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Abstract: Herein, we discuss an optimal control problem (OC-P) of a stochastic delay differential
model to describe the dynamics of tumor-immune interactions under stochastic white noises and exter-
nal treatments. The required criteria for the existence of an ergodic stationary distribution and possible
extinction of tumors are obtained through Lyapunov functional theory. A stochastic optimality system
is developed to reduce tumor cells using some control variables. The study found that combining white
noises and time delays greatly affected the dynamics of the tumor-immune interaction model. Based
on numerical results, it can be shown which variables are optimal for controlling tumor growth and
which controls are effective for reducing tumor growth. With some conditions, white noise reduces
tumor cell growth in the optimality problem. Some numerical simulations are conducted to validate
the main results.
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1. Introduction

Cancer is one of the most dangerous diseases in the world, and it affects both developing and devel-
oped nations. According to the World Health Organization, cancer is a prominent contributor to global
mortality, with approximately 10 million deaths recorded in the year 2020 [1]. Through a multi-step or
multifaceted process, cancer arises when normal cells turn into cancerous cells. It usually progresses
from a pre-cancerous lesion to a fully cancerous cell. In this multistep mechanism, various genetic
and molecular changes accumulate over time, ultimately leading to cancer. These transformations are
the consequence of the interaction among a person’s genetic circumstances and three classifications of
external forces, such as physical, chemical and biological carcinogens [2]. An early diagnosis of can-
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cer increases the likelihood of a favorable response to effective treatment, leading to a higher survival
rate, reduced morbidity, and a more cost-effective treatment option. One of the most important and
challenging questions is to understand cancer biology and how to treat it effectively. Therefore, many
researchers have put time and efforts in creating and improving an efficient medication. Additionally,
identifying the methods to support the patient improve their natural immunity that implement them to
fight against tumor cells.

Sophisticated mathematical models are necessary to accurately depict the intricate interplay be-
tween tumor cells and the immune system. Different mathematical models have been investigated and
analyzed to recognize tumor-immune dynamics [3–13]. In [14], Kirschner and Panetta introduces the
tumor-immune interaction model of three types of cell populations in vitro. The interaction between ef-
fector cells and tumor cells was mathematically modeled by Kuznetsov et al. [15] in one of the earliest
proposals of such a model. An optimal control problem (OC-P) is typically formulated as a mathe-
matical optimization problem, in which the objective is to find the control trajectory that minimizes or
maximizes the cost function while satisfying any constraints on the state variables or control inputs of
the system [16, 17]. According to Rihan et al. [18] a study was carried out using an OC-P model for a
delay differential model to examine tumor-immune interactions under immuno-chemotherapy.

In actuality, deterministic models are not adequate to describe the dynamic process of the prolifera-
tion of cancer cells. Research has been conducted in this instance to amplify the deterministic models
to stochastic counterpart [19–24]. Tumor-immune interactions are extremely complex, so it makes
sense to include noise on the tumor-immune system in order to take into account a variety of relevant
phenomena. An example of this may be variations in the intensity of neoantigens that stimulate the
immune response, or changes in the expression of molecules that activate T cells; see [22,23,25]. As a
result of the significant uncertainty inherent in the treatment process, authors in [26–28] modified the
deterministic model to incorporate stochastic factors, such as variations in cellular reproduction and
death rates, changes in the immune system’s ability to fight tumor cells, and fluctuations in chemother-
apy efficacy. In addition, the tumor-immune interaction model illustrates a delay between an immune
response and a subsequent response by cancer cells [29]. A delay may affect the stability of the sys-
tem, resulting in instability or bifurcation. In order to formulate effective therapies, it is crucial to
understand how time-delays play a role in tumor-interaction models [29].

Up to the best of authors’ knowledge, few studies have been conducted so far in tumor-immune
interactions with stochastic noises and time delays involving immunological boosts and chemothera-
peutic treatment therapies. There is very little research relating stochastic models to interacting cells
in cancer dynamics [30, 31]. Drawing motivation from the aforementioned research studies, this paper
attempts to investigate the impact of two time-delays and stochastic white noises on both the dynamics
and optimal control performance of a model representing the interaction between tumors and the im-
mune system. We provide a stochastic optimal control problem to reduce tumor growth and reduce the
load tumors and increase the size of effector cells.

This paper is structured as follows: Section 2 introduces a stochastic tumor-immune model with
external treatments and time delay. Section 3 discusse the time-delayed stochastic model’s global
positive solution. The stationary distribution and extinction of tumor cells are discussed in Section 4.
Section 5 examines the OC-P governed by the stochastic model using the stochastic maximal criterion.
Section 6 presents numerical simulations incorporating various stochastic perturbations in order to
validate the theoretical findings. Our conclusion is presented in Section 7.
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Preliminaries:

Here, we provide some preliminaries for the discussion that follows. Assume that(
Ω,M, {M}t≥0 ,P

)
is a complete probability space with a filtration {Mt}t≥0 that meets the usual cri-

teria. It is continuous with the right-hand side andM0 contains all P-null sets.
Assume Z(t) is a regular time-homogeneous Markov process in C([−τ, 0];Rm

+) and satisfies the
following stochastic delay differential equation:

dZ(t) = f (Z(t),Z(t − τ), t)dt + g(Z(t), t)dW(t), for t ≥ −τ, τ ≥ 0, (1.1)

with the initial value Z(s) = Z0 ∈ C([−τ, 0];Rm
+). W(t) stands for the m-dimensional standard Brownian

motion defined on the complete probability space
(
Ω,M, {M}t≥0 ,P

)
. Diffusion matrix Z(t) is then

defined as follows:

Π(Z) = (ςi j(Z)), ςi j(y) = gT (Z(t), t)g(Z(t), t).

In order to have a nonnegative Lyapunov function V(Zt, t), it must be continuously twice differentiable
in C2,1(C([−τ, 0];Rm

+) × [−τ,∞);R+) and once differentiable in t. Reference [21] defines the differen-
tiable operator L of (1.1).

2. Stochastic model for tumor-immune interactions with external treatments

Stochastic perturbations can influence the activation of immune cells, and it can affect the immune
system’s ability to detect and eliminate tumor cells. In addition, environmental fluctuations can impact
the response to anti-cancer treatments, including immunotherapies. These perturbations can affect
treatment efficacy, resistance development and long-term outcomes. First, we modify Kirschner and
Panetta’s model [14] which describes the dynamics of the activated effector cells E(t), tumor cells T (t)
and Interleukin-2 (IL-2) cells I(t), with time delays τ1 and τ2. IL-2 plays a crucial role in regulating
immune responses and promoting T cell proliferation and survival, it is also essential for generating
effector and memory T cells. We consider the following assumptions: (i) The Lotka-Volterra form
represents cell interaction. (ii) The cancer cells are eradicated by the effector cells, while the IL-2 level
increases as competition between tumor cells and effector cells increases. (iii) Two distinct time-delays
are incorporated, τ1 and τ2. The modified model takes the form

dE(t)
dt
= αE(t − τ1)T (t − τ1) − η1E(t) + µ1E(t)I(t) + e1,

dT (t)
dt
= rT (t)(1 − βT (t)) − ξE(t)T (t),

dI(t)
dt
= η2E(t − τ2)T (t − τ2) − µ2I(t) + e2,

(2.1)

with the initial conditions E(θ) = σ1(θ),T (θ) = σ2(θ), I(θ) = σ3(θ), where σp(θ) ≥ 0 for θ ∈
[−τ, 0), τ = max {τ1, τ2} and σp(0) > 0, p = 1, 2, 3. Tumor cell populations are reduced as a result
of their interactions with effector cells E(t), which occur at distinct rates represented by −ξE(t)T (t).
By interacting with tumor effector cells −ξE(t)T (t), immune effector cells E(t) reduce the population of
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tumor cells T (t) at a rate denoted by ξ. Effector cells are activated by IL-2 by stimulating their prolifer-
ation and differentiation, with rate µ1E(t)I(t). Effector cells are also stimulated by tumor cells, denoted
by αE(t − τ1)T (t − τ1), where α represents the antigenicity rate of the tumor and τ1 is the duration
over which IL-2 is induced in effector cells. η1E(t) represents the natural degradation of effector cells,
while e1 represents the exogenous supply of effector cells. Proliferation and death of tumor cells are
represented by the parameter r. β represents the biological environment’s maximum carrying capacity
for tumor cells T (t). η2E(t − τ2)T (t − τ2) represents the effector cells as the source of IL-2, which is
induced by their interaction with tumor cells. Effectors and cancer cells compete at η2. The time delay
between stimulating effector cells and tumor cells is represented by τ2. The parameter µ2 represents
the degradation of IL-2 inherent to the system, whereas the variable e2 represents an exogenous IL-2
inflow. The parameters in model (2.1) are summarized in Table 1. See the Appendix, for the analysis
of the deterministic model (2.1).

