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Abstract: The prairie dog optimization (PDO) algorithm is a metaheuristic optimization algorithm
that simulates the daily behavior of prairie dogs. The prairie dog groups have a unique mode of
information exchange. They divide into several small groups to search for food based on special signals
and build caves around the food sources. When encountering natural enemies, they emit different
sound signals to remind their companions of the dangers. According to this unique information
exchange mode, we propose a randomized audio signal factor to simulate the specific sounds of prairie
dogs when encountering different foods or natural enemies. This strategy restores the prairie dog
habitat and improves the algorithm’s merit-seeking ability. In the initial stage of the algorithm, chaotic
tent mapping is also added to initialize the population of prairie dogs and increase population diversity,
even use lens opposition-based learning strategy to enhance the algorithm’s global exploration ability.
To verify the optimization performance of the modified prairie dog optimization algorithm, we applied
it to 23 benchmark test functions, IEEE CEC2014 test functions, and six engineering design problems
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for testing. The experimental results illustrated that the modified prairie dog optimization algorithm
has good optimization performance.

Keywords: prairie dog optimization algorithm; audio signal factor, merit-seeking ability, lens
opposition-based learning strategy, engineering design problems

1. Introduction

With the rapid development of contemporary science and technology, many practical engineering
application problems have become increasingly complex, and the complexity required for their
calculations has also gradually increased. When solving engineering application problems, people
often do not have a suitable solution to execute. To simplify the complexity of practical problems and
reduce energy consumption, metaheuristic algorithms with an optimal solution have attracted more
and more attention. Metaheuristic algorithms are heuristic algorithms that simulate the process of a
certain natural phenomenon or observe the survival behavior of natural organisms. Due to their high
efficiency, strong timeliness, and global convergence, they can often quickly find a feasible solution
from unknown spaces when solving nonlinear practical problems. However, due to the constraints and
complexity of real-life practical problems, we cannot obtain the optimal solutions for all problems
using only one algorithm. Therefore, metaheuristic algorithms based on physics, humans, biological
populations, and evolution have been continuously proposed by scholars to solve practical
engineering problems.

The inspiration for physics-based metaheuristic algorithms mostly comes from the laws of
physics and chemical energy reactions in nature. For example, the gravitational search algorithm
(GSA) [1], the rime optimization algorithm (RIME) [2], the simulated annealing (SA) [3], the black
hole (BH) [4], the Kepler optimization algorithm (KOA) [5]. Human-based metaheuristic algorithms
mainly simulate a series of human behaviors. For example, the teaching learning based optimization
(TLBO) [6], the mother optimization algorithm (MOA) [7], the harmony search (HS) [8], the group
teaching optimization algorithm (GTOA) [9], the brain storming optimization (BSO) [10]. The
metaheuristic algorithm based on biological populations is currently one of the two popular branches,
which mainly simulates the social behavior of natural biological populations, including foraging,
nesting, and avoiding natural enemies. For example, particle swarm optimization (PSO) [11], the
monarch butterfly optimization (MBO) [12], the QoS-based dissemination of content in grids [13], the
reorganization and discovery of grid information with epidemic tuning [14], the bio-inspired algorithm
for outlier’s detection [15], the colony predation algorithm (CPA) [16], the ant colony optimization
(ACO) [17], the crayfish optimization algorithm (COA) [18], the Siberian tiger optimization (STO) [19].
The evolution-based metaheuristic algorithm is the other branch of the two popular branches. Its
inspiration mainly comes from gene mutation, cross-inheritance, natural selection, and other
phenomena in evolutionary biology. For example, genetic algorithm (GA) [20], evolutionary
programming (EP) [21], differential evolution (DE) [22], virulence optimization algorithm (VOA) [23],
The bio-geography based optimizer (BBO) [24]. Metaheuristic optimization algorithms based on
physics, humans, biological populations, and evolution and their inspirations are listed in Table 1.
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Table 1. Metaheuristic optimization algorithms.

Classes Metaheuristic ~ Inspiration Date

Physics-based GSA The laws of universal gravitation and Newton’s second 2009

law, which seeks the optimal solution through the
interaction between gravity and mass

RIME Based on the physical phenomenon of rime-ice, the 2023
algorithm is exploration and exploitation by simulating
the growth process of rime-ice

SA Originate from the principle of solid-state annealing, 1983
which raises an object to a very high temperature and
then slowly cools it down

BH Determine the spin of a black hole by determining the 2013
physical size of its innermost stable circular orbit,
however, the space-time differences is the main factor
between non-spin Schwarzschild black holes and Kerr
black holes of the same mass

KOA Kepler laws of planetary motion, which predict the 2023
velocity and position of planets at any time to find the
closest solution to the optimal solution

Human-based TLBO Guidance of teachers to students and mutual learning 2012
among students
MOA The mother’s leadership of the child’s growth process is 2023

simulated, and the algorithm is divided into three stages:
education, advice, and upbringing

HS Simulate the principle of music performance 2001
GTOA Simulate the mechanism of group teaching 2020
BSO Simulate the process of humans using creative thinking 2016
to solve problems during meetings
Based on PSO Simulate the behavior of birds searching for food in 1995
biological nature
populations MBO Simulated the migration of monarch butterflies 2019
thousands of miles to Mexico
QoS-based Inspired by the way of information transmission by ants 2008

dissemination  and termites, a new grid information system is built to

of content in reorganize and disseminate information

Grids

Reorganization Inspired by the information exchange behavior of ant 2008
and discovery  colonies, resources are discovered by sharing

of grid information among groups

information

with epidemic

tuning

Continued on next page
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Classes Metaheuristic  Inspiration Date
Bio-inspired The similarity between mobile agent and data objectis 2017
algorithm for ~ used to detect abnormal data in distributed system
outliers
detection
CPA Simulate the cooperative predation behavior of animals 2021
in nature, dispersing prey and rounding them up

ACO Based on the behavior of ants discovering paths while 2006
searching for food

COA The algorithm was divided into three stages based on 2023

the crayfish’s summer resort behavior, competition and
foraging behavior in response to temperature changes
STO The hunting behavior of Siberian tigers in battle was 2022
simulated
Evolution- GA Borrow Mendel’s genetic theory and Darwin’s evolution 1992
based theory and achieves the selection process of natural
selection and survival of the fittest by simulating natural
evolution
EP Simulate the adaptive behavior of organisms to 2003
evolution
DE Based on evolutionary ideas such as genetic algorithms 1997
and is based on distinct differences within the
population
VOA Inspired by the virus invasion of human body, the 2016
algorithm is exploration and exploitation by simulating

the special invasion mechanism of virus
BBO Simulate the change of species migration in a habitat 2008

The PDO algorithm [25] is a metaheuristic algorithm based on biological populations proposed
in 2022. This algorithm simulates each cluster of prairie dogs’ behavior in searching for food, building
caves, and preventing natural enemies. Each cluster of prairie dogs has its information exchange mode.
During the exploration phase, they continuously search for the best food source to build each family
cave. However, during the exploitation phase, due to the influence of natural enemies and food sources,
the algorithm easily falls into local optima, reducing its optimization performance. According to the
no free lunch (NFL) [26] theorem, no algorithm can solve all optimization problems. Regardless of the
algorithm used, at least one objective function enables the algorithm to find the optimal value.
Therefore, Liu et al. applied the improved prairie dog optimization (IPDO) algorithm [27] to test its
performance in gate recursive unit networks; Nguyen et al. [28] used the PDO algorithm to solve the
problem of damage identification in engineering structures; Giirses et al. [29] combined Gaussian
mutation and chaos search with PDO to enhance the optimization ability of the algorithm; Abualigah
et al. [30] combined the opposition-based Laplacian distribution with the PDO algorithm and applied
it to industrial engineering design problems and photovoltaic solar problems.

Whether prairie dogs are searching for food or avoiding natural enemies, they generate an audio
signal to find better food resources or evade the pursuit of natural enemies in response to the slow
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convergence speed of the PDO algorithm and prairie dog’s habitual nature. This paper proposes a
modified prairie dog optimization (MPDO) algorithm. Adding an audio signal factor to represent the
distance between the prairie dog and the food (natural enemy), the prairie dogs adjust their position
based on the audio signal’s strength and speed to ensure sufficient food and safety. This method is
called the frequency wave strategy, effectively improving the algorithm’s performance, and the global
optimization ability of the algorithm is enhanced. The frequency wave strategy balances the
exploration and exploitation of the algorithm, and controls the prairie dog’s position by controlling the
search range for food and the effective escape range for natural enemies. In addition, the MPDO
algorithm also adds chaotic tent mapping and lens opposition-based learning strategy. The tent chaotic
mapping [31] is added in population initialization, making the initialization distribution of the prairie
dogs population more uniform and providing the possibility of finding the optimal solution. At the
same time, the lens opposition-based learning strategy [32] enhances the algorithm’s global
exploration ability.

Through the above strategies, the MPDO algorithm has better global exploration ability. During
the experimental phase, 23 standard benchmark and IEEE CEC2014 functions were used to test the
MPDO algorithm. Then experimental data, convergence curves, and Wilcoxon rank sum test were
analyzed. Finally, to test the MPDO algorithm’s practicality in practical engineering problems, this
article selected six engineering application problems to test the optimization performance of the
MPDO algorithm. These experimental results indicate that the MPDO algorithm has good optimization
performance.

The major contributions of this article are as follows:

* A frequency wave strategy was proposed according to prairie dogs’ habitual nature. Then,
chaotic tent mapping and lens opposition-based learning strategies are added to enhance the global
exploration ability of the algorithm;

* Apply the MPDO algorithm to 23 benchmark functions to test its performance;

* The optimization performance of the MPDO algorithm was tested in [EEE CEC2014;

* Eight different algorithms were compared in 23 benchmark functions and IEEE CEC2014
testing.

The rest framework of this article is as follows: The second part briefly introduces the PDO
algorithm. The third part introduces the modified methods of the MPDO algorithm and the idea of
proposing strategies. The fourth part applies the MPDO algorithm to 23 benchmark and IEEE
CEC2014 test functions and analyzes the experimental results. The fifth part provides the experimental
results of the MPDO algorithm in six engineering design problems. Finally, the sixth part summarizes
the entire article.

