
Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086–19132. 

MBE, 20(11), 19086–19132. 

DOI: 10.3934/mbe.2023844 

Received: 03 August 2023 

Revised: 23 September 2023 

Accepted: 06 October 2023 

Published: 13 October 2023 

http://www.aimspress.com/journal/MBE 

 

Research article 

Modified prairie dog optimization algorithm for global optimization and 

constrained engineering problems 

Huangjing Yu1, Yuhao Wang1, Heming Jia1,* and Laith Abualigah2,3,4,5,6,7,8 

1 School of Information Engineering, Sanming University, Sanming 365004, China 
2 Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, 

Al al-Bayt University, Mafraq 25113, Jordan 
3 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-

5053, Lebanon 
4 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, 

Jordan 
5 MEU Research Unit, Middle East University, Amman 11831, Jordan 
6 Applied science research center, Applied science private university, Amman 11931, Jordan 
7 School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia 
8 School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, 

Malaysia 

* Correspondence: Email: jiaheming@fjsmu.edu.cn. 

Abstract: The prairie dog optimization (PDO) algorithm is a metaheuristic optimization algorithm 
that simulates the daily behavior of prairie dogs. The prairie dog groups have a unique mode of 
information exchange. They divide into several small groups to search for food based on special signals 
and build caves around the food sources. When encountering natural enemies, they emit different 
sound signals to remind their companions of the dangers. According to this unique information 
exchange mode, we propose a randomized audio signal factor to simulate the specific sounds of prairie 
dogs when encountering different foods or natural enemies. This strategy restores the prairie dog 
habitat and improves the algorithm’s merit-seeking ability. In the initial stage of the algorithm, chaotic 
tent mapping is also added to initialize the population of prairie dogs and increase population diversity, 
even use lens opposition-based learning strategy to enhance the algorithm’s global exploration ability. 
To verify the optimization performance of the modified prairie dog optimization algorithm, we applied 
it to 23 benchmark test functions, IEEE CEC2014 test functions, and six engineering design problems 
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for testing. The experimental results illustrated that the modified prairie dog optimization algorithm 
has good optimization performance. 

Keywords: prairie dog optimization algorithm; audio signal factor, merit-seeking ability, lens 
opposition-based learning strategy, engineering design problems 

 

1. Introduction 

With the rapid development of contemporary science and technology, many practical engineering 
application problems have become increasingly complex, and the complexity required for their 
calculations has also gradually increased. When solving engineering application problems, people 
often do not have a suitable solution to execute. To simplify the complexity of practical problems and 
reduce energy consumption, metaheuristic algorithms with an optimal solution have attracted more 
and more attention. Metaheuristic algorithms are heuristic algorithms that simulate the process of a 
certain natural phenomenon or observe the survival behavior of natural organisms. Due to their high 
efficiency, strong timeliness, and global convergence, they can often quickly find a feasible solution 
from unknown spaces when solving nonlinear practical problems. However, due to the constraints and 
complexity of real-life practical problems, we cannot obtain the optimal solutions for all problems 
using only one algorithm. Therefore, metaheuristic algorithms based on physics, humans, biological 
populations, and evolution have been continuously proposed by scholars to solve practical 
engineering problems. 

The inspiration for physics-based metaheuristic algorithms mostly comes from the laws of 
physics and chemical energy reactions in nature. For example, the gravitational search algorithm 
(GSA) [1], the rime optimization algorithm (RIME) [2], the simulated annealing (SA) [3], the black 
hole (BH) [4], the Kepler optimization algorithm (KOA) [5]. Human-based metaheuristic algorithms 
mainly simulate a series of human behaviors. For example, the teaching learning based optimization 
(TLBO) [6], the mother optimization algorithm (MOA) [7], the harmony search (HS) [8], the group 
teaching optimization algorithm (GTOA) [9], the brain storming optimization (BSO) [10]. The 
metaheuristic algorithm based on biological populations is currently one of the two popular branches, 
which mainly simulates the social behavior of natural biological populations, including foraging, 
nesting, and avoiding natural enemies. For example, particle swarm optimization (PSO) [11], the 
monarch butterfly optimization (MBO) [12], the QoS-based dissemination of content in grids [13], the 
reorganization and discovery of grid information with epidemic tuning [14], the bio-inspired algorithm 
for outlier’s detection [15], the colony predation algorithm (CPA) [16], the ant colony optimization 
(ACO) [17], the crayfish optimization algorithm (COA) [18], the Siberian tiger optimization (STO) [19]. 
The evolution-based metaheuristic algorithm is the other branch of the two popular branches. Its 
inspiration mainly comes from gene mutation, cross-inheritance, natural selection, and other 
phenomena in evolutionary biology. For example, genetic algorithm (GA) [20], evolutionary 
programming (EP) [21], differential evolution (DE) [22], virulence optimization algorithm (VOA) [23], 
The bio-geography based optimizer (BBO) [24]. Metaheuristic optimization algorithms based on 
physics, humans, biological populations, and evolution and their inspirations are listed in Table 1. 
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Table 1. Metaheuristic optimization algorithms. 

Classes Metaheuristic Inspiration Date 
Physics-based GSA The laws of universal gravitation and Newton’s second 

law, which seeks the optimal solution through the 
interaction between gravity and mass 

2009 

RIME Based on the physical phenomenon of rime-ice, the 
algorithm is exploration and exploitation by simulating 
the growth process of rime-ice 

2023 

SA Originate from the principle of solid-state annealing, 
which raises an object to a very high temperature and 
then slowly cools it down 

1983 

BH Determine the spin of a black hole by determining the 
physical size of its innermost stable circular orbit, 
however, the space-time differences is the main factor 
between non-spin Schwarzschild black holes and Kerr 
black holes of the same mass 

2013 

KOA Kepler laws of planetary motion, which predict the 
velocity and position of planets at any time to find the 
closest solution to the optimal solution 

2023 

Human-based TLBO Guidance of teachers to students and mutual learning 
among students 

2012 

MOA The mother’s leadership of the child’s growth process is 
simulated, and the algorithm is divided into three stages: 
education, advice, and upbringing 

2023 

HS Simulate the principle of music performance 2001 
GTOA Simulate the mechanism of group teaching 2020 
BSO Simulate the process of humans using creative thinking 

to solve problems during meetings 
2016 

Based on 
biological 
populations 

PSO Simulate the behavior of birds searching for food in 
nature 

1995 

MBO Simulated the migration of monarch butterflies 
thousands of miles to Mexico 

2019 

QoS-based 
dissemination 
of content in 
Grids 

Inspired by the way of information transmission by ants 
and termites, a new grid information system is built to 
reorganize and disseminate information 

2008 

 Reorganization 
and discovery 
of grid 
information 
with epidemic 
tuning 

Inspired by the information exchange behavior of ant 
colonies, resources are discovered by sharing 
information among groups 

2008 

Continued on next page
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Classes Metaheuristic Inspiration Date 
 Bio-inspired 

algorithm for 
outliers 
detection 

The similarity between mobile agent and data object is 
used to detect abnormal data in distributed system 

2017 

CPA Simulate the cooperative predation behavior of animals 
in nature, dispersing prey and rounding them up 

2021 

ACO Based on the behavior of ants discovering paths while 
searching for food 

2006 

COA The algorithm was divided into three stages based on 
the crayfish’s summer resort behavior, competition and 
foraging behavior in response to temperature changes 

2023 

STO The hunting behavior of Siberian tigers in battle was 
simulated 

2022 

Evolution-
based 

GA Borrow Mendel’s genetic theory and Darwin’s evolution 
theory and achieves the selection process of natural 
selection and survival of the fittest by simulating natural 
evolution 

1992 

EP Simulate the adaptive behavior of organisms to 
evolution 

2003 

DE Based on evolutionary ideas such as genetic algorithms 
and is based on distinct differences within the 
population 

1997 

VOA Inspired by the virus invasion of human body, the 
algorithm is exploration and exploitation by simulating 
the special invasion mechanism of virus 

2016 

BBO Simulate the change of species migration in a habitat 2008 

The PDO algorithm [25] is a metaheuristic algorithm based on biological populations proposed 
in 2022. This algorithm simulates each cluster of prairie dogs’ behavior in searching for food, building 
caves, and preventing natural enemies. Each cluster of prairie dogs has its information exchange mode. 
During the exploration phase, they continuously search for the best food source to build each family 
cave. However, during the exploitation phase, due to the influence of natural enemies and food sources, 
the algorithm easily falls into local optima, reducing its optimization performance. According to the 
no free lunch (NFL) [26] theorem, no algorithm can solve all optimization problems. Regardless of the 
algorithm used, at least one objective function enables the algorithm to find the optimal value. 
Therefore, Liu et al. applied the improved prairie dog optimization (IPDO) algorithm [27] to test its 
performance in gate recursive unit networks; Nguyen et al. [28] used the PDO algorithm to solve the 
problem of damage identification in engineering structures; Gürses et al. [29] combined Gaussian 
mutation and chaos search with PDO to enhance the optimization ability of the algorithm; Abualigah 
et al. [30] combined the opposition-based Laplacian distribution with the PDO algorithm and applied 
it to industrial engineering design problems and photovoltaic solar problems. 

Whether prairie dogs are searching for food or avoiding natural enemies, they generate an audio 
signal to find better food resources or evade the pursuit of natural enemies in response to the slow 
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convergence speed of the PDO algorithm and prairie dog’s habitual nature. This paper proposes a 
modified prairie dog optimization (MPDO) algorithm. Adding an audio signal factor to represent the 
distance between the prairie dog and the food (natural enemy), the prairie dogs adjust their position 
based on the audio signal’s strength and speed to ensure sufficient food and safety. This method is 
called the frequency wave strategy, effectively improving the algorithm’s performance, and the global 
optimization ability of the algorithm is enhanced. The frequency wave strategy balances the 
exploration and exploitation of the algorithm, and controls the prairie dog’s position by controlling the 
search range for food and the effective escape range for natural enemies. In addition, the MPDO 
algorithm also adds chaotic tent mapping and lens opposition-based learning strategy. The tent chaotic 
mapping [31] is added in population initialization, making the initialization distribution of the prairie 
dogs population more uniform and providing the possibility of finding the optimal solution. At the 
same time, the lens opposition-based learning strategy [32] enhances the algorithm’s global 
exploration ability. 

Through the above strategies, the MPDO algorithm has better global exploration ability. During 
the experimental phase, 23 standard benchmark and IEEE CEC2014 functions were used to test the 
MPDO algorithm. Then experimental data, convergence curves, and Wilcoxon rank sum test were 
analyzed. Finally, to test the MPDO algorithm’s practicality in practical engineering problems, this 
article selected six engineering application problems to test the optimization performance of the 
MPDO algorithm. These experimental results indicate that the MPDO algorithm has good optimization 
performance. 

The major contributions of this article are as follows: 
• A frequency wave strategy was proposed according to prairie dogs’ habitual nature. Then, 

chaotic tent mapping and lens opposition-based learning strategies are added to enhance the global 
exploration ability of the algorithm; 

• Apply the MPDO algorithm to 23 benchmark functions to test its performance; 
• The optimization performance of the MPDO algorithm was tested in IEEE CEC2014; 
• Eight different algorithms were compared in 23 benchmark functions and IEEE CEC2014 

testing. 
The rest framework of this article is as follows: The second part briefly introduces the PDO 

algorithm. The third part introduces the modified methods of the MPDO algorithm and the idea of 
proposing strategies. The fourth part applies the MPDO algorithm to 23 benchmark and IEEE 
CEC2014 test functions and analyzes the experimental results. The fifth part provides the experimental 
results of the MPDO algorithm in six engineering design problems. Finally, the sixth part summarizes 
the entire article. 

2. PDO 

The PDO algorithm is a metaheuristic algorithm that simulates the foraging activities of prairie 
dogs. Prairie dogs engage in social activities such as foraging, building caves, maintaining caves and 
guarding against predators daily. Therefore, based on the daily activities of prairie dogs, the PDO 
algorithm is divided into four time periods. Then, we divide exploration and exploitation based on a 
fixed mirror lifestyle. 
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2.1. Population initialization 

The foraging activity of each prairie dog is represented by 1 × dim in the spatial dimension. In 
order to prevent prairie dogs from deviating from their trajectory when foraging, upper-bound UB and 
lower-bound LB are specified to limit the movement range of prairie dogs. The set of each prairie dog 
in different locations is a solution to a problem. Figure 1 shows the solution of N prairie dogs in the 
dim dimension. 

Figure 1. Population initialization. 

