MBE, 20 (10): 18960-18986.
DOI: 10.3934/mbe.2023839
Received: 08 August 2023
Revised: 23 September 2023
Accepted: 26 September 2023
Published: 10 October 2023

=
ATM

NS

Hj,

0

il

http://www.aimspress.com/journal/MBE

Research article

A sustainable scheduling system for medical equipment: Towards net

zero goals for green healthcare

Baotong Wu and Qi Tang*
School of management, Shenyang University of Technology, Shenyang, 110870, China
* Correspondence: Email: tangqi20050708@163.com; Tel: +86-13909816250.

Abstract: Shortages of medical equipment, growth in medical waste and carbon emissions have
increased healthcare pressures and has a huge impact on the environment. An efficient scheduling of
medical equipment will effectively reduce the pressure on healthcare and improve the healthcare
system's ability to respond to unexpected disasters. A medical equipment scheduling system was
established to improve the sustainable utilization of medical equipment within the healthcare network
and to reduce the carbon emissions of the healthcare process. First, this paper combines medical
equipment information to establish a medical equipment scheduling decision model that considers
pollution to filter qualified medical equipment for scheduling. Then, this paper constructs and solves
a multi-objective robust optimization model by collecting the patient's travel information and the
medical pressure information of each region. In addition, to meet dynamic healthcare needs, a dynamic
medical equipment configuration framework was constructed to enhance the flexibility of equipment
scheduling and the resilience of the healthcare network. Combined with case studies, the results show
that the medical equipment scheduling system can help decision makers make quick scheduling
decisions and achieve sustainable use of medical equipment, with a corresponding increase in medical
equipment utilization of 12.25% and a reduction in carbon emissions of 26.50%. The study will help
enhance healthcare resource utilization and contribute to the net-zero goal of green healthcare.

Keywords: medical equipment; net-zero emissions; medical resource scheduling; medical network;
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1. Introduction

In the wake of the global pandemic, countries around the world have realized the deficiencies in
their health care systems and have improved them, to some extent, to deal with unexpected medical
problems. It is worth noting that while healthcare systems operate well to safeguard human health, a
large amount of healthcare waste is also generated. During global pandemics, outbreaks lead to an
exponential increase in medical waste due to increased demand for medical products such as masks
and protective clothing [1]. Medical waste is highly infectious and poses a significant threat to human
health. Common medical waste treatment methods are mainly divided into autoclaving, incineration,
and landfills; of these three technologies, 91% of countries use the incineration method for medical
waste treatment, resulting in serious pollution of the atmosphere [2]. Countries have taken measures
to address pollution during epidemics, such as improving monitoring systems for medical waste and
wastewater discharges, and enhancing the ability to predict and prevent medical pollution [3]. However,
some countries are unable to provide enough medical equipment to meet the needs of patients, leading
to a growing problem of contamination associated with medical equipment. First, the lack of data-
based information leads to an increase in the number of ineffective patients trips to the hospital, and
consequently to the emission of vehicle emissions. Second, the production process of medical
equipment is often accompanied by the generation of a large number of pollutants; for example, in the
process of welding, electroplating, spraying, etc. Therefore, due to the special characteristics of
medical equipment, the manufacturing companies need to use cleaning agents that cause pollution to
the environment (i.e., chlorinated solvents, fluoride solvents, etc.) several times during the production
process. In addition, the operation of medical equipment usually produces pollution phenomena, such
as radiation pollution [4,5], noise pollution [6], emission of exhaust gases [7], etc. In a medical
response to a major emergency, decision-makers may overlook the importance of risk management
because of a shortage of medical equipment, which greatly increases the probability of uncertain risk
factors in the medical process. The risk of radiation [8], fire [9], electricity [10] and chemical risks [11]
will cause irreversible medical accidents to healthcare workers and patients, in addition to
environmental pollution [12]. Therefore, choosing the appropriate medical equipment and reducing
the number of hospital trips for patients will help reduce carbon emissions. In addition, the process of
scheduling medical equipment resources between regions may face different linguistic and semantic
issues, which increases the difficulty of circulating medical data. Multimodal models can effectively
integrate different linguistic and semantics to harmonize the corresponding medical reports [13].
Advances in vision-language pretraining (VLP) help healthcare professionals extract critical
information from medical graphics to improve healthcare efficiency [14,15]. In recent years, as a new
medical method, telemedicine has effectively alleviated this problem [16]. Telemedicine and health
information technology can help save time, energy and fuel and thus reduce carbon emissions [17].
However, when major disaster problems occur, some patients need immediate treatment. In some
regions, the shortage of medical equipment and the confusion of information and data [18] are likely
to confuse the medical process, which will lead to an increase of carbon emissions and a decrease of
the utilization rate of medical equipment. The improvement of the hospital's medical treatment capacity
and the reduction of carbon emissions in the process of medical treatment are preconditions for
realizing efficient, sustainable and green healthcare.

The shortage of medical resources caused by sudden disasters often makes it difficult to promptly
meet the medical needs of patients, causing some patients to miss the best time for medical treatment [19].
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In response to the shortage of medical resources, some scholars have improved the efficiency of
resource utilization by optimizing the allocation of medical resources. For example, [20] improved
resource utilization and built a multi-objective function solution to minimize the average hospital stay
of patients and the waste of medical resources. [21] proposed a dynamic allocation strategy of medical
resources to maintain the stability of the medical system by establishing a multi-stage and multi-type
medical service network model. In addition, some scholars believe that the coordination between the
prediction of public health emergencies and the allocation of medical resources will help improve the
capability of medical responses. [22] improved the efficiency of emergency medical resource
allocation decisions by building a predictive optimization framework. [23] predicted the patient's
clinical condition to determine the optimal number of medical resources. The prediction method can
effectively improve the efficiency of resource planning in advance and realize the preparation of
medical resources. At the same time, there is no doubt that the process of medical resource allocation
is usually accompanied by the generation of carbon emissions. Regarding the carbon emissions
generated during the allocation of medical resources, some scholars have studied medical site selection [24],
patient travel times [25-27], low-emission medical equipment [28], medical pharmaceuticals [29,30], etc.
to reduce the carbon emissions generated during the medical process. Combined with computer
technologies, medical decision-makers can realize two-way information connections through the
collection of patient information and medical information in order to make reasonable medical
decisions. The medical system can effectively avoid unnecessary carbon emissions by providing
patients with the best personalized medical services to reduce the number of trips and overall travel
distances [31].

