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Abstract: In this paper, we propose a spatiotemporal prey-predator model with fear and Allee effects.
We first establish the global existence of solution in time and provide some sufficient conditions for the
existence of non-negative spatially homogeneous equilibria. Then, we study the stability and bifurcation
for the non-negative equilibria and explore the bifurcation diagram, which revealed that the Allee effect
and fear factor can induce complex bifurcation scenario. We discuss that large Allee effect-driven
Turing instability and pattern transition for the considered system with the Holling-I type functional
response, and how small Allee effect stabilizes the system in nature. Finally, numerical simulations
illustrate the effectiveness of theoretical results. The main contribution of this work is to discover that
the Allee effect can induce both codimension-one bifurcations (transcritical, saddle-node, Hopf, Turing)
and codimension-two bifurcations (cusp, Bogdanov-Takens and Turing-Hopf) in a spatiotemporal
predator-prey model with a fear factor. In addition, we observe that the circular rings pattern loses its
stability, and transitions to the coldspot and stripe pattern in Hopf region or the Turing-Hopf region for
a special choice of initial condition.

Keywords: reaction-diffusion system; fear and Allee effect; normal form; center manifold theory;
bifurcation theory; spatiotemporal pattern transition

1. Introduction

The Allee effect is primarily associated with the relationship between per capita growth rate and
population density [1–4]. The prevailing situation of the species being threatened due to the Allee
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effect has drawn major attention to researchers who are studying both the theoretical and practical
ecological conservation in exploited environments. Biologists now perceive a diverse range of factors
which include the benefit of reproduction, cooperative breeding [5–7], anti-predator character among the
prey [8,9], foraging ability and environmental conditioning as well as the purpose of the influence of the
Allee effect on the growth of prey [10–12]. A few reasons behind the emergence of the Allee effect may
be stated as difficulties in mate finding, reproductive facilitation, predation, environmental conditioning
and inbreeding depression [4, 13]. In recent years, many eminent researchers have paid considerable
attention to investigate the impact of the Allee effect in the growth of prey and the dynamical complexity
of the predator-prey model [14–17]. The Allee effect is usually categorized by the manifestation of
density dependence in the event of its relatively lower range. The population experiences a strong Allee
effect resulting in the existence of a critical density where the population growth becomes negative.
However, a weak Allee effect causes the population to have a reduced per capita growth rate at low
population density, therefore exhibiting a positive per capita growth rate.

A single species logistic model with adjusting for mating encounters was considered, which takes
the following form [13]:

du
dt
= ru

(
1 −

u
K

)
−
µhu

u + h
, (1.1)

where r and K represent the intrinsic growth rate and the carrying capacity of the environment, respec-
tively. h is a non-negative constant, which depicts the population density at which the probability of
mating is half. The term h

u+h is the probability of not mating, and the term µhu
u+h represents the reduction

of reproduction due to a mating shortage. Moreover, if 0 < µ < r, it is called a weak Allee effect, and if
µ > r then it has the strong Allee effect. Keeping the special aspects in mind, we rewrote the classical
single species model (1.1) with additive Allee effect by using the following notation:

du
dt
= au − bu − cu2 −

mu
u + h

, (1.2)

where a, b and c are positive constants that represent the birth rate, natural death rate and the death
rate induced by intra-species competition, respectively. To obtain (1.1), we only need to set r = a − b,
K = a−b

c and m = µh.
Recently, Zanette et al. [8] found that the fear of predators could reduce about 40% of offspring that

song sparrows could produce, the predation risk had an important effect on both the birth and survival
rate of offspring. Based on the field observations in [8], Wang et al. [9] proposed a predator-prey model
incorporating the fear effect in prey species as follows:{ du

dt = a f0(k, v)u − bu − cu2 − f (u)v,
dv
dt = v(−d + e f (u)).

(1.3)

where the parameter k reflects the level of fear, f : R+ → R+ is the functional response of predators
where R+ represents nonnegative real number set, d is the natural death rate of the predators, e is the
conversion rate of prey’s biomass to predator’s biomass and the function f0 accounts for the cost of
anti-predator defense due to fear and satisfies the following properties: f0(0, v) = 1, f0(k, 0) = 1, lim

k→∞
f0(k, v) = 0, lim

v→∞
f0(k, v) = 0,

∂ f0(k,v)
∂k < 0, ∂ f0(k,v)

∂v < 0.
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Moreover, their analyses showed that high levels of fear can stabilize the predator-prey system. However,
relatively low levels of fear can induce multiple limit cycles through subcritical Hopf bifurcations, which
is different from the classical predator-prey models, ignoring the fear factor where Hopf bifurcations are
typically supercritical.

Also, field observations show that fear can create an Allee effect [18]. Combining (1.2) and (1.3),
we obtained a temporal predator-prey model with Allee and fear effects in prey species and density-
dependent death factor of the predator species as follows:{ du

dt = f0(k, v) au − bu − cu2 − mu
u+h − pvg(u, v),

dv
dt = epvg(u, v) − dv − sv2,

(1.4)

where the parameters a, b, c, d, e, h,m and k have the same meanings as in (1.2) and (1.3). p represents
predation factor of the predator species, s is the density-dependent death rate of the predators and
g(u, v) denotes the functional response between predator and prey, which usually satisfies the following
hypothesis:

(H0) g ∈ C1(R2,R) satisfies g and is non-negative, and g(0, v) = 0 for all v ≥ 0. Furthermore, there
exists a non-negative continuous function ϕ(u) and a polynomial function ψ(v) (of arbitrary degree)
such that g(u, v) ≤ ϕ(u)ψ(v) for any (u, v) ∈ R2

+, where R+ = [0,∞).

About the hypothesis (H0), the typical forms of the functional response g(u, v) are as follows:

(i) Holling type I g(u, v) = u, type II g(u, v) = u
u+κ , type III g(u, v) = u2

u2+κ
;

(ii) Beddington-DeAngelis type g(u, v) = u
1+κ1u+κ2v ;

(iii) ratio-dependent type g(u, v) = u
κ1u+κ2v ;

(iv) Crowley-Martin type g(u, v) = u
(1+κ1u)(1+κ2v) .

Throughout the manuscript, attention is focused on the particular form of fear factor defined by
f0(k, v) = 1

1+kv [9]. By incorporating this function into the system of equations of (1.4), one obtains{ du
dt =

au
1+kv − bu − cu2 − mu

u+h − pvg(u, v),
dv
dt = epvg(u, v) − dv − sv2.

(1.5)

Considering the effect of spatial diffusion, one gets the corresponding spatiotemporal model which is
given as follows:

∂u(x,t)
∂t = f1(u, v) + du∇

2u := au
1+kv − bu − cu2 − mu

u+n − pvg(u, v) + du∇
2u, x ∈ Ω, t > 0,

∂v(x,t)
∂t = f2(u, v) + dv∇

2v := epvg(u, v) − dv − sv2 + dv∇
2v, x ∈ Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,
∂u
∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0.

(1.6)

Here, u(x, t) and v(x, t) are densities of the species u and v on spatial location x and time t, respectively.
Ω ⊂ R2 is a bounded domain with a smooth boundary having no-flux boundary conditions, where
R represents the set of real number. du and dv are diffusion coefficients that represent the respective
diffusive velocity of the two species.
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In fact, the effect of the fear factor and multiple Allee effects in a temporal or spatiotemporal predator-
prey system have been investigated in some literatures (cf. [19–21]). The research investigations
conducted by Li et al. [20] and Shi et al. [21] are primarily based on the original model established
in [19], where it was assumed that the fear factor impacts the entire growth rate of the prey species.
In [20], a one-parameter saddle-node bifurcation and degenerate Hopf bifurcation, as well as two-
parameter cusp bifurcation and Bogdanov-Takens bifurcation, were studied in a predator-prey system
with the Leslie-Gower functional response. In [21], the existence and non-existence of non-constant
positive steady states and codimension one Hopf bifurcation were investigated in a diffusive predator-
prey model with multiple Allee effects and the fear factor. However, they didn’t consider the combination
effect of Allee and fear effects on Turing instability and pattern selection.

Recently, one-parameter bifurcation phenomena, including those within a predator-prey model
with the Allee effect and the fear effect, were investigated by Lai et al. [22]. In this model, the Allee
effect was suggested to be an additive, and the fear factor was assumed to influence the entire growth
rate of the prey species. Their findings revealed that the density of predator species decreased as
the fear factor increased. Notably, the manner in which the fear factor affected prey differed from
previously documented approaches in the existing literature [19, 22]. In actuality, field experiments
have demonstrated that the fear factor leads to a reduction in prey species production [8]. Considering
the long-term shift in prey populations, several experimental observations [9, 23, 24] indicated that
the fear factor significantly impacted interactions between prey and predator species. Frightened song
sparrow nestlings, for instance, were unable to survive due to a scarcity of food supplies caused by fear.
Long-term evolution resulted in substantial changes in both behaviour and physiology driven by fearful
predation rather than actual predation. Prey species, in an effort to minimize predation rates, would
migrate from high-risk to low-risk zones. Examples of significantly reduced fear-driven reproduction
rates include mule deer versus mountain lions, elk versus wolves, snowshoe hares versus dogs [26]
and dugongs versus sharks [25], among others. Wang et al. [9] developed a mathematical model to
investigate the reduction of the reproduction rate in the presence of fear and to explore the stability
mechanism of the system. Subsequently, the influence of fear in predator-prey models, along with the
inclusion of prey refuge, was studied by Wang et al. [27] and Samaddar et al. [28]. In [29], authors
explored the combined effects of the Allee effect, fear factor and prey refuge on the dynamics of a
fractional order prey-predator system. Liu, in the context of a spatiotemporal prey-predator model that
incorporated fear and Allee effects, examined the existence and non-existence of non-constant positive
solutions and bifurcations, including Hopf and steady-state bifurcations [30]. Most recently, Pal et al.
investigated pattern formation in a cross-diffusive Leslie-Gower predator-prey model with fear and
Allee effects [31], although they did not delve into pattern selection and codimension two bifurcations.

The novelty of this study lies in the comprehensive exploration of the bifurcation phenomena, encom-
passing transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation, each of codimension
one, extending to cusp and Bogdanov-Takens bifurcations of codimension two. These bifurcations are
induced by both the Allee effect and the fear factor (refer to Theorems 3.3, 3.5, 3.6 and 3.9 below).
Additionally, we investigated the Turing instability mechanism for the spatiotemporal system and
interpreted the transition of patterns among three classical types: Hexagonal patterns, stripe patterns,
and their combinations. It has been observed that the Allee effect plays a crucial role in inducing Turing
instability. Furthermore, one may find that a small Allee effect factor stabilizes the considered system,
whereas a large Allee effect factor destabilizes the unique positive coexistence steady state by inducing

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18820–18860.



18824

Turing instability (see Theorem 4.1 below), steady-state bifurcation (see Theorem 4.2 below), and
spatiotemporal Hopf bifurcation (see Theorem 4.3 below). Given the significance of these factors, the
primary objectives of this investigation revolve around ecological concerns:

• How does the Allee effect and fear factor influence the dynamics of the temporal/spatiotemporal
system?
• What are the parametric criteria for stability and instability for both the spatiotemporal interacting

species?
• Does intra-specific competition among predators encourage reduced biodiversity?
• What effects do the codimension two cusp and Bogdanov-Takens bifurcations around the coexis-

tence equilibrium have on the environment?
• Is the Allee effect a key mechanism for inducing Turing instability, and if so, how does it impact

the spatially heterogeneous distribution of species?

A thorough analysis of stability and bifurcation is successfully carried out in the proposed model
system in order to address all the issues mentioned above. The present article is organized as follows:
Section 2 deals with the fundamental properties regarding global classical solvability, positivity, and
uniformly boundedness of the spatiotemporal model entities for a very generic situation. The qualitative
behavior of the temporal model with linear functional response is highlighted in Section 3 in terms of
the occurrence of various bifurcations. Subsequently, the spatiotemporal model is analyzed and the
corresponding numerical simulations are performed to illustrate the effectiveness of the theoretical
findings in Section 4. Finally, the concluding remarks of the entire outcomes of the present model
system are included in the concluding Section 5.

2. Global classical solvability of the spatiotemporal model

This section consists of some basic properties such as positivity, uniqueness, and boundedness of
solutions of the spatiotemporal model in order to verify that the considered model is well-posedness.

Let ρ ∈ (n,∞). It is known that W1,ρ(Ω,R2) is continuously embedded in C(Ω̄,R2). One may then
consider the solution of system (1.6) in S = {ω ∈ W1,ρ(Ω,R2)

∣∣∣∂w
∂ν
= 0 ∂Ω}. In view of Amann’s theory

(see Theorems 1, 14.4, 14.6, 14.7 and 17.1) [32–34]) and comparison principle of the parabolic equation,
one can easily have the following:

Theorem 2.1. Assume that all system parameters are positive and (H0) is satisfied. Furthermore,
suppose that the initial data (u0(x), v0(x)) ∈ S for some ρ > n and is nonnegative. Then there exists a
maximal time Tmax such that the considered system (1.6) has a unique bounded nonnegative solution
defined on Ω× (0,Tmax) fulfilling (u, v) ∈ C([0,Tmax), S )

⋂
C2,1(Ω̄× (0,Tmax),R2). Furthermore, it exists

globally in time.

Proof. Since the diffusion coefficient matrix D = diag{du, dv} is a positive definite and diagonal matrix,
(1.6) is normally elliptic [32]. Since g ∈ C1, then the local existence, uniqueness, and regularity of
the solution follows directly according to Theorem 14.4 and Theorem 14.6 [34]. Since u0(x) ≥ 0
and v0(x) ≥ 0, by the comparison principle of parabolic equation, u(x, t) ≥ 0 and v(x, t) ≥ 0 for all
(x, t) ∈ Ω × [0,Tmax). To show the global existence, one needs to prove the boundedness of ∥u(·, t)∥L∞(Ω)

and ∥v(·, t)∥L∞(Ω) for t ∈ [0,Tmax) according to Amann’s theory (see Theorems 5.2 and 17.1) [33, 34].
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Since the non-negativity of u, v and g(u, v), one must conclude from the first equation of (1.6) that

∂u
∂t
≤

au
1 + kv

− bu − cu2 + du∇
2u ≤ (a − b)u − cu2 + du∇

2u, (2.1)

which implies that u(x, t) ≤ max{supΩ(u0(x), a−b
c )} ≜ Mu for all (x, t) ∈ Ω × [0,∞), according to the

comparison principle of the parabolic equation. On the other hand, since g is non-negative continuous
and u is non-negative and bounded, we conclude that there always exists a constant C0 > 0 such that

e f1(u, v) + f2(u, v) ≤ C0(1 − u − v)

for u, v ≥ 0. Since u is a priori bounded, it follows from Theorem 1 [35] that there exists a constant
Mv > 0 such that v(x, t) ≤ Mv for all (x, t) ∈ Ω× [0,Tmax). Therefore, the solution of (1.6) exists globally
in time. This completes the proof of the theorem.

