packet is consistent with the

expected path of the controller authorizing.
As mentioned above, the mechanism of LPV proposes a uniform telemetry information updating

sampling algorithm to fragment the complete path information into multiple INT packets of a flow,
each INT packet carries only a fragment of complete path information. Based on the shared key K
between the controller with the switch, the switch calculates the MAC (Message Authentication Code)
of the path information fragment and the packet. The controller aggregates the path information
fragment and verifies its validity. When the aggregated path fragment information meets with a
predefined condition, the controller verifies the transmission path consistency. Table 2 shows the
telemetry service primitive used in LPV.

Table 2. Service primitive used in LPV.

Telemetry data Description

Switch ID Identifier associated with a device

Ingress Port ID Identifier of the packet’s ingress port

Egress Port ID Identifier of the packet’s egress port

Hops Hops of a packet forwarding

MAC Message Authentication Code

INT source node maintains a flow telemetry instruction insertion probability table, as shown in
Table 3 below, when a flow packet P enters the INT source node, INT source node inserts the telemetry
instruction according to probability .

Table 3. Probability table of telemetry instructions inserted.

A flow Probability table

flow1 1

flow2 2

......

flown n

When a packet embedded telemetry instruction in the header space transfers from the source to
the destination switch node iR （ Li 1 ）, iR will update the telemetry data in the packet P header
space with probability i1 . As shown in Algorithm 1.

19475

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Algorithm 1. The uniform sampling algorithm of LPV.

Input：Packet P

Output: Switch telemetry data

INT source

1) if ()1,0(random) then

2) 1. swswp

3) inportinportp .

4) egportegportp .

5) 1. hopsp // hops of Packet P has transmitted

6) 1. nhopp // hops when Packet P reached

// switch sw .

7) endif

INT transit and sink

1) hopsp.

2))].,1([hopsprandom

3) if 1 then

4) update (P)

5) hopspnhopp ..

6) endif

Theorem 1: In Algorithm 1, on the path of },,,{ 21 LRRR , the node)1(LiRi updates the
telemetry information in the header space of packet P with probability i1 . On any forwarding path of
length L, the controller only needs expectation value of L INT packets to verify the complete and real
path information of a flow.

Proof: For the INT source node, when the embedded fragment of path information is not updated
by all subsequent nodes)1(LkRk on the path, the probability is:

LL

1
)

1
1()

3

1
1(*)

2

1
1(*1Pr (1)

For the INT transit node, when the node iR has updated the telemetry information with
probability i1 , and the information is not updated by subsequent nodes)1(LkiRk , the
probability is:

LLiii

1
)

1
1()

2

1
1(*)

1

1
1(*

1
Pr

 (2)

And for the INT sink node, it also update the fragment telemetry path information with probability
L1Pr .

Therefore, LPV does not need to insert the complete path information in each packet as path
lengthen, by uniform telemetry data sampling algorithm 1, an INT packet carries only fragment of the
complete path information. On a transporting path of length L, the controller can aggregate fragments
of path information with L INT packets, and verify path consistency of a flow.

The following algorithm 2 is the controller path verification algorithm in LPV. Comparing the
fragment path of L telemetry items with the complete path information authorized, the controller
verifies the path consistency of a flow.

19476

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Algorithm 2. Path validation in LPV.

Input: L telemetry data and },,,{ 21 LRRR

Output: True of False

1) for (k=1; k<=L; k++)

2) if ii RkdataR][,

3) mark iR // Next round of search will exclude iR

4) continue;

5) else

6) return FALSE;

7) endif

8) endfor

9) return TRUE;

When the controller aggregates L fragments path information verified correctly of a flow, then
the INT source node decreases the probability of inserting telemetry instruction.

)1 ,
2

1
[, (3)

Otherwise, the INT source node enlarges insertion probability as following Eq (4).