Combining previous research and discussions, we found that when the travel of medical patients
matches the best medical capabilities, the hospital's medical processing capacity and carbon emissions
will be effectively resolved. When the medical pressure on the hospital is high, one of the prerequisites
for whether an advanced medical system can exert medical effects lies in the rapid circulation of
medical resources in the medical network. However, for the issue of scheduling medical equipment
between regions, coordination between the medical processing capacity and carbon emissions is rarely
studied. In response to the aforementioned problems, we built a sustainable medical equipment
scheduling system within the medical network to achieve medical equipment scheduling between
regions. The scheduling of medical equipment resources within the medical network will effectively
increase the medical capacity in regions with high medical pressure. After the scheduling of medical
equipment, the medical capacity of the region will be improved, and patients will be able to prioritize
local hospitals to receive treatment, thus reducing unnecessary travel. In addition, we included the
fuzzy theory to help decision-makers select suitable medical equipment for the environmental pollution
problems generated during the operation of medical equipment. To solve this problem, this paper
highlights a multi-objective optimization model is constructed based on the carbon emissions
generated by patients in vehicles and combined with a swarm intelligence algorithm. This research
enables the sustainable scheduling of medical equipment within the healthcare network and contributes
to the net-zero goal of green healthcare. The relevant contributions of this paper are as follows:

® This study establishes risk system evaluation indicators related to medical equipment to
ensure that the decision-making and scheduling of medical equipment are more in line with
actual needs.

® This paper establishes the medical equipment scheduling scheme by simulating the digital
scheduling of medical equipment and by utilizing the multi-objective swarm intelligent
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algorithm. This paper considers the issue of carbon emissions while considering medical
equipment scheduling to minimize the number of times patients travel to the hospital.

The article is structured as follows. Section 2 highlights the problem description, which includes
the introduction for the environment with limited medical equipment resources, the construction of the
dynamic equipment scheduling model, the introduction of the dynamic medical equipment
configuration framework and the construction of the scheduling decision model based on fuzzy theory.
Section 3 describes a sustainable scheduling system for medical equipment, which includes the
construction of a multi-objective model which considers carbon emissions and the introduction of the
non-dominated sorting genetic algorithm-11-multiple objective particle swarm optimization (NSGA-
I1-MOPSO algorithm). Section 4 describes a case study combining the medical equipment scheduling
of several hospitals. Section 5 discusses the application cases and a future development direction of
medical equipment scheduling system.

2. Model description
2.1. Medical environment with limited medical equipments

In a normal medical diagnostic environment, hospitals can maintain good medical services to
complete the patient's treatment process. However, when a major medical incident is caused by natural
environment or human factors, hospitals usually lack sufficient equipment and resources to provide
medical services [32]. Within the medical network, appropriate medical equipment from other
hospitals needs to arrive in a timely manner to relieve the medical pressure in the region. In addition
to disaster issues affecting the stability of medical services, it is difficult for regional hospitals to have
enough medical equipment to provide real-time treatment to patients due to the high price of some
medical equipment. In order to avoid further transmission of the virus, when a large-scale infectious
disease is prevalent, some governments will restrict patients from taking public transportation. Most
patients will choose to travel to hospitals by private cars. This will increase the carbon emissions
generated by patients traveling to hospitals. The new approach of “equipment-based scheduling of
hospitals to proactively serve patients” will be more popular with patients than the traditional “patients
travel to hospitals with medical capacity” approach to healthcare. Therefore, in an environment where
medical equipment is limited, hospitals within a medical network should coordinate well and provide
available medical equipment to hospitals with medical needs in a timely manner. In Figure 1, green
represents the area with a low number of patients and red represents the area with a high number of
patients. The green and red color shades represent the degree of the number of patients.

At the same time, in order to realize the net zero concept of green healthcare, the scheduling of
equipment resources within the healthcare network can effectively avoid unnecessary carbon
emissions. When local hospitals are unable to meet patients’ medical needs, patients often choose to
travel to other hospitals with medical capacity. This process will result in continuous and significant
environmental pollution. In addition, when the demand for patients in a region exceeds the capacity of
the regional hospital, it will also result in significant carbon emissions from the medical process. This
use of dispatching medical equipment to cater to medical needs will greatly facilitate patient travel and
provide more convenient and personalized medical services. The corresponding carbon emission
differential is schematically shown in Figure 2. In the case of insufficient medical capacity in Region
1, patients travel to hospitals in Region 2 for treatment. When medical equipment is dispatched from
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Region 2 to a hospital in Region 1, patients in Region 1 can go directly to a local hospital for treatment.
Additionally, patients will travel less for medical treatment, thereby effectively reducing carbon
emissions. In addition, for the convenience of the presentation, we divide a region into subregions. The
medical capacity of all hospitals within a subregion is expressed as the medical capacity of the
subregion. The notations are listed in the supplement.
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Figure 1. Equipment resource scheduling graph within the medical network.
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Figure 2. Carbon emission mitigation graph before and after medical equipment scheduling.
2.2. Carbon emission difference model within the healthcare network
Combining Figure 2 and Table 1, a reduction in carbon emissions is achieved through the

scheduling of medical equipment. Among them, carbon emissions change from the high emissions of
patients traveling to hospitals in other areas for treatment previously to the low emissions of patients
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traveling to local hospitals. After the medical equipment scheduling occurs, the number of patient trips
to the hospital and the amount of travel within the healthcare network will be reduced. At the same
time, the process of medical equipment scheduling will generate some carbon emissions. Thus, we
made the following definition:

Definition 1. Let (ASqussion, pemission pemission pemission) denote the reduction in carbon
emissions after medical equipment scheduling between regions.
Definition 2. Let (Cgrission, cgmission cemission cEmissiony denote the carbon emissions

generated during the scheduling of hospital equipment between two regions. Thus, the carbon emission
reduction before and after medical equipment scheduling between the two regions is as follows:

emission __ ~emission,total __ ~ emission,schedulingtotal
AT = C; C (1)
where:

Cemission,total _ Cemission + Cemission,operation + Cemission, production

Cemission,scheduling,total _ Cemission,scheduling + Cemlsswn ,operation,scheduling + Z Cemlsswn a

i
aeA

emission,scheduling __ d ~ emission,travel ,scheduling,d
C => QiC|
deD

The total carbon emission reduction within the healthcare network is shown in Equation (2).