Table 1. Parameter definitions and values of model (2.1) ( the unit is day−1).

Parameters Description Values Reference
α the rate of antigenicity exhibited by the tumor 0.04 Assumed
η1 death rate of effector cells 0.3743 [20]
µ1 the level of cooperation between effector and IL-2 cells 0.035 [20]
e1&e2 the source of effector cells and IL-2 from external sources 0.1181&0.38 [20]
r proliferation and mortality rate of tumor cells 0.8636 Assumed
β−1 the biological environment’s tumor-carrying capacity 0.002 [20]
ξ inactivation rate of tumor cells by effector cells 1 [20]
η2 the rate of competition between effector 0.01 Assumed

and cancer cells
µ2 the rate of loss of IL-2 cells. 0.055 [20]

Most biological phenomena are characterized by random fluctuations, particularly variations in the
intensity of neoantigens that trigger immune responses or the expression of molecules that activate T
cells. Due to the complexity of the interaction between tumor cells and immune effectors, noise related
to the tumor-immune system is justified. Since tumor-immune cells may have small populations, the
impact of random fluctuations is significant. To investigate the impact of stochastic fluctuations within
a deterministic model, there are primarily two methodologies [32–35]. One or more relevant param-
eters can be substituted with their stochastic counterparts in a deterministic model. In this process,
white or colored noises are introduced to the deterministic parameters to introduce stochastic perturba-
tions. Alternatively, it is possible to introduce a stochastic driving force directly into the deterministic
model instead of modifying specific parameters. In the current study, we adopt the second alternative
approach, wherein we assume the occurrence of stochastic perturbations in the variables, throughout
the boundary and the interior equilibrium point. The perturbations are assumed to follow a white noise
distribution, whose magnitude is proportional to the distances between equilibrium values E(t), T (t),
and I(t). The model structure is as follows:
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dE(t) = [αE(t − τ1)T (t − τ1) − η1E(t) + µ1E(t)I(t) + e1]dt + ν1H1dW1,

dT (t) = [rT (1 − βT ) − ξE(t)T (t)]dt + ν2H2dW2,

dI(t) = [η2E(t − τ2)T (t − τ2) − µ2I(t) + e2]dt + ν3H3dW3,

(2.2)

with initial conditions

E(θ) = σ1(θ) ≥ 0; T (θ) = σ2(θ) ≥ 0; I(θ) = σ3(θ) ≥ 0, θ ∈ [−τ, 0), σp(0) > 0, p = 1, 2, 3. (2.3)

Wi(i = 1, 2, 3) stand for the independent Brownian motions that are stated on a complete probability
space

(
Ω,M, {M}t≥0 ,P

)
with a filtration {Mt}t≥0 satisfying the usual conditions andM0 contains all

P-null sets. Let R+ = (0,+∞),Rm
+ =

{
(y1, y2, . . . , ym) ∈ Rm|yp > 0, p = 1, 2, . . . ,m

}
, Hi = Hi(E, I,T ),

(i = 1, 2, 3) are locally Lipschitz-continuous functions, such that Hi has the following forms:

• In the first form R1: H1 = E, H2 = T , and H3 = I, i.e., the environmental impact on the cell
described by stochastic perturbation [36].
• In the second form R2: H1 = E − E0, H2 = T − T 0, and H3 = I − I0, where S = (E0,T 0, I0) is the

equilibrium point of (2.1), which investigates the behavior of stochastic perturbations around the
equilibrium point [37].

When examining the dynamics of the proposed system, the positivity of the solution is of primary
importance. The following section provides a detailed analysis of the solution’s positivity.

3. Global positive solution

Here, we examine the global positivity criteria pertaining to the model (2.2) of the interac-
tion between tumor and immune cells. In order to determine the positivity of the solutions of
model (2.2), it is necessary to consider the Banach space C = C

(
[−τ, 0] ,R3

+

)
, which has contin-

uous functions that map the interval [−τ, 0] into R3
+ with topological uniform convergence, where,

R3
+ = {(E0,T0, I0) |E0 ≥ 0; T0 ≥ 0; I0 ≥ 0}. The following two theorems demonstrate that the stochas-

tic model can have a positive global solution (2.2) with forms R1 and R2.

Theorem 3.1. For any given initial condition (E0,T0, I0) ∈ R3
+, the model (2.2) with form R1 for all

t ≥ −τ, where τ = max{τ1, τ2}, has a solution which is almost surely unique and positive.

Proof. For any initial condition (E0,T0, I0) ∈ R3
+, as the coefficients of system (2.2) satisfy the local

Lipschitz condition, so system (2.2) has a unique local solution (E(t),T (t), I(t))ont ∈ [−τ, τe) almost
surely, where τe stands for the explosion time. The target is to show that this solution is global i.e. τe =

∞ with probability one. Assume c0 ≥ 1 to be sufficiently large such that E(θ),T (θ)&I(θ)(θ ∈ [−τ, 0])
are lying in the interval [ 1

c0
, c0]. For each c ≥ c0, c ∈ N, define the stopping time

τc = inf
{
t ∈ [−τ, τe) : min{E(t),T (t), I(t)} ≤

1
c

or max{E(t),T (t), I(t)} ≥ c
}
.

Assume inf ϕ = ∞. Therefore, τc is increasing as c → ∞. Let τ∞ = limc→∞ τc, then τ∞ ≤ τe. One
needs to show that τ∞ = ∞ with probability one, then τe = ∞ a.s. and (E(t),T (t), I(t)) ∈ R3

+ for all

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19270–19299.



19275

t ≥ −τ. When it is incorrect, there is a pair ι ∈ (0, 1) and T̃ > 0 such that P{τ∞ ≤ T̃ } > ι. Hence, there
is an integer c1 ≥ c0 such that

P{τc ≤ T̃ } ≥ ι, ∀c ≥ c1. (3.1)

By employing the Lyapunov functional methodology, it can be observed that the system represented
by Eq (2.2) exhibits the presence of a positive solution that is global in nature. Thus, we define a
C2-function G(E,T, I) : R3

+ → R+ by

G(E,T, I) =(E − 1 − ln E) + (
α + η2

ξ
)(T − 1 − ln T ) + (I − 1 − ln I)

+ α

∫ t

t−τ1

E(s)T (s)ds + η2

∫ t

t−τ2

E(s)T (s)ds.

Applying Itô’s formula to G(E,T, I), we get

dG(E,T, I) = LG(E,T, I)dt + ν1(E − 1)dW1 + ν2(
α + η2

ξ
)(T − 1)dW2 + ν3(I − 1)dW3, (3.2)

where

LG(E,T, I) =αET − η1E + µ1EI + e1 −
αE(t − τ1)T (t − τ1)

E
+ η1 − µ1I −

e1

E

+ (
α + η2

ξ
)rT (1 − βT ) − (

α + η2

ξ
)ξET − (

α + η2

ξ
)r(1 − βT ) + (

α + η2

ξ
)ξE + η2ET − µ2I

+ e2 −
η2E(t − τ2)T (t − τ2)

I
+ µ2 −

e2

I
+
ν1 + ν2 + ν3

2

≤(α + η2 − (
α + η2

ξ
)ξ)ET + µ1EI + ((

α + η2

ξ
)ξ − η1)E + (

α + η2

ξ
)r(1 + β)T − (µ1 + µ2)I

+ e1 + e2 + η1 + µ2 − r +
ν1 + (α+η2

ξ
)ν2 + ν3

2

≤ sup
E∈R+
{((
α + η2

ξ
)ξ − η1)E + µ1E2} + sup

I∈R+
{µ1I2 − (µ1 + µ2)I} + sup

T∈R+
{(
α + η2

ξ
)r(1 + β)T

− (
α + η2

ξ
)rβT 2} + e1 + e2 + η1 + µ2 − r +

ν1 + (α+η2
ξ

)ν2 + ν3

2
≤N , (3.3)

and N > 0 is a constant which is independent of E(t),T (t), I(t). Thus,

dG(E,T, I) ≤ Ndt + ν1(E − 1)dW1 + (
α + η2

ξ
)ν2(T − 1)dW2 + ν3(I − 1)dW3. (3.4)

Integrating (3.4) from 0 to τc ∧ T̃ = min{τc, T̃ } and then taking the expectation E on both sides, we get

EG(E(τc ∧ T̃ ),T (τc ∧ T̃ ), I(τc ∧ T̃ )) ≤ EG(E(0),T (0), I(0)) +N T̃ . (3.5)

