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Abstract: In this paper, we investigate the stability and bifurcation of a Leslie-Gower predator-prey
model with a fear effect and nonlinear harvesting. We discuss the existence and stability of equilibria,
and show that the unique equilibrium is a cusp of codimension three. Moreover, we show that saddle-
node bifurcation and Bogdanov-Takens bifurcation can occur. Also, the system undergoes a degenerate
Hopf bifurcation and has two limit cycles (i.e., the inner one is stable and the outer is unstable), which
implies the bistable phenomenon. We conclude that the large amount of fear and prey harvesting are
detrimental to the survival of the prey and predator.

Keywords: nonlinear harvesting; fear effect; Leslie-Gower; Hopf bifurcation; Bogdanov-Takens
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1. Introduction

Fishing is a method used in the industry to acquire fish products from natural or artificial bodies of
water. With the development of fisheries, fishing has become more common. We see that harvesting
for economic gain is a relatively regular occurrence in nature and that it significantly affects both the
ecological balance and system dynamics. It is crucial to develop biological resources at their maxi-
mum sustainable yield while preserving the survival of all interacting populations, both ecologically
and economically. However, if a species is overharvested, it can lead to ecological problems, as some
people may prioritize profit over protecting the environment. Thus, the authors of [1,2] built mathe-
matical models to analyze these problems, whose dynamical behaviors have attracted the interest of
many scholars. There are three forms of harvesting: 1) constant harvesting, (x) = h; 2) linear harvest-
ing, h(x) = gEx; 3) nonlinear harvesting, h(x) = mlgﬁfnzx, which is also called Michaelis-Menten-type
harvesting.

Leslie and Gower studied the predator-prey relationship between two species and developed the
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famous Leslie-Gower predator-prey model [3], which has been widely discussed [4—6]. For example,
the Leslie-Gower predator-prey model with the Allee effect and a generalist predator was studied in [7],
where the authors found that the system exhibits a multi-stability phenomenon and undergoes various
bifurcations. Huang et al. [8] studied the Leslie-Gower-type predator-prey model with constant-yield
harvesting, and they found that the dynamical behavior of the model is very sensitive to the constant
yield harvest of the predator.

Gupta et al. [9] considered the following Leslie-Gower predator-prey model with Michaelis-
Menten-type prey-harvesting:

. X qEx
X = rx(l - —)—axy— _—
K mkE + myx
j=sy(1=2), if () # 0,0, a.n

y=0, if (x,y) =(0,0),

where x and y are the prey and predator population densities, respectively. They studied the stability
and bifurcation (saddle-node bifurcation and Hopf bifurcation) of system (1.1). Also, the existence of
bionomic equilibria and optimal singular control were investigated. Based on system (1.1), Gupta and
Chandra [10] introduced the Holling type II functional response and obtained the bistable situation.
The model exhibits several local bifurcations (saddle-node, Hopf, homoclinic and Bogdanov-Takens)
which are ecologically important. Considering the group defense and nonlinear harvesting in prey,
Kumar and Kharbanda [11] obtained that the density of the predator increases as the harvest rate of the
predator decreases. Caraballo Garrido et al. [12] investigated the predator prey model with nonlinear
harvesting with both constant and distributed delay by varying parameters. Some scholars [13—17] have
combined other functional responses and harvesting to obtain more complex dynamical behaviors.

As with direct killing, indirect killing also has a significant impact on the dynamic behaviors of
the system. The studies mentioned above, however, solely take into account the predator’s direct
killing. Predation danger may drive the prey to engage in anti-predation behaviors, such as habitat
modifications or foraging, which may lower the prey’s birth rate. Hence, Wang et al. [18] incorporated
the fear effect into the reproduction of prey animals and obtained the following prey-predator model:

i = roxf(k,y) — dx — ax* — pxy, (12)
y = cpxy —my, '

where f(k,y) = 5 +lkoy accounts for the cost of anti-predator defense due to fear. They studied a model
with a linear functional response or Holling type II functional response. It was found that the fear effect
has no impact on the dynamic behaviors of model (1.2). However, the dynamic behavior of model
(1.2) with Holling type II functional responses can be affected by the fear effect. Chen et al. [19]
considered the influence of the fear effect and Leslie-Gower function on the dynamic behavior of
the predator-prey model, and they demonstrated that there are many types of bifurcation phenomena,
including transcritical bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. Zhang et al.
[20] studied a delayed diffusive predator-prey model with spatial memory and a nonlocal fear effect,
and they investigated the stability, Hopf bifurcation and Turing-Hopf bifurcation of the system. Many

scholars [21-25] have studied the prey-predator model with a fear effect.
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In this paper, we incorporate the fear effect into system (1.1) and obtain the following model:

. o d goEx
i=x —dy—ax — cpy| - ———
1 + koy 0 oy mE + myx’
5= sy (1= 22, i (63) # 0,0, (13)

y=0, if (x,y) =(0,0),

where r is the birth rate of the prey and d, is the natural death rate of the prey. In the ecological sense,
it is clear that ry > d,. a represents the intra-species competition, ¢, is the maximum predation rate, s
is the intrinsic growth rates of the predators, 4 is a measure of the quality of the prey as food for the
predator, k is the fear parameter, g is the catchability coeflicient, E is the effort applied to harvest the
prey species and m, m, are suitable constants. For simplicity, letting

212
_ n’L2 _ m2 ; amlE t
X=——=x, y= y =
mE"’ mEh”’ m%x ’
_ romy - k()mlEh — d()l’l’lz
r=——, k= , d=——,
am E my am E
s coh 7= qomy 5 = Soma
- T - s E=X)
a am%E am E

for x, y be positive, and dropping the bars, system (1.3) becomes

2
) r qx

—d—x—cv|- ’
1+ ky SERd AR (1.4)
y=sy(x—y),

X=X

where r > d, and r, k, d, ¢, g and s are positive constants.

The key aim of this study on prey-predator models is to discuss the impacts of prey fear and prey
harvesting on system dynamics. The bifurcation phenomenon that distinguishes system (1.4) from sys-
tem (1.1) deserves further discussion. In addition, by analyzing the observed bifurcation phenomena,
we can elucidate the benefits and drawbacks of prey harvesting on both populations.

The structure of the article is as follows. In Section 2, we obtain the boundedness of solutions
and analyze the dynamical behaviors of origin. In Section 3, we discuss the existence of boundary
equilibria and positive equilibria. In Section 4, we analyze the stability of equilibria. In Section 5,
we show that system (1.4) undergoes saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens
bifurcation. In Section 6, we have a summary of the article.

2. Preliminaries

We show that the positive solutions of system (1.4) are ultimately bounded.
Theorem 2.1. All solutions of system (1.4) are bounded for all t > 0.

Proof. Since system (1.3) is equivalent to system (1.4), we now prove that the solution of system (1.3)
is bounded. From the first equation of system (1.3), we have

x < x(rg — dy — ax),
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ro — dy

for t > 0, which immediately implies that lim sup x(¢) <

—o0

£ M. Then from the second equation
of system (1.3), it follows that

. M
< 1 - =
y_soy( hM)

for t > 0, that is, lim sup y(t) < hM. Hence, x(¢) and y(¢) are bounded. The proof is completed.

t—00

Denote
qo=(d+qk+c+1.

Next, we show the dynamic behaviors of the origin of system (1.4).
Lemma 2.1. The types of origin in system (1.4) are as follows:
1) ifr—d<qorr—d=q<qo, the origin of system (1.4) is a non-hyperbolic attractor,

2) ifr—d>qorr—d=q> qo the origin of system (1.4) is a non-hyperbolic repeller.