2.2. Exploration stage 

During the first time period, the position of prairie dogs in foraging activities was related to the 
food sources ρ, the current quality of food, and the location of randomly synthesized prairie dogs. ρ is 
a fixed food source alarm at 0.1 Khz. In the mathematical model, the quality of the current food is 
defined as the effectiveness of the evaluation currently obtained best solution eCBesti,j. The position 
of the randomly synthesized prairie dog is defined as the random cumulative effect CPDi,j. The 
calculation formula is as follows: 
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where GBesti,j is the global optimal solution obtained so far, Δ is a very small number indicating the 
differences between prairie dog, and rPDi,j are the positions of the random solutions of prairie dog. 

Therefore, the formula for updating the location of prairie dogs searching for food is as follows: 

 1 1i , j i , j i , j i, jPD GBest eCBest CPD Levy n      
 (3)

In formula (3), Levy is a Levy distribution with discontinuous jumps. 
After finding new food sources, prairie dogs excavate and build new caves around them. During 

this time period, the location of prairie dogs is related to their excavation intensity DS of the caves. 
The update formula for DS is as follows: 
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(2 )
1.5 (1 )

t

T
t

DS r
T

     (4)

r is transformed between -1 and 1 according to the parity of the current iteration number, t is the current 
iteration number, and T is the maximum iteration number. 

The formula (5) shows an update in the position of prairie dogs during the second time period: 

 1 1i , j i , jPD GBest rPD DS Levy n     
 (5)

2.3. Exploitation stage 

During the third time period, prairie dogs will refer to the quality of the current food source ε and 
the cumulative effect of all prairie dogs to randomly update their positions. In the mathematical model, 
the quality of the current food source ε is a small number designated as representing the quality of food 
source. The formula for updating the position of prairie dogs is as follows: 

1 1i , j i , j i , j i , jPD GBest eCBest CPD rand      
 (6)

where, rand is a random number between 0 and 1. 
During the foraging process of prairie dogs, predators often attack them. Therefore, the predator 

attack is defined as the predatory effect PE. The calculation formula for PE is as follows: 

(2 )
1.5 (1 )

t

T
t

PE
T

    (7)

Update the position of prairie dogs during the fourth period by formula (8). 

1 1i , j i, jPD GBest PE rand    
 (8)

2.4. Implementation of PDO algorithm 

The original PDO algorithm simulated the behavior of prairie dogs in foraging, burrowing, and 
avoiding natural enemies, dividing the behavior of prairie dogs into four time periods. During these 
four time periods, prairie dogs, according to food sources alarm ρ, the cumulative effect of CPDi,j on 
all prairie dogs, the intensity of burrowing DS, the quality of food sources ε, and the predatory effect 
PE of the predator constantly updates position to find better food sources. Formula (9) summarizes the 
updated positions of prairie dogs at four time periods. 

 

 

1, 1 , , ,

1, 1 ,

1, 1 , , ,

1, 1 ,

4

4 2

3
2 4

3
4

i j i j i j i j

i j i j

i j i j i j i j

i j i j

T
PD GBest eCBest CPD Levy n t

T T
PD GBest rPD DS Levy n t

T T
PD GBest eCBest CPD rand t

T
PD GBest PE rand t T





 

 

 

 

       

       

        


      


 (9)



19093 

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086–19132. 

The pseudo-code of the PDO algorithm is shown in Algorithm 1. 

Algorithm 1. Prairie Dog Optimization Algorithm Pseudo-Code. 
Population initialization 
Initialization parameters 
Calculate fitness value 
while t ≤ T 
       Update DS and PE using formulas (4) and (7) 
       Update CPDi,j using formula (2) 

           If t < T / 4 
            Update position using formula (3) 
       Else if T / 4 ≤ t < T / 2 
            Update position using formula (5) 
       Else if T / 2 ≤ t < (3 × T) / 4 
            Update position using formula (6) 
       Else if (3 × T) / 4 ≤ t 
            Update position using formula (8) 
       End 

t = t + 1 
End 

3. MPDO 

3.1. Frequency wave strategy 

The prairie dog population has a perfect speech coordination system, where thought recognizes 
various foods and natural enemies and emits different frequencies of audio frequency fluctuation 
signals to provide feedback on the position of food and natural enemies. Therefore, a frequency wave 
strategy is proposed to improve the optimization performance of the algorithm. During the food search 
(Figure 2(b)), prairie dogs respond to the distance between food resource and prairie dogs with the 
audio signal’s strength. When the audio signal is weak, prairie dogs tend to sound sources to search 
for better food; when the audio signal is strong, the prairie dog approaches the sound source around 
their current position. The distance between the predator and the prairie dog is reflected by the speed 
of the audio signal (Figure 2(a)). When predators appear in the prairie dog’s view at a relatively long 
distance, they will emit a slower audio signal to remind the prairie dog population to stay away from 
their natural enemy; when the location of the predator poses a threat to the prairie dog, a faster audio 
signal will cause the prairie dog population to flee to the effective avoidance area quickly. Figure 2 is 
a schematic diagram of an audio signal warning simulation, briefly showing the movement of prairie 
dog within different signal ranges. 
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(a) Prairie dog evade natural enemies. (b) Prairie dog search for food resource. 

Figure 2. Audio signal warning simulation schematic diagram. 

The audio signal factor of the frequency wave strategy is defined as A, which changes randomly 
due to changes in the position of food or natural enemies. The distance between the prairie dog and 
food (natural enemies) is defined as d, and the sound source area (avoidance area) is defined as area. 
They calculation formulas are as follows: 

2A rand   (10)

d Pos PD   (11)

2 2 0.2
,( ( ))i jarea abs Pos PD 

 (12)

In the above formulas, rand is the sound frequency fluctuation between 0 and 1 caused by random 
changes in the position of food or natural enemies. Pos is the location of food (natural enemies). 

The specific update formula for frequency wave strategy is as follows: 

1new i, j

new i, j

x PD A d Levy A

x PD r A area else

    
    

 (13)

where, xnew represents the new location of the prairie dog, and r is a random number between –1 and 1. 

3.2. Tent chaotic initialization 

The original PDO algorithm uses the traditional population initialization method, which cannot 
effectively guarantee the randomness and diversity of the generated initial population position. 
However, the tent chaotic initialization population has ergodicity and orderliness, which can make the 
initial position distribution of the prairie dog population more uniform, thus expanding the scope of 
individual search space and maintaining population diversity. The mathematical model of tent chaos 
is as follows: 
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In order to compare the differences between the original initialization and tent chaotic maps more 
intuitively, assuming the dimension is two-dimensional and the population size is 30, two initialization 
population distribution maps are shown in Figure 3. 

  

(a) Original initialization (b) Tent chaotic mapping 

Figure 3. Distribution map of different initialized population. 

From Figure 3, it can be observed that the population distribution generated by tent chaotic 
initialization is more orderly and uniform. 

3.3. Lens opposition-based learning strategy 

Traditional opposition-based learning is a strategy to expand the search range by generating the 
current solution in the opposite direction. The generated opposite solution is generally fixed, which is 
not conducive to the algorithm finding a better position. Based on the optical principle of convex lens 
imaging, taking one-dimensional space as an example, the coordinate axis [lb, ub] represents the search 
range, and the y-axis represents the convex lens. Assuming that there is an m individual with a height 
of H, the projection on the coordinate axis is X. The refraction of the lens y generates an image m’ with 
a height of H’. The projection of m’ on the coordinate axis is X’. The opposite individual X’ generated 
by the convex lens imaging principle is shown in Figure 4. 

Figure 4. Schematic diagram of lens opposition-based learning. 
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The formula is derived from the principle of convex lens imaging: 

' '

( ) / 2

( ) / 2

ub lb X H

X ub lb H

 


 
 (15)

Let H / H’ = k, k be called the scaling factor, and substitute k into formula (15) to obtain the 
calculation formula for the opposition solution X’: 

'

2 2

ub lb ub lb X
X

k k

 
    (16)

When k = 1, formula (16) can be abbreviated as the traditional opposition-based learning strategy, 
by adjusting the value of the scaling factor k, the position of generating the opposition solution in the 
D-dimensional space is random, the spatial search scope is further expanded, and the population 
diversity is increased. 

3.4. Implementation of the MPDO algorithm 

Foraging and burrowing are essential activities for the survival of prairie dogs, during which 
natural enemies will pursue them. According to the laws of natural survival, animals will gradually 
evolve while being hunted by natural enemies. In order to avoid the pursuit of natural enemies, prairie 
dogs have evolved a complex language system that allows them to emit different sound frequencies to 
respond when facing different natural enemies. According to the strength of the audio signal, prairie 
dogs will selectively stay away from or close to the food during the foraging process. When attacked 
by natural enemies, the faster audio signal can help prairie dogs escape to the effective area, while the 
slower audio signal can effectively remind the prairie dogs to stay away from natural enemies. 
Therefore, chaotic tent initialization evenly distributes the prairie dog population and increases 
population diversity. Then opposition-based learning will be carried out to expand the search space. 
The audio signal factors will enable prairie dogs to find better food resources or avoid pursuing 
natural enemies. 

MPDO algorithm pseudo-code is shown in Algorithm 2. 

Algorithm 2. The Modified Prairie Dog Optimization Algorithm Pseudo-Code 

Using the formula (14) for population initialization 
Calculate fitness value 
While t ≤ T 
       Implement lens opposition-base learning strategy through formula (16) 
       Calculate the audio signal factor A using formula (10) 
       Calculate the distance d using formula (11) 
       If t < T / 4 
          Update position using formula (3) 
       Else if T / 4 ≤ t < T / 2 
            Update position using formula (5) 
       Else if T / 2 ≤ t < (3 × T) / 4 
            Update position using formula (6) 
       Else if (3 × T) / 4 ≤ t 
            Update position using formula (8) 
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       End 
       Calculate the area using formula (12) 
       If A<1 
         Use formula (13) to update the position of prairie dogs 
       Else 
         Use formula (13) to update the position of prairie dogs 
       End 
    t = t + 1 
End 

The flowchart of the MPDO algorithm is shown in Figure 5. 

Figure 5. MPDO algorithm flowchart. 

3.5. Time complexity analysis 

Time complexity is an important indicator for evaluating an algorithm and directly reflects 
operational efficiency. Assuming the population size is N, the search space dimension is dim, the 
number of iterations is T, the time required for frequency wave strategy position update is f, the time 
required for lens opposition-based learning strategy position update is f, the evaluated time of the 
experimental function is t2, the total running time of the algorithm is t. According to the calculation 
principle of time complexity, the following calculation formula (17) is given. 

( ) ( ) ( )

( )

O t O population initialization O strategy position update

O evaluate experimental function

 
  

(17)

During the algorithm operation, due to the short calculation time of the parameters, it can usually 
be ignored. The time complexity of calculating the parameters is not given in the above formula. 

The time required for each stage of the PDO algorithm is defined as follows: 
1) The time required for population initialization is O (N × dim × T); 
2) The time required to evaluate the experimental function is t2. 
Therefore, the time complexity of the PDO algorithm is expressed as the formula (18). 
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2( ) (( ) )O t O N dim T t     (18)

The time required for each stage of the MPDO algorithm is defined as: 
1) The time required for tent chaos to initialize the population is O (N × dim × T); 
2) The time required for the frequency wave strategy position update is O (N × dim × T) × f); 
3) The time required for the position update of the lens opposition-based learning strategy is O 

(N × dim × T) × f); 
4) The time required to evaluate the experimental function is t2. 
The time complexity of the MPDO algorithm is expressed as the formula (19). 

2( ) (( dim ) (1 2 ) )O t O N T f t       (19)

Due to (N × dim × T) >> (1+2f), therefore the time complexity of the PDO algorithm and MPDO 
algorithm was replaced by formula (20). In summary, the time complexity of the MPDO algorithm is 
consistent with that of the PDO algorithm. The modifications made to this article’s PDO algorithm do 
not increase time complexity. 

2( ) (( dim ) )O t O N T C t    
 (20)

4. Experimental results and analysis 

This experimental environment uses Windows 11 computer with a 64-bit operating system, an 
11th Gen Inter (R) Core (TM) i7-11700 processor with a main frequency of 2.50 GHz, a memory of 
16 GB, and a programming language implemented in MATLAB version R2021a. 

Table 2. Parameter settings for comparison algorithms. 

