
MBE, 20 (11): 19209–19231. 
DOI: 10.3934/mbe.2023849 
Received: 18 August 2023 
Revised: 26 September 2023 
Accepted: 09 October 2023 
Published: 16 October 2023 

http://www.aimspress.com/journal/MBE 
 

Research article 

Multi-behavioral recommendation model based on dual neural 

networks and contrast learning 

Suqi Zhang1,*, Wenfeng Wang2, Ningning Li3 and Ningjing Zhang2 

1 School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China  
2 School of Science, Tianjin University of Commerce, Tianjin 300134, China 
3 School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 

300401, China 

* Correspondence: Email: suqizhang@tjcu.edu.cn; Tel: +18602290977; Fax: 02260438123. 

Abstract: In order to capture the complex dependencies between users and items in a recommender 
system and to alleviate the smoothing problem caused by the aggregation of multi-layer 
neighborhood information, a multi-behavior recommendation model (DNCLR) based on dual neural 
networks and contrast learning is proposed. In this paper, the complex dependencies between 
behaviors are divided into feature correlation and temporal correlation. First, we set up a 
personalized behavior vector for users and use a graph-convolution network to learn the features of 
users and items under different behaviors, and we then combine the features of self-attention 
mechanism to learn the correlation between behaviors. The multi-behavior interaction sequence of 
the user is input into the recurrent neural network, and the temporal correlation between the 
behaviors is captured by combining the attention mechanism. The contrast learning is introduced 
based on the double neural network. In the graph convolution network layer, the distances between 
users and similar users and between users and their preference items are shortened, and the distance 
between users and their short-term preference is shortened in the circular neural network layer. 
Finally, the personalized behavior vector is integrated into the prediction layer to obtain more 
accurate user, behavior and item characteristics. Compared with the sub-optimal model, the HR@10 
on Yelp, ML20M and Tmall real datasets are improved by 2.5%, 0.3% and 4%, respectively. The 
experimental results show that the proposed model can effectively improve the recommendation 
accuracy compared with the existing methods. 
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contrast learning 
 

1. Introduction 

In recent years, with the rapid development of big data and mobile internet, people can access a 
lot of online content, such as movies, news and other goods, but a lot of information will make users 
at a loss, so filtering the data becomes an essential part. The recommendation algorithm can learn the 
user's interest and preference according to the user's attributes and historical behavior and select the 
items that the user may be interested in from the mass of information to recommend to the user [1–3]. 
Thus, it can improve the efficiency of information screening [4], solve the problem of information 
overload in the era of big data and improve the user experience. 

In all kinds of recommendation algorithms, the collaborative filtering algorithm [17–20] is the 
most widely used. However, traditional recommendation algorithms mainly utilize a single user 
interaction data and ignore the multiple behavior types of users and items in the real application 
scenario. Figure 1 is an example of user-item interaction for an online marketplace, where 𝑣𝑣𝑘𝑘 
denotes item k, and 𝑣𝑣𝑖𝑖 denotes user i. 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3 and 𝑒𝑒4 represent user behavior of viewing, carting, 
collecting and purchasing, respectively. Therefore, in-depth analysis of user item interaction, 
considering the behavior type of user interaction, can improve the accuracy of user item modeling 
and improve the accuracy and interpretability of recommendations. 

 

Figure 1. User-Item multi-behavior interaction in the online retail. 

In recent years, the recommendation algorithm based on deep learning framework has become a 
research hotspot and is the first choice of recommendation platform. Deep learning can effectively 
learn user and item characteristics through the user's interaction history and a variety of supporting 
information (such as text, images, etc.) to improve the effectiveness and accuracy of 
recommendations. At present, the multi-behavior recommendation algorithm based on deep learning 
is mainly based on graph neural network [12]. 

Graph neural network is one of the main methods of multi-behavior recommendation algorithm 
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based on deep learning. It first constructs the interaction graph under multi-behavior and then uses 
the graph neural network to model the user's multi-behavior interaction graph. High-order 
cooperative information is captured, for example. The graph is a u-centered multi-behavior 
interaction graph, and the high-order domain information of 𝑢𝑢1 is obtained by graph convolution. 
For example, MBGCN [5] and GHCF [6] both use graph convolution networks to handle 
multi-behavior interaction graphs. The recurrent neural network method is also widely used in the 
multi-behavior recommendation of deep learning [21–23]. First, it constructs the multi-behavior 
interaction sequence of the user. The temporal characteristics of multi-behavioral data are then 
obtained using recurrent neural network methods, such as DUPN [7] and DIPN [8], which utilize 
long-and short-term memory networks [9] and bidirectional gated cyclic units [10], respectively, to 
process multi-behavioral interaction sequences, getting the temporal characteristics of the data. 

 

(a) Multi-behavior interaction graph centered on user u1 

 

(b) Multi-behavior interaction sequence for user u1 

Figure 2. Examples of multi-behavior interaction graph and multi-behavior interaction sequence. 

Although great progress has been made in the research of multi-behavior recommendation, the 
following problems still exist: 

(1) Complex dependencies between user and item multi-actions have not been fully captured. 
Both MBGCN [5] and GHCF [6] emphasize that different behaviors have different degrees of 
importance and aggregate higher-order neighborhood information by assigning different weights to 
behaviors. However, this approach only learns the importance of behavior. KHGT [11] emphasizes 
not only that different behaviors have different degrees of importance but also that there are 
interactions between behaviors. Still, none of these approaches emphasizes the temporal nature of 
behavior. DUPN [7] and DIPN [8] emphasize the sequence of behavior occurrence and use the 
method of circular neural network to model the multi-behavior interaction sequence, which can 
effectively capture the temporal correlation of behavior, but it ignores the feature correlation of 
behavior. To sum up, both of the two multi-behavior recommendation methods have one-sidedness. 
In fact, capturing feature correlation and temporal correlation at the same time is beneficial to 
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learning accurate user features. 
(2) The relevance of behavioral characteristics to users and items is ignored. MBGCN uses a 

graph convolution network to learn a user's multi-behavior interaction graph and distinguish the 
learning weight of interaction number under different behavior, but it only considers the correlation 
between behavior and user. The GHCF sets independent behavior vectors that, when convoluted, 
aggregate weights for joint item information and behavior informatics habits but only considers the 
correlation of items with behavior. MBGMN [13] uses a graph convolution network to extract 
high-order neighborhood information of users and items and then sets up a trainable network to learn 
the effects of various behaviors on user preferences under target behaviors, but it does not take into 
account the relevance of behavior to users and items. 