Z Z z Aemlsswn {z Z Cemlssmn + z C_emission,operation + z C‘emission, production :|
i i

iel jed reR iel reR iel iel (2)
Z Z Cemlssmn ,scheduling + Z Cemlsswn ,operation,scheduling + Z Z Z Cemlssmn a
iel reR iel acA iel jel

In order to achieve the goal of green healthcare, we should reduce the carbon emissions within
the healthcare network. Thus, we construct the following objective function and constraints:
Obijective function:

Cr?;\x(s):’okn ,scheduling __ Z Z Cemlssmn ,scheduling total + Z Ciemission, production (3)
iel reR iel
Subject to:
Cemission,scheduling,total _Cemission,scheduling _I_Cemlsswn ,operation,scheduling _I_Zcemlsswn a ( )
i T ii 4
acA
emlssmn schedullng emission,travel,scheduling,d
deD

>y Y <A

acA iel jel B (6)
1, if medical equipment a in region i

X% =1 s scheduled to region i. (7

0, Otherwise.

2.3. Dynamic medical capacity model within a healthcare network
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The scheduling of medical equipment within the medical network will relieve the medical
pressure on the demanding hospitals. Hospitals can achieve rapid patient care by enhancing medical
capacities combined with digital technology. Hospitals use digital health platforms to personalize
patient care plans in advance to ensure time savings and reduce unnecessary medical travel for
patients [33]. Thus, we defined and inferred the following changes in the hospital medical capacity
before and after scheduling:

Definition 3. Let (4]5°P™®, algspital, apospital, | A"0PHal) denote the amount of medical

capacity improvement after medical equipment scheduling between regions. Thus, the amount of
medical capacity improvement before and after medical equipment scheduling between two regions is
as follows:

hospital hospital ,scheduli hospital
Allospl al _ Q ospital ,scheduling Qi ospital (8)
Corollary 1. After medical equipment scheduling, the medical capacity of each hospital will
change as the medical equipment is transferred in and out. Based on the transfer of medical equipment
out and in, the following two main scenarios can be distinguished:
If medical equipment is transferred out of the hospital, the hospital's medical capacity will be

reduced.
hospital,scheduling _ hospltal hospltal a
Q "L LA ©)
cAiel
The medical equipment was transferred to the hospital and the hospital's medical capacity was
enhanced.
hospltal schedullng _ hospltal hospltal
acAie

In summary, we derive the following equation:

+Y > AP, if equipments are
acAjel

transferred to the hospital
=Y > AP if equipments are

acAiel

Qhospital,scheduling _ Qhospital
i - X

(11)

transferred out of the hospital

In addition, the scheduled hospital's medical capacity should be no less than the maximum patient
demand that the hospital can handle.
_hospital,scheduling > _

QI ;er (12)

To maintain stability in the process of scheduling equipment within the medical network, the

maximum value of the scheduled equipment should be greater than the sum of the medical equipment
occurring in the network for scheduling.

X3 <A

2225 03

Based on a dynamic medical equipment scheduling environment, this study takes the uncertainty

of the number of patients in the actual process into account. Telemedicine and other means can be used

to determine the number of patients. However, in some regions, we still face the problem of inadequate
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data-based equipment. Thus, we construct robust optimization models to reduce the impact of dynamic
patient volumes. This will meet the dynamic medical needs of patients, in addition to enhancing the
robustness and resilience of the healthcare network.

The relatively robust model proposed by Vairaktarakis [34] will effectively reduce the
conservatism of the model while considering the worst case:

min max f (X,é)_*f (X*’g)‘
X el f(X ,éf) ‘

where f(x*, &) is the true optimal output of the system and g;(x*,&) <0 represents the
relevant equality and inequality constraints in actual production. Based on the benefits and usage
scenarios of the model, we construct a healthcare capacity optimisation model for healthcare networks
to improve network resilience:

Obijective function:

g, (X',&)<0,véeU,i=1..,m (14)

. Q_hospital,scheduling _ Q_hospital,scheduling,* ]
mxm n;gjx I Q_hospital,schelduling,* |S.t., Vé: eU = 1’ M (15)
Subject to:
hospital,scheduli
Qi ospital ,scheduling > ZQir (16)
reR
+Y Y AP, if equipments are

acAjel

Qe resing _ s transferred to the hospital an

=Y. > AP if equipments are

acAiel

transferred out of the hospital

DR
acA iel jel
1, if medical equipment a in region i
x: =1 is scheduled to region i.

0, Otherwise.

In addition, equipment scheduling based within the healthcare network will help maximize the
utilization of equipment resources. Frequent equipment scheduling will effectively reduce the
frequency of patient trips to different regions. This process allows medical equipment to accurately
identify the dynamic needs of patients and make the best scheduling decisions through the rapid flow
of digital technology within the network. To combat the difficulty in balancing medical cost and
medical capacity, hospitals with scheduling needs can enhance the medical capacity and reduce the
purchase cost of medical equipment through medical equipment scheduling. This will indirectly reduce
the carbon emission of the medical equipment manufacturing process.

2.4. Multi-resource scheduling model based on fuzzy system
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The epidemic has swept across the globe and has had an enormous impact on the functioning of
societies around the world, posing a major challenge to disease prevention and control [35]. The
shortage of medical equipment in the emergency situation brought about by the epidemic has caused
an increased medical burden. This burden can be effectively reduced by scheduling medical equipment
resources within the healthcare network. However, the operation of medical equipment is often
accompanied by the generation of large amounts of contaminants, which can be harmful to patients
and medical staff [36]. In addition, the operation of medical equipment is often accompanied by the
generation of carbon emissions and other types of pollution, and the selection of qualified equipment
will help improve the stability of medical care. We construct a scheduling decision model based on the
characteristics of medical equipment to decide the qualified medical equipment for scheduling. The
initial screening of medical equipment is achieved by constructing corresponding risk indicators to
ensure that the scheduled medical equipment can perform better and avoid unnecessary medical risks.
The model is based on the interval-valued intuitionistic fuzzy-technique for order preference by
similarity to an ideal solution (IVIF-TOPSIS), which reduces the emission of pollutants while meeting
the needs of medical equipment, and finally achieves the matching process of medical equipment. In
the face of medical contamination in the medical process, we construct interval-valued intuitionistic
fuzzy (IVIF) sets to solve the problem of excessive subjectivity in decision making and the difficulty
of quantifying some of the indicators.