3. Qualitative analysis of the corresponding non-dimensionalized temporal model: Holling type-I
functional response

In this section, for convenience of analysis, it is chosen g(u, v) ≡ u, then temporal model (1.5) turns
into 

du
dt =

au
1+kv − bu − cu2 − mu

u+h − puv, t > 0,
dv
dt = epuv − dv − sv2, t > 0,
u(0) = u0 ≥ 0, v(0) = v0 ≥ 0.

(3.1)

By using the following non-dimensional transformations

ũ =
cu
a
, ṽ =

cv
ea
, t̃ = at,

one gets the corresponding non-dimensionalized form (after dropping tildes) given as follows:
du
dt =

u
1+αv − βu − u2 −

γu
u+ρ − ηuv, t > 0,

dv
dt = ηuv − δv − σv2, t > 0,
u(0) = U0 ≥ 0, v(0) = V0 ≥ 0,

(3.2)

where U0 =
cu0
a , V0 =

cv0
ea , and

α =
kae
c
, β =

b
a
, γ =

mc
a2 , ρ =

ch
a
, η =

ep
c
, δ =

d
a
, σ =

es
c
.

3.1. Existence of equilibria of the non-dimensionalized temporal system

Equilibrium points are the of intersection of the zero growth prey curve and zero growth predator
curve in the non-negative quadrant of the uv-plane. The biologically significant equilibrium points of
(3.2) must satisfy the following equations{

F1(u, v) := u
1+αv − βu − u2 −

γu
u+ρ − ηuv = 0,

F2(u, v) := ηuv − δv − σv2 = 0.
(3.3)

By solving the second equation of (3.3), we obtain the non-negative roots v = 0, v = 1
σ

(−δ + ηu),
provided u > δ

η
. Clearly, (3.2) has the trivial equilibrium point E0 = (0, 0).
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3.1.1. Semi-trivial equilibrium point

To obtain the existence of arbitrary semi-trivial equilibrium point (u, 0), substituting v = 0 into the
first equation of (3.3) yields the following equation with respect to u

u2 + A1u + A2 = 0, (3.4)

where A1 = β + ρ − 1 and A2 = γ − (1 − β)ρ. By analyzing the distribution of positive root of (3.4), one
may obtain that the existence of the semi-trivial equilibrium point (u, 0) has the following cases:

Case-i: If A2 < 0, that is, γ < (1 − β)ρ, then (3.4) has a unique positive real root, u1 =
−A1+
√

A2
1−4A2

2 ,
which means that (3.2) has only one semi-trivial equilibrium point E1 = (u1, 0);
Case-ii: If A2 = 0, and A1 < 0, that is, γ = (1 − β)ρ, and β + ρ < 1, then (3.4) has a unique positive root
u2 = −A1. Therefore, (3.2) has only one semi-trivial equilibrium point E2 = (u2, 0);
Case-iii: If A2 > 0, A1 < 0 and A2

1−4A2 > 0, that is, γ > (1−β)ρ, β+ρ < 1 and (β−ρ)2+1 > 2(β−ρ+2γ),

then (3.4) has two positive roots as u3,4 =
−A1±
√

A2
1−4A2

2 , and thus (3.2) has two semi-trivial equilibrium
points E3 = (u3, 0) and E4 = (u4, 0);
Case-iv: If A2 > 0, A1 < 0 and A2

1−4A2 = 0, that is, γ > (1−β)ρ, β+ρ < 1 and (β−ρ)2 = 2(β−ρ+2γ)−1,
then (3.4) has only one positive real root, u5 = −

A1
2 . Therefore, (3.2) has a unique semi-trivial equilibrium

point E5 = (u5, 0).

3.1.2. Coexistence equilibrium point

To show the existence of the coexistence equilibrium point, substituting v = 1
σ

(ηu − δ) into the first
equation of (3.3) and simplifying it, we obtain the following cubic equation of one variable:

u3 + 3a1u2 + 3a2u + a3 = 0, (3.5)

where,

a1 =
σ2 + η3αρ + σαρη − 2η2αδ + σαβη + ση2 − σαδ

3(σαη + αη3)
,

a2 =
−2η2αρδ − αβσδ − ησδ + ρη2σ + βσ2 + αγση − σ2 + αβρση + αηδ2 + ρσ2 − αρσδ

3(σαη + αη3)
,

a3 =
αηρδ2 − αγσδ − ρησδ + βρσ2 − αβρσδ − ρσ2 + γσ2

σαη + αη3 .

Let us choose z = u + a1, then (3.5) takes the form as follows:

f (z) : z3 + b1z + b2 = 0, (3.6)

with, b1 = 3(a2 − a2
1), b2 = 2a3

1 − 3a1a2 + a3. Now, by analyzing the distribution of the positive roots of
f (z), we obtain the distribution of coexistence equilibrium points of (3.2), which can be described as
the following lemma.

Lemma 3.1. For the proposed model system (3.2), the number of coexistence equilibrium points can be
described as follows:
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(i) If ∆ = b3
1

27 +
b2

2
4 > 0 and a3 < 0, then (3.2) has a unique coexistence equilibrium point given by

E∗ = (u∗, v∗) provided u∗ < δ
η
.

(ii) If ∆ = b3
1

27 +
b2

2
4 < 0 and b1 < 0, then (3.2) has at most three coexistence equilibrium points denoted

by, E1
∗ = (u1

∗, v
1
∗), E2

∗ = (u2
∗, v

2
∗) and E3

∗ = (u3
∗, v

3
∗), more precisely,

(b1:) E1
∗ , E

2
∗ and E3

∗ coexist if a3 < 0, a1 +

√
a2

1 − a2 < 0 holds.

(b2:) Only two of E1
∗ , E

2
∗ and E3

∗ coexist if one of the following conditions attached here follows:

(b21) a3 > 0, a1 −

√
a2

1 − a2 < 0 and (b22) a3 = 0, a1 +

√
a2

1 − a2 < 0.

(b3:) Only one of E1
∗ , E

2
∗ and E3

∗ exists if one of the following conditions holds: (b31) a3 < 0,

−a1 +

√
a2

1 − a2 < 0 and (b32) a3 = 0, a1 > 0, a1 −

√
a2

1 − a2 < 0.

(iii) If ∆ = b3
1

27 +
b2

2
4 = 0 and b1 < 0, then the model system (3.2) has at most two positive equilibrium

points, namely, E4
∗ = (u4

∗, v
4
∗), E

5
∗ = (u5

∗, v
5
∗) or Ê4

∗ = (û4
∗, v̂

4
∗), Ê

5
∗ = (û5

∗, v̂
5
∗) . More specifically,

(c1:) Let us suppose that b2 − 2(a2
1 − a2)

3
2 = 0, then both E4

∗ := E1
∗ = E2

∗ and E5
∗ := E3

∗ coexists if
a2 > 0 and − 2

√
3

√
a2 < a1 < −

√
a2 hold, where E4

∗ has the multiplicity two, and only E4
∗ exists if

one of the following conditions holds: (c11) a2 > 0, a1 ≤ −
2
√

3

√
a2, (c12) a2 < 0.

(c2:) Let us consider b2 + 2(a2
1 − a2)

2
3 = 0, then both Ê4

∗ and Ê5
∗ coexists if a2 > 0 and a1 +

√
a2 < 0

hold, where Ê4
∗ has the multiplicity two, and only Ê5

∗ exists if one of the following conditions holds:
(c21) a2 ≤ 0, a2

1 + a2
2 , 0, (c22) a1 >

2
√

3

√
a2.

Proof. Denote by ∆ = (b1
3 )3 + (b2

2 )2 =
b3

1
27 +

b2
2

4 the discriminant of cubic equation (3.6). By employing
Cardano’s formula, and Descartes’ rule of signs [36], we have three cases:

(i) If ∆ > 0, i.e., b3
1

27 +
b2

2
4 > 0, then the cubic equation (3.6) has a unique real root denoted by z∗. For

this case (3.5) has a unique real root u∗, which is positive if a3 < 0 follows. Furthermore, according
to the Cardano’s formula, the unique positive real root u∗ is given by

u∗ =
3

√√√
−

b2

2
+

√
b2

2

4
+

b3
1

27
+

3

√√√
−

b2

2
−

√
b2

2

4
+

b3
1

27
− a1.

(ii) If ∆ < 0 and b1 < 0, i.e., b3
1

27 +
b2

2
4 < 0 and a2

1 − a2 > 0, according to the Cardano’s formula, then
(3.5) has three distinct real roots given by, u1

∗, u
2
∗ and u3

∗, respectively, where

u1
∗ = 2

√
a2

1 − a2 cos
θ − 2π

3
− a1, u2

∗ = 2
√

a2
1 − a2 cos

θ

3
− a1,

u3
∗ = 2

√
a2

1 − a2 cos
θ + 2π

3
− a1, θ = arc cos

(
−b2

2(a2
1 − a2)

3
2

)
.

(3.7)

More precisely, since θ ∈ [0, π], one obtains (u1
∗)min = −a1 −

√
a2

1 − a2, (u2
∗)min = −a1 +

√
a2

1 − a2,

and (u3
∗)min = −a1 − 2

√
a2

1 − a2. (u1
∗)max = −a1 +

√
a2

1 − a2, (u2
∗)max = −a1 + 2

√
a2

1 − a2, and
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(u3
∗)max = −a1 −

√
a2

1 − a2. Thus, one can conclude the following facts.

If a1 + 2
√

a2
1 − a2 < 0 then (u1

∗)min > 0, (u2
∗)min > 0, and (u3

∗)min > 0, which implies that (b1) is
satisfied;
If a1 −

√
a2

1 − a2 < 0, then (u2
∗)min > 0, thus u2

∗ > 0. Since a3 > 0, it follows from Descartes’ rule
of signs that (3.5) has two positive real roots, which implies (b21) holds. On the other hand, if

a3 = 0, then (3.5) has at most two positive real roots. Since a1 +

√
a2

1 − a2 < 0, it follows that
(u1
∗)min > 0 and (u2

∗)min > 0, which manifests that (b22) holds.

If a3 < 0, then (3.5) has at least one positive real roots. Since −a1 +

√
a2

1 − a2 < 0, one obtains
a1 > 0 and a2 > 0. Thus, (3.5) has exactly one positive real root. If a3 = 0, a1 > 0 and

a1 −

√
a2

1 − a2 < 0, one obtains a2 < 0, and thus, (3.5) has only one positive real root, which
implies that the conclusion (b3) holds.

(iii) If ∆ = 0 and b1 < 0, i.e., b3
1

27 +
b2

2
4 = 0 and b1 < 0, then (3.5) has three real roots, one of them a

double roots denoted by E4
∗ and the other denoted by E5

∗ . More specifically, according to Cardano’s

formula, we have u4
∗ := u1

∗ = u2
∗ =

√
a2

1 − a2 − a1, u5
∗ := u3

∗ = −2
√

a2
1 − a2 − a1 when we set

b2 − 2(a2
1 − a2)

3
2 = 0 in formula (3.7). Also, it is to be noted that u4

∗ > u5
∗, so u4

∗ and u5
∗ are positive

if a1 + 2
√

a2
1 − a2 < 0 and a2

1 − a2 > 0 hold. These two conditions are identical to a2 > 0 and

− 2
√

3

√
a2 < a1 < −

√
a2, whereas only u4

∗ is positive when a2 > 0, a1 +
2
√

3

√
a2 ≤ 0, or a2 < 0,

which implies that (c1) holds.

When b2 + 2(a2
1 − a2)

3
2 = 0 in (3.7), one has û4

∗ := u1
∗ = u3

∗ = −

√
a2

1 − a2 − a1, û5
∗ := u2

∗ =

2
√

a2
1 − a2 − a1. Since, û5

∗ > û4
∗, it is to be noted that if a2 > 0, a1 +

√
a2 < 0, then one has that

both û5
∗ and û4

∗ are positive. Moreover, there are two sets of conditions, a2 ≤ 0, a2
1 + a2

2 , 0 and
a1 −

2
√

3

√
a2 > 0, that can result in û5

∗ > 0, and thus, the conclusion (c2) holds.

Based on the analysis above, one may easily prove Lemma 3.1, which ends the proof of the theorem.

Remark 3.2. Lemma 3.1 provides an upper bound estimation on the number of coexistence equilibrium
points E∗(u∗, v∗). One has to impose the condition u∗ ≤ δ

η
to ensure the existence of the exact number of

coexistence equilibrium points. Additionally, one may obtain the range of original model parameters,
which ensures the existence of coexistence equilibrium points by substituting the coefficients a1, a2 and
a3 of (3.5) into the expressions b1 and b2.

In Figure 1, graphical representation of the system equilibria are provided for various system
parameter values through Lemma 3.1. Especially, this implies that the Allee effect and fear factor can
affect the number of interior equilibrium points, as well as the results in a complex distribution of the
population in the habitat.

3.2. Stability and bifurcation analysis of trivial and semi-trivial equilibrium points of the
non-dimensionalized temporal system

This subsection consists of various dynamical behavior of the temporal model system (3.2) around
the trivial equilibrium point E0 as well as the semi-trivial equilibrium points Ei for i = 1, 2, 3, 4, 5,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18820–18860.



18829

Prey (u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
r
e
d
a
to

r
 (

v
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(i)

Prey (u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
r
e
d
a
to

r
 (

v
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(ii)

Prey (u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
r
e
d
a
to

r
 (

v
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(iii)

Prey (u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
r
e

d
a

to
r
 (

v
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(iv)

Figure 1. Nullclines representation of (3.2) for the system parameter values (i) δ = 0.04-
no interior equilibrium points; δ = 0.06-unique interior equilibrium point; δ = 0.05-two
interior equilibrium points. (ii) β = 0.075-no interior equilibrium points; β = 0.01-unique
interior equilibrium point; β = 0.055-two interior equilibrium points. (iii) γ = 0.235-
no interior equilibrium points; γ = 0.21-unique interior equilibrium point; γ = 0.225-
two interior equilibrium points. (iv) ρ = 0.045-no interior equilibrium points; ρ = 0.08-
unique interior equilibrium point; ρ = 0.055-two interior equilibrium points. The remaining
system parameter values for each case are chosen from the following set of parameter values
α = 0.38, β = 0.01, γ = 0.21, η = 0.3, σ = 0.2, ρ = 0.08, δ = 0.06. Here, the solid blue line is
the prey nullcline and the red dashed line is the predator nullcline.

respectively. The Jacobian matrix of (3.2) at any points E(u, v) in the uv-plane is given by

JE =

 1
1+αv − β − 2u − γ

u+ρ +
γu

(u+ρ)2 − ηv − uα
(1+αv)2 − ηu

ηv −δ − 2σv + ηu

 ≜ [
J11 J12

J21 J22

]
.