(3) The over-smoothing problem is caused by multi-layer convolution. MBGCN and GHCF 
both use graph convolutional neural networks to model multi-behavior interaction graphs, but neither 
of them takes into account the over-smoothing caused by multi-layer convolution. S-MBRec [14] 
and CML [15] used graph convolution to model the multi-behavior interaction graph, which mainly 
emphasized capturing the common characteristics of items under multi-behavior of users, ignored the 
differences between multi-behavior interactions of users and easily introduced redundant information, 
increasing over-smoothness. The MMCLR [16] emphasizes fine-grained differences between 
multi-behavioral interactions, considering only differences in interactions of different behavioral 
types and not differences in interactions at different times. To sum up, effectively distinguishing the 
differences of different user characteristics, the differences of user interaction characteristics and the 
differences of interaction characteristics at different times can effectively alleviate the problem of 
over-smoothing and improve recommendation performance. 

Based on the research and analysis of multi-behavior recommendation algorithms, this paper 
summarizes two problems of current multi-behavior recommendation algorithms: First, they cannot 
fully capture the complex dependence relationship between users and item multi-behavior; the 
problem of over-smoothing is caused by multi-layer convolution. In order to solve the above 
problems, this paper proposes corresponding solutions. 

First, in order to fully capture the complex dependencies between user and item, a 
multi-behavior recommendation model based on dual neural networks is proposed. First, in order to 
capture the user's behavior dependence, we set up different behavior vectors for each user, and use a 
graph convolution network to process the user item interaction graph under different behaviors. Then, 
the characteristics of users and items under different behaviors are input into the self-attention 
network, and the feature correlation between learning behaviors is analyzed. In this study, we input 
the user's recent interaction items and the corresponding behavior characteristics into the recurrent 
neural network according to the time sequence and then introduce the attention network to learn the 
temporal characteristics related to the items to be recommended. In order to improve the performance 
of the target behavior prediction model, behavior features and time series features are integrated into 
the prediction layer for learning. 

Second, in order to alleviate the over-smoothing problem caused by multi-layer graph 
convolution in graph neural networks, the contrast learning method is introduced based on the 
multi-behavior recommendation model based on double neural networks. First, the distance between 
the current user and the similar user is shortened, and the distance between the current user and the 
different user is increased. Second, we can distinguish the differences between the products of 
different time interactions and learn more accurate user characteristics. The contrast learning task 
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was used as an auxiliary task to enhance the prediction performance of the target task. 

2. The design of DNCLR model 

 
Figure 3. Framework of DNCLR. 

In this study, a multi-behavior recommendation model based on dual neural networks and 
contrast learning is designed. The model frame is shown in Figure 3. The model mainly includes a 
multi-behavior graph convolution layer, a multi-behavior recurrent neural network layer and a 
prediction layer: 

(1) Multi-behavior graph convolution layer: It convolves the interaction graph under 
multi-behavior separately, obtains the convolution weight by combining user, behavior and item 
features, aggregates higher-order information and obtains the user and item features under k behavior. 
Then, in order to reduce the problem of over-smoothing caused by graph convolution, the contrast 
learning method is introduced into the convolution layer of the multi-behavior graph. By narrowing 
the distance between current users and similar users, pushing the distance between different users, 
and filtering out the redundant information caused by the aggregation of multi-layer neighborhood 
information. Secondly, by distinguishing the interactive features of users under different behaviors, 
the effects of user similarity and different interaction behaviors on users are emphasized. Finally, the 
convolutional contrast loss of multi behavior graphs was introduced as an auxiliary task.  

(2) Multi-behavior recurrent neural network layer: It inputs the behavior and item features 
of the user's recent interaction sequence into the long-term and short-term memory network to learn 
the context information of the multi-behavior interaction and obtains the temporal correlation of the 
multi-behavior. In order to obtain more accurate short-term preferences of users, the contrast learning 
method is introduced in the layer of the multi-behavior recurrent neural network. By making the 
characteristics of users' preferences closer to their near-term preferences and far away from their 
historical preferences, and emphasizing the impact of the time of occurrence of behaviors on users. A 
multi-behavior recurrent neural network was introduced to compare the loss as an auxiliary task. 
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(3) Prediction layer: It combines the user's multi-behavior feature correlation and time series 
correlation to obtain the user's final features and combines the user's personalized behavior vector to 
predict the user's probability of interacting with the recommended items under the target behavior. 
The loss of contrast learning is combined with the loss of model training. 

The following sections, sections 2.1 and 2.2 and 2.3, detail the graph convolution layer, the 
multi-behavior recurrent neural network layer and the prediction layer. 

2.1. The multi-behavior graph convolution layer 

2.1.1. Multi-behavior graph convolution network 

In this section, graph convolution networks are introduced to enrich user and item 
characteristics by aggregating higher-order neighborhood information. The input is a multi-behavior 
interaction graph G = {U,V,B}, where B represents the set of edges in the graph, and G = {U,V,Bk} 
represents the interaction graph under K behavior, and Bk represents the set of K-behavior edges. 
Considering that different users have different behavior characteristics, the user personalized 
behavior vector bu,k is set. In the graph Gk convolution, (u, bu,k, vj) is treated as a triplet (head node, 
relation, tail node), and the relation weight is obtained by calculating the inner product of the three 
factors. Taking the user as an example, the aggregate weight is obtained by the inner product of the 
user u and (buk+vj). Figure 4 shows the implementation of the multi-behavior diagram convolution 
layer. The specific formula for calculating the convolution weight is as follows: 

                                                                 𝜋𝜋𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘 = 𝑢𝑢 ⊙ �𝑣𝑣𝑢𝑢,𝑘𝑘 + 𝑣𝑣𝑗𝑗�                                (1) 

                                𝜋𝜋�𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘 =

exp ( 𝜋𝜋𝑢𝑢,𝑣𝑣𝑗𝑗

𝑏𝑏𝑢𝑢,𝑘𝑘)

∑ exp ( 𝜋𝜋𝑢𝑢,𝑣𝑣𝑗𝑗′

𝑏𝑏𝑢𝑢,𝑘𝑘 )𝑗𝑗′𝜖𝜖𝑁𝑁𝑢𝑢
𝑘𝑘

                                (2) 

where vj denotes the interactive items of user u, 𝜋𝜋𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘denotes the preference weight of user u for 

item vj under behavior k, and the higher the value of 𝜋𝜋𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘 is, the more item vj conforms to the 

characteristics of the user's interest under behavior k. 𝑁𝑁𝑢𝑢𝑘𝑘 represents the neighbor information of 

user u under k behavior.  𝜋𝜋�𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘  is the normalized weight. 