Definition 4. Let Q be a nonempty set and A = {(x, uy(x), v (x)),x € Q} is IFS, pu,:x -
[0,1],v4:x = [0,1] and 0 < jiy(x) + V,(x) < 1.
Definition 5. An IVIF setin A over X is an object given as in Equation (18):

A:{<x,[zA(x),17A(x)>,v Xe X} (18)

The membership and non-membership function of the element x of the set A are represented
as the intervals fis(x) and 7,(x), respectively. Then, each x € X, fis(x) and 7,(x) are
represented using closed intervals and their lower and upper end values are shown by

[, 15) [v5, 935] 371

A={(e[ .5 [75.73 ]), xe X] (19)
where 0 < fij; + i} < 1,0 < 75,0 < fij;.

Based on the literature on medical equipment management [38-41], we selected six indicators
related to medical equipment: equipment radiation (C1), equipment depreciation (C2), microbial
contamination (C3), exposure to machinery-related noise (C4), respiratory problems due to chemical
substances (C5), and thermal risk (C6). Decision makers use the seven levels of language terms defined
in interval valued intuitionistic fuzzy set (IVIFS) to evaluate medical equipment based on metrics.
IVIFS helps to apply and handle many decision problems in an uncertain environment [42]. Table 1
presents the linguistic terms and their corresponding IVIFS.

The IVIF-TOPSIS-based scheduling decision model which considers contamination in a major
emergency medical setting is expressed in Figure 3. The content in Figure 3 will show how the
scheduling decision model can be used to help decision makers select medical equipment with the
same function but containing different characteristics in a major emergency medical environment in detail.
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Table 1. Linguistic terms and IVIFS. (The first column represents the Linguistic Term and
its corresponding abbreviation, and the second column represents the IVIF Number
corresponding to the Linguistic Term.)

Linguistic Term IVIF Number

Very Low (VL) ([0.00,0.12], [0.80,0.90])
Low(L) ([0.14,0.23], [0.65,0.70])
Medium Low (ML) ([0.33,0.42], [0.45,0.50])
Medium(M) ([0.44,0.61], [0.20,0.30])
Medium High (MH) ([0.67,0.73], [0.15,0.25])
High (H) ([0.71,0.82], [0.10,0.15])
Very High (VH) ([1.00,1.00], [0.00,0.00])

side

Hospital demand Equipment Expert
Group

Y

w
0
o
Criteria . .. -
c < Build decision makers -]
and alternatives g
.
Q
A VL L 5
. — - - g
Construct decision matrix for each Construct weighted matrix =4
decision maker of decision makers
w2
=
0
Aggregated o
weighted matrix of decision makers w
3
g
¥ g
=
Determine IVIF-PIS Determine IVIF-NIS 2
2
a
Obtain the distances of cach alternative
from PIS and NIS
=
s
Y @
Calculate Closeness =
cocflicients of alternative and rank alternative a8
=
3
(5]

Make medical equipment
dispatch decisions

Figure 3. Decision model for medical equipment scheduling considering contamination.

The steps of the IVIF-TOPSIS method based on medical equipment scheduling are as follows:
Step 1: A questionnaire survey of multiple hospitals was used to establish the basic needs for
medical equipment and common medical contamination in a major emergency medical setting.

Suppose that there are m feasible alternatives, denoted by A ={A1, Ay s Am} and n

criterionsbe € = {C;, Cy5 ..., Cpl.

Step 2: Establish equipment expert groups and hospital demand side related to equipment

performance. Suppose that there are k decision makers, denoted by D = {Dl, Dys s Dm}.
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Step 3. Construct an aggregated IVIF decision matrix Y, of the pth decision maker and the
average decision matrix Y.

R A
fl £y .. fF
Yp — ( .I:ijp )mxn — 21 22 2n (20)
o fo o fond

1 fiorie..ork
Y = (fi]')an, where f;; = <%)

Step 4: Construct a weighting matrix W of k decision maker and the average weighting matrix

w.
Cl CZ m
W =(a") = 21
p ( )lxm [a)lp o ... a)ﬂ (21)
_ 1P w? wk
where, W = (w;)1xm> and w; = wl@ank&_
Step 5: Construct the aggregated weighted interval valued intuitionistic fuzzy decision matrix,
D'
D =DoW=(r) .5 =([a,][c;.0; ) (22)

Step 6: Determine the positive and negative ideal solution by using Equations (23) to (24).
D'k+ — ( Dl'k+’ Djl_k+, " Dr'T|]<+> —

([t ] o J)o{ Lt bt Lot T} ([l ] o )
D* =(D/",D/,...D}")

(R A o B (N e )

where,

D = ([af bt [t a¥ >=<[m?xa.'f mfaxbﬂ,[mfaxck m?xdi'j‘D,i:l,...,n,j=1,...,m,k=1,...

I | ij ij?

(23)

(24)

DX = <[a?*,b;‘*],[c'j", djk*}> = <[m9x aﬁ,m;axbﬂ,[mgxc;,m?x d;D,i =1,..,nj=1...mk=1..

Step 7: Calculate the distance of each factor to the IVIF-PIS (IVIF-TOPSIS positive ideal solution)
and IVIF-NIS (IVIF-TOPSIS negative ideal solution) in Equations (25) to (26).

S/ (D A")= {%Zn;[(a” —af)z +(by _b;)z +(c; _C;)z +(d; _d;)z}}m (25)

j=

_ [(aij - aj_)z +(b, _bj_)z +(ey _Ci_)z +(d, _di_ﬂ}m (26)
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Step 8: Combine S;"(D;, A*) and S; (D;,A™) to calculate the closeness coefficient(RC;) for
each medical equipment scheduling alternative by using Equation (27).

RC, ——
S, +S;

i=12,..,n (27)

Step 9: Rank the preference of alternatives according to the ascending order of closeness
coefficients. Decision makers decide on the better-performing medical equipment for medical network
scheduling.