Proof. The Jacobian matrix of system (1.4) at the origin is degenerate; then, we apply the blow-up
method to analyze the type of origin. Notice that when x = 0, we have that X = 0 and y = —sy*> < 0,
which means that system (1.4) has the invariant line x = 0. Using the horizontal blow-up

(x,y) = (u,uv) and dr = udt,

system (1.4) can be rewritten as

= )
U= 1+ kuy Hoaw 1+ul)’

—d—u-cuv— 9 )
1+ kuv 1+u

2.1

v=sv(l=-v)—v

(i) The equilibria of system (2.1) in u = 0 are A(0,0) and B(O, 1- HJT_") when r —d < g+ 5. The
Jacobian matrix at the equilibria A and B are, respectively

r—d-gq 0
Ja =
0 qg+s—(r—d)

and
r—d-gq 0
Jp = —r+d+q)R ’
CortdrdR g+
s
where

R:—kr2+(ks—c+(a’+q)k)r+(c—q+1)s+c(d+q).

The eigenvalues of matrix J4 are A;,, =r—d—-qand 4;,, = g+ s — (r —d) > 0, and the eigenvalues
of matrix Jgpare d;,, =r—d—-—qand A;, =r—d—-(q+s) <0.If r—d < g, thatis, if 4;,, < 0 and
Ay, <0, Ais asaddle and B is a stable node (see Figure 1(a)). If g < r—d < g + s, thatis,if 4;,, >0
and A;,, > 0, A is an unstable node and B is a saddle (see Figure 1(c)).
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If r—d = g, thatis, if 1;,, = 0 and 4;,, = 0, both A and B are degenerate equilibria. First, we
consider the degenerate equilibrium A. Taking the time variable

dr = sdt,

we can obtain the Taylor expansion of system (2.1) as follows:

—1 dk + kq +
p=1"p 4 _dETRITC L o(lu, v[*),
s

s
-1 dk + kg + ¢
uv — v + —quvz + gu2v + o(lu, vP).
s s s

vV=v-—

By Theorem 7.1 in [26], the degenerate equilibrium A is a saddle-node if ¢ # 1. If g = 1, we have that
the equilibrium A is a degenerate saddle from 9 <.

s
Next, for the degenerate equilibrium B, make the following transformation:
(u,v)y =X, Y +1).
System (2.1) becomes

X = —[(k=Dg+dk+c+1]X* + [(k* = D)g + dk*]X° + o(IX, Y),

Y =[(k-1g+dk+c+1]X - sY - [(K — 1)g + dk’]X* (2.2)
+[(2k — 1)g + 2dk + 2¢ + 1]XY — sY* + o(X, Y.

Using (X,Y) = (sX1, [(k — 1)g + dk + ¢ + 1]X; + Y;) and d7 = —s dt, system (2.2) becomes

{ X = CY20X12 + 0130Xf + 0/21X12Y1 +o(1Xy, Y1), 2.3)

Y1 = Y1+ BaoXe + BuXa Y1 + BoaY? + o(X1, Y1),
where

@0 =qo—¢q, @y =(d+qgk+c,

az = (K —k)q* + 2d k* — k*s + 2ck — dk — ¢ + k + $)g + d*k* — d k*s + 2cdk
+c? +dk + c,

Bro = (~2K> + 3k = 1) ¢* + (~4d & + ks = dck + 3dk + 3¢ = 3k — 5+ 2) q = 2d°K>
+dk*s — 4cdk — 2¢* = 3dk —3c—1, Bii=1-q, Bp=1.

If ayp > 0 (or ayy < 0), that is, if g < go (or ¢ > qo), B a saddle-node with a stable parabolic sector
on the right (or left). If ayyp = 0, which implies that k < 1, we get that g = ‘”‘%k“. Next, substituting

q= ‘”‘%k“ into the coefficients of the X> term of system (2.3), we have
azy = s[dk + (1 +c)(1 + k)] > 0.

Explicitly, from Theorem 7.1 in [26] we know that the degenerate equilibrium B is a stable node if

q = qo-
In summary, when r —d = g < 1, A and B are as shown in Figure 1(a). When 1 <r —-d = g < g,
A and B are as shown in Figure 1(b). When r —d = g > gy, A and B are as shown in Figure 1(c).
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Figure 1. Phase portrait around the origin of system (2.1). (a)r—d <qorr—d =g < 1. (b)
l<r-d=q<qy()r-d=qgq>qyorgq<r—d<qg+s.(d)r—-d>qg+s.

J. Y, ¥ a
0 0 OM 0 R ,
X X [ > % ” x
(a) (b)

(© (@

Figure 2. (a) The origin of system (1.4) is an attractor whenr —d < gorr—d =g < 1. (b)
The origin of system (1.4) is an attractor when 1 < r —d = g < ¢o. (c) The origin of system
(1.4)isarepellerwhenr —d =q > qoorq <r—d < g+ s. (d) The origin of system (1.4) is
arepeller whenr —d > g + s.

After a blow-down, the origin in system (1.4) is an attractor when r —d < g, r—d = q < 1 (see
Figure 2(a)) or 1 < r —d = q < qo (see Figure 2(b)). The origin is a repeller when r —d = g > gy or
q <r—d < q+ s (see Figure 2(c)).

(i1)) When r —d = g + s, system (2.1) has only one equilibrium, A(0, 0) at u = 0, whose Jacobian

matrix is
s 0
JA = .
00

Expanding system (2.1) in a Taylor series and taking a time variable dr = sdz, we have
-1
i = u+ L= + olu, vP),
S

uv — v + o(ju, vP).

V=

The coefficient of v? is —1 < 0; from Theorem 7.1 in [26], we know that the equilibrium A is a saddle-
node (see Figure 1(d)). After a blow-down, we see that the origin is a repeller for system (1.4) (see
Figure 2(d)).

(iii) System (2.1) has a unique equilibrium A(0, 0) when r —d > g + s. The Jacobian matrix at the

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.
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equilibrium A is
r—d-gq 0
J A=
0 d—r+q+s
Obviously, the two eigenvalues are r —d —g > 0 and d — r + g + s < 0. It shows that the equilibrium A
is a saddle (see Figure 1(d)). Similarly, the origin is a repeller for system (1.4) (see Figure 2(d)). The
proof is completed.

3. Existence of equilibria

In this section, we will discuss the existence of the boundary equilibria and the positive equilibria
of system (1.4).

First, we analyze the existence of boundary equilibria. When y = 0, the first equation of system
(1.4) can be simplified into
gx*
1+x

¥ = xX*(r—-d-x) -

We have
f)=x"-(r—-d-Dx-(r—d-gq),

and the discriminant of f(x) is as follows:

A =4(q" - q),
where
. (r— d+1)?
= 1 )

The two roots of f(x) = 0 can be expressed as

r—d—1- A, r—d—1+ VA,
, X2 = .
2 2

X1 =

If r—d > g, f(x) = 0 has only one positive root x,. If r —d = ¢, f(x) = 0 has only one positive root
qg-1lifg>1.

Assume that r —d < g. When r —d < 1, obviously, f(x) = 0 has no positive roots. When r —d > 1,
obviously, g* > r —d. If g > g*, then f(x) = 0 has no positive roots. If g = ¢, then f(x) = 0 has only
one positive root %. If g < g%, then f(x) = 0 has two positive roots x; and x,.

To summarize, we have the following lemma.

Lemma 3.1. The following claims regarding the existence of the boundary equilibria of system (1.4)
are true.

1) If r —d > g, system (1.4) has a unique boundary equilibrium E,(x;,0).
2) If 1 <r—d = gq, system (1.4) has a unique boundary equilibrium E;(qg — 1,0).
3) If 1 <r—d < q, we have the following three cases:

(a) if 1 <r—d < q" <gq, system (1.4) has no boundary equilibrium;

(b) ifl <r—-d<q=q", system (1.4) has a unique boundary equilibrium E("‘ZH , O);

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.
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Figure 3. (a) F(x) = 0 has a unique positive root x4, when r —d > ¢q. (b) F(x) = O has a
unique positive root x4 when gy < r —d = g. (¢) When gy < r —d < g and F(x,) > 0,
F(x) = 0 has no positive root. (d) When ¢p < r—d < g and F(x,) = 0, F(x) = 0 has a unique
positive root x,. (¢) When gy < r —d < g and F(x,) < 0, F(x) = 0 has two different positive
roots x3 and x4.