According to the weighted values, the corresponding neighborhood features are weighted and 
summed to update the embedding representation of users and items under k behavior. 

𝑢𝑢𝑘𝑘,(ℎ) = ∑  𝜋𝜋�𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘

𝑗𝑗𝑗𝑗𝑁𝑁𝑢𝑢𝑘𝑘
∙ 𝑣𝑣𝑗𝑗  𝑘𝑘,(ℎ−1)                              (3) 

𝑣𝑣𝑘𝑘,(ℎ) = ∑  𝜋𝜋�𝑢𝑢,𝑣𝑣𝑗𝑗
𝑏𝑏𝑢𝑢,𝑘𝑘

𝑖𝑖𝑗𝑗𝑁𝑁𝑣𝑣𝑘𝑘
∙ 𝑢𝑢𝑖𝑖  𝑘𝑘,(ℎ−1)                              (4) 

where 𝒖𝒖𝒌𝒌,(𝒉𝒉) and 𝒗𝒗𝒌𝒌,(𝒉𝒉) represent the representations of user u and v in layer h under behavior k, 
respectively. 𝒖𝒖𝒌𝒌,(𝟎𝟎) is the initial embedding u of the user, and where 𝒗𝒗𝒌𝒌,(𝟎𝟎) is the initial embedding 
v of the item. After propagation in the h layer, we get the representation of multiple users and items 
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under a single action and merge these representations into the user and item representations under 
multiple actions, as in the case of the user representation under action k: 

𝑢𝑢𝑘𝑘 = 𝑢𝑢𝑘𝑘,(0) ∥ 𝑢𝑢𝑘𝑘,(1) ∥···,𝑢𝑢𝑘𝑘,(ℎ)                             (5) 

Then, the self-attention mechanism is used to learn the correlation between multiple behaviors, 
and a feedforward neural network (FNN) is used to fuse user interaction features under multiple 
behaviors to obtain user features related to behavioral features ufeature. ufeature captures the correlation 
of user features under multiple behaviors. 

               𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑢𝑢,𝑘𝑘𝑘𝑘𝑗𝑗𝑘𝑘 ∙ self − attention(𝑢𝑢1,··· 𝑢𝑢𝑘𝑘,··· 𝑢𝑢𝑘𝑘)                   (6) 

where 𝒘𝒘𝒖𝒖,𝒌𝒌𝜖𝜖𝑅𝑅𝑑𝑑∗𝑑𝑑 is the trainable weight matrix. 

 

Figure 4. Multi-behavior graph convolution layer. 

2.1.2. The convolution layer of multi-behavior graph introduces the contrast learning method 

In the previous section, we introduced that multi-behavior graph convolution networks enrich 
the features of central nodes by aggregating the information of neighbor nodes, but they also face the 
problem of over-smoothing. Although the degree of over-smoothing is reduced by assigning values 
to edges, one still faces the problem of over-smoothing when aggregating multi-layer neighborhood 
features. Therefore, this section seeks from two angles to introduce a comparative learning method to 
further alleviate the smoothing problem. First, by closing the distance between the current user and 
the similar user and pushing the distance between the current user and the different user, the 
redundant information introduced by multi-layer image convolution can be filtered out, and the 
smoothing problem can be alleviated, to capture the differences among the user's own multi-behavior 
interaction features, strengthen the user's personalized features and further reduce the degree of 
over-smoothness. 

This section uses the Jaccard similarity coefficient to calculate user-to-user similarity based on 
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the user interaction history, with the following implementation formula: 

𝐽𝐽(𝐼𝐼𝑢𝑢, 𝐼𝐼𝑢𝑢𝑖𝑖) = |
𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑢𝑢𝑖𝑖
𝐼𝐼𝑢𝑢⋃𝐼𝐼𝑢𝑢𝑖𝑖

 |                               (7) 

where 𝐼𝐼𝑢𝑢 is the set of items that user u has interacted with, 𝐼𝐼𝑢𝑢𝑖𝑖 is the set of items that user 𝑢𝑢𝑖𝑖 has 

interacted with, 𝐼𝐼𝑢𝑢⋃𝐼𝐼𝑢𝑢𝑖𝑖  is the intersection of two sets, 𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑢𝑢𝑖𝑖  is the union of two sets, and 

𝐽𝐽(𝐼𝐼𝑢𝑢, 𝐼𝐼𝑢𝑢𝑖𝑖)  is the ratio of the intersection size to the union size of the historical collection of user u 

and user 𝑢𝑢𝑖𝑖 interactions. The greater the similarity coefficient of Jaccard is, the more similar the 
historical interaction characteristics of two users are. 

Figure 5 shows the changes before and after learning based on the user interaction history. The 
yellow dots represent the user, and the blue dots in the circle represent the user interaction items. 
After contrast learning, the distance between users with the same interaction is decreased, and the 
distance between users without the same interaction is greater. 

 
Figure 5. A comparative learning approach based on user interaction history. 

In the multi-behavior recurrent neural network layer, the method of contrast learning is 
introduced, in which the user-based loss function of contrast learning is defined as 

𝐿𝐿𝑈𝑈𝑈𝑈𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈 = ∑ 𝑓𝑓(𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑢𝑢,𝑢𝑢𝑖𝑖+ ,𝑢𝑢𝑖𝑖−𝜖𝜖𝜖𝜖
,𝑢𝑢𝑖𝑖+ ,𝑢𝑢𝑖𝑖−)                     (8) 

      f(x,y,z) = −log (𝜎𝜎(𝑥𝑥𝑇𝑇𝑦𝑦 − 𝑥𝑥𝑇𝑇𝑧𝑧))                           (9) 

where 𝒖𝒖𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒖𝒖𝒇𝒇𝒇𝒇  represents user characteristics obtained from the convolution layer of the 

multi-behavior graph, 𝑢𝑢𝑖𝑖+  represents users with high similarity to the user u history interaction set 
(Jaccard), and 𝑢𝑢𝑖𝑖−  represents users who have not had the same interaction with user u. 𝐿𝐿𝑈𝑈𝑈𝑈𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈 

decreases the distance between 𝒖𝒖𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒖𝒖𝒇𝒇𝒇𝒇 and users with similar preferences  and increases the 

distance between users without similar preferences, thus filtering out the redundant information 
introduced by multi-layer graph convolution and enhancing the user's personalized characteristics, 
mitigating the smoothing problem. 