3. Sustainable medical equipment scheduling system

The main factors affecting the scheduling of medical equipment within a healthcare network are
categorized into three parts: the number and types of medical equipment, the pressure of medical care
in each region, and the carbon emissions generated by patients traveling to hospitals for treatment. The
sustainable scheduling system for medical equipment improves the utilization of medical equipment
by building a medical equipment configuration framework. When a region within a healthcare network
is under high medical pressure, a sustainable scheduling system for medical equipment can quickly
make medical equipment scheduling decisions. By scheduling medical equipment resources from other
regions to areas with a higher medical pressure, the medical capacity of the region will be significantly
enhanced. This will effectively reduce unnecessary travel and save patients' travel time to the hospital.
In addition, the system is solved by constructing a multi-objective robust optimization model and
combining it with the NSGA-II-MOPSO algorithm. Ultimately, the system enables the efficient
scheduling of medical equipment resources within the healthcare network, thereby reducing the
number of patient trips and time, subsequently reducing carbon emissions.

Combined with the IVIF-TOPSIS method, we will effectively select the right equipment for
scheduling to ensure the reduction of environmental pollution and the appropriate operation of the
equipment. The process of scheduling medical equipment between subregions within the healthcare
network will facilitate the improvement of the healthcare capacity in subregions with a high medical
pressure. By scheduling medical equipment, patients in sub-regions with a high medical pressure can
reduce their carbon footprint by travelling directly to the subregion for treatment, thereby reducing the
number of trips to hospitals in other subregions. Thus, the scheduling of medical equipment will
effectively reduce the carbon emissions generated during the patient's travel to the hospitals and will
save a significant amount of medical equipment manufacturing costs. This will effectively achieve the
goal of green healthcare. At the same time, the improvement of medical capacities within the medical
network will effectively achieve the improvement of medical services. Thus, we construct a multi-
objective model which combines carbon emissions and the overall level of care within the healthcare
network.

Obijective function:

C emission,scheduling __ Z Z C emission,scheduling ,total + Z C emission, production
- i

network ir
iel reR iel

min max

Q hospital ,scheduling Q hospital ,scheduling ,*
i i
X geU

st.,V&eU,i :1,...,m}

Qhospital ,scheduling |
i

Subject to:
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emission,scheduling ,total emission,schedulin emission,operation,schedulin emission y,a
C gl — C 9 +C P 4 CImeenye
acA

Cemission,scheduling _ Q Cemission,travel,scheduling
ir - Xir Yir

hospital ,scheduling d
Qi i uli > z ZQ”
deD reR
+Y Y AP, if equipments are
acAijel

Qs shelng _ yposi transferred to the hospital
' ' =3TY AP if equipments are

i
acAiel

transferred out of the hospital

1, if medical equipment a in region i
Xt =1 is scheduled to region i.
0, Otherwise.

DR
acA i€l jel

The above multi-objective model was constructed to effectively implement the decision process
for equipment scheduling. However, with the appropriate operation of the medical equipment, there
will be other areas within the medical network where medical needs will arise at residential sites.
Hospitals within a healthcare network are faced with continuously changing medical demands.
Therefore, in order to balance the medical needs of patients in each region and to reduce the pressure
of medical care in each region, we have built a dynamic medical equipment configuration framework
to enhance the dynamic processing capacity of the medical network. By establishing termination
conditions, the medical equipment configuration framework will enable medical resource allocation
on a continuous basis until the medical resources within the healthcare network are adequately utilized.
This will improve the utilization of medical equipment resources. In addition, through the medical
equipment configuration framework, the medical pressure in individual regions is shared by the entire
medical network. This will increase the overall risk tolerance and resilience of the medical network.
When single or multiple regions within a medical network experience a high level of medical pressure,
idle resources from other regions within the medical network can enable rapid resource allocation.
Figure 4 shows the dynamic medical equipment configuration framework. In this framework, we have
divided the basic framework into three parts according to the process: digital statistics, scheduling
decision process and medical equipment scheduling program implementation. Furthermore, we
categorize the framework into a digital medical scheduling system construction, which is a dynamic
configuration decision process combined with digital information based on the different functions
within the framework. The framework operates with a variety of functions aimed at realizing the
dynamic configuration of medical equipment resources.
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Figure 4. Dynamic medical equipment configuration framework.

The corresponding framework operation process is shown below:

Step 1: Obtain statistics of the medical capacity and the operating parameters of medical
equipment in each region. Hospitals in each region upload various types of information into the
transparent digital platform.

Step 2: Combine digital technology to count the patient information and the number of patients in
each region. We build personalized medical plans for different patient states.

Step 3: Construct an index system for contamination and operational risk during the operation of
medical equipment. Combined with the IVIF-TOPSIS method, the screening of each equipment in the
medical network is realized to determine the qualified medical equipment that can operate well.

Step 4: A digital healthcare platform simulates the scheduling process of each medical equipment
within the healthcare network. Different scheduling environments are generated by combining various
simulated scheduling scenarios.

Step 5: A multi-objective model is constructed and solved to establish the scheduling results for
each scenario. Based on this, the medical capacity of each region is analyzed to ensure that each region
can meet sufficient patient demand and monitor patient information in real time.

Step 6: Select a better alternative from the multiple scheduling options as the decision solution for
the final scheduling solution. This solution will ensure that the medical dispatch will be robust to
patient demand and minimize the carbon emission during the patient's travel to the hospital.

Step 7: Implementation of the program and ongoing statistics on patient information and hospital
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capacity in each region of the healthcare network.

Based on our previous studies [43-44], the NSGA-1I-MOPSO algorithm is an efficient algorithm.
The set non-dominated solution has a better performance in convergence, uniformity and diversity.
Thus, we adopt the NSGA-I1-MOPSO algorithm for problem solving.