Theorem 3.3. The trivial equilibrium point E0 = (0, 0) is

(i) a hyperbolic attractor if γ > ρ(1 − β),

(ii) a hyperbolic saddle point if γ < ρ(1 − β).

Proof. The proof is trivial, so it is omitted here.

By direct calculation, we have the following:

Theorem 3.4. The model system (3.2) undergoes a transcritical bifurcation around the trivial equi-
librium point E0 = (0, 0) as the system parameter γ crosses the threshold value γ = γ[TC] = ρ(1 − β),
provided β + ρ < 1.

Proof. Since the occurrence of transcritical bifurcation around the trivial equilibrium point E0 = (0, 0),
one of the eigenvalues of the corresponding Jacobian matrix must be zero, which implies that det JE0 = 0.
One may easily verify that at the critical system parameter value γ[TC] = ρ(1 − β), we get det JE0 = 0.

LetV andW be the eigenvectors of the Jacobian matrix JE0 and its transpose matrix JT
E0

, respectively,
corresponding to the simple zero eigenvalue. Then, at the critical parameter value γ[TC] = ρ(1 − β), we
obtain the eigenvectors as V = (v1, v2) = (1, 0)T andW = (w1,w2) = (1, 0)T . Now, we compute the
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transversality conditions ∆1,∆2 and ∆3 as defined below:

∆1 :WT [Fγ(0, 0; γ[TC])] = (w1,w2)T

∂F1
∂γ
∂F2
∂γ


E0

= (1, 0)
(
0
0

)
= 0,

∆2 :WT [DFγ(0, 0; γ[TC])(V)] = (w1,w2)T ·

 − ρ

(u+ρ)2 0

0 0


E0

·

(
v1

0

)
= −

ρ

(u + ρ)2 , 0,

∆3 :WT [D2F(0, 0; γ[TC])(V,V)] = (w1,w2)T

∂2F1
∂u2 v2

1 + 2∂2F1
∂u∂v v1v2 +

∂2F1
∂v2 v2

2
∂2F2
∂u2 v2

1 + 2∂2F2
∂u∂v v1v2 +

∂2F2
∂v2 v2

2


E0

= (1, 0)
∂2F1
∂u2 v2

1
∂2F2
∂u2 v2

1


E0

= (1, 0)
(
(−2 + 2γ

ρ2 )v2
1

0

)
= −

2
ρ

(ρ + β − 1)v2
1.

Thus, if β + ρ < 1 then one obtains ∆3 :WT [D2F(0, 0; γ[TC])(V,V)] , 0. Therefore, (3.2) undergoes
a transcritical bifurcation around the trivial equilibrium point E0 = (0, 0) whenever the parameter γ
attains the threshold value γ[TC] = ρ(1 − β), according to Sotomayor’s theorem [37].

Direct applications of Routh-Hurwitz criteria give the following:

Theorem 3.5. The semi-trivial equilibrium points Ei = (ui, 0) with i = 1, 2, 3, 4, 5 are locally asymptoti-
cally stable if γ < (ui + ρ)2 and ui <

δ
η
. Additionally, each Ei = (ui, 0) for i = 1, 2, 3, 4, 5 is saddle point

if γ > (ui + ρ)2 and ui <
δ
η

or γ < (ui + ρ)2 and ui >
δ
η
.

Theorem 3.6. The model system (3.2) undergoes a transcritical bifurcation around the semi-trivial
equilibrium point Ē = (ū, 0) for the critical system parameter value γ = γ[TC] when γ satisfies δ−ηū = 0
under the two parametric restrictions

γ , (ū + ρ)2 and γ ,
(η(η + α) + σ)(ū + ρ)2

σ
, (3.8)

where ū is determined by (3.4).

Proof. To obtain the transcritical bifurcation requires that one of the eigenvalues of the corresponding
Jacobian matrix at the semi-trivial equilibrium point Ē must be zero, which implies that det(JĒ) = 0.
We accordingly obtained the critical system parameter value δ = δ[TC] = ηū.

Next we checked Sotomayor’s condition [37]. LetA andB be the eigenvectors of the Jacobian matrix
JĒ and its transpose matrix JT

Ē , respectively, corresponding to the simple zero eigenvalue. At the critical
system parameter value γ = γ[TC], we obtain the eigenvectorsA and B asA = (A1, A2)T ≜ (J̄12,−J̄11)T

and B = (B1, B2)T ≜ (0,−J̄12)T . Now, we compute the three numerical values ∆1,∆2 and ∆3 as follows:

∆1 : BT [Fδ(ū, 0; δ[TC])] = (B1, B2)
(
∂F1
∂δ
∂F2
∂δ

)
Ē

= (B1, B2)
(
0
0

)
= 0,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18820–18860.



18831

∆2 : BT [DFδ(ū, 0; δ[TC])(A)] = (0, B2)

 0 0

0 −1

 (A1

A2

)
= −A2B2,

∆3 : BT [D2F(ū, 0; δ[TC])(A,A)] = (B1, B2)
∂2F1
∂u2 A2

1 + 2∂2F1
∂u∂v A1A2 +

∂2F1
∂v2 A2

2
∂2F2
∂u2 A2

1 + 2∂2F2
∂u∂v A1A2 +

∂2F2
∂v2 A2

2


Ē

= 2A2B2(ηA1 − σA2).

So, if γ , (ū+ ρ)2, then we have ∆2 : BT [DFδ(ū, 0; δ[TC])(A)] , 0; if σ , ηA1
A2

, that is, γ , (η(η+α)+σ)(ū+ρ)2

σ
,

then we have ∆3 : BT [D2F(ū, 0; δ[TC])(A,A)] , 0. Hence, a transcritical bifurcation takes place into
the system surrounding the semi-trivial equilibrium point Ē = (ū, 0) whenever the system parameter δ
crosses the threshold value δ[TC] = ηū under the pre-assumptions as defined in (3.8).

Remark 3.7. Biological interpretation: From Theorem 3.3 to Theorem 3.6, we obtained that large Allee
effects are prone to causing both the prey and predator population extinction, and small Allee effects
can only cause the predator species’ extinction. However, the prey species u persists even when the prey
species density is low.

3.3. Bifurcation analysis of the non-dimensionalized temporal system around the coexistence
equilibrium point

This section serves various types of bifurcation phenomena and takes place in (3.2) around the
coexistence equilibrium point E∗(u∗, v∗) for some specific system parameter values. We showed that
the temporal system undergoes codimension one bifurcations including saddle-node bifurcation, Hopf-
bifurcation and codimension two cusp and Bogdanov-Takens bifurcations. As we know, at the co-
existence equilibrium point E∗ = (u∗, v∗), the characteristic equation of linearized system is given
by

λ2 − Tλ + D = 0, (3.9)

where T = tr(JE∗) = J∗11 + J∗22 and D = det(JE∗) = J∗11J∗22 − J∗12J∗21 with

J∗11 = −u∗ +
γu∗

(u∗ + ρ)2 , J∗12 = −
αu∗

(1 + αv∗)2 − ηu∗, J∗21 = ηv∗, J∗22 = −σv∗. (3.10)

Remark 3.8. System (3.2) may exhibit bi-stability between the trivial equilibrium E0 and the coexistence
equilibrium E∗. For example, if one takes a set of system parameters as α = 0.03, β = 0.01, γ =
0.21, ρ = 0.08, η = 0.3, δ = 0.06 and σ = 0.2, then it is easy to check that γ − ρ(1 − β) = 0.1292 > 0,
tr(JE∗(0.3453,0.4579)) = −0.036 < 0 and det(JE∗(0.3453,0.4579)) = 0.0105 > 0 are satisfied. So, the trivial
equilibrium E0 and the coexistence equilibrium E∗ are all stable in this case.

3.3.1. Existence of Hopf-bifurcation

The following theorem follows directly from the Hopf bifurcation theorem [38].

Theorem 3.9. The model system (3.2) exhibits a Hopf-bifurcation and gives birth of a limit cycle around
the coexistence equilibrium point E∗ = (u∗, v∗) at the critical system parameter value γ = γ[HB] provided
by T (γ[HB]) = 0, D(γ[HB]) > 0 and Ṫ (γ[HB]) = dT

dγ |γ=γ[HB] , 0.
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Figure 2. Existence of limit cycle for (3.2) at the critical parameter value (i) γ = γ[HB] =

0.211421 around the coexistence equilibrium point E∗ = (0.352582, 0.228873), (ii) δ =
δ[HB] = 0.058389 around the coexistence equilibrium point E∗ = (0.350447, 0.233725), (iii)
α = α[HB] = 0.402793 around E∗ = (0.351249, 0.226873), (iv) β = β[HB] = 0.014360 around
E∗ = (0.351251, 0.226876), (v) ρ = ρ[HB] = 0.077660 around E∗ = (0.353390, 0.230085), (vi)
σ = σ[HB] = 0.193995 around E∗ = (0.351248, 0.233894), (vii) η = η[HB] = 0.303690 around
E∗ = (0.350605, 0.232377). The remaining parameter values are provided in α = 0.38, β =
0.01, γ = 0.21, ρ = 0.08, η = 0.3, δ = 0.06, σ = 0.2 for each case.

3.3.2. Direction and stability of Hopf-bifurcation

This section deals with the determination of the stability and direction of Hopf-bifurcation, which
takes place in (3.2) around the coexistence equilibrium point E∗ = (u∗, v∗), through the computation
of the first Lyapunov number. For this purpose, here we will follow the normal form technique [36].
Let us choose the following transformation Q1 = u − u∗ and Q2 = v − v∗, which shift the coexistence
equilibrium point E∗ = (u∗, v∗) to the origin. Using this transformation, (3.2) may be written as:

dQ1

dt
=

Q1 + u∗
1 + α(Q2 + v∗)

− β(Q1 + u∗) − (Q1 + u∗)2 −
γ(Q1 + u∗)
Q1 + u∗ + ρ

− η(Q1 + u∗)(Q2 + v∗),

dQ2

dt
= −δ(Q2 + v∗) − σ(Q2 + v∗)2 + η(Q1 + u∗)(Q2 + v∗). (3.11)
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By Taylor’s series expansion of the right hand side of (3.11) about the origin, and we obtain:

Q̇1 = c10Q1 + c01Q2 + c20Q2
1 + c11Q1Q2 + c02Q2

2 + c30Q3
1 + c21Q2

1Q2 + c12Q1Q2
2 + c03Q3

2 + o(||Q||4),
Q̇2 = d10Q1 + d01Q2 + d20Q2

1 + d11Q1Q2 + d02Q2
2 + d30Q3

1 + d21Q2
1Q2 + d12Q1Q2

2 + d03Q3
2 + o(||Q||4),

(3.12)

where Q = (Q1,Q2)T and the coefficients ci j, di j; i, j = 0, 1, 2, 3, . . . are given by

c10 =
1

1 + αv∗
− β − 2u∗ −

γ

u∗ + ρ
+

γu∗
(u∗ + ρ)2 − ηv∗, c01 = −

u∗α
(1 + αv∗)2 − ηu∗,

d01 = −δ − 2σv∗ + ηu∗, d10 = ηv∗, c20 = −2 +
2γρ

(u∗ + ρ)3 , c11 = −
α

(1 + αv∗)2 − η,

c02 =
2α2u∗

(1 + αv∗)3 , c30 = −
6γρ

(u∗ + ρ)4 , c21 = 0, c12 =
2α2

(1 + αv∗)3 , d12 = 0,

c03 = −
6α3u∗

(1 + αv∗)4 , d20 = 0, d11 = η, d02 = −2σ, d30 = 0, d21 = 0, d03 = 0.

System (3.12) may be rewritten as

Q̇ = JE∗Q + Φ(Q), (3.13)

where Φ =
(
c20Q2

1 + c11Q1Q2 + c02Q2
2 + c30Q3

1 + c12Q1Q2
2 + c03Q3

2
d11Q1Q2 + d02Q2

2

)
=

(
Φ1

Φ2

)
. According to the argument

in [7], after transformation, we get that (3.13) is equivalent to the following(
ẏ1

ẏ2

)
=

 0 −ω

ω 0

 (y1

y2

)
+

(
N1(y1, y2;σ = σ[HB])
N2(y1, y2;σ = σ[HB])

)
,

where, the terms N1 and N2 are given by;

N1(y1, y2;σ = σ[HB]) =
1

c01
Φ1,N

2(y1, y2;σ = σ[HB]) = −
1

c01ω
(c10Φ1 + c01Φ2),

with,

Φ1 = (c20c2
01 − c11c01c10 + c02c2

10)y2
1 + (2c02c10ω − c11c01ω)y1y2 + c02ω

2y2
2 + (c30c3

01 + c12c01c2
10

−c03c3
10)y3

1 + (2c12c01c10ω − 3c03c2
10ω)y2

1y2 − 3c03c10ω
2y2

1y2 − c03ω
3y3

2,

Φ2 = (d02c2
10 − d11c01c10)y2

1 + (2d02c10ω − d11c01ω)y1y2 + d02ω
2y2

2.

Now, to observe the stability behavior of the bifurcating limit cycle, one may calculate the first Lyapunov
number L1 by computing the following formula:

L1 =
1

16

[
N1

111 +N
1
122 +N

2
112 +N

2
222

]
+

1
16ω

[
N1

12(N1
11 +N

1
22 − N

2
12(N2

11 +N
2
22) − N1

11N
2
11 +N

1
22N

2
22)

]
,
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where, N k
i j =

∂2Nk

∂yi∂y j

∣∣∣∣∣
(y1, y2; σ)=(0, 0; σ[HB])

, N k
i jl =

∂3Nk

∂yi∂y j∂yl

∣∣∣∣∣
(y1, y2; σ)=(0, 0; σ[HB])

. Therefore, depending upon the

positivity of L1, one may consider the following cases in order to determine the stability-instability
behavior of the limit cycle:
Case-i: If L1 > 0(< 0), then a sub-critical (super-critical) Hopf-bifurcation takes place into (3.2) or an
unstable (stable) limit cycle will be created surrounding the coexistence equilibrium point E∗ = (u∗, v∗).
Case-ii: Whenever the first Lyapunov number L1 vanishes, then a local bifurcation of co-dimension
two, namely, generalized Hopf bifurcation or Bautin bifurcation appears into (3.2) about the coexistence
equilibrium point E∗ = (u∗, v∗).