Algorithm Parameters Value 
MPDO A 

Ρ 
Δ 

[0,2] 
0.1 
0.005 

PDO Ρ 
Δ 

0.1 
0.005 

WOA Coefficient Vector A 
Coefficient Vector C 
Spiral parameters b 
Spiral parameters l 

[–1,1] 
[0,2] 
1 
[–1,1] 

SHO U 
V 
L 

0.05 
0.05 
0.05 

ROA C 0.1 
SCA a 2 
SCSO SM 

Roulette wheel selection 
2 
[0,360] 

GWO A 
C 

[–2,2] 
[0,2] 
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In order to verify the optimization performance of the MPDO algorithm, it was applied to 23 
benchmark functions and IEEE CEC2014 benchmark functions for testing. The PDO algorithm [25], the 
WOA [33], the sea-horse optimizer (SHO) [34], the remora optimization algorithm (ROA) [35], the sine 
cosine algorithm (SCA) [36], the sand cat swarm optimization (SCSO) [37] and the grey wolf optimizer 
(GWO) [38] are selected to compare with MPDO algorithm. According to the best value (Min), mean 
value (Mean) and standard deviation (Std) obtained by each algorithm, the superiority of MPDO 
algorithm is analyzed. Then the advantages and disadvantages of MPDO algorithm in convergence graph 
are analyzed. Finally, the differences between MPDO algorithm and other algorithms are analyzed by 
Wilcoxon rank sum test. Table 2 provides the parameter settings for these eight algorithms. 

4.1. 23 benchmark function testing experiments 

The 23 benchmark test functions include seven Uni-modal benchmark functions, six multi-modal 
benchmark functions, and ten fixed-dimensional multi-modal benchmark functions. In this experiment, 
the population size is set to 30, the dimension is set to 30 and 500, and the maximum number of 
iterations is set to 500. The MPDO and the other seven algorithms were run 30 times each to obtain 
the best fitness value, average fitness value, and standard deviation. 

4.1.1. Statistical analysis of 23 function experimental data and convergence curve 

Tables 3–5 show the optimal values, mean values, and standard deviations of 8 different 
algorithms in 23 functions at 30 and 500 dimensions. From the data in Table 3, both MPDO and PDO 
obtained the theoretical optimal values of F1–F4, while ROA obtained the theoretical optimal values 
of F1, F3–F5. In F6, MPDO obtained a relatively stable theoretical optimal value. MPDO obtains the 
theoretical optimal value of F7. The relative optimal values of the F8 are WOA and ROA. Although 
MPDO did not obtain the theoretical optimal value, optimization results are significantly better than 
PDO optimization results. MPDO obtained stable relative optimal values in F9–F13, PDO, ROA, and 
SCSO obtained stable optimal values in F9–F11 WOA, and SHO obtained stable optimal values in F9 
and F11. In addition, WOA also obtained optimal relative values in F10, and GWO obtained optimal 
relative values in F11. Due to the relatively simple fixed dimensional multi-modal benchmark 
functions F14–F23, eight algorithms in F14, F16–F19 obtained theoretical optimal values, while 
MPDO and SCSO obtained the optimal relative values in F15. Only SCA did not obtain theoretical 
optimal values for F20 and F23; SHO and SCA did not obtain optimal values for F22. F21 and F22 
were similar, but PDO did not obtain theoretical optimal values in F21. Overall, the optimization 
performance of MPDO in uni-modal benchmark functions, multi-modal benchmark functions, and 
fixed dimensional multi-modal benchmark functions are superior to that of PDO and the other seven 
algorithms, indicating that MPDO using frequency wave strategy has better optimization performance. 

To fully illustrate the optimization effect of MPDO, Figures 6–8 show the convergence ability of 
8 algorithms in 23 functions in 30 and 500 dimensions. From the convergence curve, MPDO has good 
convergence ability in F1–F4 and quickly finds the function’s optimal value. In F5, the MPDO 
algorithm is very similar to the optimal values found by other algorithms. In F10, both MPDO and 
ROA obtained good relative optimal values. In F6, F7, F12 and F13, the MPDO algorithm can 
effectively find better convergence values. In F9 and F11, the MPDO algorithm has good convergence 
speed and quickly finds the optimal value. Due to the relatively simple F14–F23 function, eight 
algorithms have good optimization results. In F16–F19, each algorithm quickly finds the optimal value. 
In F14, F15, F20–F23, the MPDO algorithm found the optimal value. Based on the above analysis, the 
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MPDO algorithm has better optimization ability than the PDO algorithm and has good results 
compared to the other seven algorithms. 

 

 

 

 

Figure 6. Convergence curves of various algorithms in the F1-F13 function (dim=30).
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Table 3. Statistical results of F1–F13 standard Benchmark functions (dim = 30). 

F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
F1 Min 0 0 4.44×10-83 4.68×10-147 0 8.60×10-2 4.00×10-132 4.22×10-29 

Mean 0 0 3.80×10-74 1.45×10-140 2.50×10-313 13.5 6.54×10-111 2.37×10-27 
Std 0 0 1.50×10-73 6.29×10-140 0 28.5 3.43×10-110 2.89×10-27 

F2 Min 0 0 1.93×10-57 2.42×10-81 6.01×10-184 4.91×10-4 1.29×10-65 2.54×10-17 
Mean 0 0 1.76×10-51 8.83×10-78 1.28×10-159 2.45×10-2 1.42×10-60 1.21×10-16 
Std 0 0 4.39×10-51 3.50×10-77 6.95×10-159 6.35×10-2 5.20×10-60 1.06×10-16 

F3 Min 0 0 1.28×104 5.35×10-106 0 1.56×103 3.47×10-110 5.80×10-9 
Mean 0 0 4.41×104 1.81×10-99 2.31×10-284 8.64×103 1.92×10-99 3.15×10-5 
Std 0 0 1.56×104 6.44×10-99 0 5.60×103 8.14×10-99 1.29×10-4 

F4 Min 0 0 1.44×10-1 9.99×10-60 4.17×10-181 16.0 1.67×10-57 7.48×10-8 
Mean 0 0 45.6 2.36×10-56 1.09×10-160 3.68×101 3.44×10-51 9.85×10-7 
Std 0 0 26.7 1.00×10-55 3.23×10-160 13.0 1.21×10-50 1.32×10-6 

F5 Min 28.3 2.97×10-1 27.1 27.2 2.66×10-1 92.0 26.2 26.2 
Mean 28.7 16.6 27.9 28.1 25.3 5.72×104 27.9 27.1 
Std 8.54×10-2 13.6 4.13×10-1 4.70×10-1 6.66 1.29×105 9.37×10-1 7.13×10-1 

F6 Min 4.23×10-7 6.25×10-1 8.06×10-2 1.92 2.39×10-2 4.32 7.23×10-1 6.25×10-5 
Mean 1.48×10-4 2.98 3.16×10-1 3.16 9.12×10-2 21.6 1.94×10 7.96×10-1 
Std 1.72×10-4 1.58 2.09×10-1 6.08×10-1 5.79×10-2 26.2 6.22×10-1 4.19×10-1 

F7 Min 1.54×10-7 2.05×10-6 1.67×10-4 7.27×10-6 3.63×10-6 9.11×10-3 1.67×10-6 5.56×10-4 
Mean 5.42×10-5 9.78×10-5 5.77×10-3 1.02×10-4 1.92×10-4 1.59×10-1 1.67×10-4 1.88×10-3 
Std 5.96×10-5 9.75×10-5 5.64×10-3 1.22×10-4 2.50×10-4 1.60×10-1 2.09×10-4 1.28×10-3 

F8 Min –6.92×103 –4.36×103 –1.26×104 –7.30×103 –1.26×104 –4.27×103 –8.57×103 –7.30×103 
Mean –5.88×103 –3.73×103 –1.05×104 –6.08×103 –1.24×104 –3.71×103 –6.83×103 –6.07×103 
Std 4.27×102 2.91×102 1.77×103 6.89×102 4.33×102 2.39×102 9.75×102 7.89×102 

F9 Min 0 0 0 0 0 8.99×10-2 0 5.68×10-14 
Mean 0 0 0 0 0 41.7 0 2.41 
Std 0 0 0 0 0 31.6 0 3.62 

Continued on next page 
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
F10 Min 8.88×10-16 8.88×10-16 8.88×10-16 4.44×10-15 8.88×10-16 6.29×10-2 8.88×10-16 7.19×10-14 

Mean 8.88×10-16 8.88×10-16 4.32×10-15 4.44×10-15 8.88×10-16 13.1 8.88×10-16 1.04×10-13 
Std 0 0 2.38×10-15 0 0 9.35 0 1.84×10-14 

F11 Min 0 0 0 0 0 2.59×10-1 0 0 
Mean 0 0 0 0 0 1.12 0 4.21×10-3 
Std 0 0 0 0 0 8.24×10-1 0 8.06×10-3 

F12 Min 5.45×10-8 4.92×10-2 5.16×10-3 9.71×10-2 2.07×10-3 7.42×10-1 3.15×10-2 6.52×10-3 
Mean 1.67×10-6 5.24×10-1 2.33×10-2 2.87×10-1 7.63×10-3 3.96×103 1.10×10-1 4.33×10-2 
Std 2.34×10-6 5.62×10-1 1.85×10-2 1.06×10-1 4.37×10-3 1.52×104 6.40×10-2 2.19×10-2 

F13 Min 3.55×10-7 1.95 1.03×10-1 1.27 2.55×10-2 3.07 1.45 1.67×10-1 
Mean 7.44×10-4 2.96 4.77×10-1 2.10 2.46×10-1 1.88×104 2.34 6.82×10-1 
Std 2.79×10-3 1.93×10-1 1.94×10-1 3.69×10-1 1.44×10-1 5.74×104 4.19×10-1 2.55×10-1 

Table 4. Statistical results of F1–F13 standard Benchmark functions (dim = 500). 

F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
F1 Min 0 0 3.02×10-82 1.75×10-113 0 5.37×104 1.23×10-108 9.73×10-4 

Mean 0 0 1.12×10-71 5.46×10-109 9.82×10-314 1.81×105 6.66×10-97 1.39×10-3 
Std 0 0 5.31×10-71 2.31×10-108 0 7.16×104 3.36×10-96 3.33×10-4 

F2 Min 0 0 5.69×10-57 1.26×10-61 2.23×10-184 23.7 5.97×10-56 7.84×10-3 
Mean 0 0 9.25×10-48 2.33×10-59 5.25×10-158 1.17×102 3.17×10-51 1.07×10-2 
Std 0 0 2.99×10-47 9.79×10-59 2.86×10-157 72.6 1.44×10-50 1.73×10-3 

F3 Min 0 0 1.48×107 2.19×10-82 3.83×10-299 4.35×106 8.28×10-96 1.39×105 
Mean 0 0 2.93×107 3.90×10-73 8.99×10-267 6.85×106 1.91×10-82 3.17×105 
Std 0 0 1.12×107 1.71×10-72 0 1.50×106 9.97×10-82 7.70×104 

F4 Min 0 0 52.9 1.05×10-48 1.88×10-177 98.6 3.15×10-53 57.4 
Mean 0 0 80.5 2.83×10-46 9.95×10-159 99.0 1.30×10-45 66.7 
Std 0 0 13.6 4.36×10-46 4.22×10-158 2.19×10-1 4.80×10-45 4.48 

Continued on next page 
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
F5 Min 4.94×102 4.99×102 4.95×102 4.98×102 4.94×102 7.89×108 4.98×102 4.98×102 

Mean 4.94×102 4.99×102 4.96×102 4.99×102 4.95×102 1.84×109 4.98×102 4.98×102 
Std 5.05×10-3 6.02×10-3 4.85×10-1 1.50×10-1 2.34×10-1 4.91×108 1.62×10-1 2.69×10-1 

F6 Min 1.09×10-5 46.0 10.1 1.16×102 6.86×10-1 8.36×104 93.2 87.4 
Mean 2.87×10-3 1.02×102 30.9 1.17×102 14.9 1.75×105 1.05×102 91.2 
Std 4.00×10-3 30.2 8.95 6.92×10-1 6.69 6.55×104 4.36 2.16 

F7 Min 4.17×10-7 4.25×10-6 7.73×10-5 3.56×10-5 4.15×10-7 7.61×103 2.00×10-5 3.06×10-2 
Mean 6.15×10-5 9.80×10-5 3.62×10-3 1.25×10-4 2.11×10-4 1.50×104 1.98×10-4 4.46×10-2 
Std 5.85×10-5 8.39×10-5 2.63×10-3 6.97×10-5 2.13×10-4 4.28×103 1.91×10-4 1.05×10-2 

F8 Min –8.89×104 –2.50×104 –2.09×105 –2.58×104 –2.09×105 –1.75×104 –6.82×104 –7.11×104 
Mean –8.58×104 –2.22×104 –1.67×105 –2.21×104 –2.03×105 –1.54×104 –6.01×104 –5.64×104 
Std 1.68×103 1.86×103 2.86×104 2.06×103 1.34×104 1.00×103 4.83×103 9.02×103 

F9 Min 0 0 0 0 0 4.78×102 0 45.6 
Mean 0 0 0 0 0 1.32×103 0 77.8 
Std 0 0 0 0 0 6.93×102 0 29.1 

F10 Min 8.88×10-16 8.88×10-16 8.88×10-16 4.44×10-15 8.88×10-16 12.4 8.88×10-16 1.46×10-3 
Mean 8.88×10-16 8.88×10-16 4.80×10-15 4.68×10-15 8.88×10-16 20.3 8.88×10-16 1.89×10-3 
Std 0 0 2.35×10-15 9.01×10-16 0 1.91 0 2.89×10-4 

F11 Min 0 0 0 0 0 4.20×102 0 1.05×10-4 
Mean 0 0 0 0 0 1.84×103 0 1.86×10-2 
Std 0 0 0 0 0 7.25×102 0 3.96×10-2 

F12 Min 8.88×10-8 5.91×10-2 2.60×10-2 1.01 7.21×10-3 3.18×109 6.31×10-1 6.54×10-1 
Mean 3.03×10-6 7.24×10-1 8.70×10-2 1.05 3.80×10-2 5.63×109 7.59×10-1 7.36×10-1 
Std 4.45×10-6 4.67×10-1 4.27×10-2 1.77×10-2 2.43×10-2 1.18×109 6.88×10-2 3.33×10-2 

F13 Min 1.55×10-5 50.0 6.77 49.4 1.59 4.65×109 49.6 48.1 
Mean 5.43×10-4 50.0 18.4 49.6 7.55 1.03×1010 49.8 50.8 
Std 4.75×10-4 4.47×10-4 6.93 1.07×10-1 3.19 2.07×109 8.74×10-2 1.52 
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Table 5. Statistical results of F14–F23 standard Benchmark functions. 

