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Abstract: Prescription data is an important focus and breakthrough in the study of clinical treatment 
rules, and the complex multidimensional relationships between Traditional Chinese medicine (TCM) 
prescription data increase the difficulty of extracting knowledge from clinical data. This paper 
proposes a complex prescription recognition algorithm (MTCMC) based on the classification and 
matching of TCM prescriptions with classical prescriptions to identify the classical prescriptions 
contained in the prescriptions and provide a reference for mining TCM knowledge. The MTCMC 
algorithm first calculates the importance level of each drug in the complex prescriptions and 
determines the core prescription combinations of patients through the Analytic Hierarchy Process 
(AHP) combined with drug dosage. Secondly, a drug attribute tagging strategy was used to quantify 
the functional features of each drug in the core prescriptions; finally, a Bidirectional Long Short-Term 
Memory Network (BiLSTM) was used to extract the relational features of the core prescriptions, and 
a vector representation similarity matrix was constructed in combination with the Siamese network 
framework to calculate the similarity between the core prescriptions and the classical prescriptions. 
The experimental results show that the accuracy and F1 score of the prescription matching dataset 
constructed based on this paper reach 94.45% and 94.34% respectively, which is a significant 
improvement compared with the models of existing methods. 

Keywords: prescription classification matching; AHP; BiLSTM; Siamese network; traditional 
Chinese medicine 
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1. Introduction  

Prescription data is a valid document for doctors to diagnose and treat patients according to their 
conditions [1,2] and contains a wealth of information and knowledge that can be used as a reference 
for the treatment of clinically relevant diseases. During most Traditional Chinese medicine (TCM) 
treatments, doctors choose to make adjustments and additions to or subtractions from the classical 
prescriptions based on the patient’s specific situation [3], where multiple herbs are dispensed in 
reasonable proportions. The classical prescriptions in the classical ancient texts of TCM are the origin 
and essence of TCM and are the basis for the transmission of TCM [4,5]. From classical Chinese 
medical literature to practical clinical prescriptions, there exist valuable medical resources. However, 
due to the relatively low level of informatization in the field of TCM, extensive clinical TCM data has 
not been fully utilized. There is an imbalance in the ratio between experienced clinical practitioners 
and patients. TCM inherits its knowledge from classical texts in ancient Chinese medical literature [6,7]. 
Leveraging existing technologies to effectively classify and match complex TCM prescriptions with 
suitable classical prescriptions holds the promise of compensating for the shortcomings in experiential 
knowledge transfer in clinical practice. This can provide a solid basis for clinical decision-making [8]. 

The classification and matching of TCM prescriptions heavily rely on prescription representation 
and feature extraction methods [9]. Unlike standard textual formats, TCM prescription texts are 
characterized by complex and irregular natural language. Firstly, TCM prescriptions exhibit intricate 
semantic relationships among various herbal components, as opposed to isolated entities [10,11]. 
Moreover, conventional text mining methods often focus on data with explicit and rich semantics [12,13]. 
However, TCM prescription texts, being integral components of herbal combinations, frequently lack 
sufficient semantic information. The format of TCM prescription texts renders traditional text 
processing approaches ineffective in knowledge extraction from TCM prescription data. 

In the field of classification and matching of TCM prescriptions, many scholars have conducted 
research in three main directions: rule-based matching at the herbal vocabulary level, machine 
learning-based models, and deep learning-based models. Firstly, in rule-based matching at the herbal 
vocabulary level, Zhao et al. [14] proposed a clinical prescription recognition algorithm based on 
template matching, identifying classical prescriptions in TCM prescriptions by comparing templates 
to subgraphs. Zhang et al. [15] utilized the Jaccard similarity score method to classify and match herbs 
in prescriptions, aiming to distinguish prescriptions with similar clinical efficacy and summarize 
prescription usage patterns. Additionally, Wang et al. [16] introduced an algorithm based on weighted 
similarity distance to match and classify TCM prescriptions with corresponding classical prescriptions. 
However, these methods typically handle herbal knowledge information and overlook the intrinsic 
semantic relationships within prescriptions. Secondly, in research based on traditional machine 
learning models, Ung et al. [17] used Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) 
methods for classifying TCM prescriptions and non-TCM prescriptions. Chen et al. [7] proposed a 
probabilistic model-based algorithm for classifying TCM formulae according to the China Academy 
of Chinese Medical Sciences [18], matching them with classical prescriptions. These methods 
overlook the semantic information of herbs in TCM prescriptions, and their ability to handle herbal 
semantics and generalization are relatively weak, making it difficult to effectively extract features from 
prescription texts. The emergence of deep learning models has overcome the limitations of traditional 
algorithms in capturing semantic relationships within text and extracting crucial feature information. 
This development is conducive to driving the inheritance of TCM. Hu et al. [19] employed 
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Convolutional Neural Networks (CNN) for classifying TCM texts. Ning et al. [20] introduced an 
improved deep learning model, composed of Bidirectional Long Short-Term Memory Network 
(BiLSTM) and CNN, for classifying the efficacy of TCM formulas. Li et al. [21] utilized a neural network 
with hierarchical attention layers to identify specific herbal combinations for prescription efficacy. 
Yang et al. [22] utilized a multi-head attention mechanism to focus on the varying impacts of herbal 
ingredients on symptoms. However, these methods primarily concentrate on establishing connections 
between prescriptions and all the herbs contained within them, overlooking the semantic relationships 
among different herbs within the prescription. Additionally, it is worth noting that the therapeutic 
effects of traditional Chinese herbs are intricate and high-dimensional. Chinese medicinal 
terminologies are vast, and distinguishing synonyms among these terms is quite complex. Therefore, 
relying on herbal effect analysis for the representation of TCM prescription data poses challenges. 