3.3.3. Numerical simulations of Hopf bifurcation

In this subsection, we studied the Hopf bifurcation numerically. The parameter values provided
for numerical simulations of (3.2) are: α = 0.38, β = 0.01, γ = 0.21, ρ = 0.08, η = 0.3, δ = 0.06
and σ = 0.2. To solve the nonlinear system (3.2) numerically we have used MATLAB R2016a by
constructing a suitable code. In Figure 2, each system parameter is chosen as a bifurcation parameter to
illustrate the occurrence of Hopf bifurcation, respectively. All numerical simulations suggest that Hopf
bifurcations are subcritical in nature, which can be interpreted by the positive first Lyapunov numbers
(Figure 2(i) with L1 = 2.901765; Figure 2(ii) with L1 = 2.918016; Figure 2(iii) with L1 = 2.848071;
Figure 2(iv) with L1 = 2.905451; Figure 2(v) with L1 = 2.940986; Figure 2(vi) with L1 = 2.803728;
Figure 2(vii) with L1 = 2.863622).

3.3.4. Saddle-node bifurcation

In this section, one may discuss the existence of saddle-node bifurcation in (3.2) around the coexis-
tence equilibrium point E∗ = (u∗, v∗) for the critical system parameter value γ = γ[S N]. For this purpose,
here one may use Sotomayor’s theorem [37].

Theorem 3.10. The model system (3.2) may exhibit a saddle-node bifurcation around the coexistence
equilibrium point E∗ = (u∗, v∗) whenever the system parameter γ attains the critical value γ = γ[S N] and
T , 0, where

γ[S N] =

(
σ + 2σα v∗ + σα2v∗2 + η α + η2 + 2 η2α v∗ + η2α2v∗2

)
(u∗ + ρ)2

(1 + α v∗)2 σ
,

and T is specified in the proof of the theorem.

Proof. It is easy to check that at the critical system parameter value γ = γ[S N] the determinant of
the corresponding Jacobian matrix JE∗ vanishes, that is, det(JE∗) = 0, which implies that one of the
eigenvalues of JE∗ is equal to zero. Next, we checked the transversality condition. Let V̂ and Ŵ be
the eigenvectors of the Jacobian matrix JE∗ and its transpose matrix JT

E∗ respectively corresponding to
the simple zero eigenvalue. Then, at the critical system parameter value γ[S N], one may calculate the
eigenvectors as

V̂ =

(
J∗12
−J∗11

)
≜

(
v̂1

v̂2

)
, Ŵ =

(
J∗21
−J∗11

)
≜

(
ŵ1

ŵ2

)
.
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Next, we calculated the transversality conditions Γ1 and Γ2 as follows:

Γ1 : ŴT
[
Fγ(E∗; γ[S N])

]
= (ŵ1, ŵ2)

∂F1
∂γ
∂F2
∂γ


[E∗,γ[S N]]

= (ŵ1, ŵ2)
(
−

u∗
u∗+ρ

0

)
= −

ηu∗v∗
u∗ + ρ

, 0.

Now, to compute the second transversality condition, one needs to compute the second order derivatives
at the coexistence equilibrium point E∗ = (u∗, v∗) as follows:

∂2F1

∂u2 = −2 +
2γρ

(u∗ + ρ)3 ,
∂2F1

∂u∂v
= −

α

(1 + αv∗)2 − η,

∂2F1

∂v2 =
2α2u∗

(1 + αv∗)3 ,
∂2F2

∂u2 = 0,
∂2F2

∂u∂v
= η,

∂2F2

∂v2 = −2σ.

Γ2 : ŴT
[
D2F(E∗; γ[S N])(V̂, V̂)

]
= (ŵ1, ŵ2)

∂2F1
∂u2 v̂2

1 + 2∂2F1
∂u∂v v̂1v̂2 +

∂2F1
∂v2 v̂2

2
∂2F2
∂u2 v̂2

1 + 2∂2F2
∂u∂v v̂1v̂2 +

∂2F2
∂v2 v̂2

2

 ,
= ŵ1

(
∂2F1

∂u2 v̂2
1 + 2

∂2F1

∂u∂v
v̂1v̂2 +

∂2F1

∂v2 v̂2
2

)
+ŵ2

(
∂2F2

∂u2 v̂2
1 + 2

∂2F2

∂u∂v
v̂1v̂2 +

∂2F2

∂v2 v̂2
2

)
≜ T .

If T , 0 by Sotomayor’s theorem, one may conclude that (3.2) undergoes a saddle-node bifurcation
around the coexistence equilibrium point E∗ = (u∗, v∗) whenever the system parameter γ attains the
critical value γ[S N].

Example 3.11. Now, to verify the analytical findings of the occurence of saddle-node bifurcation around
the coexistence equilibrium point, here an attempt is made to preform a numerical example. For this
purpose, the following set of system parameter values are taken into account; α = 0.38, β = 0.01, ρ =
0.08, η = 0.3, σ = 0.2 and δ = 0.06. Then, at the critical system parameter value γ[S N] = 0.227779,
(3.2) has a coexistence equilibrium point E∗ = (0.258868, 0.088301). Also, at that critical value the
eigenvectors V̂ and Ŵ are given by V̂ = (−0.169746,−0.254621)T , Ŵ = (0.024690,−0.254621)T ,
where T represents the transpose of matrix. Next, we calculated the transversality conditions Γ1 and Γ3

as follows:

ŴT
[
Fγ(E∗; γ[S N])

]
= −0.020236 , 0, T = ŴT

[
D2F(E∗; γ[S N])(V̂, V̂)

]
= −0.002121 , 0.

Hence, both of the transversality conditions for the occurence of saddle-node bifurcation holds good.
Thus, one may conclude that (3.2) undergoes a saddle-node bifurcation around the coexistence equilib-
rium point E∗ = (0.258868, 0.088301) whenever the system parameter γ crosses the threshold value
γ[S N] = 0.227779 (cf. Figure 3).
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Figure 3. Identification of saddle-node bifurcation in (3.2) for the specific system parameter
value γ[S N] = 0.227779 with the coexistence equilibrium point E∗ = (0.258868, 0.088301).
The remaining system parameter values are α = 0.38, β = 0.01, ρ = 0.08, η = 0.3, σ = 0.2 and
δ = 0.06.

3.3.5. Bogdanov-Takens bifurcation

When in a system the saddle-node bifurcation curve and the Hopf bifurcation curve meet tangentially,
at that point a local bifurcation of codimension two, namely a Bogdanov-Takens bifurcation takes place
into the system [38]. Here, it is observed that, (3.2) exhibits Hopf-bifurcation for the critical system
parameter value σ = σ[HB] surrounding the coexistence equilibrium point E∗ = (u∗, v∗). Also, (3.2)
undergoes a saddle-node bifurcation around the coexistence equilibrium point E∗ = (u∗, v∗) whenever
the system parameter γ attains the threshold value γ[S N]. Subsequently, a Bogdanov-Takens bifurcation
takes place into (3.2) around the coexistence equilibrium point E∗ = (u∗, v∗).

Theorem 3.12. The temporal system (3.2) experiences a Bogdanov-Takens bifurcation surrounding the
coexistence equilibrium E∗ = (u∗, v∗) for the critical parameter value (σ, γ) = (σ[BT ], γ[BT ]) provided the
following conditions must be followed:

BT. 1 tr(JE∗;σ = σ
[BT ], γ = γ[BT ]) = 0, det(JE∗;σ = σ

[BT ], γ = γ[BT ]) = 0,
BT. 2 d11(ϵ∗) + 2c20(ϵ∗) , 0, d20(ϵ∗) , 0,

BT. 3 det
(
∂(ϑ1, ϑ2)
∂(ϵ1, ϵ2)

∣∣∣∣∣
(ϵ1,ϵ2)=(0,0)

)
, 0,

where c20(ϵ∗), d11(ϵ∗) d20(ϵ∗), ϑ1(ϵ), and ϑ2(ϵ) are given in the proof of the theorem. Then, there exists a
parameter dependent nonlinear smooth invertible variable transformation, and a direction preserving
time reparametrization, which together reduce (3.2) to the following equivalent norm form{ dξ1

dt = ξ2,
dξ2
dt = ϑ1 + ϑ2ξ1 + ξ1

2 + sξ1ξ2,
(3.14)

where ϑ1 and ϑ2 are defined in (A.17), and s = ±1.

Proof. For the detailed proof please see the Appendix.
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Without loss of generality, let us start with the negative value of s, that is, let s = −1, then for (3.2)
there exists a neighbourhood of (ϑ1, ϑ2) = (0, 0) ∈ R2, which divides the bifurcation plane into four
regions through the following curves according to [38]:

(i) S N+ = {(ϑ1, ϑ2) : ϑ2
2 = 4ϑ1;ϑ2 < 0}, (3.15)

(ii) S N− = {(ϑ1, ϑ2) : ϑ2
2 = 4ϑ1;ϑ2 > 0}, (3.16)

(iii) H = {(ϑ1, ϑ2) : ϑ1 = 0, ϑ2 > 0}, (3.17)

(iv) HL = {(ϑ1, ϑ2) : ϑ1 = −
6
25
ϑ2

2 + o(ϑ2
2), ϑ2 < 0}. (3.18)

Here, S N represents the saddle-node bifurcation curve with two branches S N+ and S N−, corresponding
to the sign of ϑ2 such as ϑ2 < 0 and ϑ2 > 0, respectively, H represents the Hopf-bifurcation curve and
HL represents the Homoclinic bifurcation curve. In addition, the argument against the case for the
positive value s, that is, for s = 1 is very much identical to the argument in favor of s = −1. For this
case the local representation of bifurcation curves in a very small neighborhood of (ϑ1, ϑ2) = (0, 0) were
generated using the following linear transformation given by (ξ1, ξ2, t, ϑ1, ϑ2) = (ξ1,−ξ2,−t, ϑ1,−ϑ2).

Table 1. Schematic summary of the phase portraits in the vicinity of the critical bifurcating
parameter values (σ[BT ], γ[BT ]) = (0.268561, 1.324208) illustrated through Figure 4.

Value of Value of Equilibrium point Types of Phase
ϵ1 ϵ2 Coexistence/interior Equilibrium point portrait
0 0 E∗ = (0.4030, 0.0459) Cusp of codimension two; Figure 4(i)

Bogdanov-Takens bifurcation occurs
−0.523889 −0.009472 E

′

∗ = (0.4003, 0.0751) Limit cycle creats surrounding E
′

∗, Figure 4(ii)
E
′′

∗ = (0.3522, 0.0571) while E
′′

∗ is a saddle point
−0.520889 −0.009472 E

′

∗ = (0.4018, 0.0754) Homoclinic orbit joining the saddle Figure 4(iii)
E
′′

∗ = (0.3512, 0.0565) point E
′′

∗ to itself surrounds E
′

∗

−0.523889 −0.01172 E
′

∗ = (0.4252, 0.0844) E
′

∗ is a spiral sink, while Figure 4(iv)
E
′′

∗ = (0.3274, 0.0477) E
′′

∗ is a saddle point
−0.523889 −0.007825 Does not exist . . . Figure 4(v)
−0.53489 −0.009472 E

′

∗ = (0.3942, 0.0738) E
′

∗ is a spiral source, while Figure 4(vi)
E
′′

∗ = (0.3566, 0.0595) E
′′

∗ is a saddle point

3.3.6. Numerical simulations of Bogdanov-Takens bifurcation

In this subsection, we devote to perform some numerical simulations to illustrate the effectiveness of
Theorem 3.12. Without loss of generality, we choose γ and σ as the bifurcation parameters, and take a
set of parameter values as follows:

α = 0.38, β = 0.01, ρ = 0.08, η = 0.3, δ = 0.06, σ = 1.324208, γ = 0.268561.

Under this set of parameters, (3.2) has the interior equilibrium point E∗(0.4030, 0.0459) and the Jacobian
matrix associated with E∗ has two zero eigenvalues. We now perturb the parameters γ and σ in the
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Figure 4. Phase portraits of Bogdanov-Takens bifurcation of (3.2) in the neighborhood
of the unique coexistence equilibrium point E∗ = (0.403015, 0.045993) in the uv-plane.
The critical bifurcating parameter values are (γ[BT ], σ[BT ]) = (0.268561, 1.324208). For a
small perturbation, (i) ϵ1 = 0, ϵ2 = 0, (ii) ϵ1 = −0.009472, ϵ2 = −0.523889, (iii) ϵ1 =

−0.009472, ϵ2 = −0.520889, (iv) ϵ1 = −0.01172, ϵ2 = −0.523889, (v) ϵ1 = −0.007825, ϵ2 =

−0.523889, (vi) ϵ1 = −0.009472, ϵ2 = −0.53489. The remaining parameter values are
α = 0.38, β = 0.01, ρ = 0.08, η = 0.3, δ = 0.06.
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Figure 5. Phase portraits of Bogdanov-Takens bifurcation of (3.2) in the vicinity of the unique
coexistence equilibrium point E∗ = (0.281675, 0.107900) in the uv-plane. The critical bifur-
cating parameter values are (η[BT ], σ[BT ]) = (0.818409, 1.580402). In a small neighborhood
(η[BT ] + ϵ1, σ

[BT ] + ϵ2), where (i) ϵ1 = 0, ϵ2 = 0, (ii) ϵ1 = −0.124587, ϵ2 = −0.4438945,
(iii) ϵ1 = −0.126367, ϵ2 = −0.4438945, (iv) ϵ1 = −0.146887, ϵ2 = −0.4438945, (v)
ϵ1 = −0.10887, ϵ2 = −0.4438945, (vi) ϵ1 = −0.124587, ϵ2 = −0.4538945. The remain-
ing parameter values are α = 0.38, β = 0.01, γ = 0.21, ρ = 0.08, δ = 0.06.
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Table 2. Schematic summary of the phase portraits in the neighborhood of (η[BT ], σ[BT ]) =
(0.818409, 1.580402) portrayed through Figure 5.