F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
F14 Min 9.98×10-1 9.98×10-1 9.98×10-1 9.98×10-1 9.98×10-1 9.98×10-1 9.98×10-1 9.98×10-1 

Mean 3.65 4.72 3.16 6.20 4.39 1.73 3.81 4.32 
Std 3.28 3.62 3.23 5.07 4.60 9.69×10-1 3.81 4.34 

F15 Min 3.07×10-4 5.65×10-4 3.08×10-4 3.08×10-4 3.08×10-4 4.11×10-4 3.07×10-4 3.08×10-4 
Mean 6.17×10-4 1.70×10-3 7.75×10-4 1.06×10-3 4.77×10-4 1.05×10-3 4.14×10-4 3.14×10-3 
Std 2.09×10-4 1.05×10-3 5.27×10-4 3.73×10-3 1.98×10-4 3.47×10-4 2.61×10-4 6.87×10-3 

F16 Min -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 
Mean -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 
Std 4.55×10-16 3.35×10-3 3.38×10-10 6.26×10-7 2.37×10-6 3.53×10-5 1.04×10-9 3.04×10-8 

F17 Min 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 
Mean 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 3.98×10-1 3.99×10-1 3.98×10-1 3.98×10-1 
Std 3.24×10-16 1.97×10-4 5.85×10-6 3.18×10-5 8.95×10-5 1.07×10-3 3.27×10-8 8.47×10-7 

F18 Min 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 
Mean 3.00 3.00 3.00 5.70 3.00 3.00 3.00 3.00 
Std 1.51×10-5 6.42×10-13 1.41×10-3 14.8 5.14×10-4 5.60×10-5 7.41×10-6 4.85×10-5 

F19 Min –3.86 –3.86 –3.86 –3.86 –3.86 –3.86 –3.86 –3.86 
Mean –3.86 –3.86 –3.86 –3.86 –3.86 –3.85 –3.86 –3.86 
Std 2.39×10-15 6.69×10-3 5.01×10-3 3.05×10-3 3.02×10-3 1.15×10-2 3.31×10-3 4.66×10-3 

F20 Min –3.32 –3.32 –3.32 –3.32 –3.32 –3.14 –3.32 –3.32 
Mean –3.11 –3.01 –3.20 –2.95 –3.23 –2.86 –3.17 –3.24 
Std 3.86×10-1 4.09×10-1 2.19×10-1 4.27×10-1 9.94×10-2 3.66×10-1 1.80×10-1 8.85×10-2 

F21 Min –10.2 –10.1 –10.2 –10.1 –10.2 –4.91 –10.2 –10.2 
Mean –6.42 –4.88 –7.27 –5.78 –10.1 –1.97 –5.19 –8.97 
Std 2.29 2.90 3.01 2.88 3.35×10–2 1.46 1.97 2.17 

F22 Min –10.4 –10.4 –10.4 –10.3 –10.4 –6.55 –10.4 –10.4 
Mean –8.63 –5.02 –7.42 –5.46 –10.4 –3.38 –6.48 –10.4 
Std 2.55 3.44 3.10 1.89 1.98×10-2 2.03 2.68 1.13×10-3 

Continued on next page 
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
F23 Min –10.5 –10.5 –10.5 –10.5 –10.5 –8.77 –10.5 –10.5 

Mean –7.29 –3.99 –6.92 –6.01 –10.5 –4.11 –6.22 –10.5 
Std 2.70 2.59 3.32 2.61 1.94×10-2 2.07 2.82 1.29×10-3 
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Figure 7. Convergence curves of various algorithms in the F1–F13 function (dim = 500). 
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Figure 8. Convergence curves of various algorithms in F14–F23 functions. 

4.1.2. Analysis of Wilcoxon rank sum test results 

Wilcoxon rank sum test is a non-parametric test method that uses means to test whether there are 
differences between algorithms. After analysis of the 23 function data and convergence curve, we can 
only estimate that the MPDO algorithm has good optimization ability preliminarily. The Wilcoxon 
rank sum test compares the MPDO algorithm with seven different algorithms to test the differences 
between the MPDO algorithm and other algorithms. Table 6 shows that the results of the MPDO 
algorithm and the PDO algorithm in the F1–F4 function are 1, indicating that the values obtained by 
the two algorithms are consistent. The results of the ROA in F1 are greater than 5%, indicating that 
the difference between the ROA and the MPDO algorithm is small, and they have relatively close 
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values. In the F9–F11 function, many results with 1 indicate that these algorithms are consistent with 
the MPDO algorithm and obtain the same value. The F14–F23 function is relatively simple, so many 
algorithms have smaller differences than the MPDO algorithm. In addition, the results of most of the 
data in the table are less than 5%, indicating significant differences between the MPDO algorithm and 
other algorithms in most cases. 

Based on the analysis of the comprehensive data table, convergence curve, and Wilcoxon rank 
sum test results, the MPDO algorithm has good optimization performance among 23 benchmark test 
functions. Compared with the PDO algorithm, the optimization ability of the MPDO algorithm is 
significantly improved. Compared with other algorithms, the MPDO algorithm also has good 
advantages. 

Table 6. Experimental results of the Wilcoxon rank-sum test on the 23 standard benchmark 
functions. 

F dim MPDO 
VS 
PDO 

MPDO 
VS 
WOA 

MPDO 
VS 
SHO 

MPDO 
VS 
ROA 

MPDO 
VS 
SCA 

MPDO 
VS 
SCSO 

MPDO 
VS 
GWO 

F1 30 1.00 1.73×10-6 1.73×10-6 5.00×10-1 1.73×10-6 1.73×10-6 1.73×10-6

500 1.00 1.73×10-6 1.73×10-6 2.50×10-1 1.73×10-6 1.73×10-6 1.73×10-6

F2 30 1.00 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.00 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F3 30 1.00 1.73×10-6 1.73×10-6 2.56×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.00 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F4 30 1.00 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.00 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F5 30 4.72×10-2 3.18×10-6 1.80×10-5 1.73×10-6 1.73×10-6 3.38×10-3 1.92×10-6

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F6 30 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 2.13×10-6

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F7 30 6.87×10-2 1.73×10-6 6.56×10-2 3.16×10-3 1.73×10-6 1.40×10-2 1.73×10-6

500 1.47×10-1 1.92×10-6 1.83×10-3 3.88×10-4 1.73×10-6 3.59×10-4 1.73×10-6

F8 30 1.73×10-6 1.73×10-6 2.21×10-1 1.73×10-6 1.73×10-6 7.71×10-4 1.92×10-1

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F9 30 1.00 1.00 1.00 1.00 1.73×10-6 1.00 1.68×10-6

500 1.00 1.00 1.00 1.00 1.73×10-6 1.00 1.73×10-6

F10 30 1.00 9.85×10-6 4.32×10-8 1.00 1.73×10-6 1.00 1.67×10-6

500 1.00 5.06×10-6 1.01×10-7 1.00 1.73×10-6 1.00 1.73×10-6

F11 30 1.00 1.00 1.00 1.00 1.73×10-6 1.00 1.56×10-2

500 1.00 1.00 1.00 1.00 1.73×10-6 1.00 1.73×10-6

F12 30 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F13 30 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

Continued on next page
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F dim MPDO 
VS 
PDO 

MPDO 
VS 
WOA 

MPDO 
VS 
SHO 

MPDO 
VS 
ROA 

MPDO 
VS 
SCA 

MPDO 
VS 
SCSO 

MPDO 
VS 
GWO 

F14 30 2.06×10-1 4.78×10-1 2.85×10-2 8.88×10-1 5.67×10-3 8.77×10-1 6.58×10-1

500 2.07×10-2 5.86×10-1 3.16×10-3 3.71×10-1 6.88×10-1 6.73×10-1 1.71×10-1

F15 30 4.29×10-6 5.17×10-1 9.63×10-4 4.39×10-3 6.34×10-6 8.31×10-4 2.80×10-1

500 1.24×10-5 9.59×10-1 3.88×10-4 8.73×10-3 2.61×10-4 4.07×10-5 7.81×10-1

F16 30 8.86×10-5 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 2.93×10-4 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F17 30 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F18 30 1.73×10-6 1.53×10-1 8.92×10-5 2.60×10-5 8.97×10-2 8.22×10-3 4.07×10-2

500 1.73×10-6 4.41×10-1 1.64×10-5 3.68×10-2 1.04×10-2 4.68×10-3 2.06×10-1

F19 30 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

500 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6

F20 30 5.98×10-2 5.17×10-1 1.40×10-2 2.62×10-1 1.20×10-3 7.50×10-1 5.71×10-2

500 9.43×10-1 1.57×10-2 6.44×10-1 1.48×10-4 8.97×10-2 4.68×10-3 1.25×10-4

F21 30 1.74×10-4 8.61×10-1 3.33×10-2 5.31×10-5 1.73×10-6 3.93×10-1 1.48×10-4

500 1.29×10-3 7.50×10-1 1.85×10-2 3.61×10-3 2.88×10-6 2.37×10-1 7.86×10-2

F22 30 9.32×10-6 6.04×10-3 1.64×10-5 6.44×10-1 5.22×10-6 1.59×10-3 6.44×10-1

500 1.36×10-5 2.80×10-1 1.24×10-5 1.48×10-3 6.98×10-6 1.71×10-1 3.61×10-3

F23 30 6.89×10-5 1.85×10-1 4.39×10-3 1.48×10-3 2.22×10-4 3.60×10-1 1.48×10-3

500 4.68×10-3 2.80×10-1 1.13×10-5 1.48×10-3 5.31×10-5 3.50×10-2 1.75×10-2

4.2. IEEE CEC2014 test function experiment 

The IEEE CEC2014 test set has a total of 30 single objective test functions and is one of the most 
widely used. Therefore, we selected IEEE CEC2014 to verify the optimization performance of the 
MPDO algorithm, set the population size N = 30, and the maximum number of iterations T = 500. 

Table 7 shows the optimal values, mean values, and standard deviations obtained by the MPDO 
algorithm in the IEEE CEC2014 test function. From the data in the Table 7, which eight algorithms 
have found the optimal solution in CEC12, CEC13, CEC14, CEC16 and CEC26. Only the PDO 
algorithm has not found the optimal value in CEC19. Although the MPDO algorithm did not obtain 
the optimal value in some CEC test functions, there is a small gap compared to the GWO algorithm 
that obtained the optimal solution. From the overall data, the optimization ability of the MPDO 
algorithm is stronger than the other seven algorithms and has good performance compared to the 
PDO algorithm. 

