
MBE, 20 (10): 18960–18986. 
DOI: 10.3934/mbe.2023839 
Received: 08 August 2023 
Revised: 23 September 2023 
Accepted: 26 September 2023 
Published: 10 October 2023 

http://www.aimspress.com/journal/MBE 
 

Research article 

A sustainable scheduling system for medical equipment: Towards net 

zero goals for green healthcare 

Baotong Wu and Qi Tang* 

School of management, Shenyang University of Technology, Shenyang, 110870, China 

* Correspondence: Email: tangqi20050708@163.com; Tel: +86-13909816250. 

Abstract: Shortages of medical equipment, growth in medical waste and carbon emissions have 
increased healthcare pressures and has a huge impact on the environment. An efficient scheduling of 
medical equipment will effectively reduce the pressure on healthcare and improve the healthcare 
system's ability to respond to unexpected disasters. A medical equipment scheduling system was 
established to improve the sustainable utilization of medical equipment within the healthcare network 
and to reduce the carbon emissions of the healthcare process. First, this paper combines medical 
equipment information to establish a medical equipment scheduling decision model that considers 
pollution to filter qualified medical equipment for scheduling. Then, this paper constructs and solves 
a multi-objective robust optimization model by collecting the patient's travel information and the 
medical pressure information of each region. In addition, to meet dynamic healthcare needs, a dynamic 
medical equipment configuration framework was constructed to enhance the flexibility of equipment 
scheduling and the resilience of the healthcare network. Combined with case studies, the results show 
that the medical equipment scheduling system can help decision makers make quick scheduling 
decisions and achieve sustainable use of medical equipment, with a corresponding increase in medical 
equipment utilization of 12.25% and a reduction in carbon emissions of 26.50%. The study will help 
enhance healthcare resource utilization and contribute to the net-zero goal of green healthcare. 
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1. Introduction  

In the wake of the global pandemic, countries around the world have realized the deficiencies in 
their health care systems and have improved them, to some extent, to deal with unexpected medical 
problems. It is worth noting that while healthcare systems operate well to safeguard human health, a 
large amount of healthcare waste is also generated. During global pandemics, outbreaks lead to an 
exponential increase in medical waste due to increased demand for medical products such as masks 
and protective clothing [1]. Medical waste is highly infectious and poses a significant threat to human 
health. Common medical waste treatment methods are mainly divided into autoclaving, incineration, 
and landfills; of these three technologies, 91% of countries use the incineration method for medical 
waste treatment, resulting in serious pollution of the atmosphere [2]. Countries have taken measures 
to address pollution during epidemics, such as improving monitoring systems for medical waste and 
wastewater discharges, and enhancing the ability to predict and prevent medical pollution [3]. However, 
some countries are unable to provide enough medical equipment to meet the needs of patients, leading 
to a growing problem of contamination associated with medical equipment. First, the lack of data-
based information leads to an increase in the number of ineffective patients trips to the hospital, and 
consequently to the emission of vehicle emissions. Second, the production process of medical 
equipment is often accompanied by the generation of a large number of pollutants; for example, in the 
process of welding, electroplating, spraying, etc. Therefore, due to the special characteristics of 
medical equipment, the manufacturing companies need to use cleaning agents that cause pollution to 
the environment (i.e., chlorinated solvents, fluoride solvents, etc.) several times during the production 
process. In addition, the operation of medical equipment usually produces pollution phenomena, such 
as radiation pollution [4,5], noise pollution [6], emission of exhaust gases [7], etc. In a medical 
response to a major emergency, decision-makers may overlook the importance of risk management 
because of a shortage of medical equipment, which greatly increases the probability of uncertain risk 
factors in the medical process. The risk of radiation [8], fire [9], electricity [10] and chemical risks [11] 
will cause irreversible medical accidents to healthcare workers and patients, in addition to 
environmental pollution [12]. Therefore, choosing the appropriate medical equipment and reducing 
the number of hospital trips for patients will help reduce carbon emissions. In addition, the process of 
scheduling medical equipment resources between regions may face different linguistic and semantic 
issues, which increases the difficulty of circulating medical data. Multimodal models can effectively 
integrate different linguistic and semantics to harmonize the corresponding medical reports [13]. 
Advances in vision-language pretraining (VLP) help healthcare professionals extract critical 
information from medical graphics to improve healthcare efficiency [14,15]. In recent years, as a new 
medical method, telemedicine has effectively alleviated this problem [16]. Telemedicine and health 
information technology can help save time, energy and fuel and thus reduce carbon emissions [17]. 
However, when major disaster problems occur, some patients need immediate treatment. In some 
regions, the shortage of medical equipment and the confusion of information and data [18] are likely 
to confuse the medical process, which will lead to an increase of carbon emissions and a decrease of 
the utilization rate of medical equipment. The improvement of the hospital's medical treatment capacity 
and the reduction of carbon emissions in the process of medical treatment are preconditions for 
realizing efficient, sustainable and green healthcare. 

The shortage of medical resources caused by sudden disasters often makes it difficult to promptly 
meet the medical needs of patients, causing some patients to miss the best time for medical treatment [19]. 
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In response to the shortage of medical resources, some scholars have improved the efficiency of 
resource utilization by optimizing the allocation of medical resources. For example, [20] improved 
resource utilization and built a multi-objective function solution to minimize the average hospital stay 
of patients and the waste of medical resources. [21] proposed a dynamic allocation strategy of medical 
resources to maintain the stability of the medical system by establishing a multi-stage and multi-type 
medical service network model. In addition, some scholars believe that the coordination between the 
prediction of public health emergencies and the allocation of medical resources will help improve the 
capability of medical responses. [22] improved the efficiency of emergency medical resource 
allocation decisions by building a predictive optimization framework. [23] predicted the patient's 
clinical condition to determine the optimal number of medical resources. The prediction method can 
effectively improve the efficiency of resource planning in advance and realize the preparation of 
medical resources. At the same time, there is no doubt that the process of medical resource allocation 
is usually accompanied by the generation of carbon emissions. Regarding the carbon emissions 
generated during the allocation of medical resources, some scholars have studied medical site selection [24], 
patient travel times [25–27], low-emission medical equipment [28], medical pharmaceuticals [29,30], etc. 
to reduce the carbon emissions generated during the medical process. Combined with computer 
technologies, medical decision-makers can realize two-way information connections through the 
collection of patient information and medical information in order to make reasonable medical 
decisions. The medical system can effectively avoid unnecessary carbon emissions by providing 
patients with the best personalized medical services to reduce the number of trips and overall travel 
distances [31].  