This study proposes a complex prescription recognition algorithm based on Siamese networks, 
with the primary objective of achieving accurate matching between traditional Chinese clinical 
prescriptions and their corresponding classical prescriptions. To address the complexity of natural 
language in traditional Chinese prescriptions, we introduce a novel method for weighting herb 
compatibility and dosage to assess the importance of each herb within a prescription. Furthermore, we 
take into account the performance characteristics of traditional Chinese herbs to tackle the challenge 
of quantifying herbal efficacy attributes. By combining a Siamese network with a BiLSTM structure 
and herb properties (TCM-Ps) features, we aim to comprehensively capture the semantic relationships 
within traditional Chinese herbal prescriptions and sensitively classify minor differences between 
different prescriptions. Through this algorithm, our goal is to effectively match complex traditional 
Chinese clinical prescriptions with suitable classical prescriptions, thereby identifying the therapeutic 
patterns contained within clinical prescriptions. This not only contributes to the in-depth exploration 
and inheritance of diagnostic and therapeutic experiences from classical Chinese medicine but also 
provides robust support and reference value for clinical disease prediction, auxiliary treatment, and 
prescription evaluation. 

2. Materials and methods 

In this study, we propose a complex prescription recognition model (MTCMC), and Figure 1 
shows the overall design of MTCMC. Firstly, the pre-processed TCM prescription text data are 
extracted from the key herbs by a combination of compatibility weights and dosage weights to obtain 
a core prescription consisting of a collection of key herbs, which is used as the input to a matching 
model for similar matching with classical prescriptions; secondly, a vector space model-based 
approach is combined with a TCM corpus to construct a word vector with semantic meaning; then, the 
core prescription attributes are obtained using the TCM performance quantification Finally, a 
prescription matching model based on the Siamese network architecture is designed to integrate the 
semantic information of the TCM performance level, calculate the similarity between the actual 
prescription and the classical prescription, and match the prescription with the classical prescription in 
a categorical manner. 
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Figure 1. The overall design of MTCMC. 

2.1. Preprocessing of prescription text data 

There are practical problems such as complexity, mutual redundancy, and non-standardization in 
TCM prescription text data [23], such as the inconsistent expression of terms and the non-uniform 
measurement units for medication quantities in prescriptions [17,24]. The main preprocessing 
operations are as follows: 

1) Text segmentation: First, stop words, special characters, and punctuation marks in the text are 
removed using the method of loading a stop word list to reduce noise and interference with the 
semantic meaning of the text. Then, the Jieba Chinese word segmentation library is used to segment 
the text. To address the difficulty of recognizing proprietary terms in the field of TCM, a dictionary of 
Chinese medicine vocabulary is loaded as the segmentation dictionary to improve the recognition rate 
of proprietary nouns [25]. 

2) Terminology normalization: According to the guidance of clinical experts in TCM, referring to 
the Coding Rules and Coding of Chinese Medicine (National Standard [GB/T 31774-2015]) and the 
Chinese Pharmacopoeia (2020 Edition), the preprocessed drugs are strictly normalized and annotated, 
and a synonym table is constructed to define the standard terms for each class of synonyms, realizing 
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the organization and standardization of TCM text data. 

2.2. Extraction of key herbs 

According to the compatibility principle of “monarch, minister, assistant, and guide” in TCM, 
different groups of medicines are fused into a coordinated and orderly organic whole in a prescription, 
achieving the effect of the whole prescription being greater than the sum of its parts. This relationship 
leads to significant differences in the importance of medicines [26–28]. To measure the compatibility 
weight of each medicinal herb in different prescriptions, the importance of each drug in the prescription 
was divided into four levels. C1–C4 represent the four drug weight categories. Based on the expert 
evaluation of TCM, the basic scaling rules of the Analytic Hierarchy Process (AHP) [29] method were 
used to assign importance to the prescription dispensing rules, and the basic scaling rules are shown in 
Figure 2. A two-by-two judgment matrix was established according to the scaling rule and the weight 
coefficients were calculated, at which time the weight vector of prescription dispensing 𝑊 𝛽
𝛽 , 𝛽 , ⋯ , 𝛽 , and finally the matrix was tested for consistency. 