4. Case study and discussion

In order to demonstrate the effectiveness of sustainable medical scheduling systems in improving
medical capacities and reducing carbon emissions, we analyze the process of scheduling medical
equipment in a major emergency medical situation with specific examples. We interviewed several
provincial hospitals in China during the March 2022 outbreak to obtain data. In addition, due to the
rapid spread of the new coronavirus, the Chinese government restricted public transportation for
infected and febrile patients to avoid mass transmission. As a result, most febrile patients chose to
travel to the hospital by private car. After a 2-year-long outbreak, some hospitals within the region had
the capacity to treat critically ill patients. Each hospital was responsible for the care of local patients
and some hospitals found it difficult to supply the needs of patients in their regions. Thus, combined
with the emergency medical environment, some hospitals with insufficient medical capacity requested
the required medical equipment and established an emergency procurement plan based on the "Notice
on the Recommendation of Urgent Medical Equipment for the Prevention and Treatment of the New
Hall Pneumonia Epidemic" as issued by the China Medical Equipment Association and the published
"Catalogue of Urgent Medical Equipment for the Prevention of the New Hall Pneumonia Epidemic
(First Batch)", with the corresponding equipment names, manufacturers and reference models shown
in the supplement. The main medical equipment purchased were as follows: non-invasive ventilator,
transnasal high-flow oxygenator, extra-corporeal membrane oxygenator (ECMO), infusion pump, etc.
Although the way hospitals purchase medical equipment effectively reduces the medical pressure of
some hospitals, it increases the cost of purchasing a lot of equipment and increases the environmental
pollution during the manufacturing process of the equipment. In the face of the reality of a gradually
decreasing epidemic pressure environment, the role of additional medical equipment will gradually
decrease in the future. This will increase the waste of medical equipment and raw materials. We
constructed a healthcare network between provinces in China, with the major cities within each
province responsible for the major healthcare needs of their provinces. In particular, we subdivided
each province into five patient areas based on their size and population. Table 2 shows the number of
patients in each province within the healthcare network in China. As shown in Table 2, there was no
large-scale infection in March 2022 within China. However, small-scale epidemics were found in many
regions. Some of these regions faced a high medical pressure. After a large number of sample surveys
and data comparisons, we selected a few provinces as the main reference examples. In March 2022,
coronavirus infections only occurred in some areas due to good health policies of the Chinese
government and a high awareness of virus protection among the population. When severe infections
occur in some regions, local people often consciously avoid unnecessary travel to prevent the spread
of the virus. This effectively reduces the probability of people being infected with the virus.

We have built a digital platform that combines the medical capacity needs of each hospital with
patient information. In addition, we built a Chinese healthcare network based on the number of patients
in each region of China during the March 2022 outbreak. For example, the main demand for
noninvasive ventilators came from hospitals in four provinces: Liaoning, Hubei, Sichuan, and Zhejiang.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18960-18986.



18975

Figure 5 plots the colors of different regions within China according to the number of patients in the
corresponding region. The red color indicates that the number of patients in the region is high, while

the green color indicates that the number of patients in the region is low.

Table 2. Statistics of the number of patients by province in China (Columns 1 and 3
represent different regions and columns 2 and 4 represent the number of patients).

Region Number of patients Region Number of patients
Hebei 195 Zhejiang 393
Shanxi 23 Anhui 4
Shaanxi 192 Fujian 112
Liaoning 154 Jiangxi 0
Jilin 6063 Shandong 1110
Heilongjiang 46 Henan 46
Jiangsu 185 Hubei 39
Hunan 7 Hainan 3
Guangdong 1734 Sichuan 152
Guizhou 4 Gansu 183
Xinjiang 0 Xizang 0
Yunnan 30 Qinghai 2
Taiwan 6630 Guangxi 294
Inner Mongolia 45 Ningxia 0
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Figure 5. Distribution of patients by region within the medical network.

The epidemic situation in Zhejiang province was serious, with a large number of asymptomatic
patients in addition to diagnosed patients. Therefore, we analyzed the medical capacity and medical
equipment of hospitals in Zhejiang Province. For illustrative purposes, we analyzed non-invasive

ventilators based on the dynamic medical equipment configuration framework.
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procedures of the case are implemented as follows:

Step 1. First, we establish the corresponding expert group members for the non-invasive
ventilators. A total of two medical equipment demanders and three equipment experts together formed
a five-member expert decision group. Meanwhile, five expert decision-making groups established six
indicators for the pollution problems faced during the use of medical equipment, which are: equipment
radiation (C1), equipment depreciation (C2), microbial contamination (C3), exposure to machinery-
related noise (C4), respiratory problems due to chemical substances (C5), and thermal risk (C6).
Generate all possible alternatives and criteria. Alternatives are A = {44, A,, ..., Ag} and criterion are
C ={Cy,Cy, ..., Cg).

Step 2: Generate a set of decision makers: D = {D,,D,, ..., D,}. Construct an aggregated I\VIF
decision matrix and the average decision matrix Y. First, the language terms were established
according to Table 2, and the corresponding results are shown in supplementary.

All individual decision opinions are fussed into a group of opinion. Then, the aggregated matrices
from each decision maker are averaged to construct an aggregated group decision matrix. The average
of the group decision matrix is denoted as Y.

Thus, we can obtain Y:
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Step 4: Construct a weighting matrix W of four decision makers and the average weighting
matrix W. The weighting matrix W of the four decision makers is constructed and the average
weighting matrix W is calculated in the supplement.

Step 5: Construct the aggregated weighted interval valued intuitionistic fuzzy decision matrix, D'.
Then, the aggregated weighted interval valued intuitionistic fuzzy decision matrix, D', is computed.
The aggregated weighted interval valued intuitionistic fuzzy decision matrix is shown below:
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Step 6: Determine the positive ideal partner solution and the negative ideal partner solution by
using Equations (25) to (26).

==(([0.8200,0.8800],[0.0000,0.0000]).([0.7200,0.7660],[0.0000,0.0000] ) (| 0.8100, 0.8600],[0.0000,0.0000])
([0.8700,0.9000],[0.0000,0.0000]),([0.8091,0.8460],[0.0015,0.0040] ). ([0.5896, 0.6808],[0.0052, 0.0126] )

A ==(([0.5658,0.6864],[0.0066,0.0153]),([0.4680,0.5320],[0.0180,0.0500] ) ([ 0.5346, 0.6192],[0.0098, 0.0253]
([0.5916,0.6840],[0.0060,0.0152])([0.5742,0.6480],[0.0070,0.0184]),([0.4489,0.5476],[0.0169,0.0441]

Step 7: Calculate the separation measure between the candidates and NIPS for each decision maker.
Results are as shown in the supplement.

Step 8: Calculate the closeness coefficient. Table 3 shows the corresponding closeness coefficient
of the different schemes, thus indicating the advantages and disadvantages of the alternatives
(A1, 43, 43,A4, 45, Ae).

Table 3. Statistics of RC; results. (Columns 2-7 represent the corresponding RC; values
for each alternative).