Moreover, because the feedback information provided by the user is implicit, it usually takes the 
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user's interactive goods as the positive sample of the user and the non-interactive goods as the 
negative sample of the user. In fact, not all of the items that have been interacted with in the user's 
multi-activity interaction data match the user's interests. For example, a user is directed to view an 
item but is not interested in the item after viewing it and therefore does not purchase it. Therefore, 
there are differences between multi-behavior interactions, and capturing the differences between 
interaction features under multi-behavior can help in learning more accurate user characteristics. This 
section classifies items that interact under multiple user actions into levels based on the type of 
behavior. For example, in an online store, users view unpurchased items that have not been 
purchased or added to a shopping cart with less priority than the purchased items. This section 
prioritizes the items that the user has interacted with. Items with higher priority are more in line with 
user preferences. 

 

Figure 6. Multi-behavior prioritization in the online store. 

Figure 6 shows the priority of the item according to the type of behavior, with the lowest being 
view priority, and the goods under view priority are the goods that are only viewed, with nothing else 
being done. Cart and collect items are items that will only be added to the cart or collected but are 
not bought. Buy-first items are items that the user ultimately buys. 

The goal of this section in prioritizing items based on the type of user behavior is to capture the 
differences between the user's multi-action interactions. By introducing the method of contrast 
learning, the similarity between users and high-priority items and the difference between users and 
low-priority items are maximized to enhance the learning of users' personalized characteristics. The 
item-based loss function of contrast learning is defined as 

𝐿𝐿𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑈𝑈𝑈𝑈 = ∑ ∑ ∑ 𝑓𝑓(𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓, 𝑣𝑣𝑗𝑗𝑘𝑘, 𝑣𝑣𝑗𝑗′𝑘𝑘′)
𝑘𝑘−1
𝑘𝑘′=1

𝑘𝑘
𝑘𝑘=2𝑢𝑢∈𝑈𝑈                     (10) 

where 𝑣𝑣𝑗𝑗𝑘𝑘  denotes item 𝑣𝑣𝑗𝑗  that interacts under k behavior, 𝑣𝑣𝑗𝑗′𝑘𝑘′  denotes item 𝑣𝑣𝑗𝑗′  that interacts 

under other behavior k', and action k always takes precedence over action k'. The item 𝑣𝑣𝑗𝑗′ is 
interactive under k' behavior and not interactive under k behavior. For example, the priority will be 
divided into view, cart and collect and buy priorities. View priority is when the commodity is only 
viewed, without other operations; cart and collect items are items that will only be added to the cart 
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or collected but are not purchased; purchase priority is the highest and refers to the end-user purchase 
of goods. The loss function is calculated according to the priority, taking the 3-level priority as an 
example, and the concrete implementation is formulated as follows: 

𝐿𝐿𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑈𝑈𝑈𝑈 = ∑ 𝑓𝑓(𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓,𝑣𝑣𝑗𝑗2, 𝑣𝑣𝑗𝑗′1)𝑢𝑢∈𝑈𝑈 + 𝑓𝑓�𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓 ,𝑣𝑣𝑗𝑗3, 𝑣𝑣𝑗𝑗′
2� + 𝑓𝑓(𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓 ,𝑣𝑣𝑗𝑗3, 𝑣𝑣𝑗𝑗′1)   (11) 

Based on the users' contrast learning loss and the item-based contrast learning loss, the positive 
and negative samples are selected from two angles, and the two contrast learning losses are 
optimized at the same time, so that the distance between the users and the positive samples is lower, 
and the distance between the users and the negative sample is greater, strengthening the user 
personalized characteristics and reducing the degree of over-smoothness. The combined objective 
function of two comparative losses is formulated as follows: 

𝐿𝐿𝐺𝐺𝑈𝑈𝑁𝑁𝑈𝑈𝑈𝑈 = 𝐿𝐿𝑈𝑈𝑈𝑈𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈 + 𝐿𝐿𝐼𝐼𝑓𝑓𝑓𝑓𝑖𝑖𝑈𝑈𝑈𝑈                           (12) 

2.2. Multi-behavior recurrent neural network layer 

2.2.1. Multi-behavior recurrent neural network 

In this section, we introduce a multi-behavior recurrent neural network layer in order to capture 
the temporal correlation between behaviors, so we can learn the context information of 
multi-behavior interaction and the temporal correlation of behavior. As shown in Figure 7, we select 
the recent T interactions of user u to form seq{𝑠𝑠1, 𝑠𝑠2,···, 𝑠𝑠𝑓𝑓,···, 𝑠𝑠𝑇𝑇}, where each interaction 𝑠𝑠𝑓𝑓 contains 
the behavior vector but and the item vector vt and input them to GRU in chronological order. The 
GRU gating mechanism is formulated as follows: 

 
Figure 7. Multi-behavior Recurrent Neural Networks layer. 

𝑟𝑟𝑓𝑓 = 𝜎𝜎(𝑤𝑤𝑣𝑣𝑓𝑓𝑣𝑣𝑓𝑓 + 𝑤𝑤𝑏𝑏𝑓𝑓𝑏𝑏𝑢𝑢,𝑓𝑓 + 𝑈𝑈𝑓𝑓ℎ𝑓𝑓−1)                          (13) 

𝑧𝑧𝑓𝑓 = 𝜎𝜎(𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓 + 𝑤𝑤𝑏𝑏𝑣𝑣𝑏𝑏𝑢𝑢,𝑓𝑓 + 𝑈𝑈𝑣𝑣ℎ𝑓𝑓−1)                          (14) 

ℎ𝑓𝑓′ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑣𝑣ℎ𝑣𝑣𝑓𝑓 + 𝑤𝑤𝑏𝑏ℎ𝑏𝑏𝑢𝑢,𝑓𝑓 +  𝑈𝑈ℎ(𝑟𝑟𝑓𝑓 ⊙ ℎ𝑓𝑓−1))                    (15) 
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ℎ𝑓𝑓 = (1 − 𝑧𝑧𝑓𝑓) ⊙ℎ𝑓𝑓−1 +  𝑧𝑧𝑓𝑓 ⊙ ℎ𝑓𝑓′))                          (16) 

where 𝑟𝑟𝑓𝑓 and 𝑧𝑧𝑓𝑓 are reset door and update door at t time, respectively. The values of 𝑟𝑟𝑓𝑓 and 𝑧𝑧𝑓𝑓 are 
in the range of 0 ~ 1. 𝑟𝑟𝑓𝑓 controls the proportion of the former state information ℎ𝑓𝑓−1 to ℎ𝑓𝑓′. The 
smaller the 𝑟𝑟𝑓𝑓 is, the less information ℎ𝑓𝑓−1 adds to ℎ𝑓𝑓′. 𝑧𝑧𝑓𝑓 controls the amount of new information 
and historical information to retain, (1-𝑧𝑧𝑓𝑓) larger, ℎ𝑓𝑓−1 more information to retain. ℎ𝑓𝑓 is the output 
of data that has been selected to be forgotten and retained by updating the gate. 