2. PDO

The PDO algorithm is a metaheuristic algorithm that simulates the foraging activities of prairie
dogs. Prairie dogs engage in social activities such as foraging, building caves, maintaining caves and
guarding against predators daily. Therefore, based on the daily activities of prairie dogs, the PDO
algorithm is divided into four time periods. Then, we divide exploration and exploitation based on a
fixed mirror lifestyle.
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2.1. Population initialization

The foraging activity of each prairie dog is represented by 1 x dim in the spatial dimension. In
order to prevent prairie dogs from deviating from their trajectory when foraging, upper-bound UB and
lower-bound LB are specified to limit the movement range of prairie dogs. The set of each prairie dog
in different locations is a solution to a problem. Figure 1 shows the solution of N prairie dogs in the
dim dimension.

di‘m
Xy 1 Xy, din/2 XN, din
Xy, dig--=--mmeee e cfglo it cfgto
uB
|\ D PN PA—— ofglo oiste gl ojglo-----» X
LB
Xx, dinr------mmeee e sisie sfsio sigle

Figure 1. Population initialization.
2.2. Exploration stage

During the first time period, the position of prairie dogs in foraging activities was related to the
food sources p, the current quality of food, and the location of randomly synthesized prairie dogs. p is
a fixed food source alarm at 0.1 Khz. In the mathematical model, the quality of the current food is
defined as the effectiveness of the evaluation currently obtained best solution eCBesti,. The position
of the randomly synthesized prairie dog is defined as the random cumulative effect CPD;;. The
calculation formula is as follows:

PD, ; x mean(PD,)
GBest, , x(UB,—LB,)+ A 1)

eCBest, , = GBest, ; x A+

GBest, . —rPD, .
CPD, = / & (2)
/ GBest, ; + A

where GBestij s the global optimal solution obtained so far, 4 is a very small number indicating the
differences between prairie dog, and »PD;; are the positions of the random solutions of prairie dog.
Therefore, the formula for updating the location of prairie dogs searching for food is as follows:

PD

i+1,j+1

=GBest, , —eCBest, ; x p—CPD, ; x Levy(n) (3)

In formula (3), Levy is a Levy distribution with discontinuous jumps.

After finding new food sources, prairie dogs excavate and build new caves around them. During
this time period, the location of prairie dogs is related to their excavation intensity DS of the caves.
The update formula for DS is as follows:
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AN
DS=1.5><r><(1—?) r 4)

r is transformed between -1 and 1 according to the parity of the current iteration number, ¢ is the current
iteration number, and 7 is the maximum iteration number.
The formula (5) shows an update in the position of prairie dogs during the second time period:

PD

i+1,j+1

= GBestl.,j x rPD x DS x Levy(n) ®)

2.3. Exploitation stage

During the third time period, prairie dogs will refer to the quality of the current food source ¢ and
the cumulative effect of all prairie dogs to randomly update their positions. In the mathematical model,
the quality of the current food source ¢ is a small number designated as representing the quality of food
source. The formula for updating the position of prairie dogs is as follows:

PD = GBest, ;, —eCBest, ; x & —CPD, ; xrand (6)

i+1,j+1

where, rand is a random number between 0 and 1.
During the foraging process of prairie dogs, predators often attack them. Therefore, the predator
attack is defined as the predatory effect PE. The calculation formula for PE is as follows:

t eh
PE=15x(1-)"" (7)

Update the position of prairie dogs during the fourth period by formula (8).
PD,, ., =GBest, . x PExrand (8)

i+1, j+1

2.4. Implementation of PDO algorithm

The original PDO algorithm simulated the behavior of prairie dogs in foraging, burrowing, and
avoiding natural enemies, dividing the behavior of prairie dogs into four time periods. During these
four time periods, prairie dogs, according to food sources alarm p, the cumulative effect of CPDi; on
all prairie dogs, the intensity of burrowing DS, the quality of food sources ¢, and the predatory effect
PE of the predator constantly updates position to find better food sources. Formula (9) summarizes the
updated positions of prairie dogs at four time periods.

T

PD,,, ;. =GBest, ;—eCBest, , x p—CPD, ; x Levy (n) Vit < "y
T T

PD,, ., = GBest, ,xrPDxDSx Levy(n) VZ <<

T T )
PD,,, ., =GBest, ;—eCBest, ; x¢ —CPD, . xrand ¥V—<t<3—
. . y . 2 4
T
PD,,, ., = GBest, ;x PExrand V3Z <t<T
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The pseudo-code of the PDO algorithm is shown in Algorithm 1.

Algorithm 1. Prairie Dog Optimization Algorithm Pseudo-Code.
Population initialization
Initialization parameters
Calculate fitness value
while t < T
Update DS and PE using formulas (4) and (7)
Update CPD;,; using formula (2)
Ifr<T/4
Update position using formula (3)
Elseif T/4<t<T/2
Update position using formula (5)
Elseif T/2<t<(3x7)/4
Update position using formula (6)
Elseif 3xT)/4<t
Update position using formula (8)

End
t=t+1
End
3. MPDO

3.1. Frequency wave strategy

The prairie dog population has a perfect speech coordination system, where thought recognizes
various foods and natural enemies and emits different frequencies of audio frequency fluctuation
signals to provide feedback on the position of food and natural enemies. Therefore, a frequency wave
strategy is proposed to improve the optimization performance of the algorithm. During the food search
(Figure 2(b)), prairie dogs respond to the distance between food resource and prairie dogs with the
audio signal’s strength. When the audio signal is weak, prairie dogs tend to sound sources to search
for better food; when the audio signal is strong, the prairie dog approaches the sound source around
their current position. The distance between the predator and the prairie dog is reflected by the speed
of the audio signal (Figure 2(a)). When predators appear in the prairie dog’s view at a relatively long
distance, they will emit a slower audio signal to remind the prairie dog population to stay away from
their natural enemy; when the location of the predator poses a threat to the prairie dog, a faster audio
signal will cause the prairie dog population to flee to the effective avoidance area quickly. Figure 2 is
a schematic diagram of an audio signal warning simulation, briefly showing the movement of prairie
dog within different signal ranges.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086—-19132.
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(a) Prairie dog evade natural enemies. (b) Prairie dog search for food resource.

Figure 2. Audio signal warning simulation schematic diagram.

The audio signal factor of the frequency wave strategy is defined as 4, which changes randomly
due to changes in the position of food or natural enemies. The distance between the prairie dog and
food (natural enemies) is defined as d, and the sound source area (avoidance area) is defined as area.
They calculation formulas are as follows:

A=2xrand (10)
d = Pos — PD (11)
area = (abs(Pos® — PD; )" (12)

In the above formulas, rand is the sound frequency fluctuation between 0 and 1 caused by random
changes in the position of food or natural enemies. Pos is the location of food (natural enemies).
The specific update formula for frequency wave strategy is as follows:
Xpow = PD,; — AxdxLevy A<I
' (13)

Xy = PD,;; +1x Axarea else

where, xnew represents the new location of the prairie dog, and » is a random number between —1 and 1.
3.2. Tent chaotic initialization

The original PDO algorithm uses the traditional population initialization method, which cannot
effectively guarantee the randomness and diversity of the generated initial population position.
However, the tent chaotic initialization population has ergodicity and orderliness, which can make the
initial position distribution of the prairie dog population more uniform, thus expanding the scope of
individual search space and maintaining population diversity. The mathematical model of tent chaos
is as follows:
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% x <0.7
X = ' (14)

?(1—%) x,>0.7

In order to compare the differences between the original initialization and tent chaotic maps more
intuitively, assuming the dimension is two-dimensional and the population size is 30, two initialization
population distribution maps are shown in Figure 3.

30 : - - + 30
.

¢ .
251 1 25

20 - N 1 20 -

(a) Original initialization (b) Tent chaotic mapping
Figure 3. Distribution map of different initialized population.

From Figure 3, it can be observed that the population distribution generated by tent chaotic
initialization is more orderly and uniform.

3.3. Lens opposition-based learning strategy

Traditional opposition-based learning is a strategy to expand the search range by generating the
current solution in the opposite direction. The generated opposite solution is generally fixed, which is
not conducive to the algorithm finding a better position. Based on the optical principle of convex lens
imaging, taking one-dimensional space as an example, the coordinate axis [/b, ub] represents the search
range, and the y-axis represents the convex lens. Assuming that there is an m individual with a height
of H, the projection on the coordinate axis is X. The refraction of the lens y generates an image m’ with
a height of H’. The projection of m’ on the coordinate axis is X”. The opposite individual X~ generated
by the convex lens imaging principle is shown in Figure 4.

Y,

Figure 4. Schematic diagram of lens opposition-based learning.
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The formula is derived from the principle of convex lens imaging:

wb+1b)/2-X _H s
X —(ub+1b)/2 H (15)

Let H/ H’ =k, k be called the scaling factor, and substitute & into formula (15) to obtain the
calculation formula for the opposition solution X

ub+lb ub+lb_X
2 2%k

When k= 1, formula (16) can be abbreviated as the traditional opposition-based learning strategy,
by adjusting the value of the scaling factor £, the position of generating the opposition solution in the
D-dimensional space is random, the spatial search scope is further expanded, and the population
diversity is increased.

X = (16)

3.4. Implementation of the MPDO algorithm

Foraging and burrowing are essential activities for the survival of prairie dogs, during which
natural enemies will pursue them. According to the laws of natural survival, animals will gradually
evolve while being hunted by natural enemies. In order to avoid the pursuit of natural enemies, prairie
dogs have evolved a complex language system that allows them to emit different sound frequencies to
respond when facing different natural enemies. According to the strength of the audio signal, prairie
dogs will selectively stay away from or close to the food during the foraging process. When attacked
by natural enemies, the faster audio signal can help prairie dogs escape to the effective area, while the
slower audio signal can effectively remind the prairie dogs to stay away from natural enemies.
Therefore, chaotic tent initialization evenly distributes the prairie dog population and increases
population diversity. Then opposition-based learning will be carried out to expand the search space.
The audio signal factors will enable prairie dogs to find better food resources or avoid pursuing
natural enemies.

MPDO algorithm pseudo-code is shown in Algorithm 2.

Algorithm 2. The Modified Prairie Dog Optimization Algorithm Pseudo-Code

Using the formula (14) for population initialization
Calculate fitness value
While ¢t <T
Implement lens opposition-base learning strategy through formula (16)
Calculate the audio signal factor 4 using formula (10)
Calculate the distance d using formula (11)
Ift<T/4
Update position using formula (3)
Elseif T/4<t<T/2
Update position using formula (5)
Elseif 7/2<t<(3xT7)/4
Update position using formula (6)
Elseif 3xT)/4<t
Update position using formula (8)
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End
Calculate the area using formula (12)
If A<1
Use formula (13) to update the position of prairie dogs
Else
Use formula (13) to update the position of prairie dogs
End
t=t+1
End

The flowchart of the MPDO algorithm is shown in Figure 5.