Let Ωc = {τc ≤ T̃ }, for c ≥ c1 and in view of (3.1), we obtain P(Ωc) ≥ ι such that, for every ω ∈ Ωc,
there is at least one of E(τc, ω),T (τc, ω) , or I(τc, ω) equaling either c or 1

c , and then one obtains

G(E(τc ∧ T̃ ),T (τc ∧ T̃ ), I(τc ∧ T̃ )) ≥ (c − 1 − ln c) ∧
(1
c
− 1 − ln

1
c

)
. (3.6)
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In view of (3.5), we have

EG(E(0),T (0), I(0)) +N T̃ ≥ E[1Ωn(ω)G(E(τc, ω),T (τc, ω), I(τc, ω))]

≥ ι(c − 1 − ln c) ∧
(1
c
− 1 − ln

1
c

)
,

(3.7)

where 1Ωc stands for the indicator function ofΩc. As c→ ∞, we have∞ > EG(E(0),T (0), I(0))+N T̃ =
∞, which leads to a contradiction. Thus, it can be concluded that τ∞ = ∞ with probability one, which
proves the theorem. □

Theorem 3.2. There exists a unique solution (E(t),T (t), I(t)) of tumor-immune model (2.2) with form
R2, for all t ≥ −τ, where τ = max{τ1, τ2}, and any initial condition (E0,T0, I0) ∈ R3

+. The solution will
remain in R3

+, that is (E(t),T (t), I(t)) ∈ R3
+ for all t ≥ −τ almost surely.

Proof. Herein, we establish a C2-functionU(E,T, I) : R3
+ → R+ as follows:

U(E,T, I) =(E − 1 − ln E) + (
α + η2

ξ
)(T − 1 − ln T ) + (I − 1 − ln I)+

α

∫ t

t−τ1

E(s)T (s)ds + η2

∫ t

t−τ2

E(s)T (s)ds.

Applying Itô’s formula toU(E,T, I), one obtains

dU(E,T, I) =[(1 −
1
E

)[αE(t − τ1)T (t − τ1) − η1E + µ1EI + e1] +
ν2

1

2
(1 −

E0

E
)2

+ (1 −
1
T

)[rT (1 − βT ) − ξET ] +
ν2

2

2
(1 −

T0

T
)2

+ (1 −
1
I

)[η2E(t − τ2)T (t − τ2) − µ2I + e2] +
ν2

3

2
(1 −

I0

I
)]dt

+ ν1(1 −
1
E

)(E − E0)dW1(t) + ν2(1 −
1
T

)(T − T0)dW2

+ ν3(1 −
1
I

)(I − I0)dW3(t). (3.8)

Therefore, LU(E,T, I) : R3
+ → R+ is as follows:

LU(E,T, I) ≤ sup
E∈R+
{((
α + η2

ξ
)ξ − η1)E + µ1E2} + sup

I∈R+
{µ1I2 − (µ1 + µ2)I}

+ sup
T∈R+
{(
α + η2

ξ
)r(1 + β)T − (

α + η2

ξ
)rβT 2} + e1 + e2 + η1 + µ2 − r

+
ν1 + (α+η2

ξ
)ν2 + ν3

2
+
ν2

1

2
(1 −

E0

E
)2 +

ν2
2

2
(1 −

T0

T
)2 +

ν2
3

2
(1 −

I0

I
)2

≤ N̂ . (3.9)

The remainder of the proof closely resembles the proof of Theorem 3.1. □
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4. Stationary distribution and extinction

The objective of this section is to establish adequate criteria for the presence of a unique ergodic
stationary distribution.

For each t ≥ 0, and probability measure µ on (C([−τ, 0];Rm
+),M[−τ,0]), where M[−τ,0] is the associated

Borel σ-algebra in [−τ, 0], consider the probability measure µPt on (C([−τ, 0];Rm
+),M[−τ,0]) defined by

(µPt)(∆) =
∫

C([−τ,0];Rm
+ )

Pt(y,∆)µ(dy), for ∆ ∈ M[−τ,0].

Definition 4.1. (Stationary Distribution [38]). A stationary distribution for (1.1) is a probability mea-
sure π on (C([−τ, 0];Rm

+),M[−τ,0]) such that (πPt)(∆) = π(∆) for all t ≥ 0 and ∆ ∈ M[−τ,0].

In order to analyze the existence of the stationary distribution of the SDDE system (2.2), it is enough
to take m = 3. For the stochastic model (2.2), the threshold parameter is defined as follows:

T̂0 =
αe1e2 + rη̂1µ̂2

η̂1µ̂2(ν2
2/2)

, (4.1)

such that η̂1 = η1 +
ν2

1

2
, µ̂2 = µ2 +

ν2
3

2
.

Theorem 4.1. The tumor-immune model (2.2) admits a stationary distribution π(.) if T̂0 > 1 for any
initial conditions (2.3).

Proof. According to Theorem 3.1, it has been established that there is a unique solution
(E(t),T (t), I(t)) ∈ R3

+ on t ≥ −τ for (2.2) for any given initial values (2.3). Thus,

Step 1 : The diffusion matrix of stochastic delayed tumour immune model (2.2) is

A(E,T, I) =


ν2

1E2 0 0
0 ν2

2T 2 0
0 0 ν2

3I2

 . (4.2)

Let X be any bounded domain in R3
+, then there exists a positive constant d0 =

min{ν2
1E2, ν2

2T 2, ν2
3I2, (E,T, I) ∈ X̃} such that

∑3
i, j=1 ςi j(y)aia j = ν

2
1E2a2

1 + ν
2
2T 2a2

2 + ν
2
3I2a2

3 ≥ d0|a|2

for all (E,T, I) ∈ X̃, a ∈ R3
+. This implies that the smallest eigenvalue of the diffusion matrix

Π(E,T, I) is bounded away from zero.
Step 2 : We construct a nonnegative twice continuously differentiable functionF : R3

+ → R is introduced
as follows:

F (E,T, I) = Q(− ln T − c1 ln E − c2 ln I) − ln E + ln T − I − ln I

= QF1 + F2, (4.3)

where c1 =
e1e2α

η̂1
2µ̂2

and c2 =
e1e2α

η̂1µ̂2
2 .
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Select a constant Q > 0 large enough such that

−QΩ + ρ ≤ −2, (4.4)

where Ω = (r + αe1e2
η̂1µ̂2

) − ν2
2

2 > 0 since T s
0 > 1, and ρ = max{ρ1, ρ2, ρ3},

ρ1 = sup
(E,T,I)∈R3

+

{
QξE + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I

}
< ∞,

ρ2 = sup
(E,T,I)∈R3

+

{
QrβT + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I

}
< ∞,

ρ3 = sup
(E,T,I)∈R3

+

{
QξE + QrβT + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I

}
< ∞. (4.5)

By the application of Itô’s formula to F1, the resulting expression is obtained as:

LF1 = −r(1 − βT ) + ξE +
ν2

2

2
−

c1αE(t − τ1)T (t − τ1)
E

+ c1(η1 +
ν2

1

2
) − c1µ1I −

c1e1

E

−
c2η2E(t − τ2)T (t − τ2)

I
+ c2(µ2 +

ν2
3

2
) −

c2e2

I
,

≤ −3 3
√
αe1e2c1c2 + c1(η1 +

ν2
1

2
) + c2(µ2 +

ν2
3

2
) − r + rβT + ξE +

ν2
2

2
,

≤
ν2

2

2
− (r +

αe1e2

η̂1µ̂2
) + rβT + ξE,

:= −Ω + rβT + ξE. (4.6)

In the same manner, we can get

LF2 = −
αE(t − τ1)T (t − τ1)

E
+ η1 − µ1I −

e1

E
+ r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
ν2

3

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
. (4.7)

From Eqs (4.6) and (4.7), one gets

LF̃ ≤ Q(−Ω + rβT + ξE) −
αE(t − τ1)T (t − τ1)

E
+ η1 − µ1I −

e1

E

+ r − rβT − ξE + η2E(t − τ2)T (t − τ2) − µ2I + e2 +
ν2

1 + ν
2
2

2

−
ν2

3

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
,
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≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
. (4.8)

Let us define a bounded closed set for any value of ϵ > 0

Z = {(E,T, I) ∈ R3
+ : ϵ ≤ E ≤

1
ϵ
, ϵ ≤ T ≤

1
ϵ
, ϵ3 ≤ I ≤

1
ϵ3 }. (4.9)

To enhance intuitiveness, we divide R3
+ \ Z = ∪

6
i=1Zi, into the following six regions:

Z1 = {(E,T, I) ∈ R3
+; 0 < E < ϵ}, Z2 = {(E,T, I) ∈ R3

+; 0 < T < ϵ},

Z3 = {(E,T, I) ∈ R3
+; 0 < I < ϵ3}, Z4 = {(E,T, I) ∈ R3

+; E >
1
ϵ
}, (4.10)

Z5 = {(E,T, I) ∈ R3
+; T >

1
ϵ
}, Z6 = {(E,T, I) ∈ R3

+; E > ϵ ,T > ϵ, I >
1
ϵ3 }.