At the same time, in order to get the different behavior dependence when interacting with 
different items, we present the HT output of each hidden layer of GRU, the learning of the input 
attention mechanism and the historical interaction characteristics which have high correlation with 
the items to be recommended. First, we define Q∈ 𝑅𝑅𝑑𝑑∗𝑑𝑑 , K∈ 𝑅𝑅𝑑𝑑∗𝑑𝑑 , V∈ 𝑅𝑅𝑑𝑑∗𝑑𝑑  in the attention 

mechanism and calculate the weight β𝑣𝑣,ℎ𝑡𝑡 of each interactive input value. β𝑣𝑣,ℎ𝑡𝑡  is determined by 

the inner product of the query value and the key value and is implemented as follows: 

β𝑣𝑣,ℎ𝑡𝑡 = (𝑄𝑄⋅𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓)𝑇𝑇(𝑘𝑘⋅ℎ𝑡𝑡)
√𝑑𝑑

                          (17) 

where β𝑣𝑣,ℎ𝑡𝑡 is the correlation score of memory ℎ𝑓𝑓 at time t and items v to be recommended. The 

𝒖𝒖𝒇𝒇𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 was obtained by weighted polymerization of normalized β�𝑣𝑣,ℎ𝑡𝑡. 𝒖𝒖𝒇𝒇𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 captures temporal 

correlations between multiple behaviors. 

𝑢𝑢𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = ∑ β�𝑣𝑣,ℎ𝑡𝑡 ·𝑇𝑇
𝑓𝑓=0 ℎ𝑓𝑓                          (18) 

2.2.2. Multi-behavior recurrent neural network introduces contrast learning method 

In addition to considering the item priority of interactions under multiple actions, we also need 
to consider the impact of the time of action on user preferences. Therefore, this section introduces 
contrast learning in the multi-behavior recurrent neural network layer and emphasizes the differences 
of interaction characteristics at different times. Since the user requirements are stable over time, this 
section assumes that the user has recently interacted with T items of the same category, and beyond T, 
the item that the user interacted with comes from another requirement. As shown in Figure 8, 
recently, the T interaction features of users tend to be demand for “Snack package,” while the T 
interaction features before the interaction are more inclined to other requirements. Therefore, the 
method of contrast learning is introduced to make the user features close to the user's recent 
interaction items and far away from the user's historical interaction features, so as to obtain more 
accurate recent user preference features. This section sets the recent interactions to positive 𝑣𝑣𝑓𝑓+ , and 
before the T interactions, it randomly selects T as negative 𝑣𝑣𝑓𝑓−. 

Based on the above analysis, a comparative learning method is introduced in the multi-behavior 
recurrent neural network layer, which emphasizes the influence of the time of behavior occurrence 
on the users by making the characteristics of the users' preferences closer to their recent preferences 
and far away from their historical preferences. The user-based loss function of contrast learning is 
defined as 
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𝐿𝐿𝐺𝐺𝐺𝐺𝑈𝑈𝑈𝑈𝑈𝑈 = ∑ 𝑓𝑓(𝑢𝑢𝑗𝑗𝑈𝑈 𝑢𝑢𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,𝑣𝑣𝑇𝑇+ ,𝑣𝑣𝑇𝑇−)                          (19) 

where 𝒖𝒖𝒇𝒇𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  is a time-series-based user feature obtained by multi-behavior recurrent neural 

network layer in DNCLR model. 

 
Figure 8. Example of user demand change. 

2.3. Prediction layer 

The convolution layer of the multi-behavior graph learns the user representation 𝒖𝒖𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒖𝒖𝒇𝒇𝒇𝒇 by 

capturing the feature correlation between the multi-behavior. The multi-behavior recurrent neural 

network layer learns the user representation 𝒖𝒖𝒇𝒇𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 by capturing the temporal correlation between 

the multi-behavior. Combine the two to get the final statement from user u: 

𝑢𝑢𝑓𝑓𝑖𝑖𝑡𝑡𝑓𝑓𝑓𝑓 = 𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓 + 𝑢𝑢𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡                        (20) 

At the same time, we get the 𝒗𝒗𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒖𝒖𝒇𝒇𝒇𝒇 of item v and then use the inner product to calculate the 

probability score of user u interacting with item v under k behavior: 

𝑦𝑦�𝑢𝑢,𝑣𝑣
𝑘𝑘 = 𝜎𝜎(𝑤𝑤�𝑢𝑢𝑓𝑓𝑖𝑖𝑡𝑡𝑓𝑓𝑓𝑓𝑇𝑇 · 𝑏𝑏𝑢𝑢,𝑘𝑘 · 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓� + 𝑏𝑏)                    (21) 

The loss function is calculated according to the probability score obtained by the inner product 
and is defined as follows: 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺＝∑ 𝜆𝜆𝑘𝑘 ∑ (∑ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑣𝑣𝑗𝑗{𝑣𝑣|(𝑢𝑢,𝑣𝑣)𝑗𝑗𝐺𝐺+}𝑢𝑢𝑗𝑗𝑈𝑈 𝑦𝑦𝑢𝑢,𝑣𝑣
^𝑘𝑘 + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙2(1 − 𝑦𝑦𝑢𝑢,𝑣𝑣

^𝑘𝑘
𝑣𝑣𝑗𝑗{𝑣𝑣|(𝑢𝑢,𝑣𝑣)𝑗𝑗𝐺𝐺−

𝑘𝑘
𝑘𝑘=1 )) + 𝜆𝜆�|𝜃𝜃2|�   (22) 

where K represents the total number of behavior types, and 𝜆𝜆𝑘𝑘 is the hyperparameter. 𝜆𝜆𝑘𝑘 can be 
adjusted for the data set to control the effect of K behavior on overall training, while ∑ 𝜆𝜆𝑘𝑘𝑘𝑘