Combining previous research and discussions, we found that when the travel of medical patients 
matches the best medical capabilities, the hospital's medical processing capacity and carbon emissions 
will be effectively resolved. When the medical pressure on the hospital is high, one of the prerequisites 
for whether an advanced medical system can exert medical effects lies in the rapid circulation of 
medical resources in the medical network. However, for the issue of scheduling medical equipment 
between regions, coordination between the medical processing capacity and carbon emissions is rarely 
studied. In response to the aforementioned problems, we built a sustainable medical equipment 
scheduling system within the medical network to achieve medical equipment scheduling between 
regions. The scheduling of medical equipment resources within the medical network will effectively 
increase the medical capacity in regions with high medical pressure. After the scheduling of medical 
equipment, the medical capacity of the region will be improved, and patients will be able to prioritize 
local hospitals to receive treatment, thus reducing unnecessary travel. In addition, we included the 
fuzzy theory to help decision-makers select suitable medical equipment for the environmental pollution 
problems generated during the operation of medical equipment. To solve this problem, this paper 
highlights a multi-objective optimization model is constructed based on the carbon emissions 
generated by patients in vehicles and combined with a swarm intelligence algorithm. This research 
enables the sustainable scheduling of medical equipment within the healthcare network and contributes 
to the net-zero goal of green healthcare. The relevant contributions of this paper are as follows: 

 This study establishes risk system evaluation indicators related to medical equipment to 
ensure that the decision-making and scheduling of medical equipment are more in line with 
actual needs.  

 This paper establishes the medical equipment scheduling scheme by simulating the digital 
scheduling of medical equipment and by utilizing the multi-objective swarm intelligent 
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algorithm. This paper considers the issue of carbon emissions while considering medical 
equipment scheduling to minimize the number of times patients travel to the hospital. 

The article is structured as follows. Section 2 highlights the problem description, which includes 
the introduction for the environment with limited medical equipment resources, the construction of the 
dynamic equipment scheduling model, the introduction of the dynamic medical equipment 
configuration framework and the construction of the scheduling decision model based on fuzzy theory. 
Section 3 describes a sustainable scheduling system for medical equipment, which includes the 
construction of a multi-objective model which considers carbon emissions and the introduction of the 
non-dominated sorting genetic algorithm-II-multiple objective particle swarm optimization (NSGA-
II-MOPSO algorithm). Section 4 describes a case study combining the medical equipment scheduling 
of several hospitals. Section 5 discusses the application cases and a future development direction of 
medical equipment scheduling system. 

2. Model description 

2.1. Medical environment with limited medical equipments 

In a normal medical diagnostic environment, hospitals can maintain good medical services to 
complete the patient's treatment process. However, when a major medical incident is caused by natural 
environment or human factors, hospitals usually lack sufficient equipment and resources to provide 
medical services [32]. Within the medical network, appropriate medical equipment from other 
hospitals needs to arrive in a timely manner to relieve the medical pressure in the region. In addition 
to disaster issues affecting the stability of medical services, it is difficult for regional hospitals to have 
enough medical equipment to provide real-time treatment to patients due to the high price of some 
medical equipment. In order to avoid further transmission of the virus, when a large-scale infectious 
disease is prevalent, some governments will restrict patients from taking public transportation. Most 
patients will choose to travel to hospitals by private cars. This will increase the carbon emissions 
generated by patients traveling to hospitals. The new approach of “equipment-based scheduling of 
hospitals to proactively serve patients” will be more popular with patients than the traditional “patients 
travel to hospitals with medical capacity” approach to healthcare. Therefore, in an environment where 
medical equipment is limited, hospitals within a medical network should coordinate well and provide 
available medical equipment to hospitals with medical needs in a timely manner. In Figure 1, green 
represents the area with a low number of patients and red represents the area with a high number of 
patients. The green and red color shades represent the degree of the number of patients. 

At the same time, in order to realize the net zero concept of green healthcare, the scheduling of 
equipment resources within the healthcare network can effectively avoid unnecessary carbon 
emissions. When local hospitals are unable to meet patients' medical needs, patients often choose to 
travel to other hospitals with medical capacity. This process will result in continuous and significant 
environmental pollution. In addition, when the demand for patients in a region exceeds the capacity of 
the regional hospital, it will also result in significant carbon emissions from the medical process. This 
use of dispatching medical equipment to cater to medical needs will greatly facilitate patient travel and 
provide more convenient and personalized medical services. The corresponding carbon emission 
differential is schematically shown in Figure 2. In the case of insufficient medical capacity in Region 
1, patients travel to hospitals in Region 2 for treatment. When medical equipment is dispatched from 
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Region 2 to a hospital in Region 1, patients in Region 1 can go directly to a local hospital for treatment. 
Additionally, patients will travel less for medical treatment, thereby effectively reducing carbon 
emissions. In addition, for the convenience of the presentation, we divide a region into subregions. The 
medical capacity of all hospitals within a subregion is expressed as the medical capacity of the 
subregion. The notations are listed in the supplement. 

 

Figure 1. Equipment resource scheduling graph within the medical network. 

 

Figure 2. Carbon emission mitigation graph before and after medical equipment scheduling. 

2.2. Carbon emission difference model within the healthcare network 

Combining Figure 2 and Table 1, a reduction in carbon emissions is achieved through the 
scheduling of medical equipment. Among them, carbon emissions change from the high emissions of 
patients traveling to hospitals in other areas for treatment previously to the low emissions of patients 
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traveling to local hospitals. After the medical equipment scheduling occurs, the number of patient trips 
to the hospital and the amount of travel within the healthcare network will be reduced. At the same 
time, the process of medical equipment scheduling will generate some carbon emissions. Thus, we 
made the following definition: 

Definition 1. Let �𝛥𝛥12𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛥𝛥13𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝛥𝛥14𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, … ,𝛥𝛥𝑖𝑖′𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� denote the reduction in carbon 

emissions after medical equipment scheduling between regions. 