To prove LF̃ ≤ −1 for any (E,T, I) ∈ R3
+ \ Z = ∪

6
i=1Zi, we consider six cases as follows:

C.I: For any (E,T, I) ∈ Z1

LF̃ ≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
≤ −QΩ + QrβT + ρ1

≤ −QΩ + Qrβϵ + ρ ≤ −1, (4.11)

from Eq (4.4) and choosing ϵ ≤
1
Qrβ

.

C.II. For any (E,T, I) ∈ Z2

LF̃ ≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
≤ −QΩ + QξE + ρ2

≤ −QΩ + Qξϵ + ρ

≤ −1 (4.12)

from Eq (4.4) and choosing ϵ ≤
1
Qξ

.

C.III. For any (E,T, I) ∈ Z3

LF̃ ≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I

≤ −
η2E(t − τ2)T (t − τ2)

I
+ ρ3
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≤ −
η2ϵ

2

ϵ3 + ρ3

≤ −1 (4.13)

by choosing ϵ ≤
η2

ρ3
.

C.IV. For any (E,T, I) ∈ Z4

LF̃ ≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
≤ −ξE + ρ3

≤ −
ξ

ϵ
+ ρ3

≤ −1 (4.14)

by choosing ϵ ≤
ξ

ρ3
.

C.V. For any (E,T, I) ∈ Z5

LF̃ ≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
≤ −rβT + ρ3

≤ −
rβ
ϵ
+ ρ3

≤ −1 (4.15)

by choosing ϵ ≤
rβ
ρ3
.

C.VI. For any (E,T, I) ∈ Z6

LF̃ ≤ Q(−Ω + rβT + ξE) + η1 − µ1I + r − rβT − ξE + η2E(t − τ2)T (t − τ2)

− µ2I + e2 +
ν2

1 + ν
2
2

2
−
η2E(t − τ2)T (t − τ2)

I
+ µ2 +

ν2
3

2
−

e2

I
≤ −r(µ1 + µ2)I + ρ3

≤ −
(µ1 + µ2)

ϵ3 + ρ3

≤ −1 (4.16)

by choosing ϵ ≤ 3

√
(µ1 + µ2)

ρ3
.

This implies that if the solution Z(t) = (E(t),T (t), I(t)) ∈ R3
+/Z of the stochastic system (2.2), the

mean times τ1&τ2 at which the path issuing from Z(t) reaches the set Z is finite for every compact
subset X ⊂ R3

+. □
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Definition 4.2. [21] If lim
t→∞

T (t) = 0 a.s, the tumor T (t) is said to extinct with probability one.

Theorem 4.2. Suppose that (E(t),T (t), I(t)) is the solution set of the tumor-immune interaction model
system (2.2) along with the initial condition (E0,T0, I0) ∈ R3

+. If r < ν2
2

2 , then

lim
t→∞

sup
ln T (t)

t
≤ (1 −

ν2
2

2
) < 0, a.s. (4.17)

In other terms, T (t) approaches zero exponentially almost surely, such that the tumor will be completely
eradicated from the community with unit probability.

Proof. In order to prove the theorem, we will utilize the method of direct integration on the stochastic
tumor-immune model system (2.2). Firstly, we will utilize Itô’s formula to derive the second equation
of model (2.2). This yields the following result:

d(ln T (t)) = [r(1 − βT ) − ξE −
ν2

2

2
]dt + ν2dW2

≤ [r −
ν2

2

2
]dt + ν2dW2. (4.18)

On the integration of relation (4.18) over the interval 0 to t and subsequent division by t, the resulting
expression is obtained as follows:

ln T (t)
t
≤ (r −

ν2
2

2
) +

ν2W2(t)
t
+

ln T (0)
t

. (4.19)

We can conclude that based on the strong law of large numbers of Brownian motion [21],

lim
t→∞

ν2W2(t)
t
+

ln T (0)
t
= 0, a.s.

By computing the limit superior of each side of the equation and since r < ν2
2

2

lim
t→∞

sup
ln T (t)

t
≤ (r −

ν2
2

2
) < 0, a.s. (4.20)

It means that whenever T (t) goes to zero exponentially with probability one, then

lim
t→∞

T (t) = 0 a.s.

The proof is completed here. □

5. Formulation of treatment as an optimal control-problem

In this section, we explore the dynamics outlined in Eq (2.2) in the context of two distinct agents:
an immune boost agent labeled ϑ1 and a chemotherapeutic agent labeled ϑ2. Like Paclitaxel, the first
agent is commonly regarded as cytotoxic or apoptotic. In contrast, the second agent is viewed as a
form of rudimentary immunotherapy, which involves the application of an interleukin-derived drug to
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stimulate the immune system. We aim to gain a deeper understanding of how different agents can be
used to control and manage tumor growth within the immune system, to identify the most effective
combination therapy strategies, and to gain insights into the efficacy of biotherapy and immune boosts.
The tumor-immune model (2.2) can be described as follows:

dE(t) = [αE(t − τ1)T (t − τ1) − (η1 − ϑ2)E(t) + µ1E(t)I(t) + e1]dt + ν1E(t)dW1,

dT (t) = [rT (1 − βT ) − (ξ + ϑ1)E(t)T (t) − ϑ2T (t)]dt + ν2T (t)dW2,

dI(t) = [(η2 + ϑ1)E(t − τ2)T (t − τ2) − µ2I(t) + e2]dt + ν3I(t)dW3.

(5.1)

We assume that the initial conditions for system (5.1) satisfy

E(θ) = σ1(θ), T (θ) = σ2(θ), I(θ) = σ3(θ), θ ∈ [−τ, 0], τ = max{τ1, τ2}. (5.2)

To facilitate clarity in our explanation, we shall establish a vector

x(t) = [E(t),T (t), I(t)]′ and ϑ(t) = [ϑ1, ϑ2]′. (5.3)

such that

dx(t) = f (x(t), x(t − τ), ϑ(t))dt + g(x(t))dw(t), for t ≥ −τ, τ > 0, (5.4)

with the initial conditions

x(0) = [E0,T0, I0]
′

= x0 ∈ C([−τ, 0];R3
+). (5.5)

where, f (·, ·, ·) and g(·, ·, ·) are two vectors, each of which has components such that

f1(x(t), x(t − τ), ϑ(t)) = αE(t − τ1)T (t − τ1) − (η1 − ϑ2)E + µ1EI + e1,

f2(x(t), x(t − τ), ϑ(t)) = rT (1 − βT ) − (ξ + ϑ1)ET − ϑ2T,

f3(x(t), x(t − τ), ϑ(t)) = (η2 + ϑ1)E(t − τ2)T (t − τ2) − µ2I + e2,

and g1(x(t)) = ν1E(t), g2(x(t)) = ν2T (t), g3(x(t)) = ν3I(t).
Our goal is to minimize the number of tumor cells. As a result, the quadratic cost function is

proposed and defined as follows:

G(ϑ(t)) =
1
2

E
{∫ t f

0
(K1E(t) + K2T (t) + K3I(t) +

S 1

2
ϑ2

1(t) +
S 2

2
ϑ2

2(t))dt

+
b1

2
E2(t) +

b2

2
T 2(t) +

b3

2
I2(t)

}
, (5.6)

where Ki, S i and bi, for i = 1, 2, 3 are positive constants. The aim of this section is to find an optimal
control ϑ∗(t) = [ϑ∗1(t), ϑ∗2(t)]

′

that possesses the following property:

J(ϑ∗) ≤ J(ϑ), ∀ ϑ ∈ U (5.7)

where, the control set is denoted by the set U and is defined as follows:

U =
{
ϑi(t)

∣∣∣∣ϑi(t) ∈ [0, ϑmax
i ],∀t ∈ (0, t f ], ϑi ∈ L2[0, t f ], i = 1, 2

}
, (5.8)
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where, ϑmax
i ∈ R+ are constants. Before applying the stochastic maximal criterion, it is necessary to

determine the Hamiltonian Hm(p, q, ϑ, x) such that

Hm(p, q, ϑ, x) = ⟨g(x), q⟩ − l(x, ϑ) + ⟨ f (x, ϑ), p⟩, (5.9)

where ⟨., .⟩ represents the inner product in the Euclidean space; the vector fields ⟨ f (x, ϑ), p⟩, ⟨g(x), q⟩
and l(x, ϑ) are continuous functions on the inner product and continuously differentiable with repect
to the state variable and the time variable; p = [p1, p2, p3]′ and q = [q1, q2, q3]′ refers to the two dif-
ferent sets of adjoint variables that are independent of one another. By employing a similar maximum
criterion approach, we find:

dx∗(t) = g(x∗(t))dW(t) +
∂H(x∗, ϑ∗, p, q)