Figures 9 and 10 shows the convergence curves of 8 algorithms in the IEEE CEC2014 test 
function. In the uni-modal function, it can be seen that the MPDO algorithm can find the optimal value 
better. In simple multi-modal functions, the MPDO algorithm did not find the optimal value in CEC6. 
In CEC8, CEC9 and CEC10, the MPDO and GWO algorithms are in a state of stagnation. In CEC16, 
the relative optimal obtained by MPDO is only weaker than that obtained by SHO. While in other 
functions, the MPDO algorithm has good convergence performance. Mixed and composite functions 
test the overall performance of algorithms. The MPDO algorithm showed good optimization 
performance in mixed functions. Although the MPDO algorithm showed weak convergence in the 
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CEC24 function, it showed good optimization performance in other composite functions. Overall, the 
MPDO algorithm has good optimization performance compared to other algorithms. 

Through 30 independent runs, Table 8 obtains the Wilcoxon rank sum test data of the MPDO 
algorithm and the other seven algorithms in the IEEE CEC2014 test function. From Table 8, due to 
the simplicity of mixed and composite functions, CEC17-CEC28 has some results greater than 5%, 
but most are still less than 5%. The data from CEC8-CEC15 shows that only two results of each 
function are greater than 5%, while the rest are less than 5%. This indicates a significant difference 
between the MPDO and the other seven algorithms in these functions. In addition, in CEC5, only one 
data result is greater than 5%. In CEC6, two data results are greater than 5%. These data indicate that 
the MPDO algorithm differs significantly from other Wilcoxon rank sum test algorithms. 
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Table 7. Statistical results of IEEE CEC2014 test functions. 

F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
CEC1 Min 1.17×106 6.76×108 1.04×108 1.31×108 9.28×107 2.99×108 7.40×107 2.99×107 

Mean 4.21×106 1.21×109 2.33×108 3.96×108 3.02×108 5.01×108 2.05×108 1.03×108 
Std 2.71×106 3.41×108 8.41×107 1.40×108 9.83×107 1.40×108 9.43×107 6.28×107 

CEC2 Min 1.73×103 5.39×1010 2.40×109 1.76×1010 9.59×109 1.90×1010 1.34×109 3.02×108 
Mean 1.55×104 6.81×1010 7.54×109 3.34×1010 3.10×1010 2.92×1010 9.79×109 2.81×109 
Std 9.73×103 8.84×109 3.54×109 8.87×109 1.17×1010 4.29×109 5.63×109 2.83×109 

CEC3 Min 5.85×102 6.54×104 6.75×104 2.92×104 4.90×104 4.91×104 4.21×104 3.44×104 
Mean 1.33×104 1.25×105 1.43×105 4.91×104 6.80×104 7.71×104 5.50×104 5.26×104 
Std 9.34×103 4.54×104 7.63×104 1.03×104 8.10×103 1.64×104 8.85×103 1.21×104 

CEC4 Min 4.68×102 4.56×103 7.72×102 1.07×103 9.64×102 1.55×103 6.53×102 5.57×102 
Mean 5.34×102 1.02×104 1.35×103 2.99×103 2.68×103 2.84×103 1.09×103 7.28×102 
Std 3.76×101 3.41×103 3.65×102 1.27×103 1.40×103 9.19×102 3.86×102 1.81×102 

CEC5 Min 5.20×102 5.21×102 5.21×102 5.20×102 5.21×102 5.21×102 5.20×102 5.21×102 
Mean 5.21×102 5.21×102 5.21×102 5.21×102 5.21×102 5.21×102 5.21×102 5.21×102 
Std 4.59×10-1 8.74×10-2 9.63×10-2 1.14×10-1 8.98×10-2 4.68×10-2 1.43×10-1 6.08×10-2 

CEC6 Min 6.30×102 6.39×102 6.32×102 6.26×102 6.27×102 6.32×102 6.26×102 6.10×102 
Mean 6.38×102 6.43×102 6.39×102 6.31×102 6.35×102 6.38×102 6.31×102 6.17×102 
Std 3.99 2.04 3.10 2.25 3.14 2.32 3.52 3.01 

CEC7 Min 7.00×102 1.21×103 7.24×102 8.19×102 7.48×102 8.71×102 7.15×102 7.04×102 
Mean 7.00×102 1.38×103 7.49×102 9.96×102 9.13×10 9.50×102 7.92×102 7.27×102 
Std 4.21×10-2 78.8 20.5 77.7 88.0 48.0 51.8 20.9 

CEC8 Min 8.93×102 1.10×103 9.88×102 9.39×102 1.01×103 1.05×103 8.93×102 8.54×102 
Mean 9.85×102 1.19×103 1.04×103 9.78×102 1.04×103 1.09×103 9.96×102 9.05×102 
Std 56.7 47.4 46.3 17.0 20.7 24.1 37.4 21.9 

CEC9 Min 1.03×103 1.18×103 1.12×103 1.08×103 1.09×103 1.16×103 1.05×103 9.77×102 
Mean 1.12×103 1.26×103 1.20×103 1.13×103 1.16×103 1.21×103 1.12×103 1.03×103 

Continued on next page 
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
 Std 37.3 67.8 68.8 25.5 28.7 24.6 30.2 42.3 
CEC10 Min 3.29×103 7.42×103 4.64×103 3.19×103 4.60×103 6.88×103 3.93×103 2.47×103 

Mean 4.62×103 8.75×103 6.35×103 4.58×103 6.21×103 7.95×103 5.60×103 3.55×103 
Std 8.80×102 5.62×102 6.56×102 5.54×102 5.82×102 4.76×102 7.82×102 5.47×102 

CEC11 Min 1.66×103 2.29×103 1.47×103 1.37×103 1.48×103 2.18×103 1.46×103 1.16×103 
Mean 2.37×103 2.84×103 2.31×103 1.81×103 2.20×103 2.61×103 2.04×103 1.73×103 
Std 3.92×102 2.76×102 3.31×102 2.27×102 4.02×102 2.26×102 2.97×102 2.78×102 

CEC12 Min 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 
Mean 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 1.20×103 
Std 3.32×10-1 5.65×10-1 3.23×10-1 2.16×10-1 3.25×10-1 2.96×10-1 2.73×10-1 7.02×10-1 

CEC13 Min 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 
Mean 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 1.30×103 
Std 2.47×10-1 8.76×10-1 2.01×10-1 1.49×10-1 1.83×10-1 1.37×10-1 1.88×10-1 7.31×10-2 

CEC14 Min 1.40×103 1.40×103 1.40×103 1.40×103 1.40×103 1.40×103 1.40×103 1.40×103 
Mean 1.40×103 1.41×103 1.40×103 1.40×103 1.40×103 1.40×103 1.40×103 1.40×103 
Std 2.09×10-1 8.16 2.03×10-1 2.04 4.14 3.77×10-1 2.15×10-1 1.72×10-1 

CEC15 Min 1.50×103 1.57×103 1.50×103 1.50×103 1.50×103 1.51×103 1.50×103 1.50×103 
Mean 1.51×103 4.01×103 1.51×103 1.51×103 1.60×103 1.51×103 1.50×103 1.50×103 
Std 5.58 3.61×103 6.54 8.19 4.03×102 2.76 1.91 1.11 

CEC16 Min 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 
Mean 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 1.60×103 
Std 3.40×10-1 2.22×10-1 2.73×10-1 3.01×10-1 3.25×10-1 1.97×10-1 4.11×10-1 3.85×10-1 

CEC17 Min 4.75×103 2.95×104 6.57×103 6.65×103 3.00×103 7.68×103 2.37×103 3.06×103 
Mean 1.00×105 5.36×105 2.43×105 1.96×105 6.06×104 5.58×104 7.22×104 1.44×105 
Std 1.05×105 1.99×105 4.88×105 1.51×105 1.01×105 9.28×104 1.51×105 2.22×105 

CEC18 Min 1.86×103 7.73×103 2.47×103 6.11×103 2.16×103 5.21×103 2.01×103 1.99×103 
Mean 1.21×104 2.14×105 1.71×104 1.07×104 8.84×103 3.18×104 9.93×103 1.05×104 
Std 1.25×104 4.18×105 1.36×104 2.89×103 5.03×103 3.19×104 4.24×103 7.92×103 

Continued on next page 
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
CEC19 Min 1.90×103 1.91×103 1.90×103 1.90×103 1.90×103 1.90×103 1.90×103 1.90×103 
 Mean 1.91×103 1.92×103 1.91×103 1.90×103 1.91×103 1.91×103 1.90×103 1.90×103 

Std 1.39 15.9 1.53 1.26 1.63 8.96×10-1 1.22 9.38×10-1 
CEC20 Min 2.06×103 2.47×103 2.35×103 2.41×103 2.09×103 2.32×103 2.69×103 2.21×103 

Mean 8.85×103 4.67×105 1.23×104 7.98×103 1.17×104 9.49×103 7.89×103 9.14×103 
Std 7.55×103 1.44×106 7.00×103 3.13×103 4.68×103 7.35×103 3.35×103 5.25×103 

CEC21 Min 2.50×103 3.08×104 6.10×103 3.62×103 3.23×103 3.81×103 3.66×103 2.83×103 
Mean 1.61×104 1.17×106 2.49×105 1.05×104 1.30×104 1.90×104 1.11×104 8.97×103 
Std 2.46×104 1.34×106 4.83×105 3.55×103 1.01×104 1.39×104 6.25×103 6.20×103 

CEC22 Min 2.22×103 2.28×103 2.23×103 2.22×103 2.23×103 2.25×103 2.23×103 2.22×103 
Mean 2.46×103 2.48×103 2.30×103 2.29×103 2.29×103 2.28×103 2.31×103 2.30×103 
Std 1.13×102 1.09×102 78.2 60.3 71.5 15.5 63.5 59.9 

CEC23 Min 2.50×103 2.50×103 2.50×103 2.50×103 2.50×103 2.64×103 2.50×103 2.63×103 
Mean 2.50×103 2.50×103 2.64×103 2.63×103 2.50×103 2.65×103 2.50×103 2.63×103 
Std 0 0 27.0 25.4 0 8.22 0 2.91 

CEC24 Min 2.54×103 2.57×103 2.53×103 2.52×103 2.54×103 2.54×103 2.52×103 2.51×103 
Mean 2.59×103 2.60×103 2.58×103 2.57×103 2.59×103 2.56×103 2.59×103 2.55×103 
Std 15.8 7.76 25.1 30.7 18.4 11.8 22.4 36.3 

CEC25 Min 2.66×103 2.69×103 2.70×103 2.68×103 2.68×103 2.68×103 2.67×103 2.67×103 
Mean 2.69×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 
Std 11.9 1.81 2.02 4.88 4.54 6.02 5.81 5.20 

CEC26 Min 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 
Mean 2.71×103 2.71×103 2.71×103 2.70×103 2.70×103 2.70×103 2.70×103 2.70×103 
Std 25.2 17.6 25.3 1.04×10-1 6.51×10-1 1.59×10-1 9.05×10-2 18.2 

CEC27 Min 2.90×103 2.90×103 2.71×103 2.71×103 2.71×103 2.72×103 2.71×103 2.70×103 
Mean 2.90×103 2.90×103 3.10×103 3.04×103 2.89×103 3.07×103 2.88×103 3.02×103 
Std 0 0 1.44×102 1.49×102 47.2 1.17×102 58.5 1.33×102 

CEC28 Min 3.00×103 3.00×103 3.00×103 3.29×103 3.00×103 3.24×103 3.00×103 3.16×103 
Continued on next page 
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO 
 Mean 3.00×103 3.00×103 3.40×103 3.45×103 3.00×103 3.29×103 3.00×103 3.26×103 

Std 0 0 1.58×102 1.25×102 0 59.5 0 1.00×102 
CEC29 Min 3.10×103 3.10×103 3.26×103 3.17×103 3.10×103 5.01×103 3.10×103 3.16×103 

Mean 3.43×103 3.10×103 3.57×105 7.19×105 1.77×105 2.41×104 7.13×104 5.15×105 
Std 3.48×102 0 8.62×105 1.52×106 5.26×105 1.95×104 3.58×105 1.15×106 

CEC30 Min 3.20×103 3.20×103 4.14×103 4.54×103 3.56×103 4.27×103 3.66×103 3.51×103 
Mean 3.88×103 3.20×103 5.77×103 5.51×103 5.22×103 4.93×103 4.75×103 4.45×103 
Std 6.85×102 0 1.15×103 1.50×103 1.22×103 5.20×102 6.57×102 7.93×102 
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Table 8. Experimental results of the Wilcoxon rank−sum test on the IEEE CEC2014 test functions. 