Definition 2. Let �𝐶𝐶12𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶13𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶14𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, … ,𝐶𝐶𝑖𝑖′𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�  denote the carbon emissions 

generated during the scheduling of hospital equipment between two regions. Thus, the carbon emission 
reduction before and after medical equipment scheduling between the two regions is as follows： 

'
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The total carbon emission reduction within the healthcare network is shown in Equation (2). 
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In order to achieve the goal of green healthcare, we should reduce the carbon emissions within 
the healthcare network. Thus, we construct the following objective function and constraints: 
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2.3. Dynamic medical capacity model within a healthcare network 
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The scheduling of medical equipment within the medical network will relieve the medical 
pressure on the demanding hospitals. Hospitals can achieve rapid patient care by enhancing medical 
capacities combined with digital technology. Hospitals use digital health platforms to personalize 
patient care plans in advance to ensure time savings and reduce unnecessary medical travel for 
patients [33]. Thus, we defined and inferred the following changes in the hospital medical capacity 
before and after scheduling: 

Definition 3. Let �𝛥𝛥12
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝛥𝛥13

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝛥𝛥14
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , … ,𝛥𝛥𝑖𝑖′𝑖𝑖

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�  denote the amount of medical 

capacity improvement after medical equipment scheduling between regions. Thus, the amount of 
medical capacity improvement before and after medical equipment scheduling between two regions is 
as follows: 

'
,hospital hospital scheduling hospital

i ii i
Q Q∆ = −  (8) 

Corollary 1. After medical equipment scheduling, the medical capacity of each hospital will 
change as the medical equipment is transferred in and out. Based on the transfer of medical equipment 
out and in, the following two main scenarios can be distinguished: 

If medical equipment is transferred out of the hospital, the hospital's medical capacity will be 
reduced. 

' '
'

,hospital scheduling hospital hospital a
i i i i i i

a A i I

Q Q x
∈ ∈

= − ∆∑∑
 

(9) 

The medical equipment was transferred to the hospital and the hospital's medical capacity was 
enhanced. 

' '
'
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(10) 

In summary, we derive the following equation: 
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In addition, the scheduled hospital's medical capacity should be no less than the maximum patient 
demand that the hospital can handle. 

,hospital scheduling
i ir

r R
Q Q

∈

≥∑
 

(12) 

To maintain stability in the process of scheduling equipment within the medical network, the 
maximum value of the scheduled equipment should be greater than the sum of the medical equipment 
occurring in the network for scheduling. 

'
'

a
i i

a A i I i I

x A
∈ ∈ ∈

≤∑∑∑
 

(13) 

Based on a dynamic medical equipment scheduling environment, this study takes the uncertainty 
of the number of patients in the actual process into account. Telemedicine and other means can be used 
to determine the number of patients. However, in some regions, we still face the problem of inadequate 
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data-based equipment. Thus, we construct robust optimization models to reduce the impact of dynamic 
patient volumes. This will meet the dynamic medical needs of patients, in addition to enhancing the 
robustness and resilience of the healthcare network. 

The relatively robust model proposed by Vairaktarakis [34] will effectively reduce the 
conservatism of the model while considering the worst case: 

( ) ( )
( ) ( )
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*

*
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f x f x
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ξ ξ
ξ ξ
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(14) 

where 𝑓𝑓(𝑥𝑥∗, 𝜉𝜉)  is the true optimal output of the system and 𝑔𝑔𝑖𝑖(𝑥𝑥∗, 𝜉𝜉) ≤ 0   represents the 
relevant equality and inequality constraints in actual production. Based on the benefits and usage 
scenarios of the model, we construct a healthcare capacity optimisation model for healthcare networks 
to improve network resilience: 
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In addition, equipment scheduling based within the healthcare network will help maximize the 
utilization of equipment resources. Frequent equipment scheduling will effectively reduce the 
frequency of patient trips to different regions. This process allows medical equipment to accurately 
identify the dynamic needs of patients and make the best scheduling decisions through the rapid flow 
of digital technology within the network. To combat the difficulty in balancing medical cost and 
medical capacity, hospitals with scheduling needs can enhance the medical capacity and reduce the 
purchase cost of medical equipment through medical equipment scheduling. This will indirectly reduce 
the carbon emission of the medical equipment manufacturing process. 

2.4. Multi-resource scheduling model based on fuzzy system 
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The epidemic has swept across the globe and has had an enormous impact on the functioning of 
societies around the world, posing a major challenge to disease prevention and control [35]. The 
shortage of medical equipment in the emergency situation brought about by the epidemic has caused 
an increased medical burden. This burden can be effectively reduced by scheduling medical equipment 
resources within the healthcare network. However, the operation of medical equipment is often 
accompanied by the generation of large amounts of contaminants, which can be harmful to patients 
and medical staff [36]. In addition, the operation of medical equipment is often accompanied by the 
generation of carbon emissions and other types of pollution, and the selection of qualified equipment 
will help improve the stability of medical care. We construct a scheduling decision model based on the 
characteristics of medical equipment to decide the qualified medical equipment for scheduling. The 
initial screening of medical equipment is achieved by constructing corresponding risk indicators to 
ensure that the scheduled medical equipment can perform better and avoid unnecessary medical risks. 
The model is based on the interval-valued intuitionistic fuzzy-technique for order preference by 
similarity to an ideal solution (IVIF-TOPSIS), which reduces the emission of pollutants while meeting 
the needs of medical equipment, and finally achieves the matching process of medical equipment. In 
the face of medical contamination in the medical process, we construct interval-valued intuitionistic 
fuzzy (IVIF) sets to solve the problem of excessive subjectivity in decision making and the difficulty 
of quantifying some of the indicators. 

Definition 4. Let 𝑄𝑄  be a nonempty set and 𝐴𝐴 = {⟨𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜈𝜈𝐴𝐴(𝑥𝑥)⟩,𝑥𝑥 ∈ 𝑄𝑄}  is IFS, 𝜇𝜇𝐴𝐴: 𝑥𝑥 →
[0,1], 𝜈𝜈𝐴𝐴: 𝑥𝑥 → [0,1] and 0 ≤ 𝜇𝜇�𝐴𝐴(𝑥𝑥) + 𝜈𝜈�𝐴𝐴(𝑥𝑥) ≤ 1. 