(c) ifl <r—d<gq<gq’, system (1.4) has two boundary equilibria E\(x,0), E>(x;,0).

Next, we will discuss the positive equilibria E(x,y) of system (1.4). Letting x =y = 0 in system
(1.4), we have

r q

—d—-x—-cy- =0,

1+ ky YT T
x—y=0.

We denote

Fx)=kic+ DX +((k+ D(c+ D) +d)x> +(go— (r—d)x—(r—d — q)

and
F'(x) = 3k(c+ Dx* + 2((k + D(c + 1) + dk)x + qo— (r—4a),

where the discriminant of F’(x) is
Ay = 4((k + 1)(c + 1) + dk)* — 12k(c + 1)(go — (r — d)).

Define
L “2((k + D(c + 1)+ dk) + VA,

: 6k(1 + ¢) ’

Vi = X

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.



18600

From F(x) = 0, we have

q__(1+x)[k(c+1)x2+(dk+c+1)x+d—r] (3.1)

- kx+1 '

The Jacobian matrix of system (1.4) at E(x,y) is

lg—(x+1)?]  2[rk+c(1 + kx)?]

Jg = (1 + x)? (1 + kx)? ,
SX —5X
and
Det] = X[rk + (1 + kx)?]  x*[qg— (x+ 1)?]
e = (1 + kx)? d+x2 |7
g - (x+1)°]
Trlg = e — SX.

Substituting (3.1) into DetJg and F’(x), we have

_(x+ 91 +x)7

DetlJy = F'(x). (3.2)

When r—d > g, it is easy to get that the equation F(x) = 0 has a unique positive root x, (see Figure
3(a)).

When gy < r —d = g, A, > 0. We obtain that F(x) = 0 has only one positive root x, (see Figure
3(b)). When gy > r — d = g, we find that F(x) = 0 has no positive roots.

When r — d < g, obviously, F(x) = 0 has no positive roots if gy > r —d. If g9 < r — d, we obtain
that F(x) = 0 has no positive roots when F(x,) > 0 (see Figure 3(c)). When F(x,) = 0, F(x) = 0 has
only one positive root x, (see Figure 3(d)). When F(x.) < 0, F(x) = 0 has two positive roots x; and x4
(see Figure 3(e)).

To summarize, we have the following lemma.

Lemma 3.2. The following claims regarding the existence of the boundary equilibria of system (1.4)
are true.
1) If r—d > g, system (1.4) has a unique positive equilibrium E4(x4, ys4).
2) If g0 < r—d = q, system (1.4) has a unique positive equilibrium E4(x4, y4).
3) If go < r —d < g, we obtain the following results:
(a) if F(x,) > 0, system (1.4) has no positive equilibrium;
(b) if F(x.) =0, system (1.4) has a unique positive equilibrium E.(X.,y.);
(c) if F(x.) <0, system (1.4) has two positive equilibria E;(x3,y3) and E4(x4, y4).

4. Stability of equilibria
In this section, we will discuss the stability of the equilibria.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.
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4.1. Stability of the boundary equilibria E| and E,

Theorem 4.1. 1) If r — d > g, the unique boundary equilibrium E, is a saddle.
2) If 1 <r—d = q, the unique boundary equilibrium E, is a saddle.

3) If1 <r—d < q=q", the unique boundary equilibrium E is a saddle-node.
4) If1 <r—d<gq<q", Eyisunstable and E, is a saddle.

Proof. 1) The Jacobian matrix of system (1.4) at E; is

— A]X%
—(rk + ©)x3
Jg, = 1+ x (rk+)x;
0 SX

Obviously, the equilibrium E; is a saddle.
2) The Jacobian matrix of system (1.4) at E»(g — 1,0) is

—1)3
_a=D g - 1)
JErg-10) = q ,

0 s(g—1)

which implies that E, is a saddle. _
3) The Jacobian matrix of system (1.4) at E is

_(rk+ o)r—d-1)7

0 4
JE= 0 s(r—d-1) ’
2

which means that E is a degenerate equilibrium. First, we transform E to the origin by letting X =
-d-1
X — rT, Y =y. Then, system (1.4) can be rewritten as

X =ap Y + axoX? + an XY + anY? + o(X, Y%, @
Y = boY + by XY + b Y2 + o(|X, YP), '
where
(r—d—-1)>%kr+c) (r—d-1)>
= — - Y =—(r—-d-1
ao 1 , A rtd=1) an (r—d - 1)(kr + 0),
(r—d-1)>°rk? s(r—d-1)
apy = 4 , bor = #, biy =5, by = —s.

Next, applying the following transformation:

X=u+v, Y 28 dr=""9714
=u+v, Y=- v, dr = ,
kr+c)(r—-d-1) 2

system (4.1) becomes
{ it = coou® + cruv + copv? + o(Ju, vP?),

V=v+dyuv+ dpv? + o(lu, vP),

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.
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where
_r=d-1 _2[(r—d—1)2—s(r—d+1)]
DT —d+1) N T T G Zd+D)r—d=1Ds
k2l"5 + (—Sdkz — 2k2S+ 2ck — 3](2)7’4 + h1r3 +h2}”2 +h3r+h4

o = (r—d+ Dkr +c2(r—d - 1)’s ’
2 2[ = kr? + (dk — c + k)r + cd + ¢ — 2s]
dy=—-——F—, dp=- 3 ;
r—d-—1 (r—d-1)Y2kr+c)

hy = 3d*k? + 4d k*s — 2k*s> — 6¢dk — 4cks + 6d k> + ¢ — 6¢ck + 3k2,

hy = (=d® = 2sd? + 4s*d — 3d> = 3d + 2s — k> + (6¢c d* + 8cds + 12cd + 452
+60)k — 3c%d — 2¢%s — 3¢?,

hy = Bd* + 4sd + 6d + 3)c? + (=2d°k — 4s d*k — 6d%k — 6dk + 4sk + 45> — 2k)c
—2d%k*s? — 4dk s + 2k*s% + 4k 52,

hy = (=d® = 2sd?> = 3d?> = 3d + 25 — 1)c® + (—4d s* + 45%)c.

Since ¢y < 0, we get that E is a saddle-node from Theorem 7.1 in [26].
4) The Jacobian matrices of system (1.4) at £ (x,0) and E; (x,, 0), respectively, are

2
—x5(rk + ¢
Je, = 1+ x% i )

0 SX1

and W
X2 Al 5

- —x5(rk + ¢
Je, = 1+ Ak + o)

0 SXo

This proves that E is unstable and E; is a saddle point. The proof is completed.

4.2. Stability of the interior equilibrium when r —d > q

If E5 exists, from F’(x3) < 0 and (3.2), we obtain that DetJg, < 0. That is, E5 is a saddle if it exists.
Hence, in the following discussion, we only study the stability of Ej,.
Define
o Xalg = (14 x)°]
T (I + )
Theorem 4.2. Whenr —d > qorr—d = q > qo, system (1.4) has a positive equilibrium E,. In
addition, the following statements are true.

1) If s* <00r0 < s* <s, Eqis locally asymptotically stable.
2) If s < s*, E4 is an unstable node or focus.
3) If s = s* >0, E4 is a center or weak focus.

Proof. The Jacobian matrix at the equilibrium E4(x4, y4) is

Alg— A +x)?  3rk+ (1 + kxy)?]
Je, = (1 + x4)? (1 + kxs)?
SX4 —$X4

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.
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Notice that F’(x4) > 0; so, from (3.2), we know that DetJg, > 0.
Obviously,
Trdg, = x4(s* — 5).

Hence, it is easy to see that Ey is locally asymptotically stable if s* < 0 or 0 < s* < s, an unstable node
or focus if s < s* and a center or weak focus if s = s* > 0. The proof is completed.

Define { 5 1
a1 = —§s2 +Is+ 14 Vs(s +8)3.
Theorem 4.3. If E,4 is locally asymptotically stable and 0 < q < q, then E4 is globally asymptotically
stable.