Calculate the fitness value

Update audio signal factor
Formula (10)

Use formula (4), (7) update
DS and PE

Freq

uency wave strategy
Formula (13)

Use formula (5) update
position

Frequency wave strategy
Formula (13)

Figure 5. MPDO algorithm flowchart.
3.5. Time complexity analysis

Time complexity is an important indicator for evaluating an algorithm and directly reflects
operational efficiency. Assuming the population size is N, the search space dimension is dim, the
number of iterations is 7, the time required for frequency wave strategy position update is f, the time
required for lens opposition-based learning strategy position update is f, the evaluated time of the
experimental function is #2, the total running time of the algorithm is ¢. According to the calculation
principle of time complexity, the following calculation formula (17) is given.

O(t) = O(population initialization) + O(strategy position update) 17
+O(evaluate experimental  function) 17
During the algorithm operation, due to the short calculation time of the parameters, it can usually
be ignored. The time complexity of calculating the parameters is not given in the above formula.
The time required for each stage of the PDO algorithm is defined as follows:
1) The time required for population initialization is O (N x dim x T);
2) The time required to evaluate the experimental function is 7.
Therefore, the time complexity of the PDO algorithm is expressed as the formula (18).
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O(t) = O((N x dimxT) +1,) (18)

The time required for each stage of the MPDO algorithm is defined as:

1) The time required for tent chaos to initialize the population is O (N x dim x T);

2) The time required for the frequency wave strategy position update is O (N x dim x T) x f);

3) The time required for the position update of the lens opposition-based learning strategy is O
(N x dim < T) x f);

4) The time required to evaluate the experimental function is 2.

The time complexity of the MPDO algorithm is expressed as the formula (19).

O(t)=O((NxdimxT)x(1+2f)+t,) (19)
Due to (N x dim x T) >> (1+2f), therefore the time complexity of the PDO algorithm and MPDO
algorithm was replaced by formula (20). In summary, the time complexity of the MPDO algorithm is

consistent with that of the PDO algorithm. The modifications made to this article’s PDO algorithm do
not increase time complexity.

O(t) = O((N xdimxT)x C +t,) (20)
4. Experimental results and analysis

This experimental environment uses Windows 11 computer with a 64-bit operating system, an
11th Gen Inter (R) Core (TM) i7-11700 processor with a main frequency of 2.50 GHz, a memory of
16 GB, and a programming language implemented in MATLAB version R2021a.

Table 2. Parameter settings for comparison algorithms.

Algorithm Parameters Value
MPDO A [0,2]
P 0.1
A 0.005
PDO P 0.1
A 0.005
WOA Coefficient Vector 4 [—1,1]
Coefficient Vector C [0,2]
Spiral parameters b 1
Spiral parameters / [—1,1]
SHO U 0.05
Vv 0.05
L 0.05
ROA C 0.1
SCA a 2
SCSO SM 2
Roulette wheel selection [0,360]
GWO A [-2,2]
C [0,2]

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086—-19132.
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In order to verify the optimization performance of the MPDO algorithm, it was applied to 23
benchmark functions and IEEE CEC2014 benchmark functions for testing. The PDO algorithm [25], the
WOA [33], the sea-horse optimizer (SHO) [34], the remora optimization algorithm (ROA) [35], the sine
cosine algorithm (SCA) [36], the sand cat swarm optimization (SCSO) [37] and the grey wolf optimizer
(GWO) [38] are selected to compare with MPDO algorithm. According to the best value (Min), mean
value (Mean) and standard deviation (Std) obtained by each algorithm, the superiority of MPDO
algorithm is analyzed. Then the advantages and disadvantages of MPDO algorithm in convergence graph
are analyzed. Finally, the differences between MPDO algorithm and other algorithms are analyzed by
Wilcoxon rank sum test. Table 2 provides the parameter settings for these eight algorithms.

4.1. 23 benchmark function testing experiments

The 23 benchmark test functions include seven Uni-modal benchmark functions, six multi-modal
benchmark functions, and ten fixed-dimensional multi-modal benchmark functions. In this experiment,
the population size is set to 30, the dimension is set to 30 and 500, and the maximum number of
iterations is set to 500. The MPDO and the other seven algorithms were run 30 times each to obtain
the best fitness value, average fitness value, and standard deviation.

4.1.1.  Statistical analysis of 23 function experimental data and convergence curve

Tables 3-5 show the optimal values, mean values, and standard deviations of 8 different
algorithms in 23 functions at 30 and 500 dimensions. From the data in Table 3, both MPDO and PDO
obtained the theoretical optimal values of F1-F4, while ROA obtained the theoretical optimal values
of F1, F3—F5. In F6, MPDO obtained a relatively stable theoretical optimal value. MPDO obtains the
theoretical optimal value of F7. The relative optimal values of the F§ are WOA and ROA. Although
MPDO did not obtain the theoretical optimal value, optimization results are significantly better than
PDO optimization results. MPDO obtained stable relative optimal values in F9—F13, PDO, ROA, and
SCSO obtained stable optimal values in F9—-F11 WOA, and SHO obtained stable optimal values in F9
and F11. In addition, WOA also obtained optimal relative values in F10, and GWO obtained optimal
relative values in F11. Due to the relatively simple fixed dimensional multi-modal benchmark
functions F14-F23, eight algorithms in F14, F16-F19 obtained theoretical optimal values, while
MPDO and SCSO obtained the optimal relative values in F15. Only SCA did not obtain theoretical
optimal values for F20 and F23; SHO and SCA did not obtain optimal values for F22. F21 and F22
were similar, but PDO did not obtain theoretical optimal values in F21. Overall, the optimization
performance of MPDO in uni-modal benchmark functions, multi-modal benchmark functions, and
fixed dimensional multi-modal benchmark functions are superior to that of PDO and the other seven
algorithms, indicating that MPDO using frequency wave strategy has better optimization performance.

To fully illustrate the optimization effect of MPDO, Figures 6—8 show the convergence ability of
8 algorithms in 23 functions in 30 and 500 dimensions. From the convergence curve, MPDO has good
convergence ability in F1-F4 and quickly finds the function’s optimal value. In F5, the MPDO
algorithm is very similar to the optimal values found by other algorithms. In F10, both MPDO and
ROA obtained good relative optimal values. In F6, F7, F12 and F13, the MPDO algorithm can
effectively find better convergence values. In F9 and F11, the MPDO algorithm has good convergence
speed and quickly finds the optimal value. Due to the relatively simple F14-F23 function, eight
algorithms have good optimization results. In F16-F19, each algorithm quickly finds the optimal value.
In F14, F15, F20-F23, the MPDO algorithm found the optimal value. Based on the above analysis, the
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MPDO algorithm has better optimization ability than the PDO algorithm and has good results
compared to the other seven algorithms.
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Figure 6. Convergence curves of various algorithms in the F1-F13 function (dim=30).
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Table 3. Statistical results of F1-F13 standard Benchmark functions (dim = 30).