 

Figure 2. Basic scale rules of the AHP method in TCM data. 

To measure the pharmacological effects of different doses of traditional Chinese medicines [30,31], a 
dosage weighting method is proposed. The dosage characteristics of Chinese medicine make the 
commonly used dosage range, for example, the commonly used dosage of pseudo-ginseng is 3 to 9 g. 
However, the dosage of Chinese medicine may exceed this range. To eliminate the influence of the 
disparity in various indicators, standardization is required. Equation (1) is the standardization of 
herbal doses. 

 𝑍∗  (1) 

𝑍∗ is the standardized dose of TCM. 𝑍  is the dose of TCM . 𝑍  is the minimum value in the 
commonly used dose of TCM.  𝑍  is the maximum value in the commonly used dose of TCM. The 
commonly used dose of TCM is referred to in the 2020 edition of the Chinese Pharmacopoeia, the 
Dictionary of TCM, and Chinese Pharmacology. At the same time, the prescription dosage weight 
vector 𝑊 𝛼 𝛼 , 𝛼 , ⋯ , 𝛼   is calculated by normalizing the data set of drug dosage after 
standardization. 
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The total weight of medicinal ingredients is obtained by combining the compatibility weight and 
dosage weight through linear weighting, and then the herbs are sorted in descending order. The top 70% 
of key herbs are selected to represent the composition of the prescription. Equation (2) calculates the 
comprehensive weight of medicinal ingredients in a prescription. 

 𝑊 𝑓 𝜆𝑊 𝛽 1 𝜆 𝑊 𝛼  (2) 

In Eq (2), the parameter 𝜆 represents the weighting coefficient, which is used to regulate the 
balance between the objective weighting method and the subjective weighting method. Through 
comparative analysis, we find that when 𝜆 0.5, the smaller the value of 𝜆, the greater the influence 
of objective factors, while when 𝜆 0.5 , the greater the value of 𝜆 , the greater the influence of 
subjective factors. When 𝜆 0.5 , a good balance between subjective and objective weights is 
achieved, which enables accurate extraction of key herbs. This effectively supports the subsequent 
steps of the prescription similarity detection framework. 

2.3. Quantification of TCM properties 

Single-drug properties make it difficult to reflect the overall characteristics of TCM prescriptions, 
while multidimensional quantification indicators based on drug properties can provide objective and 
comprehensive information for studying the overall efficacy of prescriptions. The distribution of TCM 
properties (TCM-Ps) is based on the 2020 edition of the Pharmacopoeia of the People’s Republic of 
China and is supplemented by the planning textbook of national TCM colleges and universities. 
According to Table 1, TCM is divided into three categories: property (P), flavor (F), and meridian 
tropism (MT). Each drug in a TCM prescription has its own unique property, flavor, and meridian 
tropism, represented by a label code. For example, the TCM herb Moutan bark has a slightly cold 
property, bitter and pungent flavor, and tropism towards the heart, liver, and kidney meridians. The 
TCM property vector of Moutan bark is represented as 𝑓 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓
0,1,0, 1, 0, 1, 0, 0, 0  . Different TCM herbs are stacked and fused in prescriptions, resulting in 

multidimensional property characteristics of property, flavor, and meridian tropism for each 
prescription [1,32]. Therefore, Eq (3) represents the TCM prescription for 𝑛 herbs as a vector of 
TCM properties. 

 𝑅

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓
𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

 (3) 

The i-th row represents the drug property vector of the i-th herb in the prescription, 𝑖 1, 2, 3, … , 𝑛. 
The final result is the matrix of prescription property vectors 𝑅 , flavor vectors 𝑅  and meridian 
vectors 𝑅 . 



18701 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18695–18716. 

Table 1. TCM properties of Chinese herbal medicines. 

Herb property Herb flavor Herb meridian tropism 

Subclass (P) TCM-P TCM-F Subclass (MF) TCM-MT 

P Ⅰ: cold p1: great cold f1: sour MT Ⅰ: Yin meridian mt1: heart 

p2: cold f2: bitter mt2: liver 

p3: mildly cold f3: sweet mt3: spleen 

f4: pungent mt4: lung 

P Ⅱ: cool p4: cool f5: salty mt5: kidney 

f6: bland mt6: pericardium

p5: even f7: astringent 

 MT Ⅱ: Yang meridian mt7: stomach 

P Ⅲ: warm p6: mildly warm mt8: gallbladder 

p7: warm mt9: large 

mt10: small 

P Ⅳ: hot p8: hot mt11: bladder 

p9: great hot mt12: triple 

2.4. The core prescription and classical prescription matching 

To further help doctors identify classical TCM prescriptions contained in clinical prescriptions, 
this section describes in detail the Siamese network-based BiLSTM neural network architecture for 
core prescription and classical prescription matching, as shown in Figure 3. The model framework 
mainly includes the word vector representation layer, Siamese network layer, BiLSTM layer, and 
similarity calculation layer. The output of each layer is used as the input of the next network layer, 
where the concatenated vector of the word vector, herb property vector, herb flavor vector, and 
meridian tropism vector in the word embedding layer is used as the input of the BiLSTM network 
layer for feature extraction and training, and the matching results are output through the similarity 
calculation layer. 