Proof. Noting thatr —d > gorr—d = g > qo, and according to Lemmas 3.1 and 3.2, system (1.4)
has a boundary equilibrium E, and positive equilibrium E,. By Lemma 2.1 and Theorem 4.1, both the
origin and E, are unstable. We assume that E, is locally asymptotically stable. Now, we want to show
that there is no limit cycle around E,. Hence, taking the Dulac function ®(x, y) = x;?, we have

AOF) HPG) _ P+ (s+2DX+2s+1-g)x+s
ox dy x(1L + 02y ’

whereF:xz(r’ky—d—x—cy)—lq—iandG:sy(x—y).
Define
H:x3+(s+2)x2+(2s+1—q)x+s.

Obviously, H > 0 for g < 1 + 2s. In what follows, we only consider that g > 1 + 2s. By calculation,

the discriminant of H is
A= ql4q* + (s* =205 — 8)g — 4(s — 1)*]
T 108 '

By calculation, we obtain that ¢; > 1 + 2s and

A, _ s(1+25)(2s* + 115+ 32) 0
g=1+2s 108

Thus, we have that A; > 0 for 1 + 25 < ¢ < g, which means that H = 0 has no positive roots. Then,
H > 0.
To sum up, H > 0 when 0 < g < g;. Then, we have

O(DOF) 0(DG)
o + PN <0,

which implies that E, is globally asymptotically stable. The proof is completed.

Remark 4.1. If g < min{1,r — d}, from Theorem 4.2, E, is locally asymptotically stable. Therefore, by
Theorem 4.3, E4 is globally asymptotically stable. That is, when the intrinsic growth rate of the prey
is high and the catchability coefficient for prey is low, the prey and predator will reach a steady state.
Hence, a small catchability coefficient for prey will not lead to the extinction of prey and predator.
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Remark 4.2. Assume that r —d = q < qo. From Lemma 2.1, the origin is a attractor. By Lemma 3.1
and Theorem 4.1, E, is unstable if it exists. From Lemma 3.2, system (1.4) has no positive equilibrium.
Note that system (1.4) has no limit cycle. Therefore, the origin is globally asymptotically stable. That
is, when the intrinsic growth rate of the prey and the catchability coefficient for prey are low, the prey
and predator will become extinct.

4.3. Stability of the interior equilibrium when r —d < q
Lemma 4.1 ( [27]). The system

E

x =y,
{ y = Dx*+(E +2A)xy + o(|x,y)

y + Ax? + Bxy + Cy* + o(|x, y|),
Dx* + Exy + Fy* + o(|x, %),

is equivalent to the system

in some small neighborhood of (0, 0) after changes to the coordinates.

Lemma 4.2 ( [27]). The system given by

x=y,
y= zz + azx + asx* + y(ay x* + a3 x°) + y*(anx + anx?) + o(|x, yI*),
is equivalent to the system given by
X =,
y = x>+ Gx3y + o(|x, y*)
by some nonsingular transformations in the neighborhood of (0,0), where G = az, — azoay;.

By computation, from F(x,) = F’(x.) = 0, we can express k and r in terms of x,, ¢, d, s and ¢, as

follows:
qg—(1+ x)*(1 +¢)

k= Qe+ +@c+d+4)x2+Rc+2d+2x, +d+q’
B [(c+ D2+ (c+d+ Dx, +d+q]
"= Qc+2D)x3+@c+d+4)x2+Q2c+2d+2x, +d+q’
where g > (1 + x,)%(1 + ¢) because k and r are positive.
Notice that

(4.2)

xf[(Z(x* + e+ 1) +d)g— (x. + 1)%(c + 1)2]
(x. + 1)2Qex, +d +2x,) +q
x[(Bx, +4)(c + 1)+ 2d)g + (x, — 2)(x, + 1)?*(c + 1)?]

—d)—an = ;
(r—d)—qo (x, + 1D2Qcx, +d +2x,) + ¢

g—(r—d)=

)

clearly,g — (r —d) > 0 and (r — d) — go > O when ¢ > (1 + x,)>(1 + ¢). Thus, gy < r—d < q.
By computation, we have
(-x* + S)(l + X*)2 _ (1 + x*)Z(Cx* - S)

X, B X, '

(1+x)°(+¢)—

From the above discussions, we can obtain the following theorem.
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Theorem 4.4. Assume that (4.2) and q > (1 + x,)>(1 + ¢) hold; system (1.4) has a unique positive
equilibrium E.(x.,y.).

(x + $)(1 + x,)°

1) If s < cx,and g > (1 + x.)*(1 + ¢), or if s > cx, and q > , then E. is a saddle-node
X
with an unstable parabolic sector.
.+ )1 + x,)?
2)Ifs > cx,and (1 + x,)’(1 +¢) < g < (x. + )1 + x.) , then E, is a saddle-node with a stable

X
parabolic sector.

Proof. Obviously, we have that DetJg, = 0 by (3.2). Then, the type of E. depends on the sign of
TrJg,, as follows:

x? (x, + )(1 + x,)?
Trig = u - = 1.
TE. (1+x,)? g X )

First, moving E.(x.,y.) to the origin by the transformation (x,y) = (X + x,, Y + y.), it follows that
system (1.4) becomes

X = &10X + fl()lY + &20X2 + &11XY + flozyz + 0(|X, le),
A N N . R 4.3)
Y = b1oX + b Y + byoX? + b1 XY + b Y? + o(|X, Y)?),
where
o xlg-0+x)] . xg-A+x)?] . 2x]g-(01+x)7]
o= e T A+xye = M= (1 +x.)?
. xfg@+x)-20+x))] 21+ +x) - g’
ary = , dyp = ,
20 (1+x) 2710 + x)(ex, +d+x) + ] + x,.)3
bio = sx,, boy = —sx,, by =0, by =s, by =—s.
The eigenvalues of the Jacobian matrix at point E, are 4y = 0 and A, = a0 + bo;. If
.+ (1 + x.)?
p G F L) e 0.
X

Next, taking the transformation
X\ (a0 G\ (u
Y B —&10 BlO 1% ’
and, by introducing the new time variable
dr = TrJg dt,

system (4.3) is rewritten as

+dy b + dod? + o, DP),

i = Eyoli® + &1109 + Epd* + oL, D),
15‘ =P+ dyl
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where

AD A A A A A AD
s(ag, Gz0X. — Qo1a10Q11% + Aoz A7 X)

C20 - A N B
(ao15x, + at)TrJp,
3.2 A ) A A A 2.2 . A2 A A3 A
. S[(=8°X; + o $°X)ao1 + Qoplino S7X; + A5y011 X, + a7 l0)
ci = ~ ~ >
(Go1 $x, + a%O)TrJE*
N ~D ~ 2 N N )
. 5x:[(ano — $)ay, + (@115X. + 5°X,)a10 + Ao 57X
= (o1 5%, + 2)TT] ’
0194« 10 E.
A AD A A A A AT A2

g aro(ag, oo — do1G10a11 + Aon ay)

20 = 2 2 ,

(a1 5% + a3 )TrJg,
) A A A 2 AD A AD A A AD A3 A

3 Aoy 5™ X + (Q10a11 X, + 2010 87X, + 207)G20 — a7y8)ao1 — 200 A SX. — Ayya11

11 = 2 - ,

(Go1 5x2 + a%)TrJg
3.2 2.2 2 Py ) 3

dA —do1 $" X, + dppdip S°X, + dp1dip ST Xy + alnd115Xy + ajp20

02 = .

((:\ZOISX* + (AI%O)TFJE*
By a simple calculation, we get

B sxtlg — (1 +x)*|M
U+ Trip [+ O)x2+(c+d+ Dx, +d +q]

€20

where
M = —[(Bx, + 2)(1 + ¢) + d]g + (1 + )*(1 + x,)°.