Definition 5. An IVIF set in 𝐴̃𝐴 over 𝑋𝑋 is an object given as in Equation (18): 

( ) ( ){ }, , ,  A AA x x x x Xµ ν= ∀ ∈ 
 

(18) 

The membership and non-membership function of the element 𝑥𝑥 of the set 𝐴𝐴 are represented 
as the intervals 𝜇𝜇�𝐴𝐴(𝑥𝑥)  and 𝜈𝜈�𝐴𝐴(𝑥𝑥) , respectively. Then, each 𝑥𝑥 ∈ 𝑋𝑋 , 𝜇𝜇�𝐴𝐴(𝑥𝑥)  and 𝜈𝜈�𝐴𝐴(𝑥𝑥)  are 
represented using closed intervals and their lower and upper end values are shown by  

�𝜇𝜇�𝑖𝑖𝑖𝑖− , 𝜇𝜇�𝑖𝑖𝑖𝑖+�, �𝜈𝜈�𝑖𝑖𝑖𝑖− , 𝜈𝜈�𝑖𝑖𝑖𝑖+� [37]: 

{ }, , , , ,  ij ij ij ijA x x Xµ µ ν ν− + − +   = ∈   
   

 
(19) 

where 0 ≤ 𝜇𝜇�𝑖𝑖𝑖𝑖− + 𝜇𝜇�𝑖𝑖𝑖𝑖+ ≤ 1,0 ≤ 𝜈𝜈�𝑖𝑖𝑖𝑖− , 0 ≤ 𝜇𝜇�𝑖𝑖𝑖𝑖− . 

Based on the literature on medical equipment management [38-41], we selected six indicators 
related to medical equipment: equipment radiation (C1), equipment depreciation (C2), microbial 
contamination (C3), exposure to machinery-related noise (C4), respiratory problems due to chemical 
substances (C5), and thermal risk (C6). Decision makers use the seven levels of language terms defined 
in interval valued intuitionistic fuzzy set (IVIFS) to evaluate medical equipment based on metrics. 
IVIFS helps to apply and handle many decision problems in an uncertain environment [42]. Table 1 
presents the linguistic terms and their corresponding IVIFS. 

The IVIF-TOPSIS-based scheduling decision model which considers contamination in a major 
emergency medical setting is expressed in Figure 3. The content in Figure 3 will show how the 
scheduling decision model can be used to help decision makers select medical equipment with the 
same function but containing different characteristics in a major emergency medical environment in detail. 
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Table 1. Linguistic terms and IVIFS. (The first column represents the Linguistic Term and 
its corresponding abbreviation, and the second column represents the IVIF Number 
corresponding to the Linguistic Term.) 

Linguistic Term IVIF Number 
Very Low (VL) ([0.00,0.12], [0.80,0.90]) 
Low(L) ([0.14,0.23], [0.65,0.70]) 
Medium Low (ML) ([0.33,0.42], [0.45,0.50]) 
Medium(M) ([0.44,0.61], [0.20,0.30]) 
Medium High (MH) ([0.67,0.73], [0.15,0.25]) 
High (H) ([0.71,0.82], [0.10,0.15]) 
Very High (VH) ([1.00,1.00], [0.00,0.00]) 

 

Figure 3. Decision model for medical equipment scheduling considering contamination. 

The steps of the IVIF-TOPSIS method based on medical equipment scheduling are as follows: 
Step 1: A questionnaire survey of multiple hospitals was used to establish the basic needs for 

medical equipment and common medical contamination in a major emergency medical setting. 

Suppose that there are 𝑚𝑚  feasible alternatives, denoted by 𝐴𝐴 = �𝐴𝐴1，𝐴𝐴2，…，𝐴𝐴𝑚𝑚�  and 𝑛𝑛 

criterions be 𝐶𝐶 = �𝐶𝐶1，𝐶𝐶2，…，𝐶𝐶𝑛𝑛�. 

Step 2: Establish equipment expert groups and hospital demand side related to equipment 

performance. Suppose that there are k decision makers, denoted by 𝐷𝐷 = �𝐷𝐷1，𝐷𝐷2，…，𝐷𝐷𝑚𝑚�. 
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Step 3: Construct an aggregated IVIF decision matrix 𝑌𝑌𝑝𝑝  of the 𝑝𝑝 th decision maker and the 
average decision matrix 𝑌̄𝑌. 
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11 12 1

21 22 2

1 1
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...
... ... ... ...

...

p p p
n

p p p
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p ij m n
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    

(20) 

𝑌̄𝑌 = �𝑓𝑓𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛
, where 𝑓𝑓𝑖𝑖𝑖𝑖 = �

𝑓𝑓𝑖𝑖𝑖𝑖
1⊕𝑓𝑓𝑖𝑖𝑖𝑖
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𝑘𝑘

𝑘𝑘
�. 

Step 4: Construct a weighting matrix 𝑊𝑊 of 𝑘𝑘 decision maker and the average weighting matrix 
𝑊̄𝑊. 

( ) 1 2
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1 2
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mp
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W ω
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= =
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(21) 

where, 𝑊̄𝑊 = (𝜔𝜔𝑖𝑖)1×𝑚𝑚，and 𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖
1⊕𝜔𝜔𝑖𝑖

2⊕…⊕𝜔𝜔𝑖𝑖
𝑘𝑘

𝑘𝑘
. 

Step 5: Construct the aggregated weighted interval valued intuitionistic fuzzy decision matrix, 
𝐷𝐷′. 

( ) ( )' ' ' ' ' ' ', , , ,ij ij ij ij ij ijm n
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×
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(22) 

Step 6: Determine the positive and negative ideal solution by using Equations (23) to (24). 
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where， 
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Step 7: Calculate the distance of each factor to the IVIF-PIS (IVIF-TOPSIS positive ideal solution) 

and IVIF-NIS (IVIF-TOPSIS negative ideal solution) in Equations (25) to (26). 
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Step 8： Combine 𝑆𝑆𝑖𝑖+(𝐷𝐷𝑖𝑖,𝐴𝐴+) and 𝑆𝑆𝑖𝑖−(𝐷𝐷𝑖𝑖,𝐴𝐴−) to calculate the closeness coefficient(𝑅𝑅𝐶𝐶𝑖𝑖) for 
each medical equipment scheduling alternative by using Equation (27). 

, 1, 2,...,i
i

i i

SRC i n
S S

−

− += =
+  

(27) 

Step 9: Rank the preference of alternatives according to the ascending order of closeness 
coefficients. Decision makers decide on the better-performing medical equipment for medical network 
scheduling. 

3. Sustainable medical equipment scheduling system 

The main factors affecting the scheduling of medical equipment within a healthcare network are 
categorized into three parts: the number and types of medical equipment, the pressure of medical care 
in each region, and the carbon emissions generated by patients traveling to hospitals for treatment. The 
sustainable scheduling system for medical equipment improves the utilization of medical equipment 
by building a medical equipment configuration framework. When a region within a healthcare network 
is under high medical pressure, a sustainable scheduling system for medical equipment can quickly 
make medical equipment scheduling decisions. By scheduling medical equipment resources from other 
regions to areas with a higher medical pressure, the medical capacity of the region will be significantly 
enhanced. This will effectively reduce unnecessary travel and save patients' travel time to the hospital. 
In addition, the system is solved by constructing a multi-objective robust optimization model and 
combining it with the NSGA-II-MOPSO algorithm. Ultimately, the system enables the efficient 
scheduling of medical equipment resources within the healthcare network, thereby reducing the 
number of patient trips and time, subsequently reducing carbon emissions. 