F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
F1  Min 0 0 4.44x107%3 4.68x10°147 0 8.60x1072 4.00x10-132 4.22x10%
Mean 0 0 3.80x10°74 1.45x107140 2.50x107313 13.5 6.54x10°11 2.37x1027
Std 0 0 1.50x10°73 6.29x107140 0 28.5 3.43x10°110 2.89x1027
F2  Min 0 0 1.93x10%7 2.42x108! 6.01x10-184 4.91x10* 1.29x107 2.54x10°1
Mean 0 0 1.76x10! 8.83x10°78 1.28x1071° 2.45%1072 1.42x10760 1.21x10°16
Std 0 0 4.39x103! 3.50x1077 6.95x10°1% 6.35%x1072 5.20x107° 1.06x10°16
F3  Min 0 0 1.28x10* 5.35%107106 0 1.56x10° 3.47x10°110 5.80x107
Mean 0 0 4.41x10* 1.81x10% 2.31x10-28 8.64x103 1.92x10°%° 3.15x10°
Std 0 0 1.56x10* 6.44x10%° 0 5.60x10° 8.14x10%° 1.29x10*
F4 Min 0 0 1.44x10! 9.99x1079 4.17x10°181 16.0 1.67x107 7.48x108
Mean 0 0 45.6 2.36x107° 1.09x10-160 3.68x10! 3.44x107! 9.85x107
Std 0 0 26.7 1.00x107% 3.23x10-160 13.0 1.21x10%° 1.32x10°¢
F5 Min 28.3 2.97x10! 27.1 27.2 2.66x101 92.0 26.2 26.2
Mean  28.7 16.6 279 28.1 253 5.72x10* 279 27.1
Std 8.54x1072 13.6 4.13x10! 4.70x10! 6.66 1.29x10° 9.37x10°! 7.13x10°!
F6  Min 4.23x1077 6.25x10°! 8.06x1072 1.92 2.39x102 4.32 7.23x10°! 6.25%107
Mean  1.48x10* 2.98 3.16x10°! 3.16 9.12x1072 21.6 1.94x10 7.96x10°!
Std 1.72x10™* 1.58 2.09x10! 6.08x10°! 5.79%1072 26.2 6.22x10°! 4.19x10!
F7  Min 1.54x107 2.05x10¢ 1.67x10* 7.27%10°¢ 3.63x10°° 9.11x1073 1.67x10° 5.56x10*
Mean  5.42x107 9.78x1073 5.77x1073 1.02x10* 1.92x10* 1.59x10! 1.67x10* 1.88x1073
Std 5.96x107 9.75x10°3 5.64x1073 1.22x10* 2.50x10* 1.60x10! 2.09%x10* 1.28x1073
F8  Min —-6.92x10° —4.36x10° ~1.26x10* ~7.30x10° -1.26x10* —4.27x10°3 ~8.57x10° ~7.30x10?
Mean  —5.88x10° -3.73x103 -1.05x10% —6.08x10° -1.24x10* -3.71x10° —6.83%10° —-6.07x10°
Std 4.27x10? 2.91x102 1.77x10° 6.89%10? 4.33x10? 2.39x10? 9.75x10? 7.89%10?
F9  Min 0 0 0 0 0 8.99x1072 0 5.68x10714
Mean 0 0 0 0 0 41.7 0 241
Std 0 0 0 0 0 31.6 0 3.62
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
F10 Min 8.88x101¢ 8.88x1016 8.88x10716 4.44x1071 8.88x101¢ 6.29x107 8.88x1016 7.19x10-14
Mean  8.88x1071¢ 8.88x1016 4.32x1071 4.44x10°13 8.88x10°16 13.1 8.88x1016 1.04x10°"13
Std 0 0 2.38x10°1° 0 0 9.35 0 1.84x10-1
F11 Min 0 0 0 0 0 2.59x10°! 0 0
Mean 0 0 0 0 0 1.12 0 4.21x1073
Std 0 0 0 0 0 8.24x107! 0 8.06x10"3
F12 Min 5.45x108 4.92x1072 5.16x1073 9.71x107 2.07x103 7.42x107! 3.15x107 6.52x10"3
Mean  1.67x1076 5.24x107! 2.33x107? 2.87x107! 7.63x1073 3.96x10° 1.10x10"! 4.33x107?
Std 2.34x10¢ 5.62x107! 1.85x1072 1.06x10"! 4.37x1073 1.52x10% 6.40x107 2.19x107
F13 Min 3.55x107 1.95 1.03x10°! 1.27 2.55x1072 3.07 1.45 1.67x107!
Mean  7.44x107 2.96 4.77x10! 2.10 2.46x10°! 1.88x10% 2.34 6.82x107!
Std 2.79x1073 1.93x10"! 1.94x10°! 3.69x107! 1.44x10°! 5.74x10* 4.19x10! 2.55x107!
Table 4. Statistical results of F1-F13 standard Benchmark functions (dim = 500).
F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
F1  Min 0 0 3.02x1082 1.75%107113 0 5.37x104 1.23x107108 9.73x10
Mean 0 0 1.12x107 5.46x1071% 9.82x107314 1.81x10° 6.66x107 1.39x1073
Std 0 0 5.31x107! 2.31x10°108 0 7.16x10% 3.36x10 3.33x10*
F2  Min 0 0 5.69x10-7 1.26x10! 2.23x107184 23.7 5.97x10¢ 7.84x1073
Mean 0 0 9.25x108 2.33x10%° 5.25x10°1%8 1.17x10? 3.17x107! 1.07x107
Std 0 0 2.99x1047 9.79x107° 2.86x10°1%7 72.6 1.44x107° 1.73x1073
F3  Min 0 0 1.48x107 2.19x10%2 3.83x102% 4.35%108 8.28x10 1.39x10°
Mean 0 0 2.93x107 3.90x10°73 8.99x10-267 6.85x10° 1.91x10%2 3.17x10°
Std 0 0 1.12x107 1.71x10°72 0 1.50x108 9.97x10%? 7.70x10%
F4  Min 0 0 52.9 1.05x1048 1.88x10177 98.6 3.15x1033 57.4
Mean 0 0 80.5 2.83x104 9.95x10715° 99.0 1.30x104 66.7
Std 0 0 13.6 4.36x104 4.22x107158 2.19x10! 4.80x104 4.48
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
F5  Min 4.94x10? 4.99x10? 4.95x10? 4.98x10? 4.94x10? 7.89%108 4.98x10? 4.98x10?
Mean  4.94x10? 4.99x10? 4.96x10? 4.99x10? 4.95x10? 1.84x10° 4.98x10? 4.98x10?
Std 5.05x107 6.02x1073 4.85x10"! 1.50x10°"! 2.34x10°! 4.91x108 1.62x10°! 2.69x10°!
F6  Min 1.09x10° 46.0 10.1 1.16x10? 6.86x10°! 8.36x10* 93.2 87.4
Mean  2.87x107 1.02x102 30.9 1.17x10? 14.9 1.75%10° 1.05%102 91.2
Std 4.00x1073 30.2 8.95 6.92x10°! 6.69 6.55%10% 4.36 2.16
F7  Min 4.17x107 4.25x10° 7.73%107 3.56x107 4.15x1077 7.61x103 2.00x107 3.06x1072
Mean  6.15x10°3 9.80x107 3.62x1073 1.25x10* 2.11x10* 1.50x10% 1.98x10 4.46x102
Std 5.85x10°3 8.39x107 2.63x1073 6.97x107 2.13x10* 4.28x10° 1.91x10* 1.05x1072
F8  Min -8.89x10* -2.50x10* —-2.09%103 -2.58x10* —2.09%x103 -1.75x10* —6.82x10* ~7.11x10*
Mean  —8.58x10* -2.22x10* —-1.67x103 -2.21x10* -2.03x103 —1.54x10* —-6.01x10* —5.64x10*
Std 1.68x103 1.86x103 2.86x10% 2.06x103 1.34x10% 1.00x10° 4.83x10° 9.02x103
F9  Min 0 0 0 0 0 4.78x10? 0 45.6
Mean 0 0 0 0 0 1.32x103 0 77.8
Std 0 0 0 0 0 6.93x102 0 29.1
F10 Min 8.88x1016 8.88x101¢ 8.88x1016 4.44x1071 8.88x101¢ 12.4 8.88x1016 1.46x1073
Mean  8.88x1071¢ 8.88x10716 4.80x1071 4.68x1071 8.88x1016 20.3 8.88x101¢ 1.89%1073
Std 0 0 2.35%10°1 9.01x101® 0 1.91 0 2.89x10
F11 Min 0 0 0 0 0 4.20x10? 0 1.05x10
Mean 0 0 0 0 0 1.84x103 0 1.86x1072
Std 0 0 0 0 0 7.25%102 0 3.96x1072
F12 Min 8.88x108 5.91x107 2.60x1072 1.01 7.21x1073 3.18x10° 6.31x10°! 6.54x10°!
Mean  3.03x10° 7.24x10°! 8.70x1072 1.05 3.80x1072 5.63x10° 7.59x10°! 7.36x10°!
Std 4.45x10° 4.67x10"! 4.27x102 1.77x1072 2.43x1072 1.18x10° 6.88x1072 3.33x1072
F13 Min 1.55x10°° 50.0 6.77 49.4 1.59 4.65%10° 49.6 48.1
Mean  5.43x10* 50.0 18.4 49.6 7.55 1.03x101° 49.8 50.8
Std 4.75%10* 4.47x104 6.93 1.07x10"! 3.19 2.07x10° 8.74x1072 1.52
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Table 5. Statistical results of F14-F23 standard Benchmark functions.

F Metric  MPDO PDO WOA SHO ROA SCA SCSO GWO
F14  Min 9.98x10! 9.98x10"" 9.98x10"" 9.98x10! 9.98x10"" 9.98x10"" 9.98x10"" 9.98x10""
Mean 3.65 4.72 3.16 6.20 4.39 1.73 3.81 4.32
Std 3.28 3.62 3.23 5.07 4.60 9.69x10! 3.81 4.34
FI5 Min 3.07x10* 5.65x10* 3.08x10* 3.08x10* 3.08x10* 4.11x104 3.07x10* 3.08x10*

Mean 6.17x10* 1.70x103 7.75%10* 1.06x1073 4.77x10* 1.05%1073 4.14x104 3.14x1073
Std 2.09x10* 1.05x10°3 5.27x10* 3.73x1073 1.98x10* 3.47x10* 2.61x10* 6.87x1073
F16  Min -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03
Mean -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03
Std 4.55x1016 3.35x1073 3.38x10°10 6.26x107 2.37x10¢ 3.53x10° 1.04x107 3.04x10%
F17  Min 3.98x10! 3.98x10! 3.98x10! 3.98x10! 3.98x10! 3.98x10! 3.98x10! 3.98x10!
Mean 3.98x10! 3.98x10! 3.98x10! 3.98x10! 3.98x10! 3.99x10! 3.98x10! 3.98x10!
Std 3.24x101¢ 1.97x10* 5.85x10¢ 3.18x107 8.95x107 1.07x1073 3.27x10% 8.47x107
F18  Min 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Mean 3.00 3.00 3.00 5.70 3.00 3.00 3.00 3.00
Std 1.51x107° 6.42x1013 1.41x1073 14.8 5.14x10* 5.60x107 7.41x10°° 4.85x107°
F19  Min -3.86 -3.86 -3.86 -3.86 -3.86 -3.86 -3.86 -3.86
Mean -3.86 -3.86 -3.86 -3.86 -3.86 -3.85 -3.86 -3.86
Std 2.39x10°15 6.69x1073 5.01x1073 3.05%1073 3.02x1073 1.15x10%2 3.31x1073 4.66x1073
F20  Min -3.32 -3.32 -3.32 -3.32 -3.32 -3.14 -3.32 -3.32
Mean -3.11 -3.01 -3.20 -2.95 -3.23 —2.86 -3.17 -3.24
Std 3.86x10°! 4.09x10! 2.19x10! 4.27x107! 9.94x102 3.66x10! 1.80x10! 8.85x102
F21  Min -10.2 —-10.1 -10.2 —-10.1 -10.2 —4.91 -10.2 -10.2
Mean —6.42 —4.88 =7.27 -5.78 -10.1 -1.97 -5.19 —8.97
Std 2.29 2.90 3.01 2.88 3.35x1072 1.46 1.97 2.17
F22  Min -10.4 -10.4 -10.4 -10.3 -10.4 —6.55 -10.4 -10.4
Mean —8.63 -5.02 —7.42 -5.46 -10.4 -3.38 —6.48 -10.4
Std 2.55 3.44 3.10 1.89 1.98x1072 2.03 2.68 1.13x103
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F Metric  MPDO PDO WOA SHO ROA SCA SCSO GWO
F23  Min -10.5 -10.5 -10.5 -10.5 -10.5 —8.77 -10.5 -10.5
Mean -7.29 -3.99 —6.92 —6.01 -10.5 —4.11 —6.22 -10.5
Std 2.70 2.59 3.32 2.61 1.94x1072 2.07 2.82 1.29x10°3
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Figure 7. Convergence curves of various algorithms in the F1-F13 function (dim = 500).
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Figure 8. Convergence curves of various algorithms in F14-F23 functions.
4.1.2.  Analysis of Wilcoxon rank sum test results

Wilcoxon rank sum test is a non-parametric test method that uses means to test whether there are
differences between algorithms. After analysis of the 23 function data and convergence curve, we can
only estimate that the MPDO algorithm has good optimization ability preliminarily. The Wilcoxon
rank sum test compares the MPDO algorithm with seven different algorithms to test the differences
between the MPDO algorithm and other algorithms. Table 6 shows that the results of the MPDO
algorithm and the PDO algorithm in the F1-F4 function are 1, indicating that the values obtained by
the two algorithms are consistent. The results of the ROA in F1 are greater than 5%, indicating that
the difference between the ROA and the MPDO algorithm is small, and they have relatively close
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values. In the FO-F11 function, many results with 1 indicate that these algorithms are consistent with
the MPDO algorithm and obtain the same value. The F14—F23 function is relatively simple, so many
algorithms have smaller differences than the MPDO algorithm. In addition, the results of most of the
data in the table are less than 5%, indicating significant differences between the MPDO algorithm and
other algorithms in most cases.

Based on the analysis of the comprehensive data table, convergence curve, and Wilcoxon rank
sum test results, the MPDO algorithm has good optimization performance among 23 benchmark test
functions. Compared with the PDO algorithm, the optimization ability of the MPDO algorithm is
significantly improved. Compared with other algorithms, the MPDO algorithm also has good
advantages.

Table 6. Experimental results of the Wilcoxon rank-sum test on the 23 standard benchmark
functions.