Note that ¢ > (1 + x,)*(1 + ¢); then, g > (1 + x,)*. By computation, we can obtain

M =—(2x, + Dc+ D+ + x)*(1 +¢),

g=(1+x.)%(1+c)

which implies that M < 0 for ¢ > (1 + x,)*(1 + ¢). Therefore, the sign of &, is determined by TrJg, .
Considering the time transformation, and by using Theorem 7.1 in [26], if s > cx, and (1 +x,)*(1 +c¢) <

2 . . . . .
q < %, that is, if TrJg, < 0, then E, is a saddle-node with a stable parabolic sector (see Figure

4(a)). If s < cx, and g > (1 + x,)*>(1 + ¢), orif s > cx, and g > (x“))gﬂ, that is, if TrJg_ > 0, then E,
is a saddle-node with an unstable parabolic sector (see Figure 4(b)). The proof is completed.

From F(x,) = F'(x.) = TrJg, = 0, we can express k, r and ¢ in terms of x,, ¢, d and s, as follows:
I = 5 — CX,
Qc+2)x2+d+ Dx, + s
e+ + @+ s+ Dx.+ 5] »
T Qe+ )R+ d+ Dx + 5] “44)
(e + (1 + x)?
= -

b

where s > cx,.

Theorem 4.5. Assume that (4.4) and s > cx, hold.
1) If one of the following conditions holds: (1.1) x. > 1; (1.2)0 < x, <

E. is a cusp of codimension two.

2x2 . . .
~~ hold, E, is a cusp of codimension three.

c . <

X ) (1.3) c+2<x*<l, S #
2x%
I-x,’

2)If 5 <x.<lands=

1-
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(@ (b)

(© (d)

Figure 4. Phase portraits of system (1.4). Let s =2, c = 1 and d = 2. (a) E. is a saddle-node

with an attracting parabolic sector when k = 11—7, g=10and r = %. (b) E. is a saddle-node

with a repelling parabolic sector when k = %, g =15and r = 53%. (c) E. is a cusp of

codimension two when k = é, g=12and r = %. (d) E. is a cusp of codimension three
169

whens=1,c=1,d=1,k=1 g=Zandr="12,

Proof. 1)LetX = x—x,and Y =y — y,; then, system (1.4) can be rewritten as follows:

SX, — X2 + 25 x.(cx, — §)°

X = sx. X — sx,Y + —————X* - 25XV + Y +o(X, Y,
Shd TSy PR XY et @rs+ D as) TouxTD
Y = sx.X — sx.Y + sXY — sY? + o(X, Y]P).
4.5)
1
Applying the transformation (u,v) = (———X, =X + Y), system (4.5) becomes
§X
. 2 2 2
U=v+eyu +euv+epv +o(u,vl),
X 5 ) (4.6)
v = fou" + friuv + foov- + o(lu, v|%),
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where
B sx3T, B 2[c?x — s(Bc + 2)x% — s(d + 1)x, — 5] _ (ex - s)?
€ = T,(1 +x*)’ €1 = T > €02 = T >
s2x4T, sx.[2¢2x2 = s(5¢ + 2)x2 + s(s — 1 — d)x, — 5°]

o=, fu = ,

Tr(1 + x,) T,

X+ 5Q2-0o)x? + s(d+2s+ Dx, + 52
Joo=-— T ,

2

Ty = —=Bcx, +2c +d + 3x. +2)s + *x2 + *x. — cx? —dx, — 2x* — x.,
T =(c+2)x>+(d+s+1x, +s.

By Lemma 4.1, system (4.6) is equivalent to the following:

B
y = Dayx? + Dy xy + o(|x, y[*),

where

sx,.(2x2 = s(1 = x,))

Doy = f0, D11 = fi1 +2ex = 1
+ X,

Substituting s = cx, into T, we get

T, =—-x(c+1DQcx,+c+d+2x,+1)<0.

S=CXx

So, T; < 0 for s > cx,, that is, Dy # 0.
Obviously, if x, > 1, we have that Dy; > 0, that is, E. is a cusp of codimension two by the result

in [28] (see Figure 4(c)). When x, < 1, from D;; = 0, we have that s = % Noting that s > cx., we
have

s=cx.| L2 =x.((c+2)x.—0).
=10
. 2x2 . . .
Therefore, if 0 < x, < -5 or -5 < x, <1, 5 # = holds and E, is a cusp of codimension two.

) If i <x.<lands = % hold, that is, Dy; = 0; we will show that E, is a cusp of codimension

three. When -5 < x, <1, s = % and (4.4) reduces to the following:

_ X, — C +2Xx,
 2c+ D2+ (2c+d-3)x, —d-1’
(x> +(=c+d-3)x,—d-1)
r= ) “4.7)
[2(c+ D2+ (-2c+d-3)x. —d—-1](x. - 1)
_(I+x)
Co1l-x

Note that j < x, < 1; then, k, r, g in (4.7) are positive.
Then, system (4.5) becomes

X1 = g10X1 + 8011 + 820X} + &11X1Y1 + 802V} + &30X) + L1 X(Y1 + &iaX1)]
+803Y; + a0X] + g2X7VT + u3X1y; + goay| + o(x1, yilY), (4.8)

¥i = hiox1 + horyt + hiixiyr + hooyt + o(lxy, yil*),
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where
o 2x o 2x] . 3x _4x] . 2x
810 = 1 g01—x*_1, 820 = -1 gll—x*_la gzl—x*_l,
3 (cx, — ¢+ 2x,)*x? 3 x?
2 et (cerd—3m-d-De. -1 7 D+ x)
B 2(cx, — ¢ + 2x.)%x, 3 1
2= 2t (cerd-3m—d-D -1 7 D+ 0
_ (cx, — ¢+ 2x,)°x? 2x3
B3 = et (cerd -3 —d-1P(r. 1) T LT
B (cx, — ¢ + 2x,)? b = 2x3
82 o+ (c+d—3)m—d-Dx—1) T L T
B 2(cx, — ¢+ 2x.)%x, P 2x?
3= et (cerd—3)m—d-1DP. 1) M7 N T
(cx, — ¢+ 2x,)*x2 2x?
804

= h — .
(X2 +(—c+d-3)x.—d—1)3(x, - 1) 2 x.—1

Let x, = y; and y, = y;; then, system (4.8) becomes

X2 = y2,

S D e 2 s 3 s D0 a0 a3 s 4 . 3 49

Y2 = 120X + 12y, + 130X5 + 121 X5Y2 + 112X0Y5 + 103Y, + l4oXy + 131X, (4.9)
N 37, . 4 4

+inXyy5 + 13X2Y5 + loay; + o(|x2, y2l*),

where

_ 2c+4)(c+ Dx, - +d+ x> , 5

I = — , o = 7,

T R+ (—c+d-Dx.—d - D(x.— 1)) % 2x,

. 2x:fQ1

30 = — ,

T e+ (—c+d-3)x —d - 12(1 + x)(x,. — 1)

. x*QZ . 7+ 4)6*

= , Il =—7—5——0,

TRt (—e+d-Dx.—d- DA +x)x. - 17 2T 2221+ x,)

. Xy — 1 . ZXEQ:J,

l3 = ——F—F 7 l=— )
4x4(1 + x,) (cx2+(—c+d-3)x,—d—- 13, — 1)1+ x,)?