∂p
dt, (5.10)

dp(t) = q(t)dW(t) −
∂

∂x
H(x∗, ϑ∗, p, q)dt, (5.11)

Hm(x∗, ϑ∗, p, q) = min
ϑ∈U

Hm(x∗, ϑ∗, p, q), (5.12)

where, the state x∗(t) denotes the optimal trajectory followed by x(t). The initial condition at time t = 0
for the state variables and the final condition (t = t f ) for the adjoint variables p(t) of Eqs (5.10) and
(5.11) are as follows:

x∗(0) = x0 and p(t f ) = −
∂

∂x
h(x∗(t f )),

respectively. The optimal value of the control variable ϑ∗ can be expressed as a function of the adjoint
variables p, q, and state x∗, as demonstrated by Eq (5.12):

ϑ∗(t) = ϕ(x∗, q, p), (5.13)

where the value of ϕ is determined by Eq (5.12). Thus, the Hamiltonian is represented by:

H =K1E + K2T + K3I +
S 1

2
ϑ2

1 +
S 2

2
ϑ2

2 +
b1

2
E2 +

b2

2
T 2 +

b3

2
I2 + p1(αE(t − τ1)T (t − τ1)

− (η1 − ϑ2)E + µ1EI + e1) + p2(rT (1 − βT ) − (ξ + ϑ1)ET − ϑ2T )
+ p3((η2 + ϑ1)E(t − τ2)T (t − τ2) − µ2I + e2) + ν1Eq1 + ν2Tq2 + ν3Iq3. (5.14)

Thus, we have

ṗ1(t) = −
∂H
∂E
− ψ1[0, t f − τ1]

∂H
∂E(t − τ1)

(t + τ1) − ψ2[0, t f − τ2]
∂H

∂E(t − τ2)
(t + τ2),

ṗ2(t) = −
∂H
∂T
− ψ1[0, t f − τ1]

∂H
∂T (t − τ1)

(t + τ1) − ψ2[0, t f − τ2]
∂H

∂T (t − τ2)
(t + τ2),

ṗ3(t) = −
∂H
∂I
,

(5.15)

where

ψ1[0, t f − τ1] =

1 if t ∈ [0, t f − τ1]
0 otherwise

, ψ2[0, t f − τ2] =

1 if t ∈ [0, t f − τ2]
0 otherwise

. (5.16)
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The Pontryagin maximum principle yields the adjoint system:

dp1

dt
= −

{
K1 + b1E + αp1T (t − τ1) − p1(η1 − ϑ2) + p1µ1I − p2(ξ + u1)T

+ p3(η2 + ϑ1)T (t − τ2)
}
+ ν1q1,

dp2

dt
= −

{
K2 + b2T + αp1E(t − τ1) + p2(r − 2rβT ) − p2(ξ + ϑ1)E − p2ϑ2

+ p3(η2 + ϑ1)E(t − τ2)
}
+ ν2q2,

dp3

dt
= −

{
K3 + b3I + p1µ1E − p3µ2

}
+ ν3q3,

(5.17)

where, p1(t f ) = −b1E(t), p2(t f ) = −b2T (t), p3(t f ) = −b3I(t). In addition to the condition of pi(t f ) = 0
at the final time t f , it holds true for values of i = 1, 2, 3. Similarly, the supplementary initial and final
conditions are: E∗(0) = Ê,T ∗(0) = T̂ , I∗(0) = Î, p(t f ) = −

∂h(x∗(t f ))
∂x such that

h(E,T, I) =
b1

2
E2 +

b2

2
T 2 +

b3

2
I2. (5.18)

Thus, the Hamiltonian function calculates the partial derivatives of ϑ1 and ϑ2, respectively; we get the
following characterization of the OC

ϑ∗1 = max
{

min
{
1,

(p2 − p3)E∗T ∗

S 1

}
, 0

}
, (5.19)

ϑ∗2 = max
{

min
{
1,

p2E∗ − p1T ∗

S 2

}
, 0

}
. (5.20)

Remark 5.1. In ODEs/DDEs, time is continuous and the control inputs are typically continuous func-
tions of time. The presence of randomness in stochastic differential equations (SDEs) makes optimal
control more challenging, as the control input is required to account for the inherent uncertainty. In
SDEs, optimal control policies may be stochastic, i.e., probability distributions over control inputs,
rather than deterministic functions of time.

The following section pertains to the numerical simulation of outcomes derived from a stochastic
optimal control problem.

6. Numerical simulations

In this section, numerical simulations are conducted to validate the main results derived previously.
The results are validated through numerical simulations utilizing Milstein’s higher order method [39],
which exhibits a strong order of convergence one. This method is employed to numerically solve the
stochastic model (2.2). Subsequently, the discretization system that corresponds to the aforementioned
method is obtained.
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dEn+1 = En + h[αEn−m1Tn−m1 − η1En + µ1EnIn + e1] + ν1Enχ1,n

√
h +

ν2
1

2
En[χ2

1,n − 1]h,

dTn+1 = Tn + h[rTn(1 − βTn) − ξEnTn] + ν2Tnχ2,n

√
h +

ν2
2

2
Tn[χ2

2,n − 1]h,

dIn+1 = In + h[η2En−m2Tn−m2 − µ2In + e2] + ν3Inχ3,n

√
h +

ν2
3

2
In[χ2

3,n − 1]h,

(6.1)

where the mutually independent N(0, 1) random variables are denoted by χ1,n, χ2,n and χ3,n, the integers
m1 and m2 make the time-delays τ1 and τ2 to be represented with the step size h, with τ1 = m1h and
τ2 = m2h, respectively.
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Figure 1. Shows, a positive unique equilibrium state, S∗ =

(0.9002, 0.0350, 6.9011) is locally asymptotically stable, with initial values
(3.2,1.2,0.7),(3.4,1.4,0.9),(3.6,1.6,0.9),(3.8,1.8,1.1),(4.0,2.0,1.3),(4.2,2.2,1.5).
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Figure 2. Trajectories of (E(t),T (t), I(t)) of stochastic model with its deterministic version
(2.1).
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Figure 3. The model (2.2)’s numerical simulations demonstrate that the system exhibits a
distinct ergodic stationary distribution in cases where the tumor is persistent and T̂0 exceeds
1, with νi values of 0.001 for i=1, 2 and 3.

Consider the initial conditions of the system (2.2) as E(0) = 3.8,T (0) = 1.0, I(0) = 0.5, and the
parameters are presented in Table 1. For the following numerical results, the time unit is days.

Based on the parameter values taken from Table 1, Figure 1 displays the phase and time figures of
the system (2.1). Theorem 7.1 states that system (2.1) has a unique equilibrium point that is locally
asymptotically stable. Figure 1(a) illustrates that all trajectories converge towards the equilibrium
point S∗ = (E∗,T ∗, I∗). Figure 1(b) illustrates that the sizes of three distinct cell types remain constant
following a period of fluctuation.

Figure 2 shows the simulations results of (E(t),T (t), I(t)) for stochastic model (2.2) with its corre-
sponding deterministic model (2.1). According to Theorem 4.1 and Figure 3, the tumor size T (t) in
the system (2.2) is persistent. It demonstrates that the model has a unique stationary distribution and
that the disease is chronic, resulting in relatively low white noise intensities where T̂0 > 1, where the
white noise disturbance level of system states is νi = 0.001, i = 1, 2, 3. The solution of system (2.2)
approaches equilibrium S∗ and is stochastic asymptotically stable, as can be seen in Figure 3.

The efficacy of cancer treatments may vary from patient to patient or even within a single patient
over time. When this variability is taken into account, white noise can be introduced into the model. A
stochastic model refers to white noise as random fluctuations or variability. Different factors can cause
it, and increasing the white noise levels can have interesting effects on the system’s dynamics, such as
accelerating tumor cell death. Increasing white noise in a model can be caused by external factors that
introduce randomness or fluctuations into the environment.

Tumor growth can be influenced by fluctuations in nutrient availability, temperature, or oxygen
levels, for example in Figure 4, we simulate the stochastic model (2.2) with different white noise levels.
The results in Theorem 4.2 are validated when the white noise level is increased (see Figure 4(b)). As
shown in Figure 4(a), the effector cells increase with the level of white noise. As shown in Figure 5(a),
the histogram represents the population of tumor cells under the influence of white noise disturbance
intensities ν2 = 0.02. On the other hand, Figures 5(b),(c) illustrate that tumor cell population decreases
as noise disturbance intensities increase, as ν2 = 0.1 and ν3 = 0.15, respectively.