2

1

 (4)

3.3. Network-level path validation

If flow-level path validation described in Section 3.2 is applied to all active flows in the network,
then in the network the INT source or the transit switch continuously inserts or updates telemetry data
and the controller continuously collects telemetry information and verifies the path consistency of
flows. Of course, it will inevitably bring a large network communication and bandwidth overhead of
data plane and increase load of the controller.

A packet of an active flow passes through multiple network nodes },,,{ 21 LRRR , and maybe
there exists several different active flows pass through the same network node

),,(egportinportswR ii . The goal of this section is to select a sub-set of active flows in the network
to achieve network-level path consistency validation.

The scheme of ATPG [10] discusses a similar issue, which searches for the minimum number of
probing packets to validate the rules of all flows in the network. The issue is eventually deduced to a
minimum set coverage problem, it is an NP problem, and formally, to find the minimum set coverage
of flows is to solve the problem described in formula (5) [17].

flowx

SR; x s.t.

x

flow

flow

flowSR flow

flow flow

flow

 ; 1,0

 1

 min

 (5)

19477

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

The notation),,(egportinportswR is the aforementioned network node，and flowS is the set
of switch nodes on the path authorized of a flow. To achieve network-level path consistency
verification, we propose a heuristic flow select algorithm 3 shown as below which select the sub-set
flows of active flows in the network.

Algorithm 3. Sub-set flows selection algorithm in LPV.

Input: Network flow set

Output: The selected sub-set flows F

1) {}F ；

2) {}flow ；

3) foreach flow, flow do

4) flowflowflow S

5) while flowflowStsflow .., , do

6) select ||max .., flowStsflow

7) } { flowFF

8) } {\ flow

9) flowflowflow S\

10) endwhile

In algorithm 3, flow is the set of switch nodes for all active flows in the network, ji RR , if

and only if ji swsw , ji inportinport and ji egportegport . Lines 1) to 4) initialize the subset F

selected flows and the set of switch nodes flow respectively. Each iteration of the algorithm, it checks

the set of current network flows，and determine whether there is a flow that the set of switch nodes

flowS exist in the set of flow (Line 5)). If validation fails, the algorithm exits and outputs the final

result of selected subset F. Otherwise, it selects a flow with the longest path length (that is || flowS is

the maximum). Synchronously, it updates the set F and . Line 9) updates the node set flow . When

there are multiple flows passing through the same node),,(egportinportswR , Only one of a flow

which path length is maximum is selected and other flows are excluded.

4. Experiments and evaluation

This section constructs a simple simulation network environment to evaluate the effectiveness of
LPV proposed by extending the switch behavior model (behavioral-model version 2, BMV2) and the
programmable P4 switch.

19478

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

4.1. Experiment setup

With 64-bit Ubuntu16.04 operating system, the experiment emulation platform is configured with
Intel (R) Core (TM) i7-8550 CPU, 1.8 GHz, 8 GB of memory. Our experiments are performed on the
Mininet, programmable P4 software switch, and controller components based on P4Runtime interface.
In this paper, we extend the switch behavior model BMV2 using C++ to implement operation of
message authentication code and uniform telemetry data sampling algorithm.

4.2. Implementation

According to the INT standard specifications, the packet bandwidth overhead introduced by INT
includes telemetry instructions (also known as telemetry metadata header) and telemetry data
(telemetry metadata) inserted by INT source node. The telemetry instruction length is 12 bytes. The
instruction is actually a bitmap, where each bit represents a different type of network status or
information about switch, such as switch identification, ingress and egress ports of packet of a flow,
hops, etc. If a bit is set to 1, then a switch copies relative status of the node to the telemetry metadata
data in the packet header space, and each field is 4 bytes. Figure 4 below shows the packet header
format in LPV.

INT Header
IP Header

INT

TCP/UDP Header

Payload

SwitchID

IngressPortID

EgressPortID

Hops

nhopINT Metadata

MAC

Figure 4. LPV Packet header format.