, 20, N S T, VG T

i3] = , 113 =

T e+ (~e+d=3)x, —d— 121 +x)2 " 2x5(1 + x,)>

. QS . (x* - 1)2

In = loa =

_2x;°:(cxf +(-c+d-3)x,—d- 1)1 +x,)* _8x2(1 +x.)%
01 = (4c® +20c? + 24c + 8)x* + (—4c® + 3¢d — 8¢* + 16¢d — 24¢ + 12d — 20)x>
+(=4c = 3c*d — 24¢? + 2cd + 2d* — 70c — 50)x? + (4¢* — 3cd + 9¢?
—18cd + d* — 18¢ — 22d — 23)x, + 3c?d + 3¢* — 3d* — 6d - 3,
0> = (2% +9c + 8)x2 + (=2c® + 3¢ +d + 5)x> + (=2¢* — 12¢ + 3d — 13)x, + 2¢* — 4d — 4,
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03 = (7¢* +39¢% + 72¢2 + 56¢ + 16)x! + (=7c* + 9c*d — 263 + 45¢*d — 63¢? + 60cd — 68¢
+24d — 24)x° + (=14c* = 9c%d + 3c*d? — 87¢® — 15¢%d + 15¢d® — 234¢* — 30cd + 12d>
—229¢ — 24d — 68)x> + (14c* — 18c*d — 3cd* + 51¢® — 96¢%d + 3¢ d* + d° + 512
—198cd + 3d* + 87c — 117d + 73)x* + (7c* + 18c*d — 6¢*d? + 59¢* + 27¢*d — 30c¢ d?
+d® + 189¢? — 24cd — 33d* + 342¢ — 21d + 205)x> + (=7c* + 9c¢*d + 6c2d> - 27¢3
+63c%d — 9c d? — 2d° + 9¢? + 150cd — 18d? + 159¢ + 114d + 130)x2 + (=9¢%d + 3c*d?
—9¢3 —18c%d + 21cd? = 3d® — 21¢? + 42¢d + 27d° + 21¢ + 63d + 33)x, — 3c%d?
—6c%d +3d®> = 3c® +9d* +9d + 3,

04 = (2% +10¢? + 16¢ + 8)x> + (c®d + 7c* + ded + 20c + 4d + 12)x* — (4¢® + 12¢% — 4cd
+12¢ — 8d + 8)x> + (=2c*d — 10c? — 32¢ + 4d — 28)x? + (2¢® + 4¢? — 8cd + 2d* — 8¢
—12d = 14)x, + 2d + ¢* - 2d* —4d - 2,

Os = (¢® + 4)x* + (=3¢ — 4d + 20)x> + (=2¢* + 6¢ — 7d + 41)x? + (=3¢ + 10d + 14)x,
+c*+d+1.

Let x3 = x; and y3 = (1 — iprx2)y,; then, system (4.9) becomes

X3 =y,

V3 = JooXs + J3oX3 + jo1X5y3 + J1axsys + josvi + JaoXs + jaxays (4.10)

. 2.2 . 3 . 4 4
+j22x3y3 + J13X3)3 + Joays + 0(1x3, y3l"),
where
. . . . . . . . . .2 .
J20 = 0, J3o0 = 2ionia0 + B30, J21 = o1, J12 = —igy 12,
. . . _ .2 . . . . . . . .
Jo3 =103,  J40 = lprl20 — 2i0oi30i40, J31 = latloz + i31,
. _ .3 . . o . . . o
J22 = —ly, T2, J13 = lozloz T U3, Jo4 = los.
To delete the yg—term, xgyg -term and yé—term in system (4.10), we do the following two transformations:

Jo3 J13 Joa . Ji3 .
X3 = X4 + jxiﬂ + ?xiﬂ + 7)@2;)&2;’ ¥3 = (1 + josxays + jxiﬂ + JoaXay3)ys;
. . 4
X4 =Xs, Ya=Ys5+ 5]03]20365-

Hence, system (4.10) becomes
Xs =Ys,
“4.11)
S 2 3 2 2 4 3 2.2 4
Vs = myoXs + M3pXs + Moy X5ys + MioXsys + MaoXs + M3 X5ys + mopxsys + o(|xs, ys|*),
where
Moo = Joo, M30 = Jzo, Ma1 = jo1, Mi2 = jia, Mao = Jao, M3 = ja1 — 3j20j03, M2 = joo.

20c+4d(c+ Dx, —c*+d+ x>
(cx2+(—c+d-3)x.—d-1)(x. - 1)

Y5
X = —X5, Yo = ———, T = V—myl,
—V—Mmy

Using - < x, < 1, we have that myy = —

< 0. Letting
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system (4.11) becomes (still denoting 7 by ¢)

{ X6 = Y6,
4.12)

L2 3 2 2 4 3 2.2 4
V6 = Xg + n30Xg + o1 Xgys + NipXeYg + NaoXg + 31X, Y6 + NoaXgye + 0(|Xs, yol™),

where

_ m3p _ myy _ _ My _ Mgz _
n3p=—, Ny nyp =myp, N4yp=—", N31 = » Npp = —Mp).

- - s
my \—myg niyo —Myo

By Lemma 4.2, system (4.12) is equivalent to the following system:

X=Y,
Y = X2+ GXY +o(X, YY),

where
2c+d)(c+ Dx, —c* +d + Dx, 50x.)
(cx2+(—c+d-3)x.—d-D(x. - 1)
CAc+ D+ Dx, = +d+ D2(ex + (—c +d - 3)x, —d — 1)2(1 + x,)%x3
and

S(x,) = 291 Pixi;
i=0

here, the coeflicients of P;,i = 0,--- ,9 are given in Appendix A.

Using -5 < x. < I, the sign of G is determined by 6(x.). By computation, we have that 6(-5) =

(6QIC+80c+SONG +ed+5e+ddi D - 0 and 8(1) = 384c + 128 + 384 > 0. Using Lemma 3.1 in [29], the

(c+2)°
number of roots for 6(x.) in 5 < x. < I is equal to that of positive roots for

~ 9 cx.+c+2 C
plx) = (1+x.) 5((c+2)(1 +x.) ) (c+2) Z;

in er—z < x. < 1, and the coeflicients of M;,i = 0,---,9 are given in Appendix A. Obviously, M;,i =

0,---,9 are positive. Hence, u(x,) > 0 in - < Xe < 1 which implies that d(x,) has no positive zeros

in ? < x. < 1. Then, 6(x, +2 < 1, which means that E, is a cusp of

codimension three (see Figure 4(d)). The proof is completed.

Theorem 4.6. Assume that g9 < r —d < g and F(x,) < 0; system (1.4) has two positive equilibria
Es(x3,y3) and E4(x4,y4), where E5 is always a saddle point. Moveover,

+ 8)(1 + x4)?
1) ifq < (s + )1 + %) , E4 is a stable node or focus;
X4
+ 8)(1 + x4)°
2) ifq > (s + 9 + 1) , E4 is an unstable node or focus;
X4
+ 8)(1 + x4)?
3) ifq (x4 9 +x) , E4 is a center or weak focus.
X4
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Proof. It is clear that F'(x3) < 0 and F’(x;) > O (see Figure 3(e)). Combining (3.2) again, we have
that DetJg, < 0 and DetJg, > 0. Thus, Ej is a saddle point.
In what follows, we consider that

xﬁ[q — (x4 + 1)2]

T”'JE4 = (1+x4)2

— SX4.

When TrJg, <0, E4 is a stable node or focus; when TrJg, > 0, E4 is an unstable node or focus; when
TrJg, =0, E4 is a center or weak focus. The proof is completed.

5. Bifurcation

We will analyze the bifurcations of system (1.4) in this section, including saddle-node bifurcation,
Hopf bifurcation and Bogdanov-Takens bifurcation.

5.1. Saddle-node bifurcation

From Lemma 3.1, when 1 <r—d < g < g", system (1.4) has two boundary equilibria E;(x,0) and
E>(x2,0). However, when ¢ = g5y = ¢*, only the boundary equilibrium E exists. Therefore, according
to Sotomayor’s theorem [28], system (1.4) will produce a saddle-node bifurcation at E.

Theorem 5.1. Assume that 1 < r —d < g, with g = qsy being the bifurcation parameter; then, system
(1.4) will undergo saddle-node bifurcation at E.