F dim MPDO MPDO MPDO MPDO MPDO MPDO MPDO

VS VS VS VS VS VS VS

PDO WOA SHO ROA SCA SCSO GWO
F1 30 1.00 1.73x10¢  1.73x10°  5.00x10"  1.73x10° 1.73x10%  1.73x10°¢
500 1.00 1.73x10¢  1.73x10°  2.50x10!  1.73x10° 1.73x10%  1.73x10°
F2 30 1.00 1.73x10¢  1.73x10¢  1.73x10°  1.73x10° 1.73x10¢  1.73x10°¢
500 1.00 1.73x10¢  1.73x10°  1.73x10°  1.73x10° 1.73x10¢  1.73x10°¢
F3 30 1.00 1.73x10¢  1.73x10¢  2.56x10° 1.73x10° 1.73x10¢  1.73x10°¢
500 1.00 1.73x10¢  1.73x10°  1.73x10°  1.73x10° 1.73x10¢  1.73x10°¢
F4 30 1.00 1.73x10¢  1.73x10°  1.73x10°  1.73x10° 1.73x10¢  1.73x10°¢
500 1.00 1.73x10¢  1.73x10°  1.73x10°  1.73x10° 1.73x10¢  1.73x10°¢

F5 30 4.72x102 3.18x10% 1.80x10° 1.73x10% 1.73x10% 3.38x10° 1.92x10°
500 1.73x10¢  1.73x10%  1.73x10%  1.73x10%  1.73x10% 1.73x10°  1.73x10®
F6 30 1.73x10% 1.73x10% 1.73x10%  1.73x10% 1.73x10% 1.73x10° 2.13x10®
500 1.73x10¢  1.73x10%  1.73x10%  1.73x10%  1.73x10% 1.73x10°  1.73x10®
F7 30 6.87x10% 1.73x10° 6.56x10 3.16x10° 1.73x10% 1.40x102 1.73x107°
500 1.47x10"  1.92x10°%  1.83x103  3.88x10%* 1.73x10° 3.59x10* 1.73x10°
F8 30 1.73x10° 1.73x10° 2.21x10" 1.73x10°° 1.73x10% 7.71x10*  1.92x107!
500 1.73x10¢  1.73x10%  1.73x10%  1.73x10%  1.73x10% 1.73x10°  1.73x10®

F9 30 1.00 1.00 1.00 1.00 1.73x10¢  1.00 1.68x107
500 1.00 1.00 1.00 1.00 1.73x10¢  1.00 1.73x107
F10 30 1.00 9.85x10°¢  4.32x10®°  1.00 1.73x10¢  1.00 1.67x107
500 1.00 5.06x10°¢  1.01x107  1.00 1.73x10¢  1.00 1.73x107
F11 30 1.00 1.00 1.00 1.00 1.73x10¢  1.00 1.56x102
500 1.00 1.00 1.00 1.00 1.73x10¢  1.00 1.73x107

F12 30 1.73x10° 1.73x10°® 1.73x10% 1.73x10% 1.73x10% 1.73x10%  1.73x10°¢
500 1.73x10% 1.73x10%  1.73x10¢  1.73x10°  1.73x10° 1.73x10°®  1.73x10®

F13 30 1.73x10° 1.73x10°® 1.73x10% 1.73x10% 1.73x10% 1.73x10%  1.73x10°¢
500 1.73x10% 1.73x10%  1.73x10°¢  1.73x10° 1.73x10° 1.73x10°®  1.73x10°
Continued on next page
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F dim MPDO MPDO MPDO MPDO MPDO MPDO MPDO
VS VS VS VS VS VS VS
PDO WOA SHO ROA SCA SCSO GWO

F14 30 2.06x107 4.78x10" 2.85x102 8.88x10! 5.67x10° 8.77x10"  6.58x10!
500 2.07x102 5.86x101 3.16x10° 3.71x107  6.88x10" 6.73x10"  1.71x10!
F15 30 4.29x10° 5.17x107"  9.63x10* 4.39x10° 6.34x10° 8.31x10* 2.80x10"
500 1.24x10°  9.59x101  3.88x10* 8.73x107 2.61x10* 4.07<10°  7.81x10!
F16 30 8.86x10° 1.73x10°¢ 1.73x10% 1.73x10° 1.73x10° 1.73x10¢  1.73x10®
500 2.93x10* 1.73x10%  1.73x10% 1.73x10% 1.73x10% 1.73x10°  1.73x10®
F17 30 1.73x10° 1.73x10¢ 1.73x10%  1.73x10° 1.73x10° 1.73x10¢  1.73x10®
500 1.73x10¢ 1.73x10%  1.73x10%  1.73x10° 1.73x10° 1.73x10°®  1.73x10®
FI18 30 1.73x10° 1.53x10! 8.92x10° 2.60x10° 8.97x10% 8.22x103  4.07x107?
500 1.73x10%  4.41x101  1.64x10°  3.68x102  1.04x102 4.68x103  2.06x10!
F19 30 1.73x10° 1.73x10¢ 1.73x10% 1.73x10° 1.73x10° 1.73x10¢  1.73x10®
500 1.73x10¢ 1.73x106  1.73x10¢  1.73x10°  1.73x10° 1.73x10°®  1.73x10®
F20 30 5.98x102 5.17x107! 1.40x102 2.62x107' 1.20x103 7.50x10! 5.71x10%2
500 9.43x10!  1.57x102  6.44x10"  1.48x10* 8.97x102 4.68x103 1.25x10*
F21 30 1.74x10* 8.61x10" 3.33x102 5.31x10° 1.73x10° 3.93x10'  1.48x10*
500 1.29x103  7.50x101  1.85x102 3.61x10° 2.88x10° 2.37x10! 7.86x10
F22 30 9.32x10°%  6.04x10°  1.64x10°  6.44x10" 5.22x10° 1.59x10°  6.44x10"
500 1.36x10°  2.80x101 1.24x10°  1.48x10° 6.98x10°¢ 1.71x10" 3.61x1073
F23 30 6.89x10° 1.85x10" 4.39x10° 1.48x10° 2.22x10* 3.60x10" 1.48x1073
500 4.68<103  2.80x10' 1.13x10°5  1.48x103 5.31x10° 3.50x102 1.75x1072

4.2. IEEE CEC2014 test function experiment

The IEEE CEC2014 test set has a total of 30 single objective test functions and is one of the most
widely used. Therefore, we selected IEEE CEC2014 to verify the optimization performance of the
MPDO algorithm, set the population size N = 30, and the maximum number of iterations 7= 500.

Table 7 shows the optimal values, mean values, and standard deviations obtained by the MPDO
algorithm in the IEEE CEC2014 test function. From the data in the Table 7, which eight algorithms
have found the optimal solution in CEC12, CEC13, CEC14, CEC16 and CEC26. Only the PDO
algorithm has not found the optimal value in CEC19. Although the MPDO algorithm did not obtain
the optimal value in some CEC test functions, there is a small gap compared to the GWO algorithm
that obtained the optimal solution. From the overall data, the optimization ability of the MPDO
algorithm is stronger than the other seven algorithms and has good performance compared to the
PDO algorithm.

Figures 9 and 10 shows the convergence curves of 8 algorithms in the IEEE CEC2014 test
function. In the uni-modal function, it can be seen that the MPDO algorithm can find the optimal value
better. In simple multi-modal functions, the MPDO algorithm did not find the optimal value in CEC6.
In CEC8, CEC9 and CEC10, the MPDO and GWO algorithms are in a state of stagnation. In CEC16,
the relative optimal obtained by MPDO is only weaker than that obtained by SHO. While in other
functions, the MPDO algorithm has good convergence performance. Mixed and composite functions
test the overall performance of algorithms. The MPDO algorithm showed good optimization
performance in mixed functions. Although the MPDO algorithm showed weak convergence in the
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CEC24 function, it showed good optimization performance in other composite functions. Overall, the
MPDO algorithm has good optimization performance compared to other algorithms.

Through 30 independent runs, Table 8 obtains the Wilcoxon rank sum test data of the MPDO
algorithm and the other seven algorithms in the IEEE CEC2014 test function. From Table 8, due to
the simplicity of mixed and composite functions, CEC17-CEC28 has some results greater than 5%,
but most are still less than 5%. The data from CEC8-CEC15 shows that only two results of each
function are greater than 5%, while the rest are less than 5%. This indicates a significant difference
between the MPDO and the other seven algorithms in these functions. In addition, in CECS, only one
data result is greater than 5%. In CEC6, two data results are greater than 5%. These data indicate that
the MPDO algorithm differs significantly from other Wilcoxon rank sum test algorithms.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086-19132.



19111

Table 7. Statistical results of IEEE CEC2014 test functions.

F Metric ~ MPDO PDO WOA SHO ROA SCA SCSO GWO
CECl1 Min 1.17x10° 6.76x108 1.04x108 1.31x108 9.28%107 2.99x108 7.40x107 2.99x107
Mean 4.21x108 1.21x10° 2.33x108 3.96x108 3.02x108 5.01x108 2.05%x108 1.03x108
Std 2.71x108 3.41x108 8.41x107 1.40x108 9.83x107 1.40x108 9.43x107 6.28%107
CEC2 Min 1.73x10° 5.39x101° 2.40x10° 1.76x10'° 9.59x10° 1.90x101'° 1.34x10° 3.02x108
Mean 1.55x10* 6.81x101° 7.54x10° 3.34x101° 3.10x101° 2.92x101'0 9.79x10° 2.81x10°
Std 9.73x10° 8.84x10° 3.54x10° 8.87x10° 1.17x101° 4.29x10° 5.63x10° 2.83x10°
CEC3 Min 5.85x102 6.54x10% 6.75x10% 2.92x10* 4.90x10* 4.91x10* 4.21x10* 3.44x10*
Mean 1.33x10* 1.25x10° 1.43x10° 4.91x10* 6.80x10* 7.71x10* 5.50x10% 5.26x10*
Std 9.34x10° 4.54x10* 7.63x10* 1.03x10* 8.10x10° 1.64x10* 8.85x103 1.21x10*
CEC4 Min 4.68x102 4.56x10° 7.72x10? 1.07x10° 9.64x10? 1.55x10° 6.53x10? 5.57x10?
Mean 5.34x102 1.02x10* 1.35x10° 2.99x10° 2.68x10° 2.84x10° 1.09%x10? 7.28%10?
Std 3.76x10! 3.41x10° 3.65x10? 1.27x10° 1.40x10° 9.19x10? 3.86x10? 1.81x10?
CECS Min 5.20x102 5.21x10? 5.21x10? 5.20x10? 5.21x10? 5.21x10? 5.20x102 5.21x10?
Mean 5.21x102 5.21x102 5.21x10? 5.21x10? 5.21x10? 5.21x10? 5.21x102 5.21x10?
Std 4.59x10! 8.74x102 9.63x102 1.14x10! 8.98x1072 4.68x102 1.43x10°! 6.08%102
CEC6 Min 6.30x10? 6.39x10? 6.32x10? 6.26x10? 6.27x10? 6.32x10? 6.26x10? 6.10x10>
Mean 6.38%10? 6.43x10? 6.39x10? 6.31x10? 6.35x10? 6.38x10? 6.31x10? 6.17x10?
Std 3.99 2.04 3.10 2.25 3.14 232 3.52 3.01
CEC7 Min 7.00x10> 1.21x10° 7.24x10? 8.19x10? 7.48%10? 8.71x10? 7.15%10? 7.04x10?
Mean 7.00x10> 1.38x10° 7.49%x10? 9.96x10? 9.13x10 9.50x10? 7.92x10? 7.27x10?
Std 4.21x1072 78.8 20.5 71.7 88.0 48.0 51.8 20.9
CECS8 Min 8.93x10° 1.10x103 9.88%10? 9.39x10? 1.01x10° 1.05x10° 8.93x10° 8.54x10?
Mean 9.85%10? 1.19x103 1.04x10? 9.78%10? 1.04x10° 1.09x10° 9.96x10? 9.05x10>
Std 56.7 47.4 46.3 17.0 20.7 24.1 37.4 21.9
CEC9 Min 1.03x103 1.18x103 1.12x10° 1.08x10° 1.09x10° 1.16x10° 1.05x103 9.77x10?
Mean 1.12x103 1.26x10° 1.20x10° 1.13x10° 1.16x10° 1.21x10° 1.12x103 1.03x10°