F MPDO 
VS 
PDO 

MPDO 
VS 
WOA 

MPDO 
VS 
SHO 

MPDO 
VS 
ROA 

MPDO 
VS 
SCA 

MPDO 
VS 
SCSO 

MPDO 
VS 
GWO 

CEC1 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 
CEC2 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 
CEC3 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 
CEC4 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 
CEC5 3.88×10-4 1.29×10-3 1.48×10-2 4.53×10-4 8.47×10-6 1.47×10-1 1.24×10-5 
CEC6 3.11×10-5 3.39×10-1 2.88×10-6 5.32×10-3 8.45×10-1 1.80×10-5 1.73×10-6 
CEC7 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 1.73×10-6 
CEC8 1.73×10-6 3.59×10-4 6.88×10-1 8.19×10-5 2.35×10-6 4.17×10-1 6.98×10-6 
CEC9 1.73×10-6 1.13×10-5 5.72×10-1 3.32×10-4 1.92×10-6 6.29×10-1 2.60×10-6 
CEC10 1.73×10-6 2.88×10-6 9.92×10-1 3.18×10-6 1.73×10-6 3.06×10-4 4.45×10-5 
CEC11 2.16×10-5 8.45×10-1 1.36×10-5 1.85×10-1 8.73×10-3 2.58×10-3 3.88×10-6 
CEC12 2.88×10-6 3.59×10-4 1.36×10-1 3.00×10-2 2.88×10-6 4.05×10-1 3.00×10-2 
CEC13 1.73×10-6 2.29×10-1 7.19×10-1 6.58×10-1 1.29×10-3 4.72×10-2 6.34×10-6 
CEC14 1.73×10-6 1.96×10-2 8.94×10-4 9.78×10-2 1.92×10-6 3.82×10-1 1.11×10-1 
CEC15 1.73×10-6 5.32×10-3 8.77×10-1 5.45×10-2 2.58×10-3 4.20×10-4 4.29×10-6 
CEC16 5.29×10-4 2.56×10-2 1.02×10-5 3.52×10-6 1.57×10-2 6.89×10-5 1.73×10-6 
CEC17 2.88×10-6 2.62×10-1 8.73×10-3 8.59×10-2 3.16×10-2 6.27×10-2 7.97×10-1 
CEC18 3.38×10-3 1.41×10-1 9.59×10-1 5.17×10-1 1.96×10-3 6.14×10-1 7.50×10-1 
CEC19 1.73×10-6 1.04×10-2 1.89×10-4 7.19×10-1 1.59×10-3 6.89×10-5 2.88×10-6 
CEC20 3.41×10-5 8.22×10-2 7.97×10-1 1.06×10-1 7.04×10-1 5.72×10-1 8.13×10-1 
CEC21 2.60×10-6 1.80×10-5 6.73×10-1 7.34×10-1 7.19×10-2 8.29×10-1 1.36×10-1 
CEC22 3.49×10-1 3.11×10-5 1.24×10-5 3.52×10-6 4.29×10-6 2.37×10-5 1.13×10-5 
CEC23 1.00 2.56×10-6 2.56×10-6 1.00 1.73×10-6 1.00 1.73×10-6 
CEC24 4.79×10-2 5.45×10-2 7.73×10-3 5.42×10-1 4.29×10-6 8.14×10-2 5.31×10-5 
CEC25 5.36×10-4 2.35×10-5 6.36×10-3 2.23×10-3 1.36×10-4 1.48×10-3 4.53×10-4 
CEC26 3.06×10-4 2.45×10-1 1.11×10-2 5.30×10-1 1.32×10-2 6.64×10-4 6.89×10-5 
CEC27 1.00 3.18×10-6 7.69×10-6 5.00×10-1 3.18×10-6 2.50×10-1 1.96×10-3 
CEC28 1.00 2.56×10-6 1.73×10-6 1.00 1.73×10-6 1.00 1.73×10-6 
CEC29 1.96×10-4 1.97×10-5 2.07×10-2 2.60×10-6 1.73×10-6 3.15×10-5 2.22×10-4 
CEC30 5.96×10-5 2.13×10-6 4.73×10-6 5.79×10-5 6.34×10-6 4.86×10-5 3.61×10-3 
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Figure 9. Convergence curves of various algorithms in the IEEE CEC2014 function (CEC 
1–CEC 15). 
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Figure 10. Convergence curves of various algorithms in the IEEE CEC2014 function 
(CEC 16–CEC 30). 
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5. Constrained engineering design problems 

In Part 4, we tested the MPDO algorithm on 23 benchmark and IEEE CEC2014 functions. In 
order to test the practical effectiveness of the MPDO algorithm in engineering problems, in Part 5, we 
selected six engineering design problems: Car Crash-worthiness Design, Welded Beam Design, Speed 
Reducer Design, Cantilever Beam Design, Pressure Vessel Design, Multiple Disc Clutch Brake. 

5.1. Car crash-worthiness design problem 

The design of car crash-worthiness is a minimum value problem, which includes 11 variables and 
ten constraint conditions. Figure 11 shows the finite element model of the problem. The decision 
variables for this problem are the internal thickness of the B-pillar, the thickness of the B-pillar 
reinforcement, the thickness of the floor slab, the thickness of the crossbeam, the thickness of the door 
beam, the thickness of the door strip line reinforcement, the thickness of the longitudinal roof beam, 
the internal material of the B-pillar, the internal material of the floor slab, the height of the obstacle 
and the impact position of the obstacle. Abdominal load, upper viscosity standard, middle viscosity 
standard, low viscosity standard, upper rib deflection, middle rib deflection, lower rib deflection 
pubic symphysis force, B-pillar midpoint speed, and B-pillar front door speed are the constraints of 
this problem 

 

Figure 11. Car crash-worthiness design model. 

The mathematical formula for car crash-worthiness design is as follows: 
Minimize: 

( ) Weight,f x 


 (21)

Subject to: 

1( ) (load in abdomen) 1 ,ag x F kN 


 (22)

2 ( ) (dummy upper chest) 0.32 / ,g x V Cu m s  


 (23)

3 ( ) (dummy middle chest) 0.32 / ,g x V Cm m s  


 (24)
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4 ( ) (dummy lower chest) 0.32 / ,g x V Cl m s  


 (25)

5 ur( ) (upper rib deflection) 32 ,g x mm  


 (26)

6 mr( ) (middle rib deflection) 32 ,g x mm  


 (27)

7 lr( ) (lower rib deflection) 32 ,g x mm  


 (28)

8 ( ) (Public force) 4 ,pg x F kN 


 (29)

9 MBP( ) (Velocity of V

Pillar at middle point) 9.9 mm/ ms,

g x V 





 
(30)

10 FD( ) (Velocity of front door at V

Pillar) 15.7 mm/ ms,

g x V 





 
(31)

Variable range: 

1 7 8 90.5 1.5 , (0.192,0.345)x x x x   ， ， 10 1130 , 30,x x    (32)

The experimental data for the car crash-worthiness design problem is shown in Table 9. The data 
in Table 9 shows that the optimal weight obtained by the MPDO algorithm is 23.19869131, which is 
the best solution for the optimal weights of six algorithms. This indicates that the MPDO algorithm 
can more efficiently solve the problem of car crash-worthiness design. 

Table 9. Experimental results of the car crash-worthiness design problem. 

Algorithm MPDO MALO[39] MSROA[40] SOA[41] GTO[42] MPA[43]
x1 0.500000802 0.5 0.5 0.50063 0.5 0.5 
x2 1.242709892 1.2281 1.2284047 1.25921 1.2607 1.22823 
x3 0.5 0.5 0.5 0.5 0.5 0.5 
x4 1.18070453 1.2126 1.2125762 1.26308 1.1495 1.2049 
x5 0.500004599 0.5 0.5 0.9377 0.6205 0.5 
x6 1.128124272 1.308 0.9827072 1.11573 0.886 1.2393 
x7 0.500000896 0.5 0.5 0.5 0.5 0.5 
x8 0.345 0.3449 0.345 0.334889 0.34485 0.34498 
x9 0.193007238 0.2804 0.345 0.252275 0.344608 0.192 
x10 3.036846819 0.4242 0.2051698 4.3435 6.202292 0.44035 
x11 1.13771349 4.6565 2.4627542 16.2208 7.3429 1.78504 
Best Weight 23.19869131 23.2294 23.230900 24.42114 23.4084 23.19982

5.2. Welded beam design problem 

The purpose of the welded beam design problem is to minimize the total cost of the welded beam, 
and the welded beam model is shown in Figure 12. The four decision variables for this problem are 
weld width h, connecting beam length l, beam height t, and connecting beam thickness b. In addition, 
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there are seven constraint conditions. 

 

Figure 12. Welded beam model. 

The mathematical formula for the design problem of welded beams is as follows: 
Consider: 

1 2 3 4[ ] ]    [  x x x x x h l t b   (33)

Objective function: 

2
1 2 3 4 2( ) 1.10471 0.04811 (14.0 )f x x x x x x    (34)

Subject to: 

   1 max 0g x x   
 

 (35)

   2 max 0g x x   
 

 (36)

   3 max 0g x x   
 

 (37)

 4 1 4 0g x x x  


 (38)

   5 0cg x P P x  
 

 (39)

 6 10.125 0g x x  


 (40)

   2
7 1 3 4 21.10471 0.04811 14.0 0.5 0g x x x x x    


 (41)

Where: 

     2' ' " " ' "2

1 2

2 , , ,
2 2

x P MR
x

R Jx x
          


 
(42)

 
22

1 32 2
2

4 3

6
, , ,

2 4 2

x xx x PL
M P L R x

x x


         
   



 
(43)

 
22 3

1 3
1 2 2

4 3

6
2 2 , ,

4 2
xx x x PL

J x x x
Ex x


         

     



 
(44)
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 

2 6
3 44.013

3 3
2

0 , 1 , 1 ,
2 4 2 4

E

c

x x
x xE E

P x
L L G L G

   
        

   

  (45)

6
max6000 , 14 , 0.25 in, 30 10 ,P lb L in E psi      (46)

max max13600 , 30000psi and psi    (47)

Variable range: 

0.1 2, 1,4;0.1 10, 2.3i ix i x i       (48)

The experimental results for the design issues of welded beams are shown in Table 10. The 
weight obtained by the MPDO algorithm is 1.708762277, the optimal solution compared to other 
algorithms. Under this weight, the thickness of the connecting beam b is 0.205418434, the height of 
the beam t is 9.099486427, the length of the connecting beam l is 3.315146754, and the weld width 
h is 0.201371958. From this, we have seen that the MPDO algorithm can effectively solve the 
problem of welded beam design. 

Table 10. Experimental results of the welded beam design problem. 

Algorithm h l t b Best Weight 
MPDO 0.201371958 3.315146754 9.099486427 0.205418434 1.708762277 
TSA[44] 0.244157 6.223066 8.29555 0.244405 2.38241101 
RO[45] 0.203687 3.528467 9.004233 0.207241 1.735344 
IHS[46] 0.20573 3.47049 9.03662 0.2057 1.7248 
CPSO[47] 0.202369 3.544214 9.04821 0.205723 1.73148 
MFO[48] 0.2057 3.4703 9.0364 0.2057 1.72452 
ROA[35] 0.200077 3.365754 9.011182 0.206893 1.706447 

5.3. Speed reducer design problem 

 

Figure 13. Speed reducer model. 

The design model of the speed reducer is shown in Figure 13. The design of the speed reducer 
satisfies seven decision variables: the width of the tooth surface x1, the number of teeth on the gear 
module x2, the number of teeth on the pinion x3, the length of the first shaft x4 between bearings, the 
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length of the second shaft x5 between bearings, the diameter of the first shaft x6 and the diameter of the 
second shaft x7. It is a minimum value problem aimed at finding the minimum mass of the speed 
reducer, with four constraint conditions: the bending stress of the gear teeth, the covering stress, the 
lateral deflection of the shaft, and the stress inside the shaft. 