-d-1

Proof. The eigenvalues of Jzare 4, =0and A, = S(rT) Denote the eigenvectors of Jz and Jg
as

1

(o)

and

1

W=| rk+c)(r—-d-1) |,

2
respectively.
Denote

2
r qx
Fi(x, 2 -d-x—-cy|-
F(x,y):(F]Ejgg):[x (1+ky * cy) 1+x].
e sy(x —y)
Then,
B (r—d-1)»?
Fy(E;qsn) = 20r—-d+1) |,
0
_ (r—d-1)?
D’F(E;qs)V.V)=| ~ r—d+1
0
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It is easy to know that

Tm = __(r—a’—l)2
WIF(E:gsw) = —50— 5 # 0
(r—d—1y

W [D*F(E; gsn)(V, V)] = — £0.

r—d+1
This proves the transversality conditions, which means that system (1.4) will undergo saddle-node
bifurcation at E. The proof is completed.

Similarly, it follows from Lemma 3.2 that a saddle-node bifurcation occurs at the positive equilib-
rium E,.

Theorem 5.2. Assume that qo < r —d < q and F(x,) = 0; system (1.4) will undergo saddle-node
bifurcation at E..

5.2. Hopf bifurcation

nmmMﬁmﬂmMWMﬁm%ﬁq:Eﬂ%ﬂimmTﬂ&:aNm@ﬂmDﬁm>0ﬂm
Jacobian matrix of E4 has a pair of purely imaginary eigenvalues. Thus, system (1.4) may undergo
Hopf bifurcation at E4.

For simplicity, similar to the analyses of Dai et al. [30] and Lu et al. [31], we prove the Hopf
bifurcation. Letting

==, $==, f=xit, F=—, k=kx,
X4 Ya X4
~ d 21 . q .S
d:—’ c=c¢, a=—, q:—z’ §=—,
X4 X4 X4 X4
and by dropping the tilde, system (1.4) becomes
2
; 2 r qx
= —d—x—-cv]- i
SRR T T v (5.1)
y=sy(x—-y),

where r > d and the other parameters are positive.
Clearly, E4(1, 1) is an equilibrium of system (5.1), which implies that

[(c+d+ D@+ 1) +q]k+1)

a+1
Define
o altk+ D(c+ 1) +dk](a+1)
qgo = ,
(1 — ak)
_ @+ 1?[2k+ D(c+ 1)+ dk]
7= (1 — ak) '

Assume that system (5.1) has another positive equilibrium E3(%3, ;). By computation, %; satisfies the
following equation:
(x—1Dd(x) =0,

where

O(x) = k(c+ D@+ Dx?+(a+ D[(c+ D(ak+k+1)+dk]x+ (1 - ak)(o — q).
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Note that X3 < 1 is a unique positive root of ®(x), which implies that ek < 1 and ¢y < ¢. Also,
substituting x = 1 into ®(x), we have

O(1) = (1 = ak)(G1 —¢q) > 0,

that is, ek < 1 and g < §;.
The Jacobian matrix of system (5.1) at E, is

q [(2c—d-Da-2c—d-g—1lk—cla+1)

-1+
Jg, = @+ 1) k+ D@+ 1) ,

s -5

and (1 - 0k)(Gs - ) 7
s(1 - ak)(§1 — g q-7

D = = o=t 7

e = e+ | VET G
where

g=(s+D(a+1)>
We have the following results.
Theorem 5.3. Assuming that ak < 1 and §o < q < ¢, system (5.1) has the equilibrium E4(1,1).
Moveover,
1) E4(1,1) is a stable hyperbolic node or focus ifg<q
2) E4(1,1) is an unstable hyperbolic node or focus if ¢ > §;
3) E4(1,1) is a fine focus or center if g = §.

Now, we will study the Hopf bifurcation around Ej in system (5.1). Obviously, the transversality

condition
dTrJg, 3 1

= 0
dg le¢=q (04+1)2$

holds. Then, we can determine the stability of the limit cycle around Ej4 by calculating the first Lya-
punov number. First, using the transformation (%,y) = (x — 1,y — 1), the Taylor expansion of system
(5.1) at the origin takes the following form:

X = 10X + do§ + G X + anxy + Ay + @xX +an¥F + anky’ +any’ + o(%. 31,
- - - - - (5.2)
¥ = bioX + bo1§ + Do X + by %5 + ooy,
where
. . [(~s—=Da-2c-d-s-2]k—c _ 2sa +s5—1
ajp =S, do = sy o= ————>»
k+1 a+1
_ [(-2s —=2)a —4c —2d —2s — 4]k —2¢ _ (sa+a+c+d+s+2k>
ann = an =
! k+1 T (k+ 1)
. _ozzs—2a—1 . |=s-Da-2c-d-s-2J]k-c
O Tar T K+ 1 ’
B 2sa+a+c+d+s+2)k> (se +a+c+d+s+2)k
a = a - —
2 (k + 1)2 10 (k+1)3 ’

bio=s, byy=-s, byy=0, by=s5, by=-s.
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. S . apX + aop1y .z .z
Next, using the transformation (it, ¥) = (—x, Ty , where D = ayobgy — aoibio = DetJg, > 0,
D
system (5.2) becomes
i = — DV + Bl + E( I + Er T2 + Bl + EotT2D + E1ofit? + Eoad? ~ <13
i =—=NDV + Cyil” + C110V + CopV™ + C3pil” + Co1i°V + Cppitv” + Co3v” + o(|it, V|°), (5.3)
P = \/Bljt + 672()122 + C?]]Ijt\j' + 6702\72 + Cz30b~t3 + C?Q]Ijtzf/ + 6?]217[\72 + Czo3\~/'3 + 0(|17t, \7|3), '

where the coeflicients are given in Appendix B.
According to the results of [26], the first-order Lyapunov number can be written as

Yik* + y2k + 3

l: ’
"T 8[(as+a+2c+d+ s+ 2k +c]|(@+ )2k + DD

where

Y1 = (83 + 257 + s)a* + (4c s* +2d s> + des + 2ds — 257 — 65 — 4)a’
+(4cs + 4eds — 5¢ §7 +d*>s —2d s* — 25> — 16¢s — 8ds — 1552
—16¢ — 8d — 29s — 17)a” + (—=8c?s — 8cds — 6¢ s> — 2d%s — 3d s*

—s% —16¢? — 16¢d — 32¢s — 4d> — 17ds — 95> — 36¢ — 18d — 245 — 18)«
+cs*—4ct —4ded + 2cs — d* + s —4c - 2d + 2,

Y2 = 2c s* = §° + 2cs — s2)a’ + (4c*s + 2cds — 5S¢ s> — d s* — 8cs + 257 — 8¢ + 35)a?
+(=8c?s —4cds —c s> +d s* + 2s® — 16¢? — 8cd — 9cs + 3ds + 10s* — 18¢ + 12s
+2)a+3cs>+ds*+ 5> —4c? —2cd + 10cs + 4ds + 65> + 2¢ + 2d + 10s + 4,

v3 = (25— csH)a? + (=2c%s + ¢ 7 — 4c® + 3cs)a + ¢ 57 — 2 + des + 2c.

Thus, we can obtain the following theorem about the Hopf bifurcation.
Theorem 5.4. If ak < 1, gy < g < § and q = §, then the following statements hold.

1) Ifly > 0O, then system (5.1) undergoes subcritical Hopf bifurcation and an unstable limit cycle comes
out around E,.

2) Ifl; <O, then system (5.1) undergoes supercritical Hopf bifurcation and a stable limit cycle appears
around E,.

3) If I, = 0, then system (5.1) undergoes a degenerate Hopf bifurcation and multiple limit cycles may
appear around E,.

By numerical simulation, we show the existence of limit cycles. Letting k = 0.1, = 1,d = 1,c =
I,s = 1,q = 8 and r = 7.7, we have that [; = 0.001984126984. We perturb g to g = 8 — 0.005;
then, there exists an unstable limit cycle around E; (see Figure 5(a),(b)). On the other hand, letting
k=01,a=1,d=1,c=1,5s =0.7,g = 6.8 and r = 7.04, we obtain that [; = —0.06095323795. We
perturb g to g = 6.8 + 0.03; then, there exists a stable limit cycle around E, (see Figure 5(c),(d)).