Value of Value of Equilibrium point Types of Phase
ϵ1 ϵ2 Coexistence/interior Equilibrium point portrait
0 0 E∗ = (0.2816, 0.1079) Cusp of codimension two; Figure 5(i)

Bogdanov-Takens bifurcation occurs
−0.124587 −0.4438945 E

′

∗ = (0.2978, 0.1291) Limit cycle creats surrounding E
′

∗, Figure 5(ii)
E
′′

∗ = (0.2597, 0.1058) while E
′′

∗ is a saddle point
−0.126367 −0.4438945 E

′

∗ = (0.3024, 0.1314) Homoclinic orbit joining the saddle Figure 5(iii)
E
′′

∗ = (0.2562, 0.1032) point E
′′

∗ to itself surrounds E
′

∗

−0.146887 −0.4438945 E
′

∗ = (0.3326, 0.1438) E
′

∗ is a spiral sink, while Figure 5(iv)
E
′′

∗ = (0.2375, 0.0876) E
′′

∗ is a saddle point
−0.10887 0.4438945 Did not exists . . . Figure 5(v)
−0.124587 −0.4538945 E

′

∗ = (0.2899, 0.1253) E
′

∗ is a spiral source, while Figure 5(vi)
E
′′

∗ = (0.2658, 0.1104) E
′′

∗ is a saddle point

small neighbourhood of 1.324208 and 0.268561, respectively, that is, let σ = 0.268561 + ϵ1 and
γ = 1.324208 + ϵ2, where ϵ1 and ϵ2 are small perturbation parameters. Then, we get the system
corresponding to the form (A.9) as follows{ dū1

dt = G10 + m10ū1 + m01v̄1 + m20ū2
1 + m11ū1v̄1 + m02v̄2

1 + H̄1(ū1, v̄1),
dv̄1
dt = H10 + n10ū1 + n01v̄1 + n20ū2

1 + n11ū1v̄1 + n02v̄2
1 + H̄2(ū1, v̄1),

(3.19)

where G10 = −0.8345ϵ2, H10 = −0.0021ϵ1, m10 = 0.0609 − 0.3429ϵ2, n10 = 0.0138, m01 = −0.2688,
n01 = −0.0609−0.092ϵ1, m20 = −1.6187+1.4198∗ ϵ2, m11 = −0.6671, m02 = 0.1105, n20 = 0, n11 = 0.3,
and n02 = −0.537122 − 2ϵ1.

Since d11(ϵ∗) + 2c∗20 = −5.0018 , 0 and d20(ϵ∗) = −00892 , 0, we used the formulae presented
in Section 3.3.5 to calculate γ1(ϵ), γ2(ϵ),D(ϵ), and E(ϵ). Then, we obtained the following norm form
of the Bogdanov-Takens bifurcation corresponding to (A.16) by using sign calculation of MATLAB
R2016a software: { dP

dτ = Q,
dQ
dτ = γ1(ϵ) + γ2(ϵ)P +D(ϵ)P2 + E(ϵ)PQ + H(P,Q),

(3.20)

where

γ1(ϵ) =ϵ2
1 (0.1213ϵ3

2 − 0.084159ϵ2
2 + 0.014259ϵ2 − 0.000013488) − ϵ1(1.382ϵ4

2 − 1.5727ϵ3
2 + 0.42065ϵ2

2

+ 0.053947ϵ2 − 0.00056868) + 5.2189 × 10−15 − 0.050817ϵ2 − 0.40822ϵ2
2 + 2.6904ϵ3

2−

0.26569ϵ4
2 + 3.229ϵ5

2 + O(||ϵ||6),
γ2(ϵ) =ϵ1(9.617ϵ4

2 − 8.3014ϵ3
2 + 6.3419ϵ2

2 − 0.57442ϵ2 + 0.0011016) + ϵ2
1 (−1.3453ϵ3

2 + 0.51871ϵ2
2−

0.049249ϵ2 + 0.0042726) − ϵ3
1 (−0.037202ϵ2

2 + 0.0048059ϵ2 − 4.5382 × 10−6) − 1.1869 × 10−8

− 1.0527ϵ2 + 10.3ϵ2
2 − 12.975ϵ3

2 + 1.5915ϵ4
2 − 21.546ϵ5

2 + O(||ϵ ||6),
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D(ϵ) =ϵ4
1 (0.00040496ϵ2 − 3.817 × 10−7) − ϵ3

1 (0.10135ϵ2
2 − 0.011885ϵ2 + 0.0014745) − ϵ2

1 (−6.6109ϵ3
2+

2.6944ϵ2
2 − 0.31387ϵ2 + 0.023075) − ϵ1(38.14ϵ4

2 − 18.077ϵ3
2 + 26.184ϵ2

2 − 4.2265ϵ2 + 0.13818)−
0.089171 + 6.0452ϵ2 − 42.631ϵ2

2 + 15.871ϵ3
2 − 21.281ϵ4

2 + 30.583ϵ5
2 + O(||ϵ ||6),

E(ϵ) =15.186ϵ2 + ϵ1(5.102ϵ2 − 0.67797) + 0.35954ϵ2
2 − 5.0018.

Then, the generic norm form of B-T bifurcation for (3.2) near the origin for small ∥ϵ∥ is locally
topologically equivalent to the system:{ dξ1

dt = ξ2,
dξ2
dt = ϑ1 + ϑ2ξ1 + ξ1

2 + sξ1ξ2,
(3.21)

where ϑ1(ϵ) and ϑ2(ϵ) can be obtained with the expression of γ1(ϵ), γ2(ϵ),D(ϵ), and E(ϵ) given in
(3.20), s = sign

(
θ

d20(ϵ∗)

)
= 1, since det

(
∂(ϑ1,ϑ2)
∂(ϵ1,ϵ2)

∣∣∣
(ϵ1,ϵ2)=(0,0)

)
= 1507084.8078 , 0, which means that the

transversality condition BT. 3 is satisfied. In view of Theorem 3.12, (3.2) undergoes B-T bifurcation at
the coexistence equilibrium E∗, and the local representation of bifurcation curves in ϵ1, ϵ2 in the small
neighborhood of the origin are given in (3.15)–(3.18). This can be seen from the phase portrait diagrams
depicted in Figure 4. Similarly, we obtained different B-T bifurcation phase portraits that occurred in
the vicinity (ϵ1, ϵ2) of the chosen bifurcating parameters (see Figure 5). The detailed explanation in each
figure corresponding to Bogdanov-Takens bifurcation are listed in Tables 1 and 2.
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Figure 6. One parameter bifurcation diagrams corresponding to the system parameter as
specified in the x-axis of each figures. The other system parameters used here are provided
as (i) α = 0.38, β = 0.01, ρ = 0.08, η = 0.3, δ = 0.06, σ = 0.2; (ii)α = 0.38, β = 0.01, γ =
0.21, ρ = 0.08, η = 0.3, σ = 0.2; (iii)α = 0.38, γ = 0.21, ρ = 0.08, η = 0.3, δ = 0.06, σ = 0.2.
Here, SN represents saddle-node bifurcation point, BP represents transcritical bifurcation
point, H represents Hopf bifurcation point.

3.4. Exploration of codimension one bifurcations of the non-dimensionalized temporal system

In this present section we have explored the occurrence of various codimension one bifurcations,
namely the Hopf-bifurcation, transcritical bifurcation and saddle-node bifurcation for some specific
system parameter value surrounding the ecologically meaningful equilibrium point of (3.2). In Figure 6,
we have illustrated the one-parameter bifurcation diagrams with respect to the system parameter as
specified in the x-axis of each figure [39].
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In Figure 6(i) we have observed that a Hopf-bifurcation took place in (3.2) around the coexistence
equilibrium point E∗ = (0.352582, 0.228873) at the system parameter value γ[HB] = 0.211421, and we
obtained the corresponding first Lyapunov number as L1 = 2.901765. Also, saddle-node bifurcation
appeared in (3.2) at γ[S N] = 0.227779 around E∗ = (0.258868, 0.088301). Additionally, (3.2) exhibited a
transcritical bifurcation at the critical system parameter value γ[TC] = 0.2212 about the axial equilibrium
point Ē = (0.2, 0).

The bifurcation diagram, with respect to the system parameter δ as depicted through the Figure
6(ii), illustrated that (3.2) exhibits a Hopf-bifurcation around the coexistence equilibrium point E∗ =
(0.350447, 0.233725) for the critical system parameter value δ[HB] = 0.058389. At this critical system
parameter value we obtained the first Lyapunov number as L1 = 2.918016, which implied that the
appeared Hopf-bifurcation is subcritical. Additionally, we have observed that a saddle-node bifurcation
takes place at (3.2) at the critical system parameter value δ[S N] = 0.043514 surrounding the coexistence
equilibrium point E∗ = (0.247418, 0.153555). Moreover, we have observed that the system experiences
a transcritical bifurcation about the predator free equilibrium point Ē = (0.178911, 0).

From the bifurcation diagram of (3.2), with respect to the system parameter β as depicted in Figure
6(iii), we have found that the model system exhibits a Hopf-bifurcation at the critical system parameter
value β[HB] = 0.014360 about the coexistence equilibrium point E∗ = (0.351251, 0.226876). Moreover,
a saddle-node bifurcation took place in the system at β[S N] = 0.063588 surrounding the equilibrium
point E∗ = (0.244684, 0.067026). Additionally, the system experienced a transcritical bifurcation about
the predator free equilibrium point Ē = (0.2, 0) at β[TC] = 0.05.
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(iii)

Figure 7. Two parameter bifurcation diagrams corresponding to the system parameter as
specified in the axis of each figure. The other system parameter values used here are provided
as (i)α = 0.38, β = 0.01, ρ = 0.08, δ = 0.06, σ = 0.2; (ii)α = 0.38, β = 0.01, γ = 0.21, ρ =
0.08, δ = 0.06; (iii)α = 0.38, γ = 0.21, ρ = 0.08, η = 0.3, δ = 0.06. Here, BT represents
Bogdanov-Takens bifurcation point, CP represents cusp bifurcation point.

3.5. Detection of codimension two bifurcations of the non-dimensionalized temporal system

In this present section we have explored the occurrence of codimension two bifurcations, namely
Bogdanov-Takens bifurcation, and cusp bifurcation for some specific system parameter value sur-
rounding the ecologically meaningful equilibrium point by depicting the two-parameter bifurcation
diagram [39]. It should be noted that we have dealt with a local bifurcation of codimension two, namely
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the cusp bifurcation in (3.2) due to the variation of two system parameters. It is a well-known fact that
when two saddle-node bifurcation curves meet at a point, that is where a cusp bifurcation may take
place. Also, one more fact is that when the saddle-node bifurcation curve vanishes on the transcritical
bifurcation curve, a cusp bifurcation may arise. This suggests that three equilibrium points may be
merged at the cusp bifurcation point due to the variation of two significant system parameters. For more
detailed derivation about cusp bifurcation, please refer to Step-1 and Step-2 in the Appendix.

In Figure 7 (i) we have detected two cusp bifurcation points appearing on the saddle-node bi-
furcation curve, which indicates that (3.2) exhibits a cusp bifurcation at the critical system pa-
rameter values (η[CP], γ[CP]) = (0.170821, 0.275520) about the coexistence equilibrium point E∗ =
(0.352761, 0.000693). The normal form coefficient is given by −0.6960690 [39]. Similarly, at
(η[CP], γ[CP]) = (0.829643, 0.139782) about the coexistence equilibrium E∗ = (0.072383, 0.000254), the
normal form coefficient is given by −0.3359687.

It is evident from Figure 7(ii) that, for the critical system parameter value (η[BT ], σ[BT ]) =
(0.818409, 1.580402), (3.2) exhibits a Bogdanov-Takens bifurcation about the coexistence equilib-
rium point E∗ = (0.281675, 0.1079), which is an intersection point of Hopf bifurcation and saddle-node
bifurcation curves. The normal form coefficients are given by (−0.1878629,−2.409671) [39]. Fur-
thermore, a cusp bifurcation took place in the system at the system parameter value (η[CP], σ[CP]) =
(0.335815, 0.114164) about the equilibrium point E∗ = (0.179915, 0.002268), and the normal form
coefficient is given by −0.9066523 [39].

Similarly, a Bogdanov-Takens bifurcation point has been detected in Figure 7(iii) at the sys-
tem parameter value (β[BT ], σ[BT ]) = (0.142135, 1.559992). That is, a Bogdanov-Takens bifurcation
takes place in the system for this system parameter value about the coexistence equilibrium point
E∗ = (0.351249, 0.029086), and the normal form coefficient is given by (−0.0408996,−1.974066).
Also, a cusp bifurcation point has been detected in the Figure at the critical system parameter value
(β[CP], σ[CP]) = (0.05, 0.121539) about the predator free equilibrium point Ē = (0.2, 0), and the normal
form coefficient is given by −0.218866.

4. Stability analysis of the non-dimensionalized spatiotemporal model: Holling type-I functional
response

In this subsection, stability and Turing instability mechanisms are studied. The corresponding
non-dimensionalized form of the spatiotemporal model (1.6) with Holling type-I functional response
(i.e., g(u, v) ≡ 1) is given as follows:

∂u(x,t)
∂t =

u
1+αv − βu − u2 −

γu
u+ρ − ηuv + ∇2u, x ∈ Ω, t > 0,

∂v(x,t)
∂t = −δv − σv2 + ηuv + d∇2v, x ∈ Ω, t > 0,

u(x, y, 0) = u0(x, y) ≥ 0, v(x, y, 0) = v0(x, y) ≥ 0, x ∈ Ω,
∂u
∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0.

(4.1)

The linearized system of (4.1) can be written as

∂

∂t

(
u
v

)
=

(
∆ + J∗11 J∗12

J∗21 d∆ + J∗22

) (
u
v

)
≜ L(d)

(
u
v

)
. (4.2)

Here, J∗i j for i, j = 1, 2 are the same as those in (3.10). Let us suppose Ω = [0, L] × [0, L]. Then,
k2 = (mπ

L )2+( nπ
L )2 with (m, n) ∈ N2\{(0, 0)} as the eigenvalues of −∇2 onΩ under homogeneous Neumann
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boundary conditions. The corresponding eigenfunctions are given by wm,n(x) = Cm,n cos mπx
L cos nπy

L ,
where x = (x, y) and Cm,n are Fourier coefficients with m and n as integers. Denote

Lk(d) =
(

J∗11 − k2 J∗12
J∗21 J∗22 − dk2

)
. (4.3)

It follows that the eigenvalues of L(d) are given by the eigenvalues of Lk(d). So, the characteristic
equation of (4.2) is

λ2 + A(k2)λ + B(k2) = 0 (4.4)

with A(k2) = (1 + d)k2 − (J∗11 + J∗22), B(k2) = dk4 − (dJ∗11 + J∗22)k2 + J∗11J∗22 − J∗12J∗21.