The graphical findings in Figure 6 demonstrate the biological importance of delay parameters. It
is possible to compare tumor immune interactions with different delays based on these results. There
is a significant correlation between delays and stochastic tumor immune system as shown in Figure 6.
Compared to the model with time delay τ1 = 0.4, τ = 0.38 with a small value of delay (τ1 = 0.05,
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Figure 4. Shows the effects of different white noise disturbance levels on the stochastic
model (2.2).

0 20 40 60 80 100
0

1

2

3

Time (t)

 T
(t

)

 

 

(a) ν2 = 0.07

0 20 40 60 80 100
0

2

4

6

Time (t)

 T
(t

)

 

 

(b) ν2 = 0.1

0 50 100 150
0

1

2

3

Time (t)

T
(t

)

 

 

(c) ν2 = 0.15

Figure 5. The histogram diagram of tumor size I(t). The white noise disturbances of (a) is
ν2 = 0.07, (b) is ν2 = 0.1 and (c) is ν2 = 0.15.
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Figure 6. Displays the effects of different values of time delays on the stochastic model (2.2).
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Figure 7. Numerical simulations of the OC-P for ODE and SDE (2.1), (2.2), before and after
OC which reduces the growth of the tumor cells.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19270–19299.



19289

τ2 = 0.1), the plot of model (2.2) with small value of delay (τ1 = 0.05, τ2 = 0.1) displays a significant
deviation. Thus, delays significantly impact the analysis of stochastic tumor immune interactions’
dynamic characteristics.

OC is an essential mechanism in mathematical modeling that targets to figure out the best appropri-
ate control procedure for a given system, based on particular constraints. Therefore, OC can be used
to outline medication protocols that minimize the growth of tumors and maximize the stimulating of
the immune system, while considering the random fluctuations that arise in biological processes. To
numerically solve the stochastic OC-P:

• Discretize the stochastic model with time-delays using a numerical scheme such as Milstein’s
higher order method.
• Carry out the forward simulations which includes the discretized stochastic model, with a partic-

ular set of control variables.
• Include computing the objective function at every step of the forward approximation.
• Execute the backward approximation by including the adjoint system in order to find the gradient

of the objective function with regard to the input variables.
• Applying an optimization method, such as the stochastic approximation scheme, to minimize the

objective function based on the system solutions and control constraints, and then modify the
control inputs accordingly.

The numerical simulations of the optimal control problem (5.1), along with the adjoint equation
(5.17) and the characterization of the optimal control (5.19), (5.20), are presented graphically. Accord-
ing to Table 1, the graphic outcomes of an optimal control problem were obtained by comparing them
with the results of a scenario without a control system. Figure 7 shows that the controls employed
are highly effective in eliminating the disease. Figure 7(a)–(f) illustrate the time evolution of effector,
tumor, and IL-2 cells without and with controls ϑ1 and ϑ2. Figure 7(a)–(f) demonstrate the efficacy
of the implemented controls in reducing the number of tumor cells and maximizing the number of ef-
fector cells. In the absence of chemotherapy and an immune boost, the tumor cell population exhibits
an increasing trend over time, whereas the presence of treatment helps the immune system’s ability to
regulate the proliferation of tumor cells. Evidently, as the immune boost and chemotherapeutic agent
are enhanced, there is a corresponding rise in effector cells. In contrast, tumor cells lead to their decline
and eventual extinction. Meanwhile, IL-2 cells tend to return to baseline levels.

7. Concluding remarks

Tumor modeling requires understanding the effects of environmental changes such as changes in
nutrient availability, temperature, and oxygen levels on tumor-immune interactions. By incorporat-
ing discrete time-delay parameters and multiplicative white noise terms, the current work investigates
the dynamical behavior of tumor-immune interactions with external treatments. The influence of en-
vironmental noises on the persistence and possible extinction of tumor cells has been studied under
circumstances where the intensity of randomly varying driving forces is extremely diverse. A combi-
nation of white noises and time delays greatly affected the dynamics of the tumor-immune interaction
model. It has been seen that, the presence of stochastic perturbations with a relatively small scale of
white noise, tumor cells oscillate within a wide range of values, whereas large noises can lead to the
eradication of the tumor cells.
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To minimize tumor cells and maximize effector cells and IL-2 concentration, control variables are
included in the stochastic model. An optimal control problem has been investigated to manage tumor
growth and identify the most effective combination therapy strategies, and gain insights into the efficacy
of biotherapy and immune boosts. Numerical results demonstrate optimality in the control variables
and the effectiveness of introducing additional controls to reduce the growth of tumor cells. As a result
of the presence of white noise in the optimality problem, tumor growth can be reduced.

A color-coded noise, such as telegraph noise, can be described as a random switch between two or
more regimes of environmental influence on tumor immune response [40]. Future studies will examine
how regime switching affects tumor cells, effector cells, and IL-2 cells. A sensitivity analysis can also
be used to analyze tumor-free steady-state stability under small parameter variations.
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Appendix: Equilibrium states and dynamics of deterministic model (2.1)

The equilibrium states of the system (2.1) are:

(a) The tumor-free steady state S∗∗, refers to a condition in which the population of tumor cells is
absent, while the normal cells stay healthy:

S∗∗ = (E∗∗,T ∗∗, I∗∗) =
(

e1µ2

η1µ2 − µ1e2
, 0,

e2

µ2

)
.

(b) The tumor-infection steady state S∗:

S∗ = (E∗,T ∗, I∗) =

r(1 − βT ∗)
ξ

,T ∗,
e2 +

η2r(1−βT ∗)T ∗

ξ

µ2


where the T ∗ represents the positive solutions of the below equation:

e1 +
αr(1 − βT ∗)T ∗

ξ
−
η1r(1 − βT ∗)

ξ
+
µ1r(1 − βT ∗)

ξ

[e2 +
η2r(1−βT ∗)T ∗

ξ

µ2

]
= 0.
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In order to analyze the stability of the equilibrium states, it is common practice to linearize the system
around the equilibrium states and determine the Jacobian matrices. Currently, our focus is only on
examining the stability of the equilibrium point in the presence of a tumor.

The Jacobian matrix ∆S∗(E∗,T ∗, I∗) is obtained in order to determine the eigenvalues of the system
(2.1).

∆S∗ =


αT ∗e−λτ1 − η1 + µ1I∗ αE∗e−λτ1 µ1E∗

−ξT ∗ r(1 − 2βT ∗) − ξE∗ 0
η2T ∗e−λτ2 η2E∗e−λτ2 −µ2

 . (7.1)

Remark 7.1. The stability analysis of the equilibrium states is examined by the eigenvalues of ∆S∗ .
If the real parts of all the eigenvalues of the matrix ∆S∗ are negative, then the equilibrium state S∗

exhibits local asymptotic stability. Conversely, if at least one of the eigenvalues exhibit a positive real
part, the equilibrium state is considered to be unstable.

Following some calculations, the characteristic equation of (7.1) is obtained:

Det(∆S∗) = B1(λ) + e−λτ1B2(λ) + e−λτ2B3(λ) = 0 (7.2)

where,

B1(λ) =λ3 + w1λ
2 + w2λ + w3,

B2(λ) =λ2w4 + λw5 + w6,B3(λ) = w7,

w1 =η1 + µ2 − µ1I∗ + 2βrT ∗ − r + ξE∗,

w2 = − µ1I∗ (µ2 + 2βrT ∗ − r + ξE∗) + η1 (µ2 + 2βrT ∗ − r + ξE∗) + µ2(2βrT ∗ − r + ξE∗),
w3 =µ2 (η1 − µ1I∗) (r(2βT ∗ − 1) + ξE∗),w4 = −αT ∗,w5 = −2αβr(T ∗)2 + αrT ∗ − αµ2T ∗,

w6 = − 2αβµ2r(T ∗)2 + αµ2rT ∗,w7 = −2βη2µ1r(T ∗)2E∗ + η2µ1rT ∗E∗ − η2λµ1T ∗E∗.