In LPV, the INT source node inserts the telemetry instructions and telemetry data with probability
 based on the Table 3, INT transit nodes execute the telemetry instructions, and updates telemetry
data based on the uniform telemetry data sampling Algorithm 1.

The INT metadata data in Figure 4 includes the switch ID, the value Hops (Hops is updated at
each switch) of the packet transporting so far, the ingress and egress port of the switch, and the value
nhop (only when telemetry data is updated according to sampling probability, nhop is updated) of an
INT packet reaching a switch. According to Algorithm 1, if a switch sw determines to update the
telemetry metadata (path fragment), the value nhop will be updated to Hops, otherwise, the item nhop
will be kept unchanged. Based on uniform sampling, INT Metadata and MAC will be updated or be
kept unchanged by the subsequent switch on the path and eventually be sent to the controller by the
INT sink switch.

The switch sw calculates message authentication code MAC of the telemetry packet based on
Eq (6), which prevent malicious message tampering, and MAC is 8 bytes. The controller verifies
validity of each MAC, if all the aggregated MACs are valid, then the controller judges that the path is
consistent.

)|| ||||(MetadataHeaderpayloadIPHashMAC INVARKi (6)

19479

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Where IPINVAR is the invariable field in the IP header space, payload represents packet load, Header
is the telemetry header, and Metadata is the telemetry data of fragment of complete path. The process
diagram about forwarding packets for P4 switch in LPV is shown in Figure 5, which includes Input,
Parse, Ingress, Egress, Output, etc. And more specific details about P4 switch, refer to the literature [6]
please.

Input

Parser

Ingress

Egress

Output

INT Source?

Inserting Telemetry
Instruction with

Probability

Y

N

Uniform Sampling
Algo

 INT Packet ?

Y

N

Figure 5. The process of packet forwarding in LPV.

4.3. Performance evaluation

This section evaluates the performance of the proposed mechanism, including packet header
space overhead, network packet forwarding delay, network throughput, etc.

Experiment 1. Number of aggregated packets of path verification. We performed experiments
to test the expected INT packet count N required for path consistency verification for algorithm 1. The
experimental result is depicted below in Figure 6.

Figure 6 shows average result of embedding telemetry instructions with the probability of 2.0
and 5.0 , respectively. The result is in line with Theorem 1. When a forwarding path length is L,
based on the uniform telemetry data sampling algorithm, with aggregated L INT packets, the controller
can validate whether if a flow does follow forwarding path authorized really.

Experiment 2. Packet forwarding delay. In LPV, the core network performance includes packet
transmission latency and network throughput. The INT source switch inserts telemetry instructions
with probability, the subsequent INT transit switch update the telemetry data based on uniform update
sampling algorithm 1, all degrade the network performance.

In [13–15], the telemetry data inserted increase linearly as path lengthen, while LPV, basing on
the proposed uniform sampling, all switches update the telemetry data with uniform probability, the
INT packet header space size always keep constant. Table 4 lists the telemetry data bandwidth cost of
a packet which embedded telemetry instruction in header space. Here, supposing that [13–15] need 16

19480

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

bytes of size to collect a switch status at least, we can conclude that the header space overhead of LPV
is less than [13–15] even if path length is a small value.

N
um

be
r

of
 I

N
T

 P
ac

ke
ts

 (
N

)

Path Length L (hops)

Figure 6. The expected INT packet count of path validation.

Furthermore, we define the header space communication overhead ratio between telemetry
data inserted and the packet payload size, e.g., for the payload size of 900 bytes, 900)1612(LsINT ,

90040LPV . As following Table 5, it shows that when the path length is 10 hops, the payload size
varying from 300 to 1200 bytes, the header space communication overhead ratio of [13–15] varies
from 57.3 to 14.3%, while only 13.3 and 3.33% communication overhead ratio of LPV.