Combined with the IVIF-TOPSIS method, we will effectively select the right equipment for 
scheduling to ensure the reduction of environmental pollution and the appropriate operation of the 
equipment. The process of scheduling medical equipment between subregions within the healthcare 
network will facilitate the improvement of the healthcare capacity in subregions with a high medical 
pressure. By scheduling medical equipment, patients in sub-regions with a high medical pressure can 
reduce their carbon footprint by travelling directly to the subregion for treatment, thereby reducing the 
number of trips to hospitals in other subregions. Thus, the scheduling of medical equipment will 
effectively reduce the carbon emissions generated during the patient's travel to the hospitals and will 
save a significant amount of medical equipment manufacturing costs. This will effectively achieve the 
goal of green healthcare. At the same time, the improvement of medical capacities within the medical 
network will effectively achieve the improvement of medical services. Thus, we construct a multi-
objective model which combines carbon emissions and the overall level of care within the healthcare 
network. 

Objective function: 
, , , ,emission scheduling emission scheduling total emission production
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i I r R i I
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The above multi-objective model was constructed to effectively implement the decision process 
for equipment scheduling. However, with the appropriate operation of the medical equipment, there 
will be other areas within the medical network where medical needs will arise at residential sites. 
Hospitals within a healthcare network are faced with continuously changing medical demands. 
Therefore, in order to balance the medical needs of patients in each region and to reduce the pressure 
of medical care in each region, we have built a dynamic medical equipment configuration framework 
to enhance the dynamic processing capacity of the medical network. By establishing termination 
conditions, the medical equipment configuration framework will enable medical resource allocation 
on a continuous basis until the medical resources within the healthcare network are adequately utilized. 
This will improve the utilization of medical equipment resources. In addition, through the medical 
equipment configuration framework, the medical pressure in individual regions is shared by the entire 
medical network. This will increase the overall risk tolerance and resilience of the medical network. 
When single or multiple regions within a medical network experience a high level of medical pressure, 
idle resources from other regions within the medical network can enable rapid resource allocation. 
Figure 4 shows the dynamic medical equipment configuration framework. In this framework, we have 
divided the basic framework into three parts according to the process: digital statistics, scheduling 
decision process and medical equipment scheduling program implementation. Furthermore, we 
categorize the framework into a digital medical scheduling system construction, which is a dynamic 
configuration decision process combined with digital information based on the different functions 
within the framework. The framework operates with a variety of functions aimed at realizing the 
dynamic configuration of medical equipment resources. 
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Figure 4. Dynamic medical equipment configuration framework. 

The corresponding framework operation process is shown below: 
Step 1: Obtain statistics of the medical capacity and the operating parameters of medical 

equipment in each region. Hospitals in each region upload various types of information into the 
transparent digital platform. 

Step 2: Combine digital technology to count the patient information and the number of patients in 
each region. We build personalized medical plans for different patient states. 

Step 3: Construct an index system for contamination and operational risk during the operation of 
medical equipment. Combined with the IVIF-TOPSIS method, the screening of each equipment in the 
medical network is realized to determine the qualified medical equipment that can operate well. 

Step 4: A digital healthcare platform simulates the scheduling process of each medical equipment 
within the healthcare network. Different scheduling environments are generated by combining various 
simulated scheduling scenarios. 

Step 5: A multi-objective model is constructed and solved to establish the scheduling results for 
each scenario. Based on this, the medical capacity of each region is analyzed to ensure that each region 
can meet sufficient patient demand and monitor patient information in real time. 

Step 6: Select a better alternative from the multiple scheduling options as the decision solution for 
the final scheduling solution. This solution will ensure that the medical dispatch will be robust to 
patient demand and minimize the carbon emission during the patient's travel to the hospital. 

Step 7: Implementation of the program and ongoing statistics on patient information and hospital 
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capacity in each region of the healthcare network. 
Based on our previous studies [43-44], the NSGA-II-MOPSO algorithm is an efficient algorithm. 

The set non-dominated solution has a better performance in convergence, uniformity and diversity. 
Thus, we adopt the NSGA-II-MOPSO algorithm for problem solving. 

4. Case study and discussion 

In order to demonstrate the effectiveness of sustainable medical scheduling systems in improving 
medical capacities and reducing carbon emissions, we analyze the process of scheduling medical 
equipment in a major emergency medical situation with specific examples. We interviewed several 
provincial hospitals in China during the March 2022 outbreak to obtain data. In addition, due to the 
rapid spread of the new coronavirus, the Chinese government restricted public transportation for 
infected and febrile patients to avoid mass transmission. As a result, most febrile patients chose to 
travel to the hospital by private car. After a 2-year-long outbreak, some hospitals within the region had 
the capacity to treat critically ill patients. Each hospital was responsible for the care of local patients 
and some hospitals found it difficult to supply the needs of patients in their regions. Thus, combined 
with the emergency medical environment, some hospitals with insufficient medical capacity requested 
the required medical equipment and established an emergency procurement plan based on the "Notice 
on the Recommendation of Urgent Medical Equipment for the Prevention and Treatment of the New 
Hall Pneumonia Epidemic" as issued by the China Medical Equipment Association and the published 
"Catalogue of Urgent Medical Equipment for the Prevention of the New Hall Pneumonia Epidemic 
(First Batch)", with the corresponding equipment names, manufacturers and reference models shown 
in the supplement. The main medical equipment purchased were as follows: non-invasive ventilator, 
transnasal high-flow oxygenator, extra-corporeal membrane oxygenator (ECMO), infusion pump, etc. 
Although the way hospitals purchase medical equipment effectively reduces the medical pressure of 
some hospitals, it increases the cost of purchasing a lot of equipment and increases the environmental 
pollution during the manufacturing process of the equipment. In the face of the reality of a gradually 
decreasing epidemic pressure environment, the role of additional medical equipment will gradually 
decrease in the future. This will increase the waste of medical equipment and raw materials. We 
constructed a healthcare network between provinces in China, with the major cities within each 
province responsible for the major healthcare needs of their provinces. In particular, we subdivided 
each province into five patient areas based on their size and population. Table 2 shows the number of 
patients in each province within the healthcare network in China. As shown in Table 2, there was no 
large-scale infection in March 2022 within China. However, small-scale epidemics were found in many 
regions. Some of these regions faced a high medical pressure. After a large number of sample surveys 
and data comparisons, we selected a few provinces as the main reference examples. In March 2022, 
coronavirus infections only occurred in some areas due to good health policies of the Chinese 
government and a high awareness of virus protection among the population. When severe infections 
occur in some regions, local people often consciously avoid unnecessary travel to prevent the spread 
of the virus. This effectively reduces the probability of people being infected with the virus. 