2.4.1. Word vector representation 

A word2vec skip-gram model is used to train the Chinese medicine word vector model on a large 
corpus of Chinese medicine text. The model obtains continuous and low-dimensional word vectors, 
which effectively solve the problems of semantic isolation and dimension explosion caused by 
traditional word vector models [33]. For a given corpus, the word vectors are stored in a word vector 
query matrix 𝑀 𝑅| |  , where |𝑉|  is the vocabulary size of the given unlabeled Chinese 
medicine text corpus, and 𝑑   is the dimension of the word vector [34]. For a sentence 𝑆
𝑠 , 𝑠 , ⋯ , 𝑠  of length 𝑛, the sentence matrix is represented as X 𝑥 , 𝑥 , ⋯ , 𝑥 , where 𝑥  is the 

word vector obtained from the word vector query matrix M  for the word 𝑠   in the sentence. 
Assuming that the corpus consists of 𝜔 , 𝜔 , ⋯ , 𝜔  words, the skip-gram model aims to maximize 
Eq (4). 



18702 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18695–18716. 

 𝐹 ∑ ∑ log 𝑝 𝜔 |𝜔,  (4) 

where: 𝑛 is a parameter that represents the training window size. In this study, the context window 
size for word2vec training was set to 5, and the number of iterations was set to 8, resulting in the 
generation of word vectors with dimensions of 100, 200, 300, and 400. After extracting the key herbs, 
the set of key herbs was used to form the core prescription. The core prescription text was then used 
as input for the model training, which involved concatenating the word vector matrix 𝑅  , the 
medicinal property vector matrix 𝑅 , the medicinal flavor vector matrix 𝑅 , and the meridian vector 

matrix. 𝑅   to form the prescription vector matrix 𝑅 𝑅 ⨁𝑅 ⨁𝑅 ⨁𝑅  . The symbol ⨁ 

denotes the vector concatenation operation. 

 

Figure 3. Prescription matching model framework. 

2.4.2. Siamese network 

A Siamese network is a neural network with weight sharing, which can determine whether a 
sample outside the training set is similar. It has significant advantages in terms of the number of 
classifications and generalizations [35]. The basic structure is shown in Figure 4. The Siamese Network 
is mainly composed of two parts: sample representation and similarity calculation. It uses two sub-



18703 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18695–18716. 

networks with the same structure and shared parameters to represent samples 𝑆1  and 𝑆2 . The 
similarity 𝐸 𝑆1, 𝑆2   of the sample representation vectors 𝐺 𝑆1   and 𝐺 𝑆2   is calculated to 
determine whether the two samples belong to the same category [36].The loss function of a Siamese 
network depends on the inputs and parameters. The variable 𝑦 is the label indicating whether 𝑆1 and 
𝑆2 are a match, where 𝑦 ∈ 0,1 . Let 𝐿 𝑆1, 𝑆2  denote the loss when 𝑦 1 and let 𝐿 𝑆1, 𝑆2  
denote the loss when 𝑦 0. Equation (5) is the loss function for a single text. 

 𝐿 1 𝑦 𝐿 𝑆1, 𝑆2 𝑦𝐿 𝑆1, 𝑆2  (5) 

Equation (6) is the total loss function for 𝑁 texts.  

 𝐿 𝑆 ∑ 𝐿 𝑆1, 𝑆2, 𝑦  (6) 

The loss function 𝐿   is the cross-entropy loss function. The Adaptive Moment Estimation 

(ADAM) algorithm is the optimization algorithm used for the model, and the dropout technique is a 
regularization method. 

 

Figure 4. Siamese network framework. 

2.4.3. BiLSTM 

Long short-term memory (LSTM) networks can effectively preserve the historical information of 
long sequences while avoiding problems such as gradient vanishing and explosion that standard 
Recurrent Neural Networks (RNNs) often face [37]. A LSTM model is shown in Figure 5. For a 
prescription text sequence 𝑆 𝑥 , 𝑥 , ⋯ , 𝑥   consisting of 𝑛  words, 𝑥   represents the mixed 
vector corresponding to the word in the input sequence at time step 𝑡 in the LSTM unit. 
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Figure 5. LSTM cell structure. 