Mathematical Biosciences and Engineering

Continued on next page

Volume 20, Issue 11, 19086-19132.



19112

F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
Std 37.3 67.8 68.8 25.5 28.7 24.6 30.2 423
CEC10 Min 3.29x103 7.42x103 4.64x10° 3.19x103 4.60x103 6.88x10° 3.93x103 2.47x10°
Mean 4.62x103 8.75x10° 6.35x103 4.58x103 6.21x10° 7.95%10° 5.60x103 3.55x10°
Std 8.80x10? 5.62x102 6.56x10? 5.54x10? 5.82x10? 4.76x10? 7.82x102 5.47x10?
CEC11 Min 1.66x103 2.29x103 1.47x103 1.37x103 1.48x103 2.18x103 1.46x103 1.16x10°
Mean 2.37x103 2.84x103 2.31x103 1.81x103 2.20x10° 2.61x103 2.04x103 1.73x10°
Std 3.92x102 2.76x10? 3.31x10? 2.27x10? 4.02x10? 2.26x10? 2.97x10? 2.78x10?
CECI2 Min 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10°
Mean 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10° 1.20x10°
Std 3.32x10°! 5.65x10°! 3.23x10°! 2.16x10"! 3.25x10°! 2.96x10""! 2.73x10°"! 7.02x1071
CECI13 Min 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10°
Mean 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10° 1.30x10°
Std 2.47x10"! 8.76x10°! 2.01x10°! 1.49x10°! 1.83x10°! 1.37x10°"! 1.88x10°"! 7.31x107*
CECl14 Min 1.40x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10°
Mean 1.40x10° 1.41x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10° 1.40x10°
Std 2.09x10°! 8.16 2.03x10°! 2.04 4.14 3.77x101 2.15x10°"! 1.72x10°!
CEC15 Min 1.50x10° 1.57x103 1.50x10° 1.50x10° 1.50x10° 1.51x10° 1.50x10° 1.50x10°
Mean 1.51x103 4.01x10° 1.51x103 1.51x10° 1.60x103 1.51x103 1.50x10° 1.50x10°
Std 5.58 3.61x103 6.54 8.19 4.03x10? 2.76 1.91 1.11
CECl6 Min 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10°
Mean 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10° 1.60x10°
Std 3.40x10! 2.22x10"! 2.73x10°! 3.01x10°! 3.25x10°! 1.97x10°"! 4.11x101 3.85x10°!
CEC17 Min 4.75%103 2.95x10% 6.57x103 6.65x10° 3.00x103 7.68x10° 2.37x10° 3.06x10°
Mean 1.00x10° 5.36x10° 2.43x10° 1.96x103 6.06x10% 5.58x10* 7.22x10% 1.44x103
Std 1.05x10° 1.99x10° 4.88x10° 1.51x103 1.01x103 9.28x10* 1.51x10° 2.22x10°
CEC18 Min 1.86x10° 7.73%103 2.47x103 6.11x103 2.16x10° 5.21x10° 2.01x103 1.99x103
Mean 1.21x10% 2.14x10° 1.71x10% 1.07x10% 8.84x103 3.18x10% 9.93x103 1.05x10*
Std 1.25x10% 4.18x10° 1.36x10% 2.89x10° 5.03x10° 3.19x10% 4.24x10° 7.92x103
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
CECI19 Min 1.90x10° 1.91x103 1.90x10° 1.90x10° 1.90x10° 1.90x10° 1.90x10° 1.90x10°
Mean 1.91x103 1.92x103 1.91x103 1.90x10° 1.91x103 1.91x10° 1.90x10° 1.90x10°
Std 1.39 15.9 1.53 1.26 1.63 8.96x107! 1.22 9.38x10°!
CEC20 Min 2.06x10° 2.47x103 2.35x103 2.41x103 2.09x103 2.32x103 2.69x103 2.21x103
Mean 8.85x10° 4.67x10° 1.23x10% 7.98x10° 1.17x10% 9.49x103 7.89%103 9.14x103
Std 7.55%103 1.44x10° 7.00x103 3.13x10° 4.68x10° 7.35%10° 3.35x103 5.25%10°
CEC21 Min 2.50x10° 3.08x10% 6.10x103 3.62x10° 3.23x103 3.81x10° 3.66x103 2.83x103
Mean 1.61x10% 1.17x10° 2.49%x103 1.05x10* 1.30x10% 1.90x10% 1.11x10% 8.97x103
Std 2.46x10% 1.34x10° 4.83x10° 3.55x10° 1.01x10% 1.39x10% 6.25%103 6.20x10°
CEC22 Min 2.22x10° 2.28%103 2.23x103 2.22x10° 2.23x103 2.25x103 2.23x103 2.22x10°
Mean 2.46x103 2.48x103 2.30x103 2.29x103 2.29x103 2.28x10° 2.31x103 2.30x103
Std 1.13x10? 1.09x10? 78.2 60.3 71.5 15.5 63.5 59.9
CEC23 Min 2.50x10° 2.50x10° 2.50x10° 2.50x10° 2.50x10° 2.64x10° 2.50x10° 2.63x103
Mean 2.50x10° 2.50x10° 2.64x103 2.63x103 2.50x10° 2.65x103 2.50x10° 2.63x103
Std 0 0 27.0 254 0 8.22 0 291
CEC24 Min 2.54x103 2.57x103 2.53x103 2.52x103 2.54x103 2.54x103 2.52x103 2.51x10°
Mean 2.59x103 2.60x103 2.58x103 2.57x103 2.59x103 2.56x103 2.59x103 2.55x10°
Std 15.8 7.76 25.1 30.7 18.4 11.8 22.4 36.3
CEC25 Min 2.66x10° 2.69x103 2.70x103 2.68x103 2.68x103 2.68x103 2.67x103 2.67x103
Mean 2.69%x10° 2.70%103 2.70x103 2.70x103 2.70x103 2.70x103 2.70%103 2.70x103
Std 11.9 1.81 2.02 4.88 4.54 6.02 5.81 5.20
CEC26 Min 2.70x10° 2.70x10° 2.70x10° 2.70x10° 2.70x10° 2.70x10° 2.70x10° 2.70x10°
Mean 2.71x103 2.71x103 2.71x103 2.70x10° 2.70x10° 2.70x10° 2.70x10° 2.70x10°
Std 25.2 17.6 253 1.04x10°! 6.51x10! 1.59x10""! 9.05x10> 18.2
CEC27 Min 2.90x103 2.90x103 2.71x103 2.71x103 2.71x103 2.72x103 2.71x103 2.70x10°
Mean 2.90x103 2.90x103 3.10x103 3.04x103 2.89x103 3.07x10° 2.88x10° 3.02x10°
Std 0 0 1.44x102 1.49x102 47.2 1.17x10? 58.5 1.33x102
CEC28 Min 3.00x10° 3.00x10° 3.00x10° 3.29x10° 3.00x10° 3.24x10° 3.00x10° 3.16x10°
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F Metric MPDO PDO WOA SHO ROA SCA SCSO GWO
Mean 3.00x10° 3.00x10° 3.40x103 3.45%103 3.00x10° 3.29x10° 3.00x10° 3.26x10°
Std 0 0 1.58x102 1.25%102 0 59.5 0 1.00x102

CEC29 Min 3.10x10° 3.10x10° 3.26x103 3.17x10° 3.10x10° 5.01x10° 3.10x10° 3.16x10°
Mean 3.43x103 3.10x10° 3.57x10° 7.19%103 1.77x103 2.41x10% 7.13x10% 5.15%103
Std 3.48x102 0 8.62x103 1.52x108 5.26x103 1.95x10% 3.58%10° 1.15x108

CEC30 Min 3.20x10° 3.20x10° 4.14x10° 4.54x103 3.56x10° 4.27x103 3.66x103 3.51x10°
Mean 3.88x103 3.20x10° 5.77x103 5.51x10° 5.22x103 4.93x103 4.75%10° 4.45x103
Std 6.85%102 0 1.15x103 1.50x103 1.22x103 5.20x102 6.57x102 7.93%102
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Table 8. Experimental results of the Wilcoxon rank—sum test on the IEEE CEC2014 test functions.