Case (i): τ1 = 0, τ2 = 0, we have

Det(∆S∗) = λ3 + (w1 + w4)λ2 + (w2 + w5)λ + (w3 + w6 + w7) = 0. (7.3)

Based on the Routh-Hurwitz criterion, all the eigenvalues of the characteristic equation Det(∆S∗) = 0
have negative real parts if the following conditions hold:

w1 + w4 > 0,w3 + w6 + w7 > 0, (w1 + w4)(w2 + w5) > (w3 + w6 + w7). (7.4)

Therefore, it can be concluded that the asymptotic stability of the system (2.1) is achieved in the
equilibrium state S∗, when τ1 = τ2 = 0.
Case (ii): τ1 = τ2 > 0, we have

Det(∆S∗) = λ3 + w1λ
2 + w2λ + w3 + e−λτ(λ2w4 + λw5 + w6 + w7) = 0. (7.5)

Assume that the pure imaginary root λ = iθ, θ > 0. Then applying the λ = iθ into (7.5) and separating
its real and imaginary parts, we have{

w3 − w1θ
2 + (w6 + w7 − w4θ

2) cos(θτ) + w5θ sin(θτ) = 0,
w2θ − θ

3 + w5θ cos(θτ) − (w6 + w7 − w4θ
2) sin(θτ) = 0.

(7.6)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19270–19299.



19295

Through mathematical calculations, the following equations are derived:

cos(θτ) =
θ4 (w5 − w1w4) + θ2 (w3w4 − w2w5 + w1w6 + w1w7) − w3w6 − w3w7

θ4w2
4 + θ

2
(
w2

5 − 2w4w6 − 2w4w7

)
+ w2

6 + w2
7 + 2w6w7

, (7.7)

sin(θτ) =
θ5w4 + θ

3 (−w2w4 + w1w5 − w6 − w7) + θ (−w3w5 + w2w6 + w2w7)

θ4w2
4 + θ

2
(
w2

5 − 2w4w6 − 2w4w7

)
+ w2

6 + w2
7 + 2w6w7

. (7.8)

Using the trigonometric formula cos2(θτ) + sin2(θτ) = 1, we have

θ10 + θ8h1 + θ
6h2 + θ

4h3 + θ
2h4 + h5 = 0 (7.9)

where,

h1 =(−w4
4 + w2

1w2
4 − 2w2w2

4 − 2w6w4 − 2w7w4 + w2
5)/w2

4,

h2 =(4w6w3
4 + 4w7w3

4 + w2
2w2

4 − 2w2
5w2

4 − 2w1w3w2
4 − 2w2

1w6w4 + 4w2w6w4 − 2w2
1w7w4 + 4w2w7w4

+ w2
1w2

5 − 2w2w2
5 + w2

6 + w2
7 + 2w6w7)/w2

4,

h3 =(−w4
5 + w2

2w2
5 − 2w1w3w2

5 + 4w4w6w2
5 + 4w4w7w2

5 + w2
3w2

4 + w2
1w2

6 − 6w2
4w2

6 − 2w2w2
6 + w2

1w2
7

− 6w2
4w2

7 − 2w2w2
7 − 2w2

2w4w6 + 4w1w3w4w6 − 2w2
2w4w7 + 4w1w3w4w7 + 2w2

1w6w7

− 12w2
4w6w7 − 4w2w6w7)/w2

4,

h4 =4(w4w3
6 + w2

2w2
6 − 2w2

5w2
6 − 2w1w3w2

6 + 12w4w7w2
6 + 12w4w2

7w6 − 2w2
3w4w6 + 2w2

2w7w6 − 4w2
5w7w6

− 4w1w3w7w6 + 4w4w3
7 + w2

3w2
5 + w2

2w2
7 − 2w2

5w2
7 − 2w1w3w2

7 − 2w2
3w4w7)/w2

4,

h5 =(−w4
6 − w4

7 − 4w6w3
7 + w2

3w2
6 + w2

3w2
7 − 6w2

6w2
7 − 4w3

6w7 + 2w2
3w6w7)/w2

4.

Therefor, the equilibrium states of system (2.1) are asymptotically stable if and only if (7.9) has no
positive real roots. Assume that ω = θ2, we have

ω5 + ω4h1 + ω
3h2 + ω

2h3 + ωh4 + h5 = 0. (7.10)

If hp < 0, p = 1, . . . , 5, then (7.10) has at least one positive root and if hp > 0, p = 1, . . . , 5, then (7.10)
has all the roots must be negative.
Case (iii): τ1 = 0, τ2 > 0. Then, (7.2) can be written as

B1(s) + B2(s) + e−λτ2B3(s) = 0. (7.11)

Let suppose λ = iω is a pure imaginary root of (7.11), then{
cosωτ2w7 = (w1 + w4)ω2 − (w3 + w6),
sinωτ2w7 = (w1 + w5) − ω3.

(7.12)

It can be deduced from Eq (7.12) that,

ω6 + z1ω
4 + z2ω

2 + z3 = 0 (7.13)

where,

z1 =a2
1 − 2a3, z2 = a2

3 − 2a1a2, z3 = a2
2 − w2

7.
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Denote β = ω2, (7.13) becomes

β3 + z1β
2 + z2β + z3 = 0. (7.14)

Then let

G(ω) = β3 + z1β
2 + z2β + z3. (7.15)

If the condition (C1)z3 < 0 is satisfied, given that dF (ω)
dω > 0 ∀ω > 0, it can be concluded that Eq (7.13)

possesses at least one positive real root. Therefore, Eq (7.11) has at least one pair of purely imaginary
roots. According to the findings of Sun et al. [42], the subsequent outcome is as follows:

Lemma 7.1. The following holds true for (7.11):

(a) If condition (7.4) is satisfied and the values of z1, z2, z3 > 0, then equation (7.11) does not has any
roots with zero real parts for values of τ2 ≥ 0.

(b) If z3 < 0 and z1, z2 > 0 holds, then (7.11) has a pair of purely imaginary roots ±iω0 when τ2 = τ2 j

and for any ω0 (unique positive zero of the function G(ω))

τ2 j =
1
ω0

(
arccos

[
a1ω

2 − a2

w7

]
+ 2 jπ

)
. (7.16)

The proof of Lemma 7.1 has resemblance to the proof of Lemma 3.1 as presented in the work of Li
et al. [43]. Here, it is left out.
(C2) Ã1Ã2 + B̃1B̃2 > 0
where,

Ã1 = − 3ω2
0 + w2 + 2ω0w4 sinω0τ1 + w5 cosω0τ1, Ã2 = −ω

2
0w5,

B̃1 =2ω0w1 + 2ω0w4 cosω0τ1 − sinω0τ1w5, B̃2 = −ω
3
0w4 + w6ω0.

Case (iv): When τ1 > 0, τ2 = 0, the Eq (7.2) becomes

B1(s) + B3(s) + e−λτ1B2(s) = 0. (7.17)

For pure imaginary root λ = iω, Eq (7.17) can be written as{
cosωτ1ωw5 − sinωτ1w6 + sinωτ1ω

2w4 − ω
3 + ωw2 = 0,

cosωτ1(w6 + ω
2w4) + sinωτ1ωw5 − w1ω

2 + w3 + w7 = 0.
(7.18)

It can be deduced from Eq (7.18) that,

ω10 + r1ω
8 + r2ω

6 + r3ω
4 + r4ω

2 + r5 = 0. (7.19)

where,

r1 =
(
−w4

4 + w2
1w2

4 − 2w2w2
4 − 4w1w5w4 + 2w6w4 + w2

5

)
/w2

4,

r2 =
(
w2

5w2
1 − 2w4w6w2

1 − 2w3w2
4w1 + 4w2w4w5w1 − 2w2

4w7w1 + w2
2w2

4 + 2w2
4w2

5 − 2w2w2
5 + w2

6
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+4w3w4w5 − 4w2w4w6 + 4w4w5w7) /w2
4,

r3 =
(
−w4

5 + w2
2w2

5 − 2w1w3w2
5 − 2w1w7w2

5 − 4w2w3w4w5 − 4w2w4w7w5 + w2
3w2

4 + w2
1w2

6

+2w2
4w2

6 − 2w2w2
6 + w2

4w2
7 + 2w2

2w4w6 + 4w1w3w4w6 + 2w3w2
4w7 + 4w1w4w6w7

)
/w2

4,

r4 =
(
w2

5w2
3 − 2w4w6w2

3 − 2w1w2
6w3 + 2w2

5w7w3 − 4w4w6w7w3 + w2
2w2

6

−2w2
5w2

6 + w2
5w2

7 − 2w4w6w2
7 − 2w1w2

6w7

)
/w2

4,

r5 =(w2 − w4
6 + w2

3w2
6 + w2

6w2
7 + 2w3w2

6w7)/w2
4.