The mathematical formula for the speed reducer design problem is as follows: 
Consider: 

1 2 3 4 5 6 7[       ]x x x x x x x x  (49)

Objective function: 
2 2

1 2 3 3

2 2 3 3
1 6 7 6 7

2 2
4 6 5 7

( ) 07854 (3.3333 14.9334

43.0934) 1.508 ( ) 7.4777

0.7854

f x x x x x

x x x x x

x x x x

       

       

   



 

(50)

Subject to: 

1 2
1 2 3

27
( ) 1 0g x

x x x
  

 


 (51)

2 2 2
1 2 3

397.5
( ) 1 0g x

x x x
  

 


 
(52)

3
4

3 4
2 3 6

1.93
( ) 1 0

x
g x

x x x


  

 


 
(53)

3
5

4 4
2 3 7

1.93
( ) 1 0

x
g x

x x x


  

 


 
(54)

2 64
5 3

6 2 3

7451
( ) ( ) 16.9 10 1 0

110

x
g x

x x x


     

 


 
(55)

2 65
6 3

7 2 3

7451
( ) ( ) 16.9 10 1 0

85

x
g x

x x x


     

 


 
(56)

2 3
7 ( ) 1 0

40

x x
g x


  


(57)

2
8

1

5
( ) 1 0

x
g x

x


  



 
(58)

1
9

2

( ) 1 0
12

x
g x

x
  




 
(59)

6
10

4

1.5 1.9
( ) 1 0

x
g x

x

 
  



 
(60)

7
11

5

1.1 1.9
( ) 1 0

x
g x

x

 
  



 
(61)
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Variable range: 

1 2 3 4

5 6 7

2.6 3.6,0.7 0.8,17 28,7.3 8.3,

7.3 8.3,2.9 3.9,5 5.5

x x x x

x x x

       

     
 (62)

Table 11 presents the test results of the reducer design problem. When x1 is 3.497599089, x2 is 
0.7, x3 is 17, x4 is 7.3, x5 is 7.8, x6 is 3.350055813, and x7 is 5.285531993, the optimal weight obtained 
by the MPDO algorithm is 2995.437365, which achieves better results compared to other algorithms. 
Therefore, MPDO is an effective algorithm for solving this problem. 

Table 11. Experimental results of the speed reducer design problem. 

Algorithm Optimal Values for Variables Optimal 
Weight x1 x2 x3 x4 x5 x6 x7 

MPDO 3.497599 0.7 17 7.3 7.8 3.35005581 5.28553199 2995.4374
hHHO-SCA[49] 3.506119 0.7 17 7.3 7.99141 3.452569 5.286749 3029.8731
MSCSO[50] 3.497592 0.7 17 7.3 7.8 3.350043 5.285504 2995.438 
AOA[51] 3.6 0.7 17 7.3 8.3 3.48321691 5.29818568 3089.0737
RSA[52] 3.50279 0.7 17 7.3 7.74715 3.35067 5.28675 2996.5157
MDA[53] 3.5 0.7 17 7.3 7.67039 3.54242 5.2481 3019.5833

5.4. Cantilever beam design problem 

Cantilever beam design is a minimization problem aimed at reducing the weight of the cantilever 
beam. The decision variable for this problem includes five hollow block heights with constant 
thickness. Figure 14 shows the cantilever beam design model. 

 

Figure 14. Cantilever beam model. 

The mathematical formula for the design problem of cantilever beams is as follows: 
Consider: 

1 2 3 4 5[     ]x x x x x x  (63)

Objective function: 

1 2 3 4 5( ) 0.0624( )f x x x x x x      (64)

Subject to: 
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3 3 3 3 3

1 2 3 4 5

61 37 19 7 1
( ) 1 0g x

x x x x x
        (65)

Variable range: 

0.01 100( 1,2, 5)ix i     (66)

According to the cantilever beam model, the height of five hollow blocks with constant thickness 
continuously decreases. The results of the MPDO algorithm xi (I = 1, 2, ·····, 5) in Table 12 conform 
to the design of decreasing in sequence, and the optimal weight obtained is 1.340052195, which is an 
effective solution to this problem. 

Table 12. Experimental results of the cantilever beam design problem. 

Algorithm Optimal Values for Variables Optimum 
Weight 

x1 x2 x3 x4 x5 

MPDO 5.9909046 5.34666433 4.49228394 3.47344894 2.17189358 1.3400522 
ERHHO[54] 6.0509 5.2639 4.514 3.4605 2.1878 1.3402 
BWO[55] 6.2094 6.2094 6.2094 6.2094 6.2094 1.9373625 
OOA[56] 5.0000635 5.00006346 5.00006346 5.00006346 5.00006346 1.5600198 
WOA[33] 5.1261 5.6188 5.0952 3.9329 2.3219 1.3787315 
SCA[36] 5.1096 5.9911 5.015 3.7095 3.2744 1.4414387 

5.5. Pressure vessel design problem 

The design of pressure vessels minimizes the total cost of cylindrical pressure vessels to satisfy 
pressure requirements. There are four variables to address this issue: vascular wall thickness TS, head 
wall thickness Th, inner diameter R and body length L, and four constraint conditions. The specific 
mathematical model of the pressure vessel design problem is shown in Figure 15. 

 

Figure 15. Pressure vessel model. 

The mathematical formula for pressure vessel design problems is as follows: 
Consider: 
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   1 2 3 4 s hx x x x x T T R L 


 (67)

Objective function: 

  2 2 2
1 2 3 2 3 1 4 1 30 6224 1 7781 3 1661 19 84f x . x x x . x x . x x . x x   


 (68)

Subject to: 

1 1 3( ) 0.0193 0g x x x   


 (69)

2 3 3( ) 0.00954 0g x x x   


 (70)

3

2 3
3 3 4

4
( ) 1296000 0

3
g x x x x     


 (71)

4 4( ) 240 0g x x   


 (72)

Variable range: 

1 2 3 40 99,0 99,10 200,10 200x x x x         (73)

The experimental results of pressure vessel design issues are shown in Table 13. The MPDO 
algorithm yields a TS of 0.747477958, Th of 0.37238725, R of 40.56802084, and L of 196.5707208, 
resulting in a minimum cost of 5744.455052 for pressure vessel design. Five algorithms generated 
cost values greater than 6000 among the compared algorithms, while six generated cost values less 
than 6000. 

Table 13. Experimental results of the pressure vessel design problem. 

Algorithm Ts Th R L Best Cost 

MPDO 0.747477958 0.37238725 40.56802084 196.5707208 5744.455052 
EROA[57] 0.84343 0.400762 44.786 145.9578 5935.7301 
HPSO[58] 0.8125 0.4375 42.0984 176.6366 6059.7143 
AO[59] 1.054 0.182806 59.6219 39.805 5949.2258 
MSROA[29] 0.773374321 0.374874166 41.83662957 180.1871401 5807.849903 
MGTOA[60] 0.754364 0.366375 40.42809 198.5652 5752.402458 
WOA[33] 0.8125 0.4375 42.09827 176.639 6059.741 
GA[20] 0.8125 0.4375 42.0974 176.6541 6059.94634 
CS[61] 0.8125 0.4375 42.09845 176.6366 6059.714335 
SMA[62] 0.7931 0.3932 40.6711 196.2178 5994.1857 
BA[63] 0.8125 0.4375 42.0984 176.6366 6059.7143 
ES[64] 0.8125 0.4375 42.098087 176.640518 6059.7456 

5.6. Multiple disc clutch brake problem 

The main goal of a multi-disc clutch brake is to find the minimum mass of the multi-disc brake. 
This problem has five decision variables and eight constraint conditions. Five decision variables 
include inner radius ri, outer radius ro, brake disc thickness t, driving force F, and surface friction 
number Z. Figure 16 shows a specific model of a multi-disc clutch brake. 
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t

 

Figure 16. Multi-disc clutch brake model. 

The mathematical formula for the multi-disc clutch brake problem is as follows: 
Consider: 

   1 2 3 4 5 i ox x x x x x r r t F Z   (74)

Objective function: 

     2 2 1   ( 0.0000078)o if x r r t Z        (75)

Subject to: 

 1 0o ig x r r r      (76)

    2 1 0maxg x l Z t       (77)

 3 0max rzg x P P    (78)

 4 0max sr max rz srg x P P   
 (79)

 5 0sr max srg x    
 (80)

 6 0maxg x T T    (81)

 7 0h sg x M sM    (82)

 8 0g x T   (83)

Variable range: 

1 2 3

4 5

60 80 90 110 1 3

600 1000 2 9

x , x , x ,

x , x

     
     

(84)

Other parameters: 

 
2

3 2

3

2 2

2

3
o i

o

h rz
o i i

r r F
M FZ ,P ,

r r r r


 


 


 
(85)
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 
   

3 3

2 2

2

3090
z

rz

h

o i

i fo

r r

r

I

r

n
,T

M M


 




 


 
(86)

220 55 1 1000z max maxr mm,I kgmm ,P MPa,F N ,      (87)

15 0 5 1 5 40 3max s fT s, . ,s . ,M Nm,M Nm,    
 (88)

250 10 30sr max maxn rpm, m s,l mm  
 (89)

Table 14 shows the test results of the multi-disc clutch brake problem. The MPDO algorithm 
obtains an inner radius ri of 70, an outer radius ro of 90, a brake disc thickness t of 1, a driving force F 
of 600, a surface friction number Z of 2, and an optimal weight of 0.235242458, which is the best 
solution compared to other algorithms. 

Table 14. Experimental results of the multiple disc clutch brake problem. 

Algorithm Optimal Values for Variables Optimum Weight 
x1 x2 x3 x4 x5 

MPDO 70 90 1 600 2 0.235242458 
WCA[65] 70 90 1 910 3 0.313656 
CMVO[66] 70 90 1 910 3 0.313656 
SCA[36] 69.516 90 1 1000 2 0.24019 
MFO[48] 70 90 1 910 3 0.313656 
RSA[52] 70.0347 90.0349 1 801.7285 2.974 0.31176 
OOA[56] 60 90 1 600 2 0.330809706 

6. Conclusions and future work 

We propose a frequency wave strategy based on prairie dogs’ special sound transmission mode. 
The position of prairie dogs changed by simulating different signals emitted when encountering 
different food sources and natural enemies. In order to balance the exploration and exploitation of 
the algorithm, the strong and weak audio signal received by prairie dogs in the foraging stage were 
used to expand or narrow the scope of searching for food, and the fast and slow audio signal received 
in the avoiding natural enemies stage were used to avoid or stay from nature enemies. This enables 
the algorithm to effectively find better optimization value in the later evaluation stage, enhancing 
the optimization ability of the algorithm. In order to enhance the global exploration ability of the 
algorithm, a chaotic tent map and lens opposition-based learning strategy are added to the evaluation 
process of the algorithm. 

In order to verify the optimization performance of the MPDO algorithm, 23 benchmark test 
functions and IEEE CEC2014 test functions were used to evaluate the MPDO algorithm. Experimental 
data and convergence curves were analyzed by comparing them with seven algorithms. The final 
results showed that the MPDO algorithm has good optimization performance. In order to verify the 
practicality of the MPDO algorithm in engineering application problems, six constrained engineering 
design problems were tested at the end of the article. The comparison results with other algorithms 
proved that the MPDO algorithm is an effective strategy for solving practical application problems. 
Structural health monitoring (SHM) has been aiming at improving the damage detection capability of 
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SHM systems, reducing the load of large engineering structure, such as bridges, and improving 
structures’ operation and service life. Therefore, in future work, we hope the MPDO algorithm is 
applied to the SHM field and achieves good results. In addition, we also hope to apply MPDO to the 
clustering problem, image segmentation and processing problem, and feature selection problem of 
machine learning. 

Use of AI tools declaration 

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Acknowledgments 

The authors would like to thank the support of Digital Fujian Research Institute for Industrial 
Energy Big Data, Fujian Province University Key Lab for Industry Big Data Analysis and Application, 
Fujian Key Lab of Agriculture IOT Application, IOT Application Engineering Research Center of 
Fujian Province Colleges and Universities, Sanming City 5G Innovation Laboratory, Fujian University 
students innovation and entrepreneurship training program (S202311311060), Ministry of Education 
supply and demand docking employment education project (20230104862), and also the anonymous 
reviewers and the editor for their careful reviews and constructive suggestions to help us improve the 
quality of this paper. 

Conflict of interest 

The authors declare that there is no conflict of interest. 

References 

1. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci., 
179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 

2. H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al., RIME: A physics-based 
optimization, Neurocomputing, 532 (2023), 183–214. 
https://doi.org/10.1016/j.neucom.2023.02.010 

3. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 
(1983), 671–680. https://www.science.org/doi/10.1126/science.220.4598.671 

4. A. Hatamlou, Black hole: A new heuristic optimization approach for data clustering, Inf. Sci., 222 
(2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023 

5. M. Abdel-Basset, R. Mohamed, S. A. A. Azeem, M. Jameel, M. Abouhawwash, Kepler 
optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary 
motion, Knowl. Based Syst., 268 (2023), 110454. https://doi.org/10.1016/j.knosys.2023.110454 

6. R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: An optimization 
method for continuous nonlinear large scale problems, Inf. Sci., 183 (2012), 1–15. 
https://doi.org/10.1016/j.ins.2011.08.006 



19129 

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086–19132. 