F MPDO MPDO MPDO MPDO MPDO MPDO MPDO
VS VS VS VS VS VS VS
PDO WOA SHO ROA SCA SCSO GWO

CEC1  1.73x10°  1.73x10°® 1.73x10° 1.73x10%  1.73x10°% 1.73x10°¢  1.73x10°¢
CEC2 1.73x10°  1.73x10°® 1.73x10° 1.73x10¢  1.73x10°% 1.73x10°¢  1.73x10°¢
CEC3 1.73x10°  1.73x10°® 1.73x10° 1.73x10¢  1.73x10°% 1.73x10°¢  1.73x10°¢
CEC4 1.73x10°  1.73x10°® 1.73x10° 1.73x10¢  1.73x10°¢ 1.73x10°¢  1.73x10¢
CEC5 3.88x10%  1.29x103 1.48x102% 4.53x10%  847x10°% 1.47x10"  1.24x10°
CEC6 3.11x10°  3.39x10! 2.88x10° 5.32x103  8.45x10' 1.80x10°  1.73x10°
CEC7 1.73x10°  1.73x10°® 1.73x10° 1.73x10¢  1.73x10°% 1.73x10°¢  1.73x10¢
CEC8 1.73x10%  3.59x10* 6.88x10" 8.19x10°  2.35x10° 4.17x10!  6.98x10°
CEC9 1.73x10%  1.13x10° 5.72x107"  3.32x10*  1.92x10°% 6.29x10"  2.60x10°
CECIO0 1.73x10%  2.88x10°% 9.92x10°" 3.18x10°¢  1.73x10% 3.06x10*  4.45x107
CECI1 2.16x10°  8.45x10"' 1.36x10° 1.85x10! 8.73x103 2.58x10°  3.88x10°
CECI2 2.88x10°% 3.59x10* 1.36x10" 3.00x102 2.88x10°% 4.05x10!  3.00x1072
CECI3 1.73x10%  2.29x10"  7.19x10"  6.58x10  1.29x103 4.72x102  6.34x10°
CECI4 1.73x10%  1.96x102 8.94x10* 9.78x102  1.92x10° 3.82x10"  1.11x10!
CEC15 1.73x10°¢  5.32x103  8.77x107! 5.45x102  2.58x10° 4.20x10*  4.29x10°
CECI6 5.29x10% 2.56x102 1.02x10° 3.52x10%  1.57x102 6.89x10°  1.73x10°
CEC17 2.88x10°%  2.62x10! 8.73x10° 8.59x102  3.16x102 6.27x10%  7.97x10!
CECI8 3.38x103  1.41x107 9.59x10" 5.17x10"  1.96x103 6.14x10"  7.50x107!
CECI9 1.73x10%  1.04x102 1.89x10* 7.19x10!  1.59x103 6.89x10°  2.88x10°
CEC20 3.41x10°  8.22x10% 7.97x10" 1.06x10"!  7.04x10! 5.72x10"  8.13x10!
CEC21 2.60x10°¢  1.80x10° 6.73x107"  7.34x10!  7.19x102 8.29x10"  1.36x10!
CEC22 3.49x107!  3.11x10° 1.24x10° 3.52x10°%  4.29x10% 2.37x10°  1.13x10°?
CEC23 1.00 2.56x10°  2.56x10%  1.00 1.73x10°  1.00 1.73x10°¢
CEC24 4.79x102  5.45x10%  7.73x10° 5.42x107  4.29x10° 8.14x102  5.31x107
CEC25 5.36x10%  2.35x10° 6.36x10° 2.23x103  1.36x10* 1.48x10°  4.53x10*
CEC26 3.06<10%  2.45x10" 1.11x102% 5.30x10"  1.32x102 6.64x10*  6.89x107
CEC27 1.00 3.18x10°  7.69x10% 5.00x10"  3.18x10° 2.50x10"'  1.96x1073
CEC28 1.00 2.56x10°  1.73x10%  1.00 1.73x10°  1.00 1.73x10°¢
CEC29 1.96x10*  1.97x10° 2.07x10% 2.60x10°%  1.73x10% 3.15x10°  2.22x10*
CEC30 5.96x10°  2.13x10° 4.73x10° 5.79x10°  6.34x10% 4.86x10°  3.61x107
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1-CEC 15).
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5. Constrained engineering design problems

In Part 4, we tested the MPDO algorithm on 23 benchmark and IEEE CEC2014 functions. In
order to test the practical effectiveness of the MPDO algorithm in engineering problems, in Part 5, we
selected six engineering design problems: Car Crash-worthiness Design, Welded Beam Design, Speed
Reducer Design, Cantilever Beam Design, Pressure Vessel Design, Multiple Disc Clutch Brake.

5.1. Car crash-worthiness design problem

The design of car crash-worthiness is a minimum value problem, which includes 11 variables and
ten constraint conditions. Figure 11 shows the finite element model of the problem. The decision
variables for this problem are the internal thickness of the B-pillar, the thickness of the B-pillar
reinforcement, the thickness of the floor slab, the thickness of the crossbeam, the thickness of the door
beam, the thickness of the door strip line reinforcement, the thickness of the longitudinal roof beam,
the internal material of the B-pillar, the internal material of the floor slab, the height of the obstacle
and the impact position of the obstacle. Abdominal load, upper viscosity standard, middle viscosity
standard, low viscosity standard, upper rib deflection, middle rib deflection, lower rib deflection
pubic symphysis force, B-pillar midpoint speed, and B-pillar front door speed are the constraints of
this problem

Figure 11. Car crash-worthiness design model.

The mathematical formula for car crash-worthiness design is as follows:

Minimize:
7 (x) = Weight, (21)

Subject to:
g (;c) = F (load in abdomen) <1 N, (22)
g, (;c) =V x Cu (dummy upper chest) <0.32 m/s, (23)
g (;c) =V xCm (dummy middle chest) <0.32 m/s, (24)
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Variable range:

g,(x)=V xCI (dummy lower chest)<0.32 m /s,

gs (;c) =A,, (upper rib deflection) <32 mm,

g.(x)=A,_ (middle rib deflection) <32 mm,

g, (;c) =A, (lower rib deflection) <32 mm,

g,(x) = F (Public force), <4 kN,

< (x)= Ve (Velocity of V—
Pillar at middle point) <9.9 mm/ ms,

2,0(x) =V, (Velocity of front door at V—

Pillar) <15.7 mm/ ms,

0.5<x —x,<1.5 x.,x,€(0.192,0.345), =30 < x,,x,, <30,

(25)
(26)
27
(28)

(29)

(30)

(1)

(32)

The experimental data for the car crash-worthiness design problem is shown in Table 9. The data
in Table 9 shows that the optimal weight obtained by the MPDO algorithm is 23.19869131, which is
the best solution for the optimal weights of six algorithms. This indicates that the MPDO algorithm
can more efficiently solve the problem of car crash-worthiness design.

Table 9. Experimental results of the car crash-worthiness design problem.

Algorithm  MPDO MALO[39] MSROA[40] SOA[41] GTO[42] MPA[43]
x1 0.500000802 0.5 0.5 0.50063 0.5 0.5

X2 1.242709892  1.2281 1.2284047 125921 12607  1.22823
X3 0.5 0.5 0.5 0.5 0.5 0.5

x4 1.18070453  1.2126 1.2125762 126308  1.1495  1.2049
x5 0.500004599 0.5 0.5 09377  0.6205 0.5

X6 1.128124272  1.308 0.9827072 1.11573  0.886 1.2393
X7 0.500000896 0.5 0.5 0.5 0.5 0.5

X8 0.345 0.3449 0.345 0.334889  0.34485  0.34498
X9 0.193007238  0.2804 0.345 0.252275 0.344608 0.192
x10 3.036846819  0.4242 02051698 43435  6.202292  0.44035
x11 1.13771349  4.6565 2.4627542 162208  7.3429  1.78504
Best Weight 23.19869131  23.2294 23230900  24.42114 23.4084  23.19982

5.2. Welded beam design problem

The purpose of the welded beam design problem is to minimize the total cost of the welded beam,
and the welded beam model is shown in Figure 12. The four decision variables for this problem are
weld width 4, connecting beam length /, beam height ¢, and connecting beam thickness b. In addition,
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there are seven constraint conditions.

Figure 12. Welded beam model.

The mathematical formula for the design problem of welded beams is as follows:

Consider:
x=[xx,x;x,]=[h1l1tb] (33)
Objective function:
£(x)=1.10471x’x, +0.0481 Lx,x,(14.0 + x,) (34)
Subject to:
g (¥)=7(¥)-1,, <0 (35)
& (¥)=0(¥)-0,, <0 (36)
& (¥)=6(%)-4,, <0 (37)
g,(¥)=x-x,<0 (38)
g:(¥)=P-P(%)<0 (39)
g,(%)=0.125-x <0 (40)
g, ()?) =1.10471x +0.04811x,x, (14.0 + xz)— 0.5<0 41)
Where:
N2 DX oo P « MR
%)= 2 2 - -
T(x) \/(T) +2t7 2R+(T ),T m,r T (42)
X x; x +x, ) 6PL
M=P|L+2|R=[Z+| 22| o(F)=——+
( + 2), 1 +( 5 j ,o(%) Py (43)
X (x+x) .\ 6P
J=2{ 2x1x2{4 +(T3j }},5()‘#%’ (44)
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2.6
4.013E ﬁ
P(R) =V O [j_ % [E % [E
L 20\46 S 22V 4G

P =6000/b,L =14 in, o,

=025 in, E=30x10° psi,
7. =13600 psi,and o, =30000 psi
Variable range:
0.1<x,<2,i=1,4,0.1<x,<10,i =23

The experimental results for the design issues of welded beams are shown

(45)

(46)

(47)

(48)
in Table 10. The

weight obtained by the MPDO algorithm is 1.708762277, the optimal solution compared to other
algorithms. Under this weight, the thickness of the connecting beam b is 0.205418434, the height of
the beam ¢ is 9.099486427, the length of the connecting beam / is 3.315146754, and the weld width
h is 0.201371958. From this, we have seen that the MPDO algorithm can effectively solve the

problem of welded beam design.

Table 10. Experimental results of the welded beam design problem.

Algorithm h 1 t b Best Weight
MPDO 0.201371958  3.315146754  9.099486427  0.205418434 1.708762277
TSA[44] 0.244157 6.223066 8.29555 0.244405 2.38241101
RO[45] 0.203687 3.528467 9.004233 0.207241 1.735344
[HS[46] 0.20573 3.47049 9.03662 0.2057 1.7248
CPSO[47] 0.202369 3.544214 9.04821 0.205723 1.73148
MFO[48]  0.2057 3.4703 9.0364 0.2057 1.72452
ROA[35] 0.200077 3.365754 9.011182 0.206893 1.706447

5.3. Speed reducer design problem

Figure 13. Speed reducer model.

The design model of the speed reducer is shown in Figure 13. The design of the speed reducer
satisfies seven decision variables: the width of the tooth surface x;, the number of teeth on the gear
module x2, the number of teeth on the pinion x3, the length of the first shaft x« between bearings, the
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length of the second shaft xs between bearings, the diameter of the first shaft xs and the diameter of the
second shaft x7. It is a minimum value problem aimed at finding the minimum mass of the speed
reducer, with four constraint conditions: the bending stress of the gear teeth, the covering stress, the
lateral deflection of the shaft, and the stress inside the shaft.