We have built a digital platform that combines the medical capacity needs of each hospital with 
patient information. In addition, we built a Chinese healthcare network based on the number of patients 
in each region of China during the March 2022 outbreak. For example, the main demand for 
noninvasive ventilators came from hospitals in four provinces: Liaoning, Hubei, Sichuan, and Zhejiang. 
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Figure 5 plots the colors of different regions within China according to the number of patients in the 
corresponding region. The red color indicates that the number of patients in the region is high, while 
the green color indicates that the number of patients in the region is low. 

Table 2. Statistics of the number of patients by province in China (Columns 1 and 3 
represent different regions and columns 2 and 4 represent the number of patients). 

Region Number of patients Region Number of patients 
Hebei 195 Zhejiang 393 
Shanxi 23 Anhui 4 
Shaanxi 192 Fujian 112 
Liaoning 154 Jiangxi 0 
Jilin 6063 Shandong 1110 
Heilongjiang 46 Henan 46 
Jiangsu 185 Hubei 39 
Hunan 7 Hainan 3 
Guangdong 1734 Sichuan 152 
Guizhou 4 Gansu 183 
Xinjiang 0 Xizang 0 
Yunnan 30 Qinghai 2 
Taiwan 6630 Guangxi 294 
Inner Mongolia 45 Ningxia 0 

 

Figure 5. Distribution of patients by region within the medical network. 

The epidemic situation in Zhejiang province was serious, with a large number of asymptomatic 
patients in addition to diagnosed patients. Therefore, we analyzed the medical capacity and medical 
equipment of hospitals in Zhejiang Province. For illustrative purposes, we analyzed non-invasive 
ventilators based on the dynamic medical equipment configuration framework. The computational 
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procedures of the case are implemented as follows: 
Step 1: First, we establish the corresponding expert group members for the non-invasive 

ventilators. A total of two medical equipment demanders and three equipment experts together formed 
a five-member expert decision group. Meanwhile, five expert decision-making groups established six 
indicators for the pollution problems faced during the use of medical equipment, which are: equipment 
radiation (C1), equipment depreciation (C2), microbial contamination (C3), exposure to machinery-
related noise (C4), respiratory problems due to chemical substances (C5), and thermal risk (C6). 
Generate all possible alternatives and criteria. Alternatives are 𝐴𝐴 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴6} and criterion are 
𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶6}. 

Step 2：Generate a set of decision makers: 𝐷𝐷 = {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷4}. Construct an aggregated IVIF 
decision matrix and the average decision matrix 𝑌̄𝑌 . First, the language terms were established 
according to Table 2, and the corresponding results are shown in supplementary. 

All individual decision opinions are fussed into a group of opinion. Then, the aggregated matrices 
from each decision maker are averaged to construct an aggregated group decision matrix. The average 
of the group decision matrix is denoted as 𝑌̄𝑌. 

Thus, we can obtain 𝑌̄𝑌: 
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Step 4: Construct a weighting matrix 𝑊𝑊  of four decision makers and the average weighting 
matrix 𝑊̄𝑊 . The weighting matrix 𝑊𝑊  of the four decision makers is constructed and the average 
weighting matrix 𝑊̄𝑊 is calculated in the supplement. 

Step 5: Construct the aggregated weighted interval valued intuitionistic fuzzy decision matrix, 𝐷𝐷′. 
Then, the aggregated weighted interval valued intuitionistic fuzzy decision matrix, 𝐷𝐷′, is computed. 
The aggregated weighted interval valued intuitionistic fuzzy decision matrix is shown below： 
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0.6482,0.7224 , 0.0056,0.0143 0.5589,0.6708 , 0.0077,0.0187 0.8100,0.8600 , 0.0000,0.0000

0.7596,0.8100 , 0.0025,0.0064 0.8700,0.9000 , 0.0000,0.00[ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )

00 0.6264,0.6840 , 0.0060,0.0160

0.6351,0.7020 , 0.0055,0.0144 0.5916,0.6480 , 0.0020,0.0048 0.6438,0.7200 , 0.0050,0.0128

0.4891,0.5772 , 0.0143,0.0378 0.5360,0.6216 , 0.0104,0.0273 0.5293,0.6068 , 0.0117,0.0315












  

Step 6: Determine the positive ideal partner solution and the negative ideal partner solution by 
using Equations (25) to (26). 

[ ] [ ]( ) [ ] [ ]( )( [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ))

+ == 0.8200,0.8800 , 0.0000,0.0000 0.7200,0.7660 , 0.0000,0.0000 0.8100,0.8600 , 0.0000,0.0000

0.8700,0.9000 , 0.0000,0.0000 0.8091,0.8460 , 0.0015,0.0040 0.5896,0.6808 , 0.0052,0.0126

A ， ，

， ，  
[ ] [ ]( )( [ ] [ ]( ) [ ] [ ]( )

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ))

- == 0.5658,0.6864 , 0.0066,0.0153 0.4680,0.5320 , 0.0180,0.0500 0.5346,0.6192 , 0.0098,0.0253

0.5916,0.6840 , 0.0060,0.0152 0.5742,0.6480 , 0.0070,0.0184 0.4489,0.5476 , 0.0169,0.0441

A ， ，

， ，  
Step 7: Calculate the separation measure between the candidates and NIPS for each decision maker. 

Results are as shown in the supplement. 
Step 8: Calculate the closeness coefficient. Table 3 shows the corresponding closeness coefficient 

of the different schemes, thus indicating the advantages and disadvantages of the alternatives 
(𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4,𝐴𝐴5,𝐴𝐴6). 

Table 3. Statistics of 𝑅𝑅𝐶𝐶𝑖𝑖 results. (Columns 2-7 represent the corresponding 𝑅𝑅𝐶𝐶𝑖𝑖 values 
for each alternative). 