Al A2 A3 A4 AS A6
RC; 0.3261 0.3110 0.2572 0.4611 0.4713 0.3236

Step 9: Rank the preference order of all alternatives.

Rank (5) > Rank (4) > Rank (1) > Rank (6) > Rank (2) > Rank (3)

Step 10: With Step 1-9, we combine a fuzzy theory-based scheduling decision model to establish
lower-risk medical equipment for collaborative scheduling within the healthcare network. Based on
the actual medical capacity and patient needs in each region, we finalized four qualified NIVs (i.e., 1,
4,5, and 7) for the equipment scheduling process within the medical network.

Step 11: We construct a multi-objective model based on patient profiles and carbon emissions in
Zhejiang province and combine it with the NSGA-I11-MOPSO algorithm to solve the scheduling results
of noninvasive ventilators, as shown in Figure 6(a). Accordingly, we solved the multi-objective model
for three provinces-Liaoning, Hubei, and Sichuan-after the non-invasive ventilator was scheduled and
solved, as displayed in Figure 6(b) to (d). Decision makers can choose different equipment scheduling
schemes based on Figure 6(a) to (d) to achieve equipment resource scheduling and to determine the
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carbon emissions generated by patients traveling to the hospital.
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(a). The pareto surface of Zhejiang Province. (b). The pareto surface of Hubei Province.
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(c). The pareto surface of Liaoning Province. (d). The pareto surface of Sichuan Province.

Figure 6. The pareto surfaces of Provinces.

In the case study, we combine IVIF-TOPSIS, NSGA-II-MOPSO and a method that integrates the
two methods to verify the effectiveness of a sustainable scheduling system for medical equipment.
After seeking the agreement of hospitals and patients in Liaoning Province, we selected four cases for
comparison to show the effectiveness of a sustainable scheduling system for medical equipment. They
are as follows:
® Natural situation.

Medical equipment decision making within the healthcare network.

Medical equipment scheduling within the healthcare network.

Medical equipment decision making and medical equipment scheduling within the healthcare
network.
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Jinzhou
Panjin
Y¥ing Kou
Dalian
Carbon emissions: 10594.35kg Carbon emissions: 9134.73kg
Medical equipment utilization:33% Medical equipment utilization:35%
Medical equipment in perfect operational performance: 54% Medical equipment in perfect operational performance: 76%
(b). Medical equipment decision making
(a). Natural situation. (IVIF-TOPSIS) within the healthcare

network.

Carbon emissions: 7635.92kg Carbon emissions: 7093.64kg
Medical equipment utilization:43% Medical equipment utilization:45%
Medical equipment in perfect operational performance: 60% Medical equipment in perfect operational performance: 82%

(d). Medical equipment decision making
(c). Medical equipment scheduling (NSGA- (IVIF-TOPSIS) and medical equipment
I1-MOPSO) within the healthcare network. scheduling (NSGA-I1-MOPSO) within the
healthcare network.

Figure 7. Carbon emissions, medical equipment utilization, rate of medical equipment in

perfect operational performance under four cases.

Combined with the comparison of the four sets of the simulation results within Figure 7(a) to (d),
we found that IVIF-TOPSIS can effectively save the time of medical equipment decision-making and
guarantee the operational performance of medical equipment. However, this method is not suitable for
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large-scale medical device scheduling decision-making processes within the healthcare network. In
addition, this approach makes it difficult to make medical equipment scheduling decisions that balance
the carbon footprint and relieve the pressure on healthcare. NSGA-1I-MOPSO can quickly make
medical equipment scheduling decisions that balance medical equipment utilization with the carbon
emissions of patients traveling to the hospital. However, this method cannot ensure the operational
performance of the scheduled medical equipment. The sustainable scheduling system that incorporates
both approaches is beneficial in ensuring equipment operational performance, relieving regional
healthcare pressures, reducing the carbon footprint of patient travel to hospitals, and improving
medical equipment utilization. Combined with a sustainable medical equipment scheduling system,
carbon emissions were reduced by 3500.71kg (33% reduction in carbon emissions), which is a 45%
increase of medical equipment in a perfect operational performance.

Combined with the dynamic medical equipment configuration framework, we implemented the
medical equipment scheduling process within the medical network. At the end of medical equipment
scheduling, Figure 8 shows the comparison of the number of patients and carbon emissions of the four
provinces before and after medical scheduling. Table 4 shows the data related to medical equipment
utilization and carbon emissions during the epidemic. Combined with Figure 8 and Table 4, we found
that the number of patients in the four provinces was reduced through the sustainable scheduling
system for medical equipment. In addition, the carbon footprint of patients traveling to hospitals was
reduced because most patients only needed to travel to local hospitals for treatment.

= A -
¥ 9

Carbon emissions: 12733.75kg Carbon emissions: 9795.19kg

Carbon emissions: 10594.35kg Carbon emissions: 7093 64kg

Carbon emiszions: 12197.79kg Carbon emissions: 8978, 87kg

Figure 8. Comparison of the number of patients and carbon emissions before and after
medical scheduling.

The continuous scheduling process of medical equipment will effectively solve the previous
model of medical equipment fixed in a hospital. Flexible and continuous scheduling will increase the
utilization of medical equipment and reduce environmental pollution. In the past, medical equipment
was often hampered by the lack of information and data flow. While hospitals in one region are already
under a lot of pressure, hospitals in other regions are just beginning to implement medical equipment
scheduling. This does not make for good healthcare and still results in a higher carbon footprint due to
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the high number of patient trips to hospitals. Combined with Figure 8 and Table 4, we found that the
four provinces increased the utilization of medical equipment by 11%, 14%, 12% and 12%,
respectively. Sichuan, Liaoning, Hubei, and Zhejiang provinces all showed reductions in carbon
emissions from patients traveling to hospitals. The reduction of carbon emissions generated by patients
traveling to hospitals in the four provinces was 2938.56kg, 3954.65kg, 3500.71kg, and 3220.92kg,
respectively.