𝑘𝑘=1 = 1. 
Finally, taking advantage of the combined learning loss, in the training phase, this section uses 

the Adam algorithm to optimize the following objective functions: 

𝐿𝐿 = 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺 + 𝛼𝛼1𝐿𝐿𝐺𝐺𝑈𝑈𝑁𝑁𝑈𝑈𝑈𝑈 + 𝛼𝛼2𝐿𝐿𝐺𝐺𝐺𝐺𝑈𝑈𝑈𝑈𝑈𝑈                    (23) 

3. Experiment and analysis 

This section mainly introduces the experimental data set, evaluation index, experimental 
benchmark, parameter setting, model performance evaluation and ablation experiment. Yelp, ML20M 
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and Tmall were used in the experiment. Hit ratio (HR) and normalized discounted cumulative gain 
(NDCG) were used to evaluate the recommendation performance of the DNCLR model, and compared 
with three advanced multi-behavior recommendation algorithms to verify the recommendation 
performance of the DNCLR model. 

3.1. Experimental data 

In this experiment, the performance of the model was tested using a public dataset of movie 
recommendations and music recommendations. The data comes from Last.FM, the online music 
platform, and contains music interactions for about 2,000 users, 20,000 friends and 10,000 triples of 
knowledge. Movielens-1M is one of the most widely used public datasets for movie recommendation 
scenarios, containing about one million user ratings, 40,000 friends and 20,000 triples of the 
knowledge graph. The dataset was randomly divided into the training set and the testing set in a ratio 
of 8:2. Detailed statistical results are shown in Table 1.  

Yelp is a well-known US merchant review site, similar to our popular review. According to the 
data of users' comments and ratings, there are four behavior types: (1) The user comments on the 
merchant. (2) The user dislikes the user comments on the merchant, and the rating r ≤ 2. (3) 
Neutrality indicates that the user's rating of the merchant is 2 < R < 4. (4) Preference indicates that 
the user's rating of the merchant is R ≥ 4. Set {like} as the target behavior here. 

ML20M: The MovieLens public data set stores user ratings of movies, which are widely used in 
recommendation systems. In this study, we select ML20M as an experimental data set and use the 
same classification criteria as Yelp according to user ratings. There are three behavior types, {dislike, 
neutral, like}, and we set {like} as the target behavior. 

Tmall: This data set was obtained from the Heaven Lake platform. To ensure that each user has 
enough training data, users and items with fewer than five interactions are filtered out. The dataset 
contains four main behaviors {view, cart, collect, buy} and sets {buy} as the target behavior. 

Table 1 shows the details of these datasets, where the bold font represents the target behavior. 

Table 1. Detailed data of the dataset. 

Dataset Number of 
users 

Number of 
items 

Number of 
Interactions The behavior types 

Yelp 19800 22734 1.4*106 {evaluate，dislike，neutral，like} 
ML20M 7120 14026 1.0 * 106 {dislike，neutral，like} 
Tmall 47051 37690 1.6*106 {view，cart，collect，buy} 

3.2. Evaluation indicators 

Two commonly used metrics were used to evaluate model performance, namely, hit ratio (HR) 
and normalized discounted cumulative gain (NDCG). 

HR represents the number of items in the test set that appear in the top-K recommendation list 
as a percentage of the total number of items in the test set. The higher the HR is, the higher the hit rate. 

HR@K = 𝑁𝑁𝑢𝑢𝑖𝑖𝑏𝑏𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝐻𝐻𝑖𝑖𝑓𝑓𝑈𝑈@𝑘𝑘
𝐺𝐺𝑇𝑇

                        (24) 
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where GT is the total number of items in the test set, and Number of Hits@K is the number of test 
set items contained in the Top-K recommendation list. 

The NDCG represents a comprehensive assessment score for the relevance and ranking of items 
in the test set in the Top-K recommendation list. The higher the NDCG value is, the better the sorting result. 

DCG𝑢𝑢@K = ∑ 2𝑓𝑓𝑓𝑓𝑙𝑙𝑖𝑖−1
𝑓𝑓𝑜𝑜𝑡𝑡2(𝑖𝑖+1)

𝑘𝑘
𝑖𝑖=1                         (25) 

NDCG@K = 1
|𝑈𝑈|
∑ DCG𝑢𝑢@K

IDCG𝑢𝑢@K𝑢𝑢𝑗𝑗𝑈𝑈                         (26) 

where 𝑟𝑟𝑒𝑒𝑙𝑙𝑖𝑖 denotes the correlation score of item i, and DCG𝑢𝑢@K calculates the score of the first K 
items in the user's u recommendation list, taking into account both correlation and order factors. 
IDCG𝑢𝑢@K is the normalized result of DCG𝑢𝑢@K, and NDCG@K is the average of all users as the 
final score. 

3.3. Baseline model 

In order to verify the effectiveness of introducing the method of contrast learning to strengthen 
the personalized recommendation model, three advanced multi-behavior recommendation algorithms 
based on contrast learning are selected in this section: 

S-MBRec [14]: Using graph convolution networks to obtain the basic features of users and 
items, and set up adaptive monitoring tasks to learn the importance of different behaviors. Then, 
contrast learning is used to explore the commonalities between multiple behavioral interactions. 
Reduced the redundancy of auxiliary behavior data and extracted key information.  

CML [15]: The graph neural network of behavior perception is used to acquire the user 
interaction features under the multi-behavior. Then, through the contrast learning paradigm, the 
contrast loss weight of each behavior is adaptively learned. Therefore, we can model the individual 
dependence relationship between different behaviors. 

MMCLR [16]: Based on multi-view learning of user features, firstly, using the method of 
contrast learning to learn accurate user interaction features. Secondly, using the method of contrast 
learning to model the relationship between different behaviors. This method captures coarse-grained 
commonalities and fine-grained differences between multiple behavioral interactions. 