4.1. Turing instability induced by large Allee effect for the unique positive constant steady state

Clearly, if γ ≤ (u∗ + ρ)2, E∗ is locally asymptotically stable. In this subsection, one may always
assume that γ > (u∗ + ρ)2 (i.e., J∗11 > 0) is satisfied and investigate the Turing instability mechanism for
the considered spatial system. To investigate Turing instability, it is assumed that

tr(JE∗) := J∗11 + J∗22 < 0 and det(JE∗) := J∗11J∗22 − J∗12J∗21 > 0. (4.5)

are satisfied.
It is noted that A(k2) > 0 for all non-negative wavenumber k under assumption (4.5). Hence, Turing

instability can only be attained in the case of B(k2) < 0 for some nonzero wavenumber k, which implies
that the coefficient of k2 must satisfy

dJ∗11 + J∗22 > 0. (4.6)

It should be noted that B(k2) > 0 for all non-negative wavenumber k when γ = 0, which implies that
there is no Turing instability occurrence in this case although we can require d > 1, which is a classical
Turing instability mechanism. So, here Turing instability may occur only when the Allee effect and
spatial diffusion are present, thus, calling this mechanism Allee-effect-driven Turing instability.

The critical Turing instability condition can be found by imposing the minimum of B(k2) satisfying
min
k2>0

B(k2) < 0. Since (4.6), one should mink2>0 B(k2) = B(k2
m) with k2

m =
dJ∗11+J∗22

2d . Then min
k2>0

B(k2) < 0

turns into
(dJ∗11 + J∗22)2

4d
> J∗11J∗22 − J∗12J∗21. (4.7)

In fact, the parameter space defined by conditions (4.5)–(4.7) is called Turing instability space, where
one can choose an arbitrary system parameter, including the parameter γ, as a bifurcation parameter to
obtain Turing instability. To obtain a explicit condition revealing Turing instability, in what follows, we
chose the diffusion coefficient d as a bifurcation parameter to derive it. Since

sign(J(E∗)) =
[
+ −

+ −

]
,

one may find the following two threshold values

χ+ =
J∗11J∗22 − 2J∗12J∗21 +

√
∆

J∗211

, χ− =
J∗11J∗22 − 2J∗12J∗21 −

√
∆

J∗211

(4.8)
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with ∆ = (2J∗12J∗21 − J∗11J∗22)2 − J∗211 J∗222 > 0. Moreover, one must dJ∗11 + J∗22 = 0 when d = − J∗22
J∗11
≜ d∗.

Furthermore, one gets 0 < χ− < d∗ < χ+. It is easy to check that min
k2>0

B(k2) < 0 and dJ∗11 + J∗22 > 0 hold

simultaneously when d > χ+ ≜ dc, which means E∗ is spatially unstable and Turing instability occurs in
this case. Moreover, we have min

k2>0
B(k2) > 0 when d < χ+, which means that E∗ is stable in this case.

With these facts in hand, one may immediately have the following:

Theorem 4.1 (Turing instability induced by Allee effect). Assume that the condition (4.5) and γ >
(u∗ + ρ)2 are satisfied. Then, system (4.1) undergoes Turing instability and spatiotemporal forms at E∗
when d > dc := χ+. Furthermore, Turing bifurcation occurs at d = dc.
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Figure 8. Turing-Hopf bifurcation diagram in d-α plane for different Allee effect threshold
values. Here the other system parameters are β = 0.048, γ = 0.0826, ρ = 0.135, η = 0.8, δ =
0.012, σ = 0.128. The Hopf bifurcation threshold values α[HB] are 0.3254 and 0.316 for
γ = 0.0826 and γ = 0.0829, respectively.

In Figure 8, we have plotted the critical dc values against the fear effect α with different Allee effect
threshold values. We have also plotted the temporal Hopf bifurcation curves for the two different
Allee effect threshold values, and these two kinds of curves divide the plane into four regions in each
case: Stable region (SR), Hopf region (HR), Turing region (TR), and Turing-Hopf instability region
(THR). Interestingly, from this figure, we find the dc and α[HB] values decrease as the Allee effect factor
increases, which means the Allee effect can affect Turing instability region or THR region. Next, we
shall investigate pattern selection in the TR region and pattern formation in HR and THR regions,
respectively.

Another way to obtain Turing bifurcation is through the steady-state solution bifurcation theory
[40, 41]. In what follows, we shall choose the diffusion ratio d as a bifurcation parameter to investigate
steady-state bifurcation near the positive steady state E∗. For this purpose, we rewrite A(k2) and B(k2)
as A(k2, d) and B(k2, d), respectively. In view of the theory frame in Section three [41], the sufficient
condition for the occurrence of the steady state bifurcation is that there exists a non-zero wave number
k > 0 and dS > 0 such that

B(k2, dS ) = 0, A(k2, dS ) , 0, and A( j2, dS ) , 0, B( j2, dS ) , 0 for j , k (4.9)

and
∂B(k2, d)

∂d

∣∣∣∣
d=dS
, 0. (4.10)
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In view of the discussion above, we immediately have:

Theorem 4.2. Suppose that (4.5) is satisfied. Furthermore, suppose that

dS ≜ dk =
det(JE∗) − J∗22k2

k2(J∗11 − k2)
> 0 and dk , d j for any j , k.

Then, (dk, u∗, v∗) is a bifurcation point where a smooth curve Γ of the non-constant positive steady-
state solutions bifurcates from the line of positive constant steady-state solution (u∗, v∗), and Γ is
contained in a connected component C of the set of non-zero steady-state solutions of (4.1) in R+ × S +.
Moreover, either C is unbounded in R+ × S +, or C

⋂
(∂R+ × S +) , ∅, or C contains another bifurcation

point (d j, u∗, v∗) with d j , dk. More precisely, Γ is locally a curve near (dk, u∗, v∗) in the form of
Γ = {(d(s), u(s), v(s)) : s ∈ (−ϵ, ϵ)}, where u(s) = u∗ + sak cos mπx

L cos nπy
L + sψ1(s), v(s) = v∗ +

sbk cos mπx
L cos nπy

L + sψ2(s) for s ∈ (−ϵ, ϵ), and d : (−ϵ, ϵ) → R, (ψ1, ψ2) : (−ϵ, ϵ) → Z are C1

functions such that d(0) = dk, ψ1(0) = 0, ψ2(0) = 0. Here Z =
{
(u, v) ∈ S +

∣∣∣∣ ∫Ω uumn + vvmndxdy = 0
}

with umn = ak cos mπx
L cos nπy

L , vmn = bk cos mπx
L cos nπy

L , and ak, bk satisfy Lk(dk)(ak, bk)T = (0, 0)T .

Proof. From dS = dk =
det(JE∗ )−J∗22k2

k2(J∗11−k2) , we immediately have B(k2, dS ) = B(k2, dk) = 0, but B( j2, dk) , 0
for j , k. Clearly, A(k2, dk) = (1+dk)k2− (J∗11+ J∗22) > 0 under the assumption (4.5) for all wavenumbers
k. Furthermore, ∂B(k2,d)

∂d

∣∣∣∣
d=dS
= k2(k2 − J∗11) , 0. Therefore, the conditions (4.9) and (4.10) are satisfied,

which ends the proof of the theorem.

In view of [41], the sufficient condition for the occurrence of Hopf bifurcation is that there exists a
non-zero wavenumber k > 0 and dH > 0 such that

A(k2, dH) = 0, B(k2, dH) > 0, and A( j2, dH) , 0, B( j2, dH) , 0 for j , k (4.11)

and
∂Re(λ(k2, d))

∂d

∣∣∣∣
d=dH
, 0. (4.12)

For any Hopf bifurcation point dH, α(λ) ± ω(λ) are the eigenvalues of Lk(d), thus, (4.12) becomes

α′(dH) =
A′(k2, d)

2

∣∣∣∣
d=dH
=

k2

2
, 0. (4.13)

On the other hand, from A(k2, dH) = 0, one may have

dH =
J∗11 + J∗22 − k2

k2 (4.14)

when k ∈ (0,
√

J∗11 + J∗22) with J∗11 + J∗22 > 0, which requires that J∗11 > 0. Clearly, A(k2, dH) = 0 and
A( j2, dH) , 0 for j , k. Now, we only need to verify whether B( j2, dH) , 0 for k ∈ (0,

√
J∗11 + J∗22), and

in particular, B(k2, dH) > 0. Since

B(k2, dH) =dHk4 − (dH J∗11 + J∗22)k2 + J∗11J∗22 − J∗12J∗21

=k2(J∗11 + J∗22 − k2) − J∗11(J∗11 + J∗22 − k2) − J∗22k2 + J∗11J∗22 − J∗12J∗21

= − k4 + 2k2J∗11 − J∗
2

11 − J∗12J∗21,
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and ∆k = 4J∗
2

11 − 4(J∗
2

11 + J∗12J∗21) = −4J∗12J∗21 > 0, it follows that B(k2, dH) > 0 for

k ∈ (k−, k+) := (J∗11 −

√
−J∗12J∗21, J∗11 +

√
−J∗12J∗21). (4.15)

Suppose that

k+ <
√

J∗11 + J∗22, (4.16)

then

B( j2, dH) =dH j4 − (dH J∗11 + J∗22) j2 + J∗11J∗22 − J∗12J∗21

≥dH j4 −
((L2(J∗11 + J∗22)

π2 − 1
)
J∗11 + J∗22

)
j2 + J∗11J∗22 − J∗12J∗21

>J∗11J∗22 − J∗12J∗21 −
L2(J∗11 + J∗22)

π2 J∗11 j2 +
( J∗11 + J∗22

k2
+

− 1
)

j4.

Set the quadratic function g(z) = J∗11J∗22 − J∗12J∗21 −
L2(J∗11+J∗22)

π2 J∗11z +
( J∗11+J∗22

k2
+

− 1
)
z2, then it is positive for

j ∈ R if
L4(J∗11 + J∗22)2J∗

2

11

π4 − 4(J∗11J∗22 − J∗12J∗21)
( J∗11 + J∗22

k2
+

− 1
)
< 0. (4.17)

We summarize the discussion above as following.

Theorem 4.3. Suppose that J∗11 + J∗22 > 0, k+ <
√

J∗11 + J∗22 and (4.17) holds. Then, for any k ∈
(0,

√
J∗11 + J∗22) ∩ (k−, k+) and k−, k+ are defined as in (4.15), the R-D system (4.1) undergoes a Hopf

bifurcation at d = dH =
J∗11+J∗22−k2

k2 and the bifurcating periodic solutions from d = dH are spatially
inhomogeneous.

4.2. Turing pattern selection in two-dimensional space domains

To interpret pattern selection among spot pattern, stripe pattern, and the mixture of them, we need to
derive amplitude equations near the onset d = dc. Following the method employed in [42], we obtain
the amplitude equations as follows:

τ0
∂A1
∂t = µA1 + h0A2A3 − [g1|A1|

2 + g2(|A2|
2 + |A3|

2)]A1,

τ0
∂A2
∂t = µA2 + h0A1A3 − [g1|A2|

2 + g2(|A1|
2 + |A3|

2)]A2,

τ0
∂A3
∂t = µA3 + h0A1A2 − [g1|A3|

2 + g2(|A1|
2 + |A2|

2)]A3,

(4.18)

where

τ0 = −
φ + ψ

dck2
cψ
, µ =

d − dc

dc
, g1 = −

G1

dck2
cψφ

2 , g2 = −
G2

dck2
cψφ

2 ,

h0 = −
c20φ

2 + 2c11φ + c02 + ψ(2d11φ + d02)
dck2

cψφ
, G1 = I1 + ψJ1, G2 = I2 + ψJ2

(4.19)

with I1 = −(u11+u00)(φc20+c11)− (φc11+c02)(v11+v00)− 3
2c12φ−

1
2c30φ

3− 1
2c03, I2 = −(u⋆+u00)(φc20+

c11)−(φc11+c02)(v⋆+v00)−3c12φ−c30φ
3−c03, J1 = −(u11+u00)d11−(φd11+d02)(v11+v00)− 3

2d12φ, J2 =
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−(u⋆ + u00)d11 − (φd11 + d02)(v⋆ + v00)− 3d12φ. Here, φ, ψ, u00, v00, u11, v11, u⋆ and v⋆ possess the similar
expressions as those in Section 4.3.1 [42]. Denote

µ1 =
−h2

0

4(g1 + 2g2)
, µ2 = 0, µ3 =

h2
0g1

(g2 − g1)2 , µ4 =
h2

0(2g1 + g2)
(g2 − g1)2 . (4.20)

Clearly, µ1 < µ2 < µ3 < µ4 under the assumption of g1 > 0 and g2 > 0. Then, we have some results
about the stability of the hexagonal pattern, the stripe pattern, and the mixture of them according to the
range of µ in Theorem 3 [42].

(i) d = 40.7 (ii) d = 60 (iii) d = 150

Figure 9. Pattern selection of the prey species u for different diffusion coefficients in the
super-critical bifurcation case 0 < g1 < g2 with random initial condition. The other system
parameters used here are provided as α = 0.32, β = 0.048, γ = 0.0826, ρ = 0.135, η = 0.8, δ =
0.012, σ = 0.128 for each case. Here the space stepsizes are chosen as ∆x = ∆y = 1 and the
time step size is chosen as ∆t = 0.001 and dc = 37.9638. The parameter set is located in the
TR (see, e.g., Figure 8 as a reference).