Table 4. Typical scheme packet header space overhead (L: Path length).

Scheme INT packet header space overhead (Bytes)

Wang [13] 12 + 16L

Sint [14] 12 + 16L

FS-INT [15] 12 + 16L

LPV 40

Table 5. The header space overhead ratio.

 The overhead ratio of different payload size (Path length L = 10)

300 B 600 B 900 B 1200 B

[13–15] 57.3% 28.6% 19.1 % 14.3 %

LPV 13.3% 6.66% 4.44% 3.33%

Figure 7 shows the results of round-trip delay (RTT) experiments tested at different path lengths
L, here the Baseline is the original network without running the LPV protocol. We also evaluate the
round-trip delay of LPV protocol inserting telemetry instructions with probability 2.0 and

5.0 respectively. From the Figure 7, we learn that when L = 10, the Baseline delay is about 26
ms. When inserting telemetry instructions with probability 2.0 , the average RTT is about 27.5
ms, while 5.0 , the average RTT is about 27.6 ms. So, LPV introduces about 7% additional
forwarding delay.

19481

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Baseline

Path Length L (hops)

R
ou

nd
 T

ri
p

T
im

e
R

T
T

 (
m

s)

Figure 7. Round trip time.

Experiment 3. Network throughput. We performed experiments for testing network throughput
on the path of 10 hops length. Packet payload size varies from 300 to 1200 bytes, the INT source
inserts INT instructions with probability 2.0 and 5.0 respectively. From Figure 8, we learn
that when the payload is 900 bytes, the degradation of throughput is trivial of 6%, which is about 94–
95% of Baseline.

Baseline

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

bi
t/s

)

Packet Payload(Bytes)

Figure 8. Throughput under different payload.

Experiment 4. The controller load. We performed experiment testing controller load based on
the heuristic flow selection algorithm when embedding telemetry instructions with different
probabilities. Of the 50 different flows run simultaneously in the network, the experimental result is
shown below in Figure 9. We can learn that embedding telemetry instructions with probability 2.0
and 5.0 respectively, when without executing the flow selection algorithm, the average controller
CPU load is about 15–37%, and when performing the flow selection algorithm, the average controller
CPU load is 10–24%.

19482

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

Probability of inserting instruction

C
PU

 L
oa

d
(%

)

Select Algo

No select Algo

Figure 9. Average CPU load.

5. Conclusions

Existing path consistency verification mechanisms introduce significant communication
overhead by active sending a large number of probing packets or embedding linear-scale tags in the
header space of packets as path lengthen in software-defined networking. We propose LPV, a path
consistency verification mechanism based on in-band telemetry. The INT source inserts telemetry
instructions with probability, the transit switch updates telemetry data basing on the uniform sampling
algorithm proposed. LPV fragments the complete path information into multiple INT packets which
keep the packet header space size constant, and the controller aggregates path fragment to verify path
consistency. We propose a heuristic flow selection algorithm to implement network-level path
consistency validation. The analysis shows LPV effectively compress the INT packet header space
size, the simulation experiment results demonstrate the effectiveness of the proposed mechanism and
only introduce less than 7% of additional forwarding delays and 6% of throughput degradation at most.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported by Science and Technology Fund of the State Grid of China，Research
on Key Technologies of Operation and Maintenance Security of Low-voltage Power Distribution
Internet of Things (Grant No.5400-202255159A-1-1-ZN)

Conflict of interest

The authors declare there is no conflict of interest.