3.4. Parameter settings 

In the experiment, the model is based on TensorFlow framework and optimized by Adam 
Optimizer. The settings of the three data sets are shown in Table 2. Epoch refers to the number of 
training sessions of the model, which is 120 for all three datasets; lr refers to the learning rate; 
batch_size refers to the batch size; d refers to the embedded dimension of user, item and behavioral 
characteristics; H refers to the level of graph convolution; and T represents the number of recent 
interactions. The weight parameters λ𝑘𝑘  in Yelp, ML20M and Tmall datasets were set to 
[1/6,1/6,1/6,3/6], [1/3,1/3,1/3], [1/4,1/4,1/4,1/4]. The λ𝑘𝑘 of each dataset is different because each 
task has a different impact on user and item feature optimization in different datasets. Moreover, in 
order to ensure the accuracy of the experimental results, the model and other comparison benchmarks 
are run under the same environment configuration. At the same time, the personalized 
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recommendation based on behavior dependence and contrast learning mainly involves three 
important parameters. These three parameters are item priority of multi-behavior interaction, 
super-parameter α1 of contrast learning weight based on multi-behavior and super-parameter α2 of 
contrast learning weight based on time series, respectively. The range of values for α1 and α2 is 
[0.1,0.05,0.01,0.005,0.001]. The specific parameter settings are shown in Table 2. 

Table 2. Default parameter settings. 

Parameter name Yelp ML20M Tmall 
Priority View<Cart /Collect<Buy  Dislike<Neutral<Like View<Cart /Collect<Buy 

1α  0.1 0.1 0.1 

2α  0.05 0.01 0.05 

epoch 120 120 120 
lr 0.001 0.001 0.001 

batch_size 32 32 64 
d 32 32 32 
H 2 2 2 
T 30 20 15 
λk [1/6, 1/6, 1/6, 3/6] [1/3, 1/3, 1/3] [1/4, 1/4, 1/4, 1/4] 

 
3.5. Model performance assessment 

As shown in Table 3, the experimental results of DNCLR consistently outperformed the other 
three comparison benchmarks. First of all, DNCLR, S-MBRec and CML are optimized models based 
on graph convolution networks using contrast learning method. However, compared with S-MBRec, 
DNCLR increased HR@10 by 4.98%, 6.1% and 8.82%, respectively. The reason is that the 
S-MBRec model only studies the influence of auxiliary behavior on the target behavior and fails to 
consider the mutual influence of multi-behavior. It only considers the commonness among the 
characteristics of multi-behavior interaction, failing to account for differences in interaction 
characteristics at different times. It also shows that DNCLR can effectively improve recommendation 
performance by capturing the complex dependencies between user and item behaviors and 
considering the effect of behavior occurrence time on user preferences. In addition, the HR@10 
results on the three CML data sets increased by 2.97%, 2% and 4.59%, respectively. 

MMCLR uses multi-view modeling to learn user characteristics. Experimental results show that 
DNCLR improves HR@10 by 2.5%, 0.3% and 4%, respectively, compared with MMCLR on three 
data sets. Although the commonality of user behavior is captured in MMCLR, it fails to consider the 
impact of behavior timing on user preferences. According to MMCLR, the user's preference for 
interaction items under the target behavior is always greater than that for interaction items under 
other behaviors. In fact, the type of user interaction cannot completely determine the user's 
preference characteristics, and one also needs to consider the impact of behavior timing on user 
preferences. 
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Table 3. Comparison of NDCG@10 and HR@10 performances on different datasets. 

The model name 
Yelp ML20M Tmall 

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 
S-MBRec 0.462 0.278 0.932 0.787 0.691 0.468 

CML 0.471 0.289 0.969 0.815 0.719 0.479 
MMCLR 0.473 0.294 0.986 0.813 0.723 0.481 
DNCLR 0.485 0.302 0.989 0.821 0.752 0.501 

Improvement 2.5% 2.6% 0.3% 0.9% 4% 4.1% 

3.6. Ablation experiments 

To verify the effect of graph convolutional neural network and recurrent neural networks on the 
performance of the DNCLR model, two variants of the DNCLR model, w/o GCN and w/o GRU, 
were compared on three data sets. The experimental results are shown in Table 4, in which w/o GCN 
indicates canceling the convolution layer of the multi-behavior graph, retaining the recurrent neural 
network, and w/o GRU indicates canceling the multi-behavior recurrent neural network layer, while 
the convolution layers of multi-behavior graphs are preserved. 

Table 4. Ablation studies of sub-modules in DNCLR. 

Data 
Yelp ML20M Tmall 

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 
w/o GCN 0.763 0.541 0.812 0.692 0.346 0.188 
w/o GRU 0.883 0.608 0.981 0.793 0.682 0.463 
DNCLR 0.901 0.627 0.989 0.821 0.752 0.501 

Improvement 2.0% 3.1%  0.2% 3.5%  10.2%   8.2% 
 

Table 4 shows the results of the ablation experiments, with both variants showing a reduction in 
DNCLR results relative to the overall model. It can be concluded that the removal of any module in 
the model leads to the degradation of the recommendation performance of the model, which shows 
that capturing the complex dependencies between the user and the item in the model can improve the 
recommendation performance of the model. 

To verify the effect of the introduction of a contrast learning method on the performance of the 
present model DNCLR, three variants of the DNCLR model, DNCLRGCNCL, DNCLRGRUCL and 
DNCLRWithoutCL, were compared on three data sets, and the experimental results are presented in 
Table 5. The DNCLRWithoutCL model does not introduce the contrast learning method, and 
DNCLRGCNCL indicates that it only introduces the contrast learning method in the convolution layer 
of the multi-behavior graph of the DNCLR model. DNCLRGRUCL indicates that the contrast learning 
method is only introduced in the multi-behavior recurrent neural network layer of the DNCLR model. 

In addition, the experimental results show that HR@10 and NDCG@10 of DNCLRGCNCL and 
DNCLRGRUCL on the three data sets are always higher than those of DNCLRWithoutCL, which shows 
that the introduction of the contrast learning method can effectively improve the accuracy of 
recommendation. The experimental result of DNCLRGCNCL is higher than that of DNCLRWithoutCL, 
which shows that the introduction of contrast learning into the convolution layer of the 
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multi-behavior graph can remove the redundant information introduced by the convolution layer and 
alleviate the over-smoothing problem. Thus, more layers of neighborhood information can be 
convolved to introduce more useful cooperative information to learn user characteristics. The 
experimental results of DNCLRGRUCL are higher than that of DNCLRWithoutCL, which shows that the 
introduction of contrast learning in the multi-behavior recurrent neural network layer emphasizes the 
influence of the time of occurrence of behavior on the users' preferences, and it learns more accurate 
features of the users' recent preferences. In addition, the experimental results of DNCLR are higher 
than those of DNCLRGCNCL and DNCLRGRUCL, indicating that the combined two-part comparative 
learning method can more accurately learn the characteristics of users and items, thus improving the 
performance of recommendation. 

Table 5. Comparison of NDCG@10 and HR@10 performance on different datasets. 