4.3. Numerical Simulations of pattern formation in Turing and non-Turing regions

In this subsection, we performed some numerical simulations to show the pattern formation over
two dimensional spatial domain according to the obtained theoretical result (see Theorem 4.1), and
indicated some interesting pattern solutions in either the Hopf instability region or Turing-Hopf region
besides Turing region (see Figure 8). We solved the reaction-diffusion system (4.1) numerically by
using a five-point finite difference scheme for the Laplacian operator and forward Euler scheme for the
temporal part with appropriate care at the boundary to accommodate Neumann boundary conditions.
All the programs for solving the spatiotemporal system (4.1) were performed by MATLAB R2016a. In
addition, to ensure the stability of numerical method, the choice of time step size ∆t, the space step sizes
∆x and ∆y and the diffusion coefficient d should satisfy the Courant-Friedrichs-Lewy stability criterion,

i.e., max{d, 1}∆t
(

1
(∆x)2 +

1
(∆y)2

)
≤ 1

2 . In addition, we have checked that the numerical simulation results

for some other smaller values of the time and space step sizes and they remain the same qualitatively.
In Figure 9, we observed pattern selections among the hexagonal pattern, stripe pattern and a mixture

of hexagons and stripes for different diffusion coefficients with a set of fixed system parameters,
where α = 0.32, β = 0.048, γ = 0.0826, ρ = 0.135, η = 0.8, δ = 0.012 and σ = 0.128. Here,
the initial condition is chosen as a random perturbation around the spatially homogeneous steady
state E∗. Under this set of parameters, we obtained that the one of the Hopf bifurcation threshold
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values is α = α[HB] = 0.3254 and Turing bifurcation threshold value is d = dc = 37.9638. In view
of (4.19), we get the coefficients of the amplitude equations (4.18) are h0 = −25.0863 < 0 and
g2 = 262.3196 > g1 = 7.7015 > 0. Moreover, we have µ1 = −0.2955, µ2 = 0, µ3 = 0.0748 and
µ4 = 2.6959, which will not change with the variation of diffusion coefficient d. So, when d = 40.7, we
obtained µ = 0.0721 ∈ (µ2, µ3), which means the hexagonal pattern prevails over the whole domain as
time goes forward (see Figure 9(i)). When d = 150, we obtained µ = 2.9511 ∈ (µ4,∞), which implies
that the stripe pattern will be formed as time evolves (see Figure 9(iii)). However, when d = 60, we
obtained µ = 0.5805 ∈ (µ3, µ4). This manifests that the mixture of hexagons and stripes forms over the
two dimensional spatial domain (see Figure 9(ii)).
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(i) Turing-Hopf bifurcation diagram (ii) d = 55 (iii) d = 58 (iv) d = 62

Figure 10. Turing-Hopf bifurcation diagram and coldspot pattern solutions of the prey
species u for different diffusion coefficients in the sub-critical bifurcation case g1 < 0 and
g2 < 0 with random initial condition. The other system parameters used here are provided as
α = 0.4, β = 0.042, γ = 0.1, ρ = 0.12, η = 0.86, δ = 0.06, σ = 0.18 for each case. Here the
space stepsizes are chosen as ∆x = ∆y = 1 and the time step size is chosen as ∆t = 0.004 and
dc = 53.6568. The parameter set is located in the TR.

In Figure 10, we took another set of system parameters as α = 0.4, β = 0.042, γ = 0.1, ρ = 0.12, η =
0.86, δ = 0.06 and σ = 0.18 with variational diffusion coefficients d = 55, 58, 62 in the TR. The
initial condition was chosen as a random perturbation around the coexistence equilibrium. One of the
critical Hopf bifurcation values for the temporal system and the critical Turing bifurcation value for the
spatial system are α[HB] = 0.4334 and dc = 53.6568, respectively. We have plotted the spatiotemporal
bifurcation diagram for Turing bifurcation and Hopf bifurcation (see Figure 10(i)). A direct calculation
gives g1 = −425.7471 < 0 and g2 = −853.6242 < 0, which suggests the amplitude equations (4.18)
undergoes sub-critical bifurcation. Interestingly, we observed only stable hexagonal pattern solution
prevails over the spatial domain as time evolved, although the diffusion coefficients are different (see
Figure 10(ii)–(iv)).

Apart from the stationary pattern solution, we are now interested in pattern dynamics in HR and
THR regions, which are non-Turing regions. In Figure 11, the system parameters remain consistent
with those depicted in Figure 10, with the exception of alterations to the fear factor α and the diffusion
coefficient d. Under this specific parameter configuration, it is observed that one of the Hopf-bifurcation
threshold values is α = α[HB] = 0.4334. The initial choice is made to set α = 0.5, a value situated
within the temporal Hopf instability region. Subsequently, the diffusion coefficient d is selected to be 40,
which falls below the Turing bifurcation threshold value (dc = 42.6939). This choice therefore positions
the system parameters within the pure Hopf instability region, as indicated in Figure 10(i). Within
Figure 11, the spatiotemporal distribution of the prey species u at various time points is demonstrated. It
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(i) t = 200 (ii) t = 300 (iii) t = 500 (iv) t = 800

(v) t = 1200 (vi) t = 1600 (vii) t = 6000

Figure 11. Spatiotemporal patterns of the prey species u at different moments with initial
condition (4.21). The other system parameters used here are provided as α = 0.5, β =
0.042, γ = 0.1, ρ = 0.12, η = 0.86, δ = 0.06, σ = 0.18 and d = 40 for each case. Here, the
space step sizes are chosen as ∆x = ∆y = 1 and the time step size is chosen as ∆t = 0.004 and
dc = 42.6939. The parameter set is located in the HR.

is noteworthy that the initial condition employed in [43] is utilized, elucidating that only a small number
of populations from both species are confined to an elliptic domain.

u(0, x, y) =

 u0,
(x−x1)2

∆2
11
+

(y−y1)2

∆2
12
≤ 1

0, otherwise
v(0, x, y) =

 v0,
(x−x2)2

∆2
21
+

(y−y2)2

∆2
22
≤ 1

0, otherwise
(4.21)

Here, u0 = 0.8 and v0 = 0.2, x1 = 153.5, y1 = 145, x2 = y2 = 150,∆2
11 = ∆

2
12 = 12.5,∆2

21 = 5,∆2
22 = 10.

We first observe some circular rings with different densities of the species on it (see Figure 11(i)) at
t = 200. As time goes forward, the expanding circular rings hit the domain boundary and break into the
stripes (see Figure 11(ii),(iii)). With the further advancement of time, the circular rings gradually lose
stability and break into some spots and stripes (see Figure 11(iv)–(vi)), and eventually settle down to
coldspot pattern (see Figure 11(vii)).

In Figure 12, we observe a similar spatiotemporal distribution of prey species except the difference of
instability mechanism of the circular rings pattern, where the system parameters are chosen the same as
those in Figure 11 besides the diffusion coefficient d = 45, which above the Turing bifurcation threshold
value d = dc = 42.6939. It is easy to check that here the system parameters are located in THR (see
Figure 10(i)) and the initial conditions are in (4.21). After experiencing the rupture of the circular rings,
the final pattern transition state is the mixture pattern of spots and stripes (see Figure 12(vii)). It should
be noted that we don’t observe spatiotemporal chaotic pattern in THR for the certain system parameters
and the special choice of initial condition.
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(i) t = 200 (ii) t = 300 (iii) t = 500 (iv) t = 1200

(v) t = 6000 (vi) t = 10,000 (vii) t = 15,000

Figure 12. Spatiotemporal patterns of the prey species u at different moments with initial
condition (4.21). The other system parameters used here are provided as α = 0.5, β =
0.042, γ = 0.1, ρ = 0.12, η = 0.86, δ = 0.06, σ = 0.18 and d = 45 for each case. Here the
space step sizes are chosen as ∆x = ∆y = 1 and the time stepsize is chosen as ∆t = 0.004 and
dc = 42.6939. The parameter set is located in the THR.

5. Concluding remarks

The present article is dedicated to the derivation of comprehensive theoretical outcomes for various
types of bifurcations, followed by their substantiation through numerical simulations. Each numerical
simulation is underpinned by the selection of distinct system parameters, treating them as bifurcation
parameters, thereby showcasing diverse dynamical responses. A particular focus is placed on the
intricate influence of the Allee effect on both temporal and spatiotemporal systems.

For the temporal system, a pivotal finding emerges, indicating that the Allee effect can instigate both
codimension-one bifurcations (transcritical, saddle-node and Hopf) and codimension-two bifurcations
(cusp and Bogdanov-Takens). This revelation imbues the system with a more intricate dynamical
behavior, signifying an enrichment of the dynamics inherent to the model system. Notably, the
induced Hopf bifurcations tend to be subcritical, aligning qualitatively with previous observations [9].
Additionally, it established that the temporal system can exhibit bistability between the trivial equilibrium
E0 and the coexistence equilibrium E∗ (see Remark 3.1).

For the spatiotemporal model, we investigated the system’s dynamics and found that the Allee
effect is a key mechanism for inducing Turing instability, and the small Allee effect usually plays
a stabilization role (see Theorem 4.1). Furthermore, we have investigated its pattern dynamics and
derived amplitude equation near the onset d = dc. We have studied pattern transition among a hexagonal
pattern, stripe pattern and a mixture of them and established an analytical formula to predict it, and
we have preformed numerical simulations to illustrate the effectiveness of the theoretical results (see
Figure 9). In addition, we found some interesting circular ring patterns in the HR and THR for a special
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choice of initial condition at the initial moment, which eventually transitioned to coldpattern or the
mixture pattern consisting of coldspots and stripes (see Figures 11 and 12). This was different from the
observed spatiotemporal chaotic pattern in a spatial slow-fast prey-predator system with the same initial
condition [44].

It was imperative to emphasize that the outcomes of this theoretical investigation hold relevance
as long as the fear factor α and the Allee parameter γ remained within their practical range of values.
Beyond this range, the system experienced permanent collapse due to negative growth in the prey
species. Future enhancements of the model could involve the introduction of multiplicative or double
Allee effects, offering potential for exciting developments in this challenging field of research. These
future investigations are anticipated to introduce a fresh dimension to the domain of mathematical
ecology.
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Appendix: The proof of Theorem 3.12: a detailed derivation of generic B-T norm form for the
temporal system (3.2)

Step-1: (Derivation of non-degeneracy condition)
Now, first of all it will be shown that the coexistence equilibrium point E∗ = (u∗, v∗) is a cusp of
codimension two. For this purpose, one may choose the following transformation A1 = u−u∗, A2 = v−v∗,
which shifts the coexistence equilibrium point E∗ into the origin. By power series expansion of the
modified system into second order terms, one obtains{ dA1

dt = p10A1 + p01A2 + p20A2
1 + p11A1A2 + p02A2

2 + o(||A||3),
dA2
dt = q10A1 + q01A2 + q20A2

1 + q11A1A2 + q02A2
2 + o(||A||3),

(A.1)

where A = (A1, A2) and the coefficients pi j = ci j, qi j = di j for i, j = 0, 1, 2, 3, . . . are all provided in the
Subsection 3.3.2. Therefore, one must have{

p10 + q01 = 0,
p10q01 − p01q10 = 0.

(A.2)

Now, let us consider the transformation u
′

1 = A1, u
′

2 = p10A1 + p01A2. Using this transformation, (3.2)
may be represented as  du

′

1
dt = u

′

2 + r20u
′

1
2
+ r11u

′

1u
′

2 + r02u
′

2
2
+ o(||u

′

||3),
du
′

2
dt = s20u

′

1
2
+ s11u

′

1u
′

2 + s02u
′

2
2
+ o(||u

′

||3),
(A.3)

where u
′

= (u
′

1, u
′

2) and the coefficients ri j, si j with i, j = 0, 1, 2, 3, . . . are given by

r20 =
p02 p2

10

p2
01

−
p11 p10

p01
+ p20, r11 =

p11

p01
−

2p02 p10

p2
01

, r02 =
p02

p2
01

, s02 =
p02 p10

p2
01

+
q02

p01
,
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s20 = p01q20 + p10(p20 − q11) −
p2

10(p11 − q02)
p01

+
p02 p3

10

p2
01

, s11 = q11 −
2p02 p2

10

p2
01

+
p10(p11 − 2q02)

p01
.

Step-2: (Introducing a c∞ transformation)
Now, there must be a c∞ invertible transformation given by

v
′

1 = u
′

1 +
1
2

(
p10 p02

p2
01
−

p11+q02
p01

)
u
′

1
2
−

p02

p2
01

u
′

1u
′

2,

v
′

2 = u
′

2 +

(
p2

10 p02

p2
01
−

p10 p11
p01
+ p20

)
u
′

1
2
−

(
p10 p02

p2
01
+

q02
p01

)
u
′

1u
′

2.
(A.4)

This transformation reduced (A.3) to the following one: dv
′

1
dt = v

′

2 + o(||v
′

||3),
dv
′

2
dt = µ1v

′

1
2
+ µ2v

′

1v
′

2 + o(||v
′

||3),
(A.5)

where v
′

= (v
′

1, v
′

2) and the coefficients µ1, µ2 are given by

µ1 = s20, µ2 = −
p10

p01
(p11 + 2q02) + 2p20 + q11.

Step-3: (Introduction of a new transformation)
Now, let us introduce a new transformation in a very small neighborhood of v

′

= 0 with the form{
κ1 = v

′

1,

κ2 = v
′

2 + o(||v
′

||3).
(A.6)

By use of this transformation, (A.5) may be represented as{ dκ1
dt = κ2,

dκ2
dt = µ1κ

2
1 + µ2κ1κ2 + o(||κ||3),

where κ = (κ1, κ2). Therefore, if µ1µ2 , 0 (non-degeneracy condition) then a cusp bifurcation of
codimension two occurs around the unique coexistence equilibrium point E∗ = (u∗, v∗) [45].
Step-4: (Deduction of generic normal form)
Now, assume that the non-degeneracy condition has been well satisfied. So, one may try to calculate
the generic normal form of the Bogdanov-Takens bifurcation according to the frame in [38]. First, we
utilize the transformation ū1 = u − u∗ and v̄1 = v − v∗ to shift the equilibrium point E∗ of (3.2) to the
origin, and then the system (3.2) becomes{ dū1

dt = ū1+u∗
1+α(v̄1+v∗)

− β(ū1 + u∗) − (ū1 + u∗)2 −
γ(ū1+u∗)
ū1+u∗+ρ

− η(ū1 + u∗)(v̄1 + v∗),
dv̄1
dt = −δ(v̄1 + v∗) − σ(v̄1 + v∗)2 + η(ū1 + u∗)(v̄1 + v∗).

(A.7)

Let us perturb the bifurcating parameters (σ, γ) in a small neighborhood of ϵi in such a way that
(σ, γ) = (σ[BT ] + ϵ1, γ

[BT ] + ϵ2). Then, we obtain dū1
dt = ū1+u∗

1+α(v̄1+v∗)
− β(ū1 + u∗) − (ū1 + u∗)2 −

(γ[BT ]+ϵ2 )(ū1+u∗)
ū1+u∗+ρ

− η(ū1 + u∗)(v̄1 + v∗),
dv̄1
dt = −δ(v̄1 + v∗) − (σ[BT ] + ϵ1)(v̄1 + v∗)2 + η(ū1 + u∗)(v̄1 + v∗).