Equation (7) calculates the three gates and the memory cell in the LSTM unit. 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑋

𝑓 𝜎 𝑊 ∙ 𝑋 𝑏
𝑖 𝜎 𝑊 ∙ 𝑋 𝑏
𝑜 𝜎 𝑊 ∙ 𝑋 𝑏

𝑐 𝑓 ⊙ 𝑐 𝑖 ⊙ tanh 𝑊 ∙ 𝑋 𝑏
ℎ 𝑜 ⊙ tanh 𝑐

 (7) 

In the above prescription, 𝑊  , 𝑊  , 𝑊 ∈ 𝑅   represent weight matrices, 𝑏  , 𝑏  , 𝑏 ∈ 𝑅  

represent biases, 𝜎 is a non-linear activation function, 𝑚 100 is the number of LSTM units in the 
network, ⊙  represents element-wise multiplication; 𝑥   contains input vectors of the LSTM unit; 
ℎ ∈ 𝑚 is the hidden layer vector. For a given prescription text 𝑆 𝑥 , 𝑥 , ⋯ , 𝑥 , each word 𝑥  is 
mapped to its corresponding word vector 𝑣 ∈ 𝑅 , each word’s medicinal property is mapped to a 

medicinal property vector 𝑣 ∈ 𝑅  , the word’s flavor vector is mapped to a flavor vector 𝑣 ∈

𝑅 and the word’s meridian vector is mapped to a meridian vector 𝑣 ∈ 𝑅  (where 𝑑 300, 
𝑑 9  ,  𝑑 7 , 𝑑 12  represent the dimensions of word vector, medicinal property vector, 
flavor vector and meridian vector respectively). Finally, Eq (8) connects these vectors to generate the 
prescription vector matrix: 
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 𝑥 , 𝑥 , ⋯ , 𝑥 → 𝑅 ⊕ 𝑅 ⊕ 𝑅 ⊕ 𝑅 →

⎣
⎢
⎢
⎢
⎡𝑣  ⨁ 𝑣  ⨁ 𝑣  ⨁ 𝑣

𝑣  ⨁ 𝑣  ⨁ 𝑣  ⨁ 𝑣
⋮

𝑣  ⨁ 𝑣  ⨁ 𝑣  ⨁ 𝑣 ⎦
⎥
⎥
⎥
⎤

 (8) 

To measure the positional information of the text in different orders equally and further explore 
the contextual information associated with the prescription, a BiLSTM [38] model is used to extract 
text features. After passing through the forward and backward LSTM networks, the network contains 

two hidden states ℎ⃗  and ℎ⃖   in both directions [39]. The vector ℎ ℎ⃗, ℎ⃖   generated by 

concatenating them is the output, which is a fused result. Then, the max pooling layer takes the 
maximum value of the vector to obtain the most significant feature vector as the input of the fully 
connected layer. 

3. Results 

3.1. Datasets 

The data for the experimental prescription were selected from authoritative Chinese medicine 
prescription books and data platforms. The included Chinese medicine prescriptions meet the 
following standards: 1) they were clinically used by academic experts and instructors recognized by 
the National Administration of TCM, including the first three batches of national TCM masters and 
the first batch of nationally renowned TCM practitioners; 2) they were published in authoritative TCM 
journals. The exclusion criteria are: 1) incomplete records of medical cases, prescriptions, etc.; 2) 
duplicated literature, in which only one is selected; 3) duplicated medical cases or prescriptions, in 
which only one is selected. 

Table 2 shows some sample data from the dataset used in this study. According to the above-
mentioned criteria, the prescription dataset included in this study consisted of 5034 prescriptions, each 
containing an average of 13 to 15 herbs, of which prescription data indicating classical prescriptions 
were collated as matching data, and the non-matching data were generated by combining prescription 
data with classical prescriptions for different main treatment conditions, involving 562 classical 
prescriptions, to establish a matching dataset of clinical prescriptions of national masters and national 
famous Chinese medicine practitioners (MTCMFE). The dataset consists of prescriptions, 
corresponding classical prescriptions, following grid and a label. A label of 1 indicates that the actual 
prescription matches the classical prescription, while a label of 0 indicates no match. The MTCMFE 
dataset is divided into a 7:3 training set and a test set, Table 3 provides a detailed distribution of positive 
and negative samples in each dataset. Here, positive samples represent matching pairs of prescriptions, 
while negative samples represent non-matching pairs of prescriptions. 
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Table 2. Some sample data from the dataset. 

Prescription Classical prescription Similarity label 

10 g Ephedra, 15 g Almonds, 50 g Gypsum, 30 g 

Houttuynia, 15 g Great Burdock Fruit, 15 g Sunflower 

Seed, 10 g Baikal Skullcap Root, 10 g Tendrilled Fritillary 

Bulb, 30 g Honeysuckle Flower, 10 g Balloon Flower 

Root, and 10 g Licorice Root. 

9 g of Ephedra, 9 g of 

Almonds, 6 g of Licorice 

Root, and 18 g of Gypsum. 

1 

12 g Rehmannia, 8 g Dogwood Fruit, 10 g Chinese Yam, 

8 g Tree Peony Bark, 8 g Fried Common Rush Rhizome, 8 

g Poria, 12 g Salvia Root, 8 g Sichuan Lovage Rhizome, 

10 g Goji Berry, 8 g Vitex Fruit, 8 g Dodder Seed, 10 g 

Angelica Root, and 6 g Tangerine Peel. 