Take α = ω2, then (7.19) becomes

ω5 + r1ω
4 + r2ω

3 + r3ω
2 + r4ω + r5 = 0 (7.20)

and let

F (ω) = α5 + r1α
4 + r2α

3 + r3α
2 + r4α + r5. (7.21)

If the condition (C3)r5 < 0 is satisfied, given that dF (ω)
dω > 0 ∀ω > 0, it can be concluded that Eq (7.20)

possesses at least one positive real root. Therefore, Eq (7.17) has at least one pair of purely imaginary
roots. According to the findings of Sun et al. [42], the subsequent outcome is as follows:

Lemma 7.2. The following holds true for (7.17):

(a) If condition (7.4) is satisfied and the values of ri > 0, i = 1, 2, 3, 4, 5, then Eq (7.17) does not have
any roots with zero real parts for values of τ1 ≥ 0.

(b) If r5 < 0 and ri > 0, i = 1, 2, 3, 4 holds, then (7.17) has a pair of purely imaginary roots ±iω0

when τ1 = τ1 j and for any ω0 (unique positive zero of the function F (ω))

τ1 j =
1
ω0

arccos


(
w2w4 − w6

) (
w1w2 − w3 − w7

)
− w

(
w3 − ww2

)
w5(

w2w4 − w6
) (

w4w2 + w6
)
− w2w2

5

 + 2 jπ

 . (7.22)

The proof of Lemma 7.2 has resemblance to the proof of Lemma 3.1 as presented in the work of Li
et al. [43]. Here, it is left out.
(C4) Â1Â2 + B̂1B̂2 > 0
where,

Â1 = − 3ω2
0 + (w2 + w5), Â2 = ω0 sinω0τ0w7,

B̂1 =2ω0(w1 + w4), B̂2 = ω0 cosω0τ0w7.

Case (v): τ1 > 0, τ2 > 0. Let the delay τ2 ∈ [0, τ20) in (7.2) and choose τ1 as a bifurcating parameter.
Thus let pure imaginary root (7.2) as λ = iω = ω

(
cos π

2 + sin π
2

)
. Then (7.2) becomes{

cosωτ1(w6 − w4ω
2) + sinωτ1ωw5 = ω

2w1 + w3 + cosωτ2w7,

cosωτ1ωw5 + sinωτ1(w4ω
2 − w6) = −ωw2 + ω

3 + sinωτ2w7.
(7.23)
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By (7.23), we have

cosωτ2 =(cosωτ1(w6 − w4ω
2) + sinωτ1ωw5 − ω

2w1 − w3)/w7, (7.24)
sinωτ2 =(cosωτ1ωw5 + sinωτ1(w4ω

2 − w6) + ωw2 − ω
3)/w7. (7.25)

In view of cos2 ωτ2 + sin2 ωτ2 = 1, we have

ω6 + q1ω
5 + q2ω

4 + q3ω
3 + q4ω

2 + q5ω + q6 = 0, (7.26)

where

q1 = − 2w4 sin (ωτ1) ,

q2 =
(
w2

4 sin2 (ωτ1) + w2
4 cos2 (ωτ1) + 2w4w1 cos (ωτ1) − 2w5 cos (ωτ1) + w2

1 − 2w2

)
,

q3 = (2w2w4 sin (ωτ1) − 2w1w5 sin (ωτ1) + 2w6 sin (ωτ1)) ,

q4 =
(
w2

5 sin2 (ωτ1) − 2w4w6 sin2 (ωτ1) + w2
5 cos2 (ωτ1) − 2w4w6 cos2 (ωτ1) − 2w3w4 cos (ωτ1)

+2w2w5 cos (ωτ1) − 2w1w6 cos (ωτ1) + w2
2 − 2w1w3

)
,

q5 = (2w3w5 sin (wy1) − 2w2w6 sin (wy1)) ,
q6 =w2

6 sin2 (ωτ1) + w2
6 cos2 (wy1) + 2w3w6 cos (wy1) + w2

3 − w2
7.

Then let the polynomial function

H(ω) = ω6 + q1ω
5 + q2ω

4 + q3ω
3 + q4ω

2 + q5ω + q6. (7.27)

When the condition (C5) q6 < 0 holds, given that dH(ω)
dω > 0 ∀ω > 0, it can be concluded that Eq (7.26)

possesses at least one positive real root. Therefore, Eq (7.2) has at least one pair of purely imaginary
roots. According to the findings of Sun et al. [42], the subsequent outcome is as follows:

Lemma 7.3. The following holds for (7.2):

(i) If qi > 0, i = 1, 2, . . . , 6, then Eq (7.2) has no roots with zero real parts.
(ii) If the value of q6 is less than zero, it can be concluded that Eq (7.2) possesses at least one pair of

purely imaginary roots.
(iii) When given that q6 > 0 and there exists a constant δ > 0 such thatH

′

(δ) < 0, it can be concluded
that Eq (7.2) possesses at least two pairs of roots that are totally imaginary.

The proof of Lemma 7.3 has resemblance to the proof of Lemma 3.1 as presented in the work of Li
et al. [44]. Here, it is left out. Now, it is assumed that Eq (7.26) possesses a positive real root ω. By
(7.24), we have

τ⋆2 j =
1
ω

[
arccos

(
(cosωτ1(w6 − w4ω

2) + sinωτ1ωw5 − ω
2w1 − w3)/w7

)
+ 2 jπ

]
, (7.28)

where, j = 0, 1, 2, 3, . . . . Then ±iω is a pair of roots of (7.2) when τ2 = τ
⋆
2 j.

(C6) Ā1Ā2 + B̄1B̄2 > 0
where,

Ā1 = − 3ω2
0 + w2 + w5 cosω0τ1 + 2ω0w4 sinω0τ1 + τ1ω

2
0w4 cosω0τ1 − τ1w6 cosω0τ1 − τ1 sinω0τ1ω0w5,
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B̄1 =2ω0w1 + 2ω0w4 cosω0τ1 − w5 sinω0τ1 − τ1ω0w5 cosω0τ1 − τ1ω
2
0w4 sinω0τ1 + τ1w6 sinω0τ1,

Ā2 =ω0w7 sinω0τ2, B̄2 = ω0w7 cosω0τ2.

Now, we reach the following results:

Theorem 7.1. If system (2.1) has an tumor-infection equilibrium stateS∗, then the following statements
are hold:

(i) For τ1 = τ2 = 0, the equilibrium state S∗ of system (2.1) is asymptotically stable if the conditions
in (7.4) are true.

(ii) For τ1 = τ2 ≥ 0, the tumor-infection equilibrium state S∗ is asymptotically stable if all the roots
of Det(∆S∗) = 0 are negative real parts.

(iii) If τ1 = 0 and τ2 > 0 and (7.4), (C1), (C2) hold, then the tumor-infection equilibrium state S∗ is
asymptotically stable when τ2 ∈ [0, τ20).

(iv) If τ2 = 0 and τ1 > 0 and (7.4), (C3), (C4) hold, then the tumor-infection equilibrium state S∗ is
asymptotically stable when τ1 ∈ [0, τ10).

(v) If τ1 ∈ [0, τ10), and (7.4), (C5) and (C6) are satisfied, then the tumor-infection equilibrium state
S∗ is asymptotically stable when τ2 ∈ [0, τ⋆20).

Remark 7.2. The stability of the model (2.1) is completely determined by the zeros of its char-
acteristic polynomial (7.2). To find the number of zeros of (7.2) as time delays τ1 and τ2 vary,
we write Det(∆S∗) in (7.2) as ∆S∗(λ, τ1, τ2). In this case the solution of the system is stable, the
coefficient polynomials Λ1(λ) = λ3 + w1λ

2 + w2λ + w3,Λ2(λ) = λ2w4 + λ + w5 + w6,Λ3(λ) =
w7 satisfies the following conditions [41]: (1) deg (Λ1(λ)) ⩾ max

{
deg (Λ2(λ)) , deg (Λ3(λ))

}
, (2)

Λ1(0) + Λ2(0) + Λ3(0) , 0, (3) The polynomials Λ1(λ),Λ2(λ) and Λ3(λ) do not have any common
zeros, (4) limλ→∞ (|Λ2(λ)/Λ1(λ)| + |Λ3(λ)/Λ1(s)|) < 1. In the absence of condition (1), the polynomial
Det(∆S∗) is not stable for any positive delays. If condition (2) is not satisfied, then the polynomial
Det(∆S∗) has 0 as a root for any τ1 and τ2, thus, it can never be stable. Condition (3) is natural. (4) is
automatically satisfied since its left-hand side is zero. In condition (5) the number of zeros of Det(∆S∗)
can change only if a zero appears on the imaginary axis.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19270–19299.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Stochastic model for tumor-immune interactions with external treatments
	Global positive solution
	Stationary distribution and extinction
	 Formulation of treatment as an optimal control-problem
	Numerical simulations
	Concluding remarks