19483

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

References

1. A. T. Mckeown, H. Balakrishna, OpenFlow: enabling innovation in campus networks, ACM
Comput. Commun. Rev., 38 (2008), 69–74. https://doi.org/10.1145/1355734.1355746

2. D. Singh, A. Shiv, S. K. Chamoli, Software Defined Networking (SDN) Challenges, issues and
solution, Int. Comput. Sci. Eng., 7 (2019), 884–889. https://doi.org/10.26438/ijcse/v7i1.884889

3. L. Tan, W. Su, Z. Zhang, J. Miao, N. Li, In-band network telemetry: A survey, Comput. Networks,
186 (2020). https://doi.org/10.1016/j.comnet.2020.107763

4. S. R. Chowdhury, R. Boutaba, J. Franois, LINT: Accuracy-adaptive and lightweight in-band
network telemetry, in 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM), (2021), 349–357. https://ieeexplore.ieee.org/document/9464012

5. G. Simsek, D. Ergenç, E. Onur, Efficient network monitoring via in-band telemetry, in 2021 17th
International Conference on the Design of Reliable Communication Networks (DRCN), (2021),
1–6. https://doi.org/10.1109/DRCN51631.2021.9477344

6. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, et al., P4: programming
protocol-independent packet processors, ACM Comput. Commun. Rev., 44 (2014), 87–95.
https://doi.org/10.1145/2656877.2656890

7. P. Pereíni, M. Kuniar, D. Kosti, Monocle: dynamic, fine-grained data plane monitoring, in
Proceedings of the 11th ACM Conference on Emerging Networking Experiments and
Technologies, (2015), 1–13. https://doi.org/10.1145/2716281.2836117

8. Z. Peng, L. Hao, C. Hu, Mind the gap: Monitoring the control-data plane consistency in software
defined networks, in Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies, (2016), 19–33.
https://doi.org/10.1145/2999572.2999605

9. A. Shukla, S. Fathalli, T. Zinner, A. Hecker, S. Schmid, P4Consist: toward consistent P4 SDNs,
IEEE J. Sel. Areas Commun., 38 (2020), 1293–1307.
https://doi.org/10.1109/JSAC.2020.2999653

10. H. Zeng, P. Kazemina, G. Varghese, Automatic test packet generation, IEEE Trans. Networking,
22 (2014), 554–566. https://doi.org/10.1109/TNET.2013.2253121

11. C. Hu, Z. Peng, C. Zhang, Fast testing network data plane with RuleChecker, in 2017 IEEE 25th
International Conference on Network Protocols (ICNP), 2017.
https://doi.org/10.1109/ICNP.2017.8117541

12. P. Manzanares-Lopez, J. P. Munoz-Gea, J. Malgosa-Sanahuja, Passive in-band network telemetry
systems: the potential of programmable data plane on network-wide telemetry, IEEE Access, 9
(2021), 20391–20409. https://doi.org/10.1109/ACCESS.2021.3055462

13. S. Y. Wang, Y. R. Chen, J. Y. Li, A bandwidth-efficient int system for tracking the rules matched
by the packets of a flow, in 2019 IEEE Global Communications Conference (GLOBECOM),
(2019), 1–6. https://doi.org/10.1109/GLOBECOM38437.2019.9013581

14. Y. Kim, D. Suh, S. Pack, Selective in-band network telemetry for overhead reduction, in 2018
IEEE 7th International Conference on Cloud Networking (CloudNet), 2018.
https://doi.org/10.1109/CloudNet.2018.8549351

15. D. Suh, S. Jang, S. Han, S. Pack, X. Wang, Flexible sampling-based in-band network telemetry in
programmable data plane, ICT Express, 6 (2020), 62–65.
https://doi.org/10.1016/j.icte.2019.08.005

19484

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19468–19484.

16. F. Yang, W. Quan, N. Cheng, Z Xu, X. Zhang, D. Gao, Fast-INT: Light-weight and efficient in-
band network telemetry in programmable data plane, in 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), IEEE, 2020. https://doi.org/10.1109/VTC2020-
Fall49728.2020.9348823

17. P. Zhang, H. Wu, D. Zhang, Verifying rule enforcement in software defined networks with REV,
IEEE Trans. Networking, 28 (2020), 917–929. https://doi.org/10.1109/TNET.2020.2977006

©2023 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