Now, we give an example to illustrate the existence of two limit cycles. The parameters are given
as follows:

I I L3V5T 369 9V5T 9

= = = = — = r = = —
e F T ET IR T BT B )

where /; = 0. We perturb k and g to k = % + %‘? +0.03 and g = % + 0.01. Hence, system (5.1)

undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one is stable and the outer
is unstable) around E, (Figure 5(e),(f)).
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Remark 5.1. In Figure 5(a),(b), the origin is a stable node and the boundary equilibria are unstable.
In addition, system (5.1) has two positive equilibria, where E; is a saddle point and Ej is a stable
point, and an unstable limit cycle appears around E4. The orbits of the phase portraits reveal that the
prey and predator tend to coexistent in steady states only when the initial values of system (5.1) lie
inside the unstable limit cycle; otherwise, the prey and predator become extinct.

In Figure 5(c),(d), in addition to the origin being stable, the other two boundary equilibria and
the two positive equilibria are unstable. System (5.1) has a stable limit cycle that appears around Ej.
When the initial values lie to the right of the two stable invariant manifolds of the saddle, the prey and
predator tend to coexist in periodic orbits. In addition, when the initial values lie to the left of the two
stable invariant manifolds of the saddle, the prey and predator tend to go extinct.

Figure 5(e),(f) show that system (5.1) undergoes a degenerate Hopf bifurcation and has two limit
cycles (the inner one is stable and the outer is unstable) around E4. Prey and predator will oscillate
and coexist if the initial values lie inside of the unstable limit cycle, while the prey and predator will
become extinct if the initial values lie outside of the unstable limit cycle.

5.3. Bogdanov-Takens bifurcation

From Theorem 4.5(1), the unique positive equilibrium E, of system (1.4) is a cusp of codimension
two, which means that a Bogdanov-Takens bifurcation of codimension two may occur. Hence, using ¢
and s as the bifurcation parameters, system (1.4) becomes

. ) r d (CI+/11)X2
X = x -d-x—-cy|- ———

1+ ky Y T+x (5.4)
y = (s+Aykx-y),

where A = (4, A;) is a parameter vector in a small neighborhood of the origin.

Theorem 5.5. Assuming that the conditions of Theorem 4.5 (1) hold, system (1.4) undergoes a
Bogdanov-Takens bifurcation of codimension two around E..

Proof. First, by initiating the transformation x; = x — x, and y; = y — y. to move the positive
equilibrium E., to the origin, system (5.4) becomes

{ X1 = goo + guoX1 + o1Vt + 820%7 + griXiy1 + goas + o(lxy, yil?), 55)
Vi = hoo + hiox1 + horyr + haoxt + hyxiyy + hoayt + o(lxy, yil),
where
X2 [sx2 + (25 — A))x, + 5 — 24 |x.
= — . = R = SX,,
800 T+ x 810 1 +x) 8ot
— x4+ (s =2)x2 + (45— Dx% +5sx, + 25 — A 5
= R = =2,
820 1+x) 811
(cx, — 8)%x,
g0 = s hoo =0, hiyp=(s+ A)x,,

[(c+2)x2+(d+ s+ Dx. + 5]
hot = =(s + A)x., hy =0, hjy =5+, hp=-5s-1,.
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Figure 5. (a) An unstable limit cycle appears in system (5.1) with k = 0.1, = 1,d = 1,¢ =
I,s=1,9 =8-0.005,r =7.7. (b) The local amplified phase portrait of (a). (c) A stable limit
cycle appears in system (5.1) withk = 0.1, = 1,d = 1,c = 1,5 = 0.7, = 6.8 + 0.03,r =
7.04. (d) The local amplified phase portrait of (c). (e) Two limit cycles (the inner one is
stable and the outer is unstable) appear in system (5.1) withd = 1,c = 1,s = l,a = %,k =

o+ 357 4 0.03,r = 3 4 25T 4 = 9 4 0.01. (f) The local amplified phase portrait of (e).
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Second, letting
X2 =Y,
Y2 = hiox1 + horyt + haoxt + hiixiyy + hooy?,

system (5.5) can be written as follows:

{ Xy = Y2, (56)

Y2 = Joo + jioXa + Jjorya + Joox; + juixays + jooys + 0(1xa2, y2l),

where
Joo = &oohoo,  Jio = goohi1 + gorhio — gioho1,  Jjor = giohor,
. gothiohit + gnhiy — g10ho2hio — grihorho + 820l
J20 = n >
10
. &uhio — 2g20h01 — hithor + 2hioho; _ 80+ hn
Jir = s Jo2o = /-
ho hio
Taking a new time variable 7 with df = (1 — jpyxp)d7r and x3 = x,y3 = (1 = joox2)y2, system (5.6)
becomes
{ X3 = Y3, (5.7)
V3 = koo + kioxs + korys + kaox3 + kiixsys + kooys + o(lx3, y3l?),
where
koo = joo» k1o = —2joojoz *+ jio» ko1 = jor, ,
. . . . 820 t+
koo = JooJ(z)z = 2jo2j1o + joo» kit = —ji, koo = h—“
10
From the proof of Theorem 4.4, we have
3
sx>T
k20 = o < O,

L=b=0  [(c+2)x2+(d+ s+ Dx, + s](1 +x,)

where T is defined in Theorem 4.4. Letting

3
X4 = X3, V4= Y ,  T= N—kat,
—kao

system (5.7) becomes

{ Xy = s (5.8)

Ya = Moo + MigXa + Morys — X5 + my1xays + 0(|xa, yal®),

where
koo ko kot _ kn
My = —7— myo=—,—, mp; = , my =

kao’ kao —ky V=

Next, letting x5 = x4 — % and ys = yy, system (5.8) is equivalent to the following system:

{ X5 =Ys,
. 2 2
Y5 = noo + Mo1ys — X5 + n1xsys + o(|xs, ys|°),
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where
m%o mympo
Ngp = Mmoo + ——, N1 = Mo1 + » M =myy.
4 2
From the proof of Theorem 4.4, we obtain
(2x% + sx, — )*[(c + 2)x> + (d + s + Dx, + 5]
n11‘ =4[ 3 #0
A1=d,=0 T,(1 + x,)sx;
Finally, letting
2 3 1
nun

we obtain the universal unfolding of system (5.4) as follows:

X6 = Y6»
o 2 2
Y6 = H1 + Haye + Xg + XY + 0(|Xg, V6|7,
where
4
M1 = —Hooly, Mo = —Noihq.

Using Maple software, we have
[(c+2)x%+(d+ s+ Dx, + 5] (222 + sx, — 5)°

_ +0.
A1=12=0 s3a8(1 + x,)?T

O, (12)
0(41, A2)

By the results in [28], system (1.4) undergoes a Bogdanov-Takens bifurcation of codimension two.
The proof is completed.

The local expression of the bifurcation curves are given in [28] as follows:

(i) The saddle-node bifurcation curve
SN = {(41, A2) : w1 (A1, A2) = 0, uz(Ay, A2) # O}
(i1) The Hopf bifurcation curve

H = {(41, ) : (A, ) < 0,11, ) = V=1 (1, )

(i11) The homoclinic curve

5
HL = {(/11,/12) D (A1, A2) <0, 1o (A, Ap) = 7 V—,Ul(/ll,/lz)}

In what follows, we present the phase diagrams of system (5.4), as obtained by some numerical simu-
lations. Choosing ¢ =2,d = 1,s = 4,9 =20,k = % and r = %, and from Theorem 4.5(1), E.(1,1)is a
cusp of codimension two. Figure 6 shows that system (1.4) undergoes a Bogdanov-Takens bifurcation
of codimension two.
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Figure 6. Phase portraits of system (5.4). (a) A cusp of codimension two when (1;, 4) =
(0,0). (b) No positive equilibria when (4;, 4;) = (0.011, -0.08). (c¢) An unstable focus when
(11, 42) = (=0.001,-0.08). (d) An unstable limit cycle when (1;,4;) = (-0.028, —-0.08).
(e) An unstable homoclinic