6 g of Ephedra, 6 g of 

Almonds, 3 g of Licorice 

Root, and 12 g of Coix Seed. 

0 

 Table 3. Distributions of positive samples and negative samples in the dataset.  

Dataset 
Training Test 

Positive Negative Positive Negative 

Number of samples 1753 1771 757 753 

3.2. Experimental environment  

The specific experimental environment settings for this study are shown in Table 4. 

Table 4. Experimental environment configuration. 

Experimental environment Configuration 

Development tools Pycharm 

programming languages Python3.6 

Development framework Pytorch 1.4.0 

Operating system 64-bit Windows 10 

Central processing unit Intel (R) Core (TM) i5-9300H CPU @ 2.40 GHz 

Hardware platform NVIDIA GeForce GTX 1650 

3.3. Evaluation indicators and model configuration 

The experiment used accuracy, precision, recall, and F1 score as evaluation metrics to 
comprehensively measure the performance of the model. Their definitions are as shown in Eq (9). 
Where TP represents the number of samples that are predicted as positive in the positive class, FP 
represents the number of samples predicted as positive in the negative class, FN represents the number 
of samples predicted as negative in the positive class, and TN represents the number of samples 
predicted as negative in the negative class. 
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⎩
⎪
⎨

⎪
⎧𝐴

𝑃

𝑅

𝐹1

 (9) 

In the subsequent experiments, we use the grid search method to adjust the model parameters of 
the training dataset, and F1 score serving as the evaluation metric for the grid search. Finally, we will 
assess the model’s performance using the test dataset. 

The MTCMC model used in our experiments was established as follows: we assigned weights to 
herbs using the Analytic Hierarchy Process (AHP) in combination with standardization and 
normalization techniques. These weights were based on evaluations by domain experts. The 
fundamental scaling rules for herbal weight assignment are depicted in Figure 2. We introduced a 
Siamese-BiLSTM matching model that integrates multiple features. To determine the model’s 
hyperparameters, including word vector feature dimensions (w_dim), the number of iterations (epochs), 
learning rate (lr), optimization functions, LSTM hidden layer size (LSTM_hidden), and the number of 
LSTM layers (LSTM_layer), we employed a grid search approach. To prevent model overfitting, we 
incorporated dropout regularization to control model complexity and avoid overfitting issues. The 
magnitude of the dropout regularization term was also determined via grid search. 

For the other models used in our experiments, the procedures were as follows: We constructed 
SVM and KNN models using Scikit-Learn. The regularization parameter (C) and sigmoid kernel 
parameter (coef0) for SVM, as well as the number of nearest neighbors (n_neighbors) for KNN, were 
determined using grid search techniques. We implemented BiLSTM, CNN, Siamese-BiLSTM, and 
Siamese-CNN models using PyTorch. Hyperparameters including LSTM hidden layer size 
(LSTM_hidden), the number of LSTM layers (LSTM_layer), the number of convolutional filters 
(num_filters), the number of convolutional layers (CNN_layer), the number of iterations (epochs), 
learning rate (lr), regularization strength (dropout), and optimization functions (optimizer) were 
determined through grid searches. The parameter grids and specific values following short in 
effectively the grid search are presented in Tables 5 and 6. 

Table 5. Model parameters in the experiment. 

Model C coef0 n_neighbors 

Parametric Grid [0.01, 0.1, 1] Arrange (0.1, 1, 0.1) Arrange (1, 10, 1) 

SVM 0.1   

KNN  0.2 4 



Table 6. Model parameters in the experiment. 

Model w_dim 
LSTM_ 

hidden 

LSTM_ 

layer 

num_ 

filters 

CNN_ 

layer 
epochs lr dropout optimizer 

Parametric 

Grid 

Arrange 

(100, 500, 

100) 

Arrange 

(50, 500, 

1) 

Arrange 

(1, 3, 1) 

Arrange 

(16, 512, 

1) 

Arrange 

(1, 4, 1) 

Arrange 

(1, 100, 

1) 

[0.001,0.01]

Arrange 

(0.1, 0.8, 

0.1) 

{“SGD”, 

“Adam”, 

“RMSprop”} 

CNN 300   256 2 30 0.001 0.3 Adam 

BiLSTM 300 256 2   56 0.001 0.5 Adam 

Siamese-CNN 300   256 2 35 0.001 0.3 Adam 

Siamese-BiLSTM 300 300 2   45 0.001 0.5 Adam 

MTCMC 300 300 2   40 0.001 0.5 Adam 

3.4. Comparison experiment with the baseline method 

Table 7. Results of comparative experiments on classical similarity matching. 