 A1 A2 A3 A4 A5 A6 
𝑅𝑅𝐶𝐶𝑖𝑖 0.3261 0.3110 0.2572 0.4611 0.4713 0.3236 

Step 9: Rank the preference order of all alternatives. 

( ) ( ) ( ) ( ) ( ) ( )5 4 1 6 2 3Rank Rank Rank Rank Rank Rank> > > > >  
Step 10: With Step 1-9, we combine a fuzzy theory-based scheduling decision model to establish 

lower-risk medical equipment for collaborative scheduling within the healthcare network. Based on 
the actual medical capacity and patient needs in each region, we finalized four qualified NIVs (i.e., 1, 
4, 5, and 7) for the equipment scheduling process within the medical network. 

Step 11: We construct a multi-objective model based on patient profiles and carbon emissions in 
Zhejiang province and combine it with the NSGA-II-MOPSO algorithm to solve the scheduling results 
of noninvasive ventilators, as shown in Figure 6(a). Accordingly, we solved the multi-objective model 
for three provinces-Liaoning, Hubei, and Sichuan-after the non-invasive ventilator was scheduled and 
solved, as displayed in Figure 6(b) to (d). Decision makers can choose different equipment scheduling 
schemes based on Figure 6(a) to (d) to achieve equipment resource scheduling and to determine the 
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carbon emissions generated by patients traveling to the hospital. 

  

(a). The pareto surface of Zhejiang Province. (b). The pareto surface of Hubei Province. 

  

(c). The pareto surface of Liaoning Province. (d). The pareto surface of Sichuan Province. 

Figure 6. The pareto surfaces of Provinces. 

In the case study, we combine IVIF-TOPSIS, NSGA-II-MOPSO and a method that integrates the 
two methods to verify the effectiveness of a sustainable scheduling system for medical equipment. 
After seeking the agreement of hospitals and patients in Liaoning Province, we selected four cases for 
comparison to show the effectiveness of a sustainable scheduling system for medical equipment. They 
are as follows: 
 Natural situation.  
 Medical equipment decision making within the healthcare network.  
 Medical equipment scheduling within the healthcare network.  
 Medical equipment decision making and medical equipment scheduling within the healthcare 

network. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The capacity of hospitals to supply demand

0

2000

4000

6000

8000

10000

12000

14000

16000

C
ar

bo
n 

em
is

si
on

NSGA-II-MOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The capacity of hospitals to supply demand

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
ar

bo
n 

em
is

si
on

10 4

NSGA-II-MOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The capacity of hospitals to supply demand

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
ar

bo
n 

em
is

si
on

NSGA-II-MOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The capacity of hospitals to supply demand

0

2000

4000

6000

8000

10000

12000

14000

16000

C
ar

bo
n 

em
is

si
on

NSGA-II-MOPSO



18979 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18960–18986. 

  

(a). Natural situation. 
(b). Medical equipment decision making 

(IVIF-TOPSIS) within the healthcare 
network. 

  

(c). Medical equipment scheduling (NSGA-
II-MOPSO) within the healthcare network. 

(d). Medical equipment decision making 
(IVIF-TOPSIS) and medical equipment 

scheduling (NSGA-II-MOPSO) within the 
healthcare network. 

Figure 7. Carbon emissions, medical equipment utilization, rate of medical equipment in 
perfect operational performance under four cases. 

Combined with the comparison of the four sets of the simulation results within Figure 7(a) to (d), 
we found that IVIF-TOPSIS can effectively save the time of medical equipment decision-making and 
guarantee the operational performance of medical equipment. However, this method is not suitable for 
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large-scale medical device scheduling decision-making processes within the healthcare network. In 
addition, this approach makes it difficult to make medical equipment scheduling decisions that balance 
the carbon footprint and relieve the pressure on healthcare. NSGA-II-MOPSO can quickly make 
medical equipment scheduling decisions that balance medical equipment utilization with the carbon 
emissions of patients traveling to the hospital. However, this method cannot ensure the operational 
performance of the scheduled medical equipment. The sustainable scheduling system that incorporates 
both approaches is beneficial in ensuring equipment operational performance, relieving regional 
healthcare pressures, reducing the carbon footprint of patient travel to hospitals, and improving 
medical equipment utilization. Combined with a sustainable medical equipment scheduling system, 
carbon emissions were reduced by 3500.71kg (33% reduction in carbon emissions), which is a 45% 
increase of medical equipment in a perfect operational performance. 

Combined with the dynamic medical equipment configuration framework, we implemented the 
medical equipment scheduling process within the medical network. At the end of medical equipment 
scheduling, Figure 8 shows the comparison of the number of patients and carbon emissions of the four 
provinces before and after medical scheduling. Table 4 shows the data related to medical equipment 
utilization and carbon emissions during the epidemic. Combined with Figure 8 and Table 4, we found 
that the number of patients in the four provinces was reduced through the sustainable scheduling 
system for medical equipment. In addition, the carbon footprint of patients traveling to hospitals was 
reduced because most patients only needed to travel to local hospitals for treatment. 

 

Figure 8. Comparison of the number of patients and carbon emissions before and after 
medical scheduling. 

The continuous scheduling process of medical equipment will effectively solve the previous 
model of medical equipment fixed in a hospital. Flexible and continuous scheduling will increase the 
utilization of medical equipment and reduce environmental pollution. In the past, medical equipment 
was often hampered by the lack of information and data flow. While hospitals in one region are already 
under a lot of pressure, hospitals in other regions are just beginning to implement medical equipment 
scheduling. This does not make for good healthcare and still results in a higher carbon footprint due to 
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the high number of patient trips to hospitals. Combined with Figure 8 and Table 4, we found that the 
four provinces increased the utilization of medical equipment by 11%, 14%, 12% and 12%, 
respectively. Sichuan, Liaoning, Hubei, and Zhejiang provinces all showed reductions in carbon 
emissions from patients traveling to hospitals. The reduction of carbon emissions generated by patients 
traveling to hospitals in the four provinces was 2938.56kg, 3954.65kg, 3500.71kg, and 3220.92kg, 
respectively. 

Table 4. Comparison of Medical Equipment Utilization and Carbon Emissions (Columns 
2-3 represent patient carbon emissions for the four provinces before and after scheduling. 
Columns 4-5 represent medical equipment utilization before and after scheduling.) 