7. I. Matoušová, P. Trojovský, M. Dehghani, E. Trojovská, J. Kostra, Mother optimization algorithm: 
A new human-based metaheuristic approach for solving engineering optimization, Sci. Rep., 13 
(2023), 10312. https://doi.org/10.1038/s41598-023-37537-8 

8. Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: Harmony 
search, Simulation, 2 (2001), 60–68. https://doi.org/10.1177/003754970107600201 

9. Y. Zhang, Z. Jin, Group teaching optimization algorithm: A novel metaheuristic method for 
solving global optimization problems, Expert Syst. Appl., 148 (2020), 113246. 
https://doi.org/10.1016/j.eswa.2020.113246 

10. S. Cheng, Q. Qin, J. Chen, Y. Shi, Brain storm optimization algorithm, Artif. Intell. Rev., 46 (2016), 
445–458. https://doi.org/10.1007/s10462-016-9471-0 

11. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 - International 
Conference on Neural Networks, 4 (1995), 1942–1948. 
https://doi.org/10.1109/ICNN.1995.488968 

12. G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 
1995–2014. https://doi.org/10.1007/s00521-015-1923-y 

13. A. Forestiero, C. Mastroianni, G. Spezzano, QoS-based dissemination of content in grids, Future 
Gener. Comput. Syst., 24.3 (2008), 235–244. https://doi.org/10.1016/j.future.2007.05.003 

14. A. Forestiero, C. Mastroianni, G. Spezzano, Reorganization and discovery of grid information 
with epidemic tuning, Future Gener. Comput. Syst., 24.8 (2008), 788–797. 
https://doi.org/10.1016/j.future.2008.04.001 

15. A. Forestiero, Bio-inspired algorithm for outliers detection, Multimed. Tools Appl., 76 (2017), 
25659–25677. https://doi.org/10.1007/s11042-017-4443-1 

16. J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 
(2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y 

17. M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Mag., 1 (2006), 
28–39. https://doi.org/10.1109/MCI.2006.329691 

18. H. Jia, H. Rao, C. Wen, S. Mirjalili, Crayfish optimization algorithm, Artif. Intell. Rev., 2023 
(2023), 1–61. https://doi.org/10.1007/s10462-023-10567-4 

19. P. Trojovský, D. Mohammad, H. Pavel, Siberian tiger optimization: A new bio-inspired 
metaheuristic algorithm for solving engineering optimization problems, IEEE Access, 10 (2022), 
132396–132431. https://doi.org/10.1109/ACCESS.2022.3229964 

20. J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–73. 
https://www.jstor.org/stable/24939139 

21. N. Sinha, R. Chakrabarti, P. K. Chattopadhyay, Evolutionary programming techniques for 
economic load dispatch, IEEE Trans. Evol. Comput., 7 (2003), 83–94.  

22. R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization 
over continuous spaces, J. Global. Optim., 11 (1997), 341–359. 
https://doi.org/10.1023/A:1008202821328 

23. M. Jaderyan, K. Hassan, Virulence optimization algorithm, Appl. Soft Comput., 43 (2016), 596–
618. https://doi.org/10.1016/j.asoc.2016.02.038 

24. D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12 (2008), 702–713. 
https://doi.org/10.1109/TEVC.2008.919004 



19130 

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086–19132. 

25. A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, Prairie dog optimization 
algorithm, Neural Comput. Appl., 34 (2022), 20017–20065. https://doi.org/10.1007/s00521-022-
07530-9 

26. D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. 
Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 

27. J. Liu, S. Zhang, Z. Druzhinin, Performance prediction of the PEMFCs based on gate recurrent 
unit network optimized by improved version of prairie dog optimization algorithm, Int. J. 
Hydrogen Energy, 2023 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.349 

28. L. Ngoc-Nguyen, S. Khatir, H. Q. Nguyen, T. Bui-Tien, M. A. Wahab, A practical review of prairie 
dog optimization algorithm in solving damage identification problems in engineering structures, 
in Proceedings of the International Conference of Steel and Composite for Engineering Structures: 
ICSCES 2022, (2023), 296–306. https://doi.org/10.1007/978-3-031-24041-6_24 

29. D. Gürses, P. Mehta, S. M. Sait, S. Kumar, A. R. Yildiz, A multi-strategy boosted prairie dog 
optimization algorithm for global optimization of heat exchangers, Mater. Test., 65 (2023), 1396–
1404. https://doi.org/10.1515/mt-2023-0082 

30. L. Abualigah, A. Diabat, C. L. Thanh, S. Khatir, Opposition-based Laplacian distribution with 
Prairie Dog Optimization method for industrial engineering design problems, Comput. Methods 
Appl. Mech. Eng., 414 (2023), 116097. https://doi.org/10.1016/j.cma.2023.116097 

31. S. Mirjalili, A. H. Gandomi, Chaotic gravitational constants for the gravitational search algorithm, 
Appl. Soft Comput., 53 (2017), 407–419. https://doi.org/10.1016/j.asoc.2017.01.008 

32. Q. Liu, N. Li, H. Jia, Q. Qi, L. Abualigah, Modified remora optimization algorithm for global 
optimization and multilevel thresholding image segmentation, Mathematics, 10 (2022), 1014. 
https://doi.org/10.3390/MATH10071014 

33. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. 
https://doi.org/10.1016/j.advengsoft.2016.01.008 

34. S. Zhao, T. Zhang, S. Ma, M. Wang, Sea-horse optimizer: A novel nature-inspired metaheuristic 
for global optimization problems, Appl. Intell., 53 (2023), 11833–11860. 
https://doi.org/10.1007/s10489-022-03994-3 

35. H. Jia, X. Peng, C. Lang, Remora optimization algorithm, Expert Syst. Appl., 185 (2021), 115665. 
https://doi.org/10.1016/j.eswa.2021.115665 

36. S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 
96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 

37. A. Seyyedabbasi, F. Kiani, Sand cat swarm optimization: A nature-inspired algorithm to solve 
global optimization problems, Eng. Comput., 2022 (2022), 1–25. https://doi.org/10.1007/s00366-
022-01604-x 

38. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw., 69 (2014), 46–61. 
https://doi.org/10.1016/j.advengsoft.2013.12.007 

39. S. Wang, K. Sun, W. Zhang, H. Jia, Multilevel thresholding using a modified ant lion optimizer 
with opposition-based learning for color image segmentation, Math. Biosci. Eng., 18 (2021), 
3092–3143. https://doi.org/10.3934/mbe.2021155 

40. H. Jia, Y. Li, D. Wu, H. Rao, C. Wen, L. Abualigah, Multi-strategy remora optimization algorithm 
for solving multi-extremum problems, J. Comput. Design Eng., 2023 (2023), qwad044. 
https://doi.org/10.1093/jcde/qwad044 



19131 

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086–19132. 

41. G. Dhiman, V. Kumar, Seagull optimization algorithm: Theory and its applications for large-scale 
industrial engineering problems, Knowl. Based Syst., 165 (2019), 169–196. 
https://doi.org/10.1016/j.knosys.2018.11.024 

42. B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, Artificial gorilla troops optimizer: A new 
nature-inspired metaheuristic algorithm for global optimization problems, Int. J Intell. Syst., 36 
(2021), 5887–5958. https://doi.org/10.1002/INT.22535 

43. A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: A 
nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. 
https://doi.org/10.1016/j.eswa.2020.113377 

44. A. Babalik, A. C. Cinar, M. S. Kiran, A modification of tree-seed algorithm using Deb’s rules for 
constrained optimization, Appl. Soft. Comput., 63 (2018), 289–305. 
https://doi.org/10.1016/j.asoc.2017.10.013 

45. A. Kaveh, M. Khayatazad, A new metaheuristic method: Ray optimization, Comput. Struct., 112 
(2012), 283–294. https://doi.org/10.1016/j.compstruc.2012.09.003 

46. M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving 
optimization problems, Appl. Math. Comput., 188 (2007), 1567–1579. 
https://doi.org/10.1016/j.amc.2006.11.033 

47. Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained 
engineering design problems, Eng. Appl. Artif. Intell., 20 (2007), 89–99. 
https://doi.org/10.1016/j.engappai.2006.03.003 

48. A. G. Hussien, M. Amin, M. A. E. Aziz, A comprehensive review of moth-flame optimisation: 
Variants, hybrids, and applications, J. Exp. Theory Artif. Intell., 32 (2020), 705–725. 
https://doi.org/10.1080/0952813X.2020.1737246 

49. V. K. Kamboj, A. Nandi, A. Bhadoria, S. Sehgal, An intensify harris hawks optimizer for 
numerical and engineering optimization problems, Appl. Soft Comput., 89 (2020), 106018. 
https://doi.org/10.1016/j.asoc.2019.106018 

50. D. Wu, H. Rao, C. Wen, H. Jia, Q. Liu, L. Abualigah, Modified sand cat swarm optimization 
algorithm for solving constrained engineering optimization problems, Mathematics, 10 (2022), 
4350. https://doi.org/10.3390/MATH10224350 

51. L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization 
algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. 
https://doi.org/10.1016/J.CMA.2020.113609 

52. L. Abualigah, M. A. Elaziz, P. Sumari, W. G. Zong, A. H. Gandomi, Reptile search algorithm 
(RSA): A nature-inspired metaheuristic optimizer, Expert Syst. Appl., 191 (2021), 116158. 
https://doi.org/10.1016/J.ESWA.2021.116158 

53. S. Lu, H. M. Kim, A regularized inexact penalty decomposition algorithm for multidisciplinary 
design optimization problemswith complementarity constraints, J. Mech. Des., 132 (2010), 
041005. https://doi.org/10.1115/1.4001206 

54. M. Song, H. Jia, L. Abualigah, Q. Liu, Z. Lin, D. Wu, et al., Modified harris hawks optimization 
algorithm with exploration factor and random walk strategy, Comput. Intell. Neurosci., 2022 
(2022), 23. https://doi.org/10.1155/2022/4673665 

55. V. Hayyolalam, A. A. P. Kazem, Black widow optimization algorithm: A novel metaheuristic 
approach for solving engineering optimization problems, Eng. Appl. Artif. Intell., 87 (2020), 
103249. https://doi.org/10.1016/j.engappai.2019.103249 



19132 

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086–19132. 

56. P. Trojovsky, M. Dehghani, Osprey optimization algorithm: A new bio-inspired metaheuristic 
algorithm for solving engineering optimization problems, Front. Mech. Eng., 8 (2023), 136. 
https://doi.org/10.3389/FMECH.2022.1126450 

57. S. Wang, A. G. Hussien, H. Jia, L. Abualigah, R. Zheng, Enhanced remora optimization algorithm 
for solving constrained engineering optimization problems, Mathematics, 10 (2022), 1696. 
https://doi.org/10.3390/MATH10101696 

58. Q. He, L. Wang, A hybrid particle swarm optimization with a feasibilitybased rule for constrained 
optimization, Appl. Math. Comput., 186 (2007), 1407–1422. 
https://doi.org/10.1016/j.amc.2006.07.134 

59. A. Laith, Y. Dalia, A. E. Mohamed, A. E. Ahmed, A. A. A. Mohammed, H. G. Amir, Aquila 
Optimizer: A novel metaheuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. 
https://doi.org/10.1016/J.CIE.2021.107250 

60. J. You, H. Jia, D. Wu, H. Rao, C. Wen, Q. Liu, et al., Modified artificial gorilla troop optimization 
algorithm for solving constrained engineering optimization problems, Mathematics, 11 (2023), 
1256. https://doi.org/10.3390/MATH11051256 

61. A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach to 
solve structural optimization problems, Eng. Comput., 29 (2023), 17–35. 
https://doi.org/10.1007/s00366-011-0241-y 

62. S. Li, H. Chen, M. Wangm, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for 
stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. 
https://doi.org/10.1016/j.future.2020.03.055 

63. A. H. Gandomi, X. Yang, A. H. Alavi, S. Talatahari, Bat algorithm for constrained optimization 
tasks, Neural Comput. Appl., 22 (2023), 1239–1255. https://doi.org/10.1007/s00521-012-1028-9 

64. M. Efren, C. Carlos, An empirical study about the usefulness of evolution strategies to solve 
constrained optimization problem, Int. J. Gen. Syst., 37 (2008), 443–473. 
https://doi.org/10.1080/03081070701303470 

65. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm—A novel 
metaheuristic optimization method for solving constrained engineering optimization problems, 
Comput. Struct., 110 (2012), 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010 

66. G. I. Sayed, A. Darwish, A. E. Hassanien, A new chaotic multi-verse optimization algorithm for 
solving engineering optimization problems, J. Exp. Theor. Artif. Intell., 30 (2018), 293–317. 
https://doi.org/10.1080/0952813X.2018.1430858 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