The mathematical formula for the speed reducer design problem is as follows:

Consider:

x=[x x, x, X, X, X, X,] (49)
Objective function:

f(¥)=07854xx, xx,” x(3.3333x x,” +14.9334 x x, —
43.0934)—1.508 x x, x (x> +x,2) + 74777 x x. +x,° + (50)

0.7854x x, x x,° + X; X X,

Subject to:
27
X)=——5—-1<0
(%) X X%, (51)
397.5
X)=——7——-1<0
8,(%) X X (52)
- 1.93x x,’
gX)=—""7-1<0 (53)
Xy X Xy X Xg
- 1.93xx.}
g, (H)=——"""21-1<0 (54)
Xy X Xy X X,
- 1 745% x, , .
X)= X +16.9x10° -1<0 55
TP \/(xzxx3) (55)
745
g(¥) = 13x( “I Y +16.9%10° ~1<0 (56)
85xx, X, XX,
g7(76)=x2><x3—1£0 (57)
oy XX,
g,(X)= -1<0 (58)
xl
gy(X)= N 1<o0 (59)
12xx,
. 15xx +1.9
g(X) =——"——-1<0 (60)
x4
o lLilxx, +1.9
gll(X)=x—7—1£0 61)
5
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Variable range:

2.6<x <3.6,07<x,<0817<x,<2873<x, <83,

(62)
73<x;<83,29<x,<39,5<x,<55

Table 11 presents the test results of the reducer design problem. When x; is 3.497599089, x: is
0.7,x31s 17, x41s 7.3, x5 1s 7.8, x6 1s 3.350055813, and x7 is 5.285531993, the optimal weight obtained
by the MPDO algorithm is 2995.437365, which achieves better results compared to other algorithms.
Therefore, MPDO is an effective algorithm for solving this problem.

Table 11. Experimental results of the speed reducer design problem.

Algorithm Optimal Values for Variables Optimal
X1 X2 X3 X4 Xs X6 X7 Weight
MPDO 3.497599 0.7 17 73 7.8 3.35005581 5.28553199 2995.4374
hHHO-SCA[49] 3.506119 0.7 17 7.3 7.99141 3.452569 5.286749 3029.8731
MSCSO[50] 3497592 0.7 17 73 7.8 3.350043 5.285504 2995.438
AOA[S51] 3.6 07 17 73 83 3.48321691 5.29818568 3089.0737
RSA[52] 3.50279 0.7 17 7.3 7.74715 3.35067 5.28675 2996.5157
MDA[53] 3.5 0.7 17 73 7.67039 3.54242 5.2481 3019.5833

5.4. Cantilever beam design problem

Cantilever beam design is a minimization problem aimed at reducing the weight of the cantilever
beam. The decision variable for this problem includes five hollow block heights with constant
thickness. Figure 14 shows the cantilever beam design model.

-

Figure 14. Cantilever beam model.

The mathematical formula for the design problem of cantilever beams is as follows:
Consider:

x=[x x, x, x, x,] (63)
Objective function:
f(x)=0.0624(x, +x, + x, + x, + x,) (64)

Subject to:
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61 37 19 7 1
X)=—+—+—+—+—-1<0
RS )

Variable range:
0.01<x <100( =1,2,---5) (66)

According to the cantilever beam model, the height of five hollow blocks with constant thickness
continuously decreases. The results of the MPDO algorithm xi (I=1, 2, ----- , 5) in Table 12 conform

to the design of decreasing in sequence, and the optimal weight obtained is 1.340052195, which is an
effective solution to this problem.

Table 12. Experimental results of the cantilever beam design problem.

Algorithm  Optimal Values for Variables Optimum
Weight
X1 X2 X3 X4 Xs
MPDO 5.9909046 5.34666433 4.49228394 3.47344894 2.17189358 1.3400522
ERHHO[54] 6.0509 5.2639 4.514 3.4605 2.1878 1.3402
BWO[55] 6.2094 6.2094 6.2094 6.2094 6.2094 1.9373625
OOA[56] 5.0000635 5.00006346 5.00006346 5.00006346 5.00006346 1.5600198
WOA[33] 5.1261 5.6188 5.0952 3.9329 2.3219 1.3787315
SCA[36] 5.1096 5.9911 5.015 3.7095 3.2744 1.4414387

5.5. Pressure vessel design problem

The design of pressure vessels minimizes the total cost of cylindrical pressure vessels to satisfy
pressure requirements. There are four variables to address this issue: vascular wall thickness 7', head
wall thickness 7», inner diameter R and body length L, and four constraint conditions. The specific
mathematical model of the pressure vessel design problem is shown in Figure 15.

2R L

Figure 15. Pressure vessel model.

The mathematical formula for pressure vessel design problems is as follows:
Consider:

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086-19132.



19125

)?z[x1 X, X, x4]=[TSThRL] (67)
Objective function:
f(?c) =0.6224x,x,x, +1.7781x,x] +3.1661x.x, +19.84x7 x, (68)
Subject to:
g, (x)=—x,+0.0193x,<0 (69)
2,(x) = —x, +0.00954x, <0 (70)
g5 (x) = —mxix, + gmj +1296000 < 0 (71)
g,(x)=—x, —240<0 (72)
Variable range:
0<x <99,0<x, <99,10<x, <200,10<x, <200 (73)

The experimental results of pressure vessel design issues are shown in Table 13. The MPDO
algorithm yields a 7T's of 0.747477958, Tr of 0.37238725, R of 40.56802084, and L of 196.5707208,
resulting in a minimum cost of 5744.455052 for pressure vessel design. Five algorithms generated
cost values greater than 6000 among the compared algorithms, while six generated cost values less
than 6000.

Table 13. Experimental results of the pressure vessel design problem.

Algorithm T; Th R L Best Cost
MPDO 0.747477958 0.37238725 40.56802084  196.5707208 5744.455052
EROA[57] 0.84343 0.400762 44,786 145.9578 5935.7301
HPSO[58] 0.8125 0.4375 42.0984 176.6366 6059.7143
AO[59] 1.054 0.182806 59.6219 39.805 5949.2258
MSROA[29] 0.773374321 0.374874166  41.83662957 180.1871401  5807.849903
MGTOA[60] 0.754364 0.366375 40.42809 198.5652 5752.402458
WOA[33] 0.8125 0.4375 42.09827 176.639 6059.741
GA[20] 0.8125 0.4375 42.0974 176.6541 6059.94634
CS[61] 0.8125 0.4375 42.09845 176.6366 6059.714335
SMAJ[62] 0.7931 0.3932 40.6711 196.2178 5994.1857
BA[63] 0.8125 0.4375 42.0984 176.6366 6059.7143
ES[64] 0.8125 0.4375 42.098087 176.640518 6059.7456

5.6. Multiple disc clutch brake problem

The main goal of a multi-disc clutch brake is to find the minimum mass of the multi-disc brake.
This problem has five decision variables and eight constraint conditions. Five decision variables
include inner radius 7;, outer radius 7., brake disc thickness ¢, driving force F, and surface friction
number Z. Figure 16 shows a specific model of a multi-disc clutch brake.
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7nEntntnt

Figure 16. Multi-disc clutch brake model.

The mathematical formula for the multi-disc clutch brake problem is as follows:

Consider:

x=[xx, x5 x,x]=[rr, tFZ] (74)
Objective function:

f(x)=11(r} =2 )t(Z +1) p (p=0.0000078) (75)

Subject to:
gl(x)=ro—r,.—Ar20 (76)
gz(x):lmax—(Z+l)(t+5)20 (77)
g3 (x):Pmax _Prz 20 (78)
g4 (x) = Pmaxvsr max Przusr = 0 (79)
gS (x) = Vsr max _Usr 2 0 (80)
g6(x):Tmax—T20 (81)
g7(x)=Mh—sMS20 (82)
gg(x)zTZO (83)

Variable range:
60<x, <80,90<x,<110,1<x, <3,

600 < x, <1000,2 < x, <9 (84)
Other parameters:
2 r—r F
M,=ZuFZ-%— P =— "
h 3 H 7"02 _ ’/}3 rz II(]’:)Z _ ]’;2) (85)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19086-19132.



19127

211(r,; -1} L1l n
e 90((r02 —r? )) "’ 30(Mzh +M,) (86)
Ar =20mm,I, =55kgmm’,P, =1MPa,F, =1000N, (87)
T.=155,1u=0.5s=15M, =40Nm,Mf =3Nm, (88)
n=250rpm,v,, , =10m/s,| _=30mm (89)

Table 14 shows the test results of the multi-disc clutch brake problem. The MPDO algorithm
obtains an inner radius 7; of 70, an outer radius 7, of 90, a brake disc thickness ¢ of 1, a driving force ¥’
of 600, a surface friction number Z of 2, and an optimal weight of 0.235242458, which is the best
solution compared to other algorithms.

Table 14. Experimental results of the multiple disc clutch brake problem.

Algorithm Optimal Values for Variables Optimum Weight
X1 X2 X3 X4 X5

MPDO 70 920 1 600 2 0.235242458

WCA[65] 70 90 1 910 3 0.313656

CMVO[66] 70 90 1 910 3 0.313656

SCA[36] 69.516 90 1 1000 2 0.24019

MFO[48] 70 90 1 910 3 0.313656

RSA[52] 70.0347 90.0349 1 801.7285  2.974 0.31176

OOA[56] 60 90 1 600 2 0.330809706

6. Conclusions and future work

We propose a frequency wave strategy based on prairie dogs’ special sound transmission mode.
The position of prairie dogs changed by simulating different signals emitted when encountering
different food sources and natural enemies. In order to balance the exploration and exploitation of
the algorithm, the strong and weak audio signal received by prairie dogs in the foraging stage were
used to expand or narrow the scope of searching for food, and the fast and slow audio signal received
in the avoiding natural enemies stage were used to avoid or stay from nature enemies. This enables
the algorithm to effectively find better optimization value in the later evaluation stage, enhancing
the optimization ability of the algorithm. In order to enhance the global exploration ability of the
algorithm, a chaotic tent map and lens opposition-based learning strategy are added to the evaluation
process of the algorithm.

In order to verify the optimization performance of the MPDO algorithm, 23 benchmark test
functions and IEEE CEC2014 test functions were used to evaluate the MPDO algorithm. Experimental
data and convergence curves were analyzed by comparing them with seven algorithms. The final
results showed that the MPDO algorithm has good optimization performance. In order to verify the
practicality of the MPDO algorithm in engineering application problems, six constrained engineering
design problems were tested at the end of the article. The comparison results with other algorithms
proved that the MPDO algorithm is an effective strategy for solving practical application problems.
Structural health monitoring (SHM) has been aiming at improving the damage detection capability of
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SHM systems, reducing the load of large engineering structure, such as bridges, and improving
structures’ operation and service life. Therefore, in future work, we hope the MPDO algorithm is
applied to the SHM field and achieves good results. In addition, we also hope to apply MPDO to the
clustering problem, image segmentation and processing problem, and feature selection problem of
machine learning.
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