Table 4. Comparison of Medical Equipment Utilization and Carbon Emissions (Columns
2-3 represent patient carbon emissions for the four provinces before and after scheduling.
Columns 4-5 represent medical equipment utilization before and after scheduling.)

i Utilization of
Patient carbon . .
. . Medical medical
Patient carbon emissions after . :
: . : equipment equipment after
Region emissions in medical e . .
March 2022 (kg)  equipment utilization in medical
g scc:]hegulin (kg) March 2022 equipment
g{g scheduling
Zhejiang 12733.75 9795.19 35% 46%
Hubei 16011.52 12056.87 24% 38%
Liaoning 10594.35 7093.64 33% 45%
Sichuan 12197.79 8976.87 21% 33%

The carbon emission reduction rates of the four provinces are 23%, 24%, 33% and 26%
respectively. At the same time, the number of patient trips to hospitals and the probability of medical
risks were also reduced. Combined with a sustainable scheduling system for medical equipment, the
number of patients in the four provinces was reduced and time spent traveling to hospitals for treatment
was saved. The time for patients to travel to hospitals within the four provinces was reduced by 27%,
34%, 19% and 29%, respectively. In addition, the pressure on healthcare in some regions is shared by
the entire healthcare network. In summary, we have found that the system can help to reduce patient
care time within the healthcare network, regional healthcare pressures, the carbon emissions of patients
travelling to hospitals and improve the utilization of medical equipment.

Combining the above case results, we believe that sustainable medical equipment scheduling
systems can effectively enhance the medical processing capacity of hospitals within a healthcare
network. With limited healthcare resources, the rapid flow of resources within a healthcare network
will stimulate the greatest healthcare potential. On the one hand, the continuous scheduling of medical
equipment within the system will enable centralized treatment to meet patient needs in the fastest way
possible. On the other hand, this sustainable scheduling will effectively reduce the number of patient
travels to the hospital and avoid unnecessary environmental pollution. In addition, we realized the
improvement of medical equipment reliability by utilizing IVIF-TOPSIS, which guarantees the safety
of patients and reduces medical risks. The medical data-based service system will better realize green
healthcare and avoid a lot of environmental pollution.

5. Conclusion and future work
In a healthcare environment where healthcare resources are limited, the scheduling of medical
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equipment resources within a healthcare network consisting of individual hospitals plays a significant
role. Hospital information systems facilitate the exchange of information between hospitals and
patients, which will enhance the sustainability of the healthcare service system [45]. While considering
the hazards to the medical environment caused by the waste generated in the medical process, the
medical equipment scheduling decision model constructed in this study that considers pollution will
help realize the initial screening of equipment resources to ensure the safety and reliability of dynamic
medical equipment within the scheduling network. The sustainable scheduling system for medical
equipment is realized by combining the IVIF-TOPSIS methodology to screen medical equipment to
ensure that the medical equipment available for scheduling can exert a stable medical capability. In
addition, the health and safety of patients and healthcare workers can be effectively safeguarded by the
relevant indicators. Combined with the medical equipment selected by IVIF-TOPSIS method, we
constructed a corresponding multi-objective model and solved it with the NSGA-I1-MOPSO algorithm
to discover the accurate scheduling of medical equipment in the medical network. The dynamic
medical equipment configuration framework can simulate the scheduling process of equipment within
a healthcare network and combine it with a multi-objective model based on the concept of green
healthcare to achieve a balance between patient needs and carbon emissions. Combined with case
studies, a sustainable medical equipment scheduling system can effectively improve the utilization of
medical equipment resources. This will reduce carbon emissions from unnecessary medical equipment
production, medical equipment operation and patient travel to the hospital. However, the methods
presented in the paper still have some limitations. First, the paper only focuses on how to solve the
medical pressure in the sub-region as quickly as possible, rather than considering the upper limit of the
number of equipment schedules. The frequent scheduling process of medical equipment resources
requires some scheduling time. In addition, the frequent medical equipment scheduling process may
reduce the medical equipment utilization rate. Thus, the issue of how to establish a medical equipment
scheduling system to achieve a balance between scheduling time and medical equipment utilization
requires more research and analysis. Second, the method proposed within the paper can improve the
solution quality through more accurate multi-objective algorithms. In addition, a huge number of
medical equipment resources can be accurately screened for qualified medical equipment for
scheduling using methods such as machine learning. Third, the article did not fully consider the transfer
of healthcare data between subregions and real-time information statistics of patients. It is difficult to
collect personal information about patients in time for the selection and pre-scheduling of medical
equipment. Thus, a transparent, comprehensive, and convenient healthcare platform is needed, which
will function as a real-time interaction between patient information and hospital information.

In a future healthcare network system, multiple hospitals can jointly purchase urgently needed
medical equipment to relieve the pressure of healthcare within the network, and the continuous
scheduling of medical equipment within the healthcare network will effectively enhance the digital
healthcare service capacity. In addition to a well-functioning hospital dispatch system, medical staff
and government can make more flexible judgments to resolve major medical emergencies. While
patients are traveling to the hospital, paramedics need to transmit real-time and uninterrupted patient
information to the hospital to inform doctors of the situation, and some of the closer medical equipment
resources can be scheduled close to the hospital to prioritize the sudden medical needs. In addition, the
government should set reasonable and dynamic standards for emergency medical care. In the actual
application scenario, the medical equipment sustainable scheduling system can be applied not only to
the decision-making process of medical equipment in the epidemic environment, but also to other
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scenarios, such as flood disasters; earthquake disasters; typhoon disasters and other natural disasters,
saving decision making time for decision makers while maximizing the decision results to meet actual
needs. It is worth noting that when combining different emergency scenarios, reasonable and
comprehensive factor indicators should be constructed to ensure that medical equipment resources are
more relevant to actual needs. For future research, we propose the suggestions as follows:

® Based on the uncertain medical situation, future research can respond to the complex

emergency medical environment by building more accurate patient prediction models. In
addition, hospitals can achieve early scheduling of medical equipment in a way that alleviates
the stress of the upcoming medical response.

Future research can realize the rapid recycling of medical waste within the closed-loop supply
chain based on digital technology to further reduce the problem of environmental pollution
from medical waste [46].

Hospitals can develop advanced medical information systems to provide real-time statistics
on patient information, medical equipment information, etc [47]. This will help connect
patients with hospitals and reduce unnecessary travel for greener healthcare.

Hospitals can improve the proficiency of medical staff through training to avoid the risk of
medical errors caused by the lack of proficiency in operating equipment. Meanwhile, with the
improvement of digital information, hospitals can enter the proficiency level of medical
personnel and other information into the medical platform to realize the matching of human
resources and medical equipment resources.
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