Region 
Patient carbon 
emissions in 
March 2022 (kg) 

Patient carbon 
emissions after 
medical 
equipment 
scheduling (kg) 

Medical 
equipment 
utilization in 
March 2022 

Utilization of 
medical 
equipment after 
medical 
equipment 
scheduling 

Zhejiang 12733.75 9795.19 35% 46% 
Hubei 16011.52 12056.87 24% 38% 
Liaoning 10594.35 7093.64 33% 45% 
Sichuan 12197.79 8976.87 21% 33% 

 
The carbon emission reduction rates of the four provinces are 23%, 24%, 33% and 26% 

respectively. At the same time, the number of patient trips to hospitals and the probability of medical 
risks were also reduced. Combined with a sustainable scheduling system for medical equipment, the 
number of patients in the four provinces was reduced and time spent traveling to hospitals for treatment 
was saved. The time for patients to travel to hospitals within the four provinces was reduced by 27%, 
34%, 19% and 29%, respectively. In addition, the pressure on healthcare in some regions is shared by 
the entire healthcare network. In summary, we have found that the system can help to reduce patient 
care time within the healthcare network, regional healthcare pressures, the carbon emissions of patients 
travelling to hospitals and improve the utilization of medical equipment. 

Combining the above case results, we believe that sustainable medical equipment scheduling 
systems can effectively enhance the medical processing capacity of hospitals within a healthcare 
network. With limited healthcare resources, the rapid flow of resources within a healthcare network 
will stimulate the greatest healthcare potential. On the one hand, the continuous scheduling of medical 
equipment within the system will enable centralized treatment to meet patient needs in the fastest way 
possible. On the other hand, this sustainable scheduling will effectively reduce the number of patient 
travels to the hospital and avoid unnecessary environmental pollution. In addition, we realized the 
improvement of medical equipment reliability by utilizing IVIF-TOPSIS, which guarantees the safety 
of patients and reduces medical risks. The medical data-based service system will better realize green 
healthcare and avoid a lot of environmental pollution. 

5. Conclusion and future work 

In a healthcare environment where healthcare resources are limited, the scheduling of medical 
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equipment resources within a healthcare network consisting of individual hospitals plays a significant 
role. Hospital information systems facilitate the exchange of information between hospitals and 
patients, which will enhance the sustainability of the healthcare service system [45]. While considering 
the hazards to the medical environment caused by the waste generated in the medical process, the 
medical equipment scheduling decision model constructed in this study that considers pollution will 
help realize the initial screening of equipment resources to ensure the safety and reliability of dynamic 
medical equipment within the scheduling network. The sustainable scheduling system for medical 
equipment is realized by combining the IVIF-TOPSIS methodology to screen medical equipment to 
ensure that the medical equipment available for scheduling can exert a stable medical capability. In 
addition, the health and safety of patients and healthcare workers can be effectively safeguarded by the 
relevant indicators. Combined with the medical equipment selected by IVIF-TOPSIS method, we 
constructed a corresponding multi-objective model and solved it with the NSGA-II-MOPSO algorithm 
to discover the accurate scheduling of medical equipment in the medical network. The dynamic 
medical equipment configuration framework can simulate the scheduling process of equipment within 
a healthcare network and combine it with a multi-objective model based on the concept of green 
healthcare to achieve a balance between patient needs and carbon emissions. Combined with case 
studies, a sustainable medical equipment scheduling system can effectively improve the utilization of 
medical equipment resources. This will reduce carbon emissions from unnecessary medical equipment 
production, medical equipment operation and patient travel to the hospital. However, the methods 
presented in the paper still have some limitations. First, the paper only focuses on how to solve the 
medical pressure in the sub-region as quickly as possible, rather than considering the upper limit of the 
number of equipment schedules. The frequent scheduling process of medical equipment resources 
requires some scheduling time. In addition, the frequent medical equipment scheduling process may 
reduce the medical equipment utilization rate. Thus, the issue of how to establish a medical equipment 
scheduling system to achieve a balance between scheduling time and medical equipment utilization 
requires more research and analysis. Second, the method proposed within the paper can improve the 
solution quality through more accurate multi-objective algorithms. In addition, a huge number of 
medical equipment resources can be accurately screened for qualified medical equipment for 
scheduling using methods such as machine learning. Third, the article did not fully consider the transfer 
of healthcare data between subregions and real-time information statistics of patients. It is difficult to 
collect personal information about patients in time for the selection and pre-scheduling of medical 
equipment. Thus, a transparent, comprehensive, and convenient healthcare platform is needed, which 
will function as a real-time interaction between patient information and hospital information. 

In a future healthcare network system, multiple hospitals can jointly purchase urgently needed 
medical equipment to relieve the pressure of healthcare within the network, and the continuous 
scheduling of medical equipment within the healthcare network will effectively enhance the digital 
healthcare service capacity. In addition to a well-functioning hospital dispatch system, medical staff 
and government can make more flexible judgments to resolve major medical emergencies. While 
patients are traveling to the hospital, paramedics need to transmit real-time and uninterrupted patient 
information to the hospital to inform doctors of the situation, and some of the closer medical equipment 
resources can be scheduled close to the hospital to prioritize the sudden medical needs. In addition, the 
government should set reasonable and dynamic standards for emergency medical care. In the actual 
application scenario, the medical equipment sustainable scheduling system can be applied not only to 
the decision-making process of medical equipment in the epidemic environment, but also to other 
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scenarios, such as flood disasters; earthquake disasters; typhoon disasters and other natural disasters, 
saving decision making time for decision makers while maximizing the decision results to meet actual 
needs. It is worth noting that when combining different emergency scenarios, reasonable and 
comprehensive factor indicators should be constructed to ensure that medical equipment resources are 
more relevant to actual needs. For future research, we propose the suggestions as follows: 
 Based on the uncertain medical situation, future research can respond to the complex 

emergency medical environment by building more accurate patient prediction models. In 
addition, hospitals can achieve early scheduling of medical equipment in a way that alleviates 
the stress of the upcoming medical response. 

 Future research can realize the rapid recycling of medical waste within the closed-loop supply 
chain based on digital technology to further reduce the problem of environmental pollution 
from medical waste [46]. 

 Hospitals can develop advanced medical information systems to provide real-time statistics 
on patient information, medical equipment information, etc [47]. This will help connect 
patients with hospitals and reduce unnecessary travel for greener healthcare. 

 Hospitals can improve the proficiency of medical staff through training to avoid the risk of 
medical errors caused by the lack of proficiency in operating equipment. Meanwhile, with the 
improvement of digital information, hospitals can enter the proficiency level of medical 
personnel and other information into the medical platform to realize the matching of human 
resources and medical equipment resources. 
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