(A.8)
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By expanding the Taylor’s series of (A.8) at (ū1, v̄1) = (0, 0) up to the terms of second order, we get the
following system{ dū1

dt = G10 + m10ū1 + m01v̄1 + m20ū2
1 + m11ū1v̄1 + m02v̄2

1 + H̄1(ū1, v̄1),
dv̄1
dt = H10 + n10ū1 + n01v̄1 + n20ū2

1 + n11ū1v̄1 + n02v̄2
1 + H̄2(ū1, v̄1),

(A.9)

where the expression for mi j, ni j; i, j = 0, 1, 2, 3, . . . and G10,H10 are defined by

G10 = −
u∗

u∗ + ρ
ϵ2, H10 = −v2

∗ϵ1,m10 =
1

1 + αv∗
− β − 2u∗ −

(γ[BT ] + ϵ2)
u∗ + ρ

+
(γ[BT ] + ϵ2)u∗

(u∗ + ρ)2 − ηv∗,

m01 = −
u∗α

(1 + αv∗)2 − ηu∗, m20 = −2 +
2(γ[BT ] + ϵ2)ρ

(u∗ + ρ)3 ,m11 = −
α

(1 + αv∗)2 − η,m02 =
2α2u∗

(1 + αv∗)3 ,

n10 = ηv∗, n01 = −δ − 2(σ[BT ] + ϵ1)v∗ + ηu∗, n20 = 0, n11 = η, n02 = −2(σ[BT ] + ϵ1),

where the terms H̄1(ū1, v̄1) and H̄2(ū1, v̄1) are the power series of ū1 and v̄1 and is the form for each of
them ūi

1v̄ j
1; i + j ≥ 3.

Step-5: (Introduction of a affine transformation)
Now, let us introduce a new affine transformation given by

p1 = ū1, p2 = m10ū1 + m01v̄1.

By using this affine transformation, (A.9) reduced to the following one:{ dp1
dt = G10(ϵ) + p2 + c20(ϵ)p2

1 + c11(ϵ)p1 p2 + c02(ϵ)p2
2 + H

′

1(p1, p2),
dp2
dt = H

′

10(ϵ) + a
′

1(ϵ)p1 + b
′

1(ϵ)p2 + d20(ϵ)p2
1 + d11(ϵ)p1 p2 + d02(ϵ)p2

2 + H
′

2(p1, p2),
(A.10)

where, the coefficients ci j, di j; i, j = 0, 1, 2, 3, . . ., a
′

1, b
′

1 and H
′

10 are given by

H
′

10(ϵ) = G10m10 + H10m01, a
′

1(ϵ) = m01n10 − m10n01, b
′

1(ϵ) = m10 + n01,

c20(ϵ) = m20 −
m11m10

m01
+

m02m2
10

m2
01

, c11(ϵ) =
m11

m01
−

2m02m10

m2
01

,

c02(ϵ) =
m02

m2
01

, d20 = m10m20 −
m11m2

10

m01
+

m02m3
10

m2
01

+ m01n20 − m10n11 +
n02m2

10

m01
,

d11 =
m10m11

m2
01

−
2m02m2

10

m2
01

+ n11 −
2n02m10

m01
, d02 =

m10m02

m2
01

+
n02m2

10

m01
,

while the remaining terms H
′

1(p1, p2) and H
′

2(p1, p2) are the power series expansion terms of p1 and p2

of the form pi
1 p j

2; i + j ≥ 3. Furthermore, for ϵ∗ = (0, 0), we have H
′

10(ϵ∗) = 0, a
′

1(ϵ∗) = 0, b
′

1(ϵ∗) = 0.
Step-6: (Setting of new variables)
Now, let us choose a transformation as described by{

p
′

1 = p1,

p
′

2 = G10(ϵ) + p2 + c20(ϵ)p2
1 + c11(ϵ)p1 p2 + c02(ϵ)p2

2 + H(p1, p2).

Employing this transformation into (A.10), one obtains dp
′

1
dt = p

′

2,
dp
′

2
dt = L00(ϵ) + L10(ϵ)p

′

1 + L01(ϵ)p
′

2 + L20(ϵ)p
′

1
2
+ L11(ϵ)p

′

1 p
′

2 + L02(ϵ)p
′

2
2
+ I(p

′

1, p
′

2),
(A.11)
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where I(p
′

1, p
′

2) is the power series of p
′

1 and p
′

2 of the form p
′i
1 p

′ j
2 with i + j ≥ 3; whereas the remaining

coefficients Li j; i, j = 0, 1, 2, . . . are given by

L00(ϵ) = H
′

10(ϵ) −G10(ϵ)b
′

1(ϵ) + . . . ,
L10(ϵ) = a

′

1(ϵ) + c11(ϵ)H10(ϵ) − d11(ϵ)G10(ϵ) + . . . ,
L01(ϵ) = b

′

1(ϵ) + 2c02(ϵ)H
′

10(ϵ) − c11(ϵ)G10(ϵ) − 2d02(ϵ)G10(ϵ) + . . . ,
L20(ϵ) = d20(ϵ) − c20(ϵ)b

′

1(ϵ) + a
′

1(ϵ)c11(ϵ) + . . . ,
L11(ϵ) = d11(ϵ) + 2c20(ϵ) + 2c02(ϵ)a

′

1(ϵ) − c11(ϵ)b
′

1(ϵ) + . . . ,
L02(ϵ) = c11(ϵ) + d02(ϵ) − c02(ϵ)n01(ϵ) + . . . .

Also, one may easily verify that

L00(ϵ∗) = L10(ϵ∗) = L01(ϵ∗) = 0, L20(ϵ∗) = d20(ϵ∗),
L02(ϵ∗) = c11(ϵ∗) + d02(ϵ∗), L11(ϵ∗) = d11(ϵ∗) + 2c20(ϵ∗).

Therefore, the system of equations of (A.11) may be written as
dp
′

1
dt = p

′

2,
dp
′

2
dt = (L00 + L10 p

′

1 + L20 p
′

1
2) + (L01 + L11 p

′

1 + o(||p
′

||2))p
′

2 + (L02 + o(||p
′

||))p
′

2
2
,

= ρ1(p
′

1, ϵ) + ρ2(p
′

1, ϵ)p
′

2 + Φ
′

1(p
′

, ϵ)p
′

2
2
,

(A.12)

where, the terms ρ1, ρ2,Φ
′

1 are all smooth functions and ρ1(0, ϵ∗) = L00(ϵ∗) = 0, ∂ρ1

∂p′1

∣∣∣∣∣
(0, ϵ∗)

= L10(ϵ∗) = 0,

1
2
∂2ρ1

∂p′1
2

∣∣∣∣∣
(0, ϵ∗)

= L20(ϵ∗) = d20(ϵ∗) , 0, ρ2(0, ϵ∗) = L01(ϵ∗) = 0. Also, one obtains

∂ρ2

∂p′1

∣∣∣∣∣
(0, ϵ∗)

= L11(ϵ∗) = d11(ϵ∗) + 2c20(ϵ∗),

=
m10m11

m01
−

2m02m2
10

m2
01

+ n11 −
2n02m10

m01
+ 2

(
m20 −

m11m10

m01
+

m02m2
10

m2
01

)
,

= 2m20 + n11 −
m10

m01
(m11 + 2n02) , 0.

Since we have ρ2(0, ϵ∗) = 0 and ∂ρ2

∂p′1

∣∣∣∣∣
(0, ϵ∗)

, 0, by employing implicit function theorem, there exists a c∞

function p
′

1 = ϕ
′

1(ϵ) defined in a very small neighborhood N(ϵ∗) of ϵ = ϵ∗ in such a way that ϕ
′

1(ϵ∗) = 0,
ρ2(ϕ

′

1(ϵ), ϵ) = 0, for any choices of ϵ ∈ N(ϵ∗).
Step-7: (Parameter dependent shift)
Now, to annihilate the p

′

2-term from the second equation of (A.12), the following parameter dependent
shift transformation has been taken into account

p
′

1 = E1 + ϕ
′

1(ϵ), p
′

2 = E2.
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By using this shift transformation, (A.12) may be represented as
dE1
dt = E2,

dE2
dt = L00 + L10(E1 + ϕ

′

1) + L01E2 + L20(E1 + ϕ
′

1)2 + L11(E1 + ϕ
′

1)E2 + L02E2
2,

= (e00 + e10E1 + e20E2
1 + o(||E1||

3)) + (e01 + e11E1 + o(||E1||
2))E2 + (e02 + o(||E1||))E2

2,

= δ1(E1, ϵ) + δ2(E1, ϵ)E2 + Ψ
′

1(E, ϵ)E2
2,

(A.13)
where E = (E1, E2), and

e00 = L00 + L10ϕ
′

1, e10 = L10 + 2L20ϕ
′

1, e20 = L20, e01 = L01 + L11ϕ
′

1, e11 = L11, e02 = L02.

The coefficient of E2 of the system of equations of (A.13) may be written as

e01 = δ2(0, ϵ) = L01 + L11ϕ
′

1 + o(||ϕ
′

1||
2),

= (b
′

1 + 2c02H
′

10 − c11G10 − 2d02G10 + . . .) + (d11 + 2c20 + 2c02a
′

1 − c11b
′

1 + . . .)ϕ
′

1.

From the first condition of BT.2, we conclude that e01(0, ϵ∗) = L01(ϵ∗) = 0, ∂e01

∂ϕ
′

1

∣∣∣∣∣
(0,ϵ∗)
= L11(ϵ∗) =

d11(ϵ∗) + 2c20(ϵ∗) = θ , 0, which indicates that there exists a smooth function ϕ
′

1 = ϕ
′

1(ϵ) in such a way
that ϕ

′

1(ϵ∗) = 0, e01(ϕ
′

1(ϵ), ϵ) = δ2(0, ϵ) = 0 for any choices of ϵ ∈ N(ϵ∗). So, to annihilate the E2-term
from the second equation of (A.13), we consider e01 = 0 and one obtains

ϕ
′

1(ϵ) ≈ −
L01(ϵ)
L11(ϵ)

≈ −
L01(ϵ)
θ
=

1
θ

[
− b

′

1 − 2c02H
′

10 + c11G10 + 2d02G10 + . . .
]
.

Therefore, the system of equations of (A.13) may be written as
dE1
dt = E2,

dE2
dt = (e00 + e10E1 + e20E2

1 + o(||E1||
3)) + (e11 + o(||E1||))E1E2 + (e02 + o(||E1||))E2

2,

= δ̄1(E1, ϵ) + δ̄2(E1, ϵ)E1E2 + κ̄1(E1, ϵ)E2
1,

which may be represented as{ dE1
dt = E2,

dE2
dt = e00(ϵ) + e10(ϵ)E1 + e20(ϵ)E2

1 + e11(ϵ)E1E2 + e02(ϵ)E2
2 + o(||E||3),

(A.14)

where E = (E1, E2).
Step-8: (Time reparametrization)
Furthermore, here e00(ϵ∗) = e10(ϵ∗) = 0. Introducing a new time scaling defined by dt = (1 + ωE1)dτ,
and by using it (A.14) becomes{ dE1

dτ = E2(1 + ωE1),
dE2
dτ = e00 + (e10 + ωe00)E1 + (e20 + ωe10)E2

1 + e11E1E2 + e02E2
2 + o(||E||3).

(A.15)

One may consider a new transformation of the form

P = E1, Q = E2(1 + ωE1).
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By use of this transformation, (A.15) may be written as{ dP
dτ = Q,
dQ
dτ = f00(ϵ) + f10(ϵ)P + f20(ϵ)P2 + f11(ϵ)PQ + f02(ϵ)Q2 + H(P,Q),

where, H(P,Q) are the power series expansion of P and Q of the form PiQ j; i + j ≥ 3. Also, the
coefficients fi j; i, j = 0, 1, 2, 3, . . . are given by

f00(ϵ) = e00(ϵ), f10(ϵ) = e10(ϵ) + 2ω(ϵ)e00(ϵ), f20(ϵ) = e20(ϵ) + 2ω(ϵ)e10(ϵ) + ω2(ϵ)e00(ϵ),
f11(ϵ) = e11(ϵ), f02(ϵ) = e02(ϵ) + ω(ϵ).

Now, to annihilate the Q2-term, let us choose ω(ϵ) = −e02(ϵ) and we obtain{ dP
dτ = Q,
dQ
dτ = γ1(ϵ) + γ2(ϵ)P +D(ϵ)P2 + E(ϵ)PQ + H(P,Q),

(A.16)

where γ1(ϵ) = e00(ϵ), γ2(ϵ) = e10(ϵ) − 2e00(ϵ)e02(ϵ), D(ϵ) = e20(ϵ) − 2e10(ϵ)e02(ϵ) + e00(ϵ)e2
02(ϵ),

E(ϵ) = e11(ϵ). Also, one may verify that, γ1(ϵ∗) = 0, γ2(ϵ∗) = 0, and E(ϵ∗) = L11(ϵ∗) = θ , 0 because of
BT. 2. is satisfied.
Step-9: (Time rescaling)
Since the second condition of BT. 2 is satisfied, D(ϵ∗) = e20(ϵ∗) = L20(ϵ∗) = d20(ϵ∗) , 0. Thus we
can choose a δ∗−neighborhood such that D(ϵ) , 0 when ϵ ∈ O(ϵ∗, δ∗). Let us introduce a new time

scaling that is of the form t =
∣∣∣∣∣ E(ϵ)
D(ϵ)

∣∣∣∣∣τ. Again, choose ξ1 =
D(ϵ)
E2(ϵ) , ξ2 = s

(
D2(ϵ)
E3(ϵ)

)
Q, where s = sign

(
E(ϵ)
D(ϵ)

)
=

sign
(
E(ϵ∗)
D(ϵ∗)

)
= sign

(
θ

d20(ϵ∗)

)
= ±1.

Therefore, the reduced model system (A.16) takes the form{ dξ1
dt = ξ2,

dξ2
dt = ϑ1 + ϑ2ξ1 + ξ1

2 + sξ1ξ2 + o(||ξ||),
(A.17)

where ξ = (ξ1, ξ2),

ϑ1(ϵ) =
(
E4(ϵ)
D3(ϵ)

)
γ1(ϵ), ϑ2(ϵ) =

(
E2(ϵ)
D2(ϵ)

)
γ2(ϵ).

In a very small neighborhood of the origin, (A.17) is topologically equivalent to the following one{ dξ1
dt = ξ2,

dξ2
dt = ϑ1 + ϑ2ξ1 + ξ1

2 + sξ1ξ2,
(A.18)

which is the generic normal form of Bogdanov-Takens bifurcation. Combining BT. 3, we can define an
invertible change of parameters near the origin, which is also equivalent to the regularity of the map
ϵ → (ϑ1(ϵ), ϑ2(ϵ)) at ϵ = ϵ∗ = (0, 0). Therefore, one may conclude that (3.2) exhibits a Bogdanov-Takens
bifurcation around the coexistence equilibrium point E∗ = (u∗, v∗) whenever the system parameters
(σ, γ) attains the critical value (σ[BT ], γ[BT ]), which implies the proof of the theorem as complete.
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