The model name 
Yelp ML20M Tmall 

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 
DNCLRWithoutCL 0.467 0.284 0.984 0.816 0.719 0.482 
DNCLRGCNCL 0.475 0.298 0.988 0.819 0.729 0.493 
DNCLRGRUCL 0.471 0.290 0.985 0.814 0.724 0.484 

DNCLR 0.485 0.302 0.989 0.821 0.752 0.501 
Improvement 2.1% 1.3% 0.1% 0.2% 3.2% 1.6% 

 
 

 
(a) Comparison of results of HR@10 in Yelp   (b) Comparison of the results of HR@10 in ML20M 

 
(c) Comparison of the results of HR@10 in Tmall 

Figure 9. Impact of GNN layers on performance. 
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In order to verify whether the introduction of contrast learning in the convolution layer of the 
multi-behavior graph can effectively solve the over-smoothing problem, this section shows the 
HR@10 experimental results of DNCLRWithoutCL and DNCLR models with different convolution 
layers H set in the three data sets, as shown in Figure 9. 

To sum up, the introduction of the contrast learning method in the convolution layer of the 
multi-behavior graph can effectively alleviate the over-smoothing problem and obtain efficient 
high-order cooperative information. By introducing the method of contrast learning into the 
multi-behavior recurrent neural network layer, the effect of behavior occurrence time on user 
preference can be captured effectively, and the learning of recent user interaction characteristics can 
be strengthened. The introduction of two-part information in DNCLR can improve the performance 
of recommendation effectively. 

3.7. Effect of hyperparameters on recommendation accuracy 

3.7.1. The effect of embedding vector dimension d on recommendation accuracy 

To evaluate the effect of embedding vector dimension d on recommendation performance, this 
section presents experimental results of the DNCLR model with different embedding vector 
dimensions d in different data sets. 

 

 
 (a) Result comparison in terms of HR@10    (b) Result comparison in terms of NDCG@10 

Figure 10. Impact of embedding dimension on performance. 

Moderate dimensions allow for effective learning of user and item characteristics, while too 
high a dimension can lead to over-fitting and high time complexity. In this paper, we set the user, 
item and behavior as the same embedding dimension and modify the dimension in the range of 8 to 
32 to optimize the model result. As shown in Figure 10, the performance of the model increases with 
the increase of the embedding dimension. When the embedding dimension is 32, the model achieves 
better results, and when the embedding dimension is increased from 16 to 32, the performance 
improvement is small. In order to ensure the running efficiency of the model, the optimal embedding 
dimension of the three data sets is set to 32. 

3.7.2. The effect of convolution layer H on recommendation accuracy 
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To evaluate the effect of convolution layer H on recommendation performance, the 
experimental results of the DNCLR model with different convolution layers H in different data sets 
are presented in this section. 

 
(a) Result comparison in terms of HR@10     (b) Result comparison in terms of NDCG@10 

Figure 11. Impact of GNN layers on performance. 

By aggregating multi-layer neighborhood node information in the user-item multi-behavior 
interaction graph, more abundant user and item features can be obtained, and higher-order 
cooperative information of users and items can be captured. As shown in Figure 11, the experimental 
results of the three datasets improve with the increase of the number of layers, and the experimental 
results of the three datasets reach the optimum when the number of convolution layers of the graph is 
2. However, if the number of convolution layers continues to increase, when the neighborhood 
information of three layers is aggregated, the experimental results are lower than with two layers. 
Because the neighborhood information of multiple layers is aggregated, the obtained central node 
features contain too much neighborhood information, and the nodes become similar to each other, 
resulting in an over-smoothing problem, which cannot improve the performance. 

3.7.3. The effect of recent interaction number T on recommendation accuracy 

To assess the impact of recent interaction number T on recommendation performance, this 
section presents the experimental results of the DNCLR model with different interaction numbers T 
in different data sets. 

         

(a) HR@10 results on Yelp dataset    (b) HR@10 results on ML20M dataset 
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(d) HR@10 results on Tmall dataset 

Figure 12. Impact of number of recent interactions on performance. 

The average number of interactions was 70 for Yelp, 52 for ML20M and 34 for Tmall. Figure 
12 shows that the model was optimal when the number of recent interactions T was 30, 20 or 15, 
respectively, for the three data sets. The experimental results gradually declined as the number of 
interactions T increased after reaching the optimal value. The results show that with the increase of T, 
the Yelp and ML20M data sets increase less, which is due to the weak temporal correlation between 
the multi-behavior interactions in the two data sets. The increase of the experimental results in the 
Tmall dataset is due to the strong temporal correlation between the multi-behavior interactions in the 
dataset. Besides the temporal correlation, the recurrent neural network layer can also capture the 
user’s recent preferences. 

4. Conclusions 

In this paper, we propose a multi-behavior recommendation model called Dual Neural Networks 
and Contrast Learning (DNCLR), which addresses the limitations of the current multi-behavior 
recommendation algorithms in capturing the complex dependence relationship between users and 
items. Our model divides the complex dependencies among multiple behaviors into feature 
correlation and temporal correlation. To capture the high-order cooperative information of a single 
behavior interaction graph, we use a graph convolution network to calculate the convolution weights 
by combining user, behavior and item characteristics, and the correlations among the three are 
learned. To enhance the learning of users' features, we introduce contrast learning into the graph 
convolution layer to distinguish the differences between a user's interaction history and 
multi-behavior interaction. Additionally, we capture the temporal correlation between behaviors 
using long-term and short-term memory networks. The temporal features of multiple behaviors 
related to the items to be recommended are captured using an attention mechanism. We also 
introduce contrast learning into the multi-cycle neural network layer to strengthen the short-term user 
preference learning by distinguishing short-term interaction features from historical interaction 
features. Finally, we combine the loss introduced by comparative learning in the prediction layer to 
more accurately predict the user interaction under the target behavior of the items to be 
recommended. We validate the effectiveness of the DNCLR model on Yelp, ML20M and Tmall 
datasets. The experimental results demonstrate that our proposed model can effectively capture the 
correlation between users and items and alleviate the over-smoothing problem caused by multi-layer 
graph convolution. 
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Although DNCLR can improve the performance of recommendation effectively, it needs a lot of 
time to train the model due to the introduction of multi-behavior data, and the model has many 
parameters, which need to be adjusted many times. Therefore, the next step is to improve the 
parameter setting scheme in the model and optimize the model to reduce the time complexity, so as 
to improve the training efficiency. 
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