Models 
Dataset of MTCMFE 

Precision % Recall % F1 score % 

SVM 58.12 60.76 60.23 

KNN 57.32 58.46 59.76 

CNN 71.62 70.32 71.47 

BiLSTM 61.72 60.58 61.01 

Siamese-CNN 74.72 71.45 74.36 

Siamese-BiLSTM 68.52 70.13 72.15 

MTCMC 89.24 85.63 89.19 



To compare our proposed method with a range of models in the field of TCM data mining, 
experiments were conducted on the MTCMFE dataset. To ensure a fair comparison of the matching 
performance of each method, only pre-trained word vectors with a dimension of 300 were used as 
input for the comparative methods. The results are shown in Table 7, it can be seen that the proposed 
MTCMC model performs the best in the task of matching TCM prescriptions in terms of precision, 
recall, and F1 score, and outperforms other baseline methods. The specific analysis is as follows: 

1) Compared to traditional machine learning models SVM and KNN, MTCMC shows significant 
improvements in precision, with an average increase of 31.52%, recall with an average increase of 26.02%, 
and F1 score with an average increase of 29.19%. SVM is suitable for handling linearly separable 
problems, while KNN’s simple distance metric struggles to capture the nonlinear relationships present 
in traditional Chinese medicine (TCM) prescription texts. Both SVM and KNN fall short of effectively 
dealing with the nonlinear semantic relationships and multidimensional attribute features found in 
TCM prescriptions. MTCMC leverages the nonlinear feature extraction capabilities of the Siamese-
BiLSTM deep learning model, allowing it to better capture complex features and deep semantic 
relationships in TCM prescription text data, while also exhibiting strong generalization capabilities. 

2) Compared to deep neural networks CNN and BiLSTM, MTCMC demonstrates improvements 
in precision, with an average increase of 22.57%, recall with an average increase of 20.18%, and F1 
score with an average increase of 22.95%. CNN primarily focuses on local information, making it 
challenging to capture the overall semantic relationships within traditional Chinese herbal medicine 
prescriptions. Additionally, CNN requires text to be padded to a fixed length, potentially leading to 
information loss. BiLSTM typically used for modeling single sequences, lacks a contrastive learning 
mechanism and may perform weakly in handling complex text. MTCMC combines the global semantic 
relationship extraction capabilities of BiLSTM with the contrastive learning mechanism of Siamese, 
resulting in the extraction of richer feature information, facilitating a more precise differentiation of 
semantic relationships between different prescriptions. 

3) Compared to Siamese-CNN and Siamese-BiLSTM, MTCMC exhibits improvements in 
precision, with an average increase of 17.48%, recall with an average increase of 14.84%, and F1 score 
with an average increase of 15.94%. The Siamese network improves the accuracy of the matching task 
by sharing weights to better capture the similarities and differences between prescriptions and 
sensitively classify small differences between prescriptions. However, these models may not fully 
consider the attributes and compatibility of herbal medicines, limiting their performance in traditional 
Chinese herbal medicine prescription matching. MTCMC, building upon Siamese-BiLSTM, integrates 
a weighted calculation method for herbal compatibility and dosage. This further enhances the model’s 
understanding and modeling capabilities for prescription texts, enabling it to better capture complex 
semantic relationships within prescriptions. MTCMC comprehensively considers multidimensional 
attributes, compatibility relationships, and global semantic relationships, resulting in more accurate 
modeling of prescription text characteristics. 

To visualize the performance of the MTCMC model, we created bar charts reflecting precision, 
recall, and F1 score, as depicted in Figure 6. Taking into account the overall performance of the 
MTCMC model, it consistently outperforms the other six models. This superiority can be attributed to 
several key factors. Firstly, the MTCMC model leverages Siamese-BiLSTM to extract nonlinear 
features from traditional Chinese medicine prescription data, effectively capturing the intricate global 
semantic relationships within prescriptions. Additionally, the model introduces a weighted calculation 
method for herbal compatibility and dosage, further enhancing its ability to comprehend and model 
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prescription text. MTCMC takes a holistic approach by considering multiple dimensions of attributes, 
nonlinear relationships, and global semantic relationships. Combining attribute weights with text 
features, achieves a more precise modeling of the unique characteristics of prescription text, thereby 
efficiently capturing the complex semantic relationships within traditional Chinese medicine 
prescription texts. 

To examine the learning process of the MTCMC model, Figure 7 illustrates the descent of the 
loss during the training of the MTCMC model. The horizontal axis represents training epochs, while 
the vertical axis represents the train loss. As observed from the graph, the train loss continually 
decreases and gradually converges to a lower loss value, reaching a state of convergence. 

 

Figure 6. Model evaluation visualization results. 

 

Figure 7. Descent of Train loss in MTCMC learning process. 

3.5. The impact of multiple features on prescription matching 

To verify the effectiveness of the drug property, flavor, and meridian features on the matching of 
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Chinese herbal prescriptions, different feature combinations were used as model inputs in this 
experiment. The 𝐹  , 𝐹   and 𝐹   were added to the concatenated mixed vector 𝐹 𝐹 ⊕ 𝐹 ⊕
𝐹 ⊕ 𝐹  generated by the word vector 𝐹  and used as the model input for training. The results of 
the MTCMC multi-feature comparison experiment are shown in Figure 8. The decrease dosage 
MTCMC model proposed in this paper, which uses a fusion of word vectors, drug property vectors, 
flavor vectors, and meridian vectors, has the best performance. Specifically: 

Training the model using only word vectors as input resulted in a matching score of 89.19%, 
indicating that using only word vectors for feature extraction is not sufficient to fully capture the 
feature information of prescription texts. Adding drug property vectors, flavor vectors, and meridian 
vectors on top of word vectors improved accuracy, with matching values increasing by 0.13%, 0.24%, 
and 2.24%, respectively. These vectors contributed differently to the semantic representation of 
prescription texts, with meridian vectors making a larger contribution. 

Concatenating word vectors, drug property vectors, and flavor vectors to generate a vector 𝐹 ⊕
𝐹 ⊕ 𝐹  as input for the model increased the matching score by 1.19%. It performed better than using 
𝐹 ⊕ 𝐹  or 𝐹 ⊕ 𝐹  feature vectors, but its expressive power is still limited compared to using a 
single comprehensive vector 𝐹 ⊕ 𝐹 , especially in terms of 𝐹 ⊕ 𝐹 ⊕ 𝐹 . 

The MTCMC model proposed in this paper uses drug property, flavor, and meridian vectors in 
addition to word vectors for training, demonstrating the specialization of TCM prescription data and 
enriching the semantic representation of prescription texts. It strengthens the connection between 
internal herbs in prescription texts and improves the matching F1 score by 5.15%, further enhancing 
the experimental effect of TCM prescription text matching. 

 

Figure 8. Multi-feature comparison experiment. 

4. Discussion 

Although the model achieved high performance, improvements are still needed to achieve the 
overall optimization of the model. 
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1) The quality and quantity of the dataset have a significant impact on the accuracy of the model. 
Therefore, more high-quality data on the matching of TCM prescriptions and prescriptions will be 
collected, and TCM experts will be invited to review the data to optimize and learn models with higher 
performance. 

2) In the prescription process of TCM physicians, the description of herbs may vary. Many 
physicians use the aliases of Chinese medicine. This semantic diversity of Chinese medicine may 
interfere with the results of prescription recognition, so further research is needed on the discernment 
of Chinese medicine semantics. 

3) Due to the differences in the pathological symptoms and personal constitution of patients, 
physicians may appropriately add or remove drugs, increase or decrease the dosage, or combine several 
prescriptions based on actual situations and personal experience on top of classical prescriptions. 
Additionally, physicians may be influenced by their preferences and replace drugs in classical 
prescriptions with other drugs of the same efficacy. Therefore, clinical prescriptions may differ greatly 
from classical prescriptions, which is difficult to handle. 

4) This study lacked the inclusion of underlying diseases, signs and symptoms, living areas, to 
optimize and other patient information; therefore, the findings are somewhat limited. In the future, the 
parameters of the included information and validation data will be further expanded to optimize the model. 

5. Conclusions 

The complex prescription recognition algorithm based on Siamese networks, denoted as MTCMC, 
offers several key advantages when applied to the task of TCM prescription matching. Three primary 
strengths of the MTCMC model can be highlighted: 

1) Robust Semantic Modeling Capability: The MTCMC model effectively captures the intricate 
semantic relationships within TCM herbal prescriptions by introducing a weighted calculation method 
for herbal compatibility and usage. In comparison to traditional machine learning models, the MTCMC 
model excels at handling non-linear semantic relationships in TCM herbal prescriptions, showcasing 
superior performance in addressing complex natural language tasks. 

2) Multi-level Feature Fusion: The MTCMC model integrates deep learning with herbal 
performance features, combining them with a Siamese-BiLSTM structure. This comprehensive 
approach allows for a more thorough consideration of herb attributes and compatibility relationships. 
Consequently, it enhances the model’s ability to accurately capture the overall semantic relationships 
among herbs in prescriptions, thereby elevating its performance. 

3) Cross-Modal Learning and Similarity Measurement: Through the introduction of the Siamese 
network structure, the MTCMC model adeptly captures the similarity between different prescriptions. 
It exhibits sensitivity to subtle differences, further boosting the accuracy of the matching task. 

Based on real clinical data and classical Chinese medicine knowledge, our proposed complex 
prescription recognition model (MTCMC) encompasses the multidimensional attributes, nonlinear 
relationships, and global semantic context found within TCM prescriptions. By leveraging deep 
learning and feature fusion strategies, MTCMC achieves a higher level of accuracy in handling 
complex and irregular TCM prescription data, resulting in an average improvement of 15% in F1 score. 
The significance of this method is not only in the ability to extract complex semantic features of 
Chinese medicine texts, but also in its ability to provide powerful support for the in-depth excavation 
and inheritance of the knowledge of Chinese medicine diagnosis and treatment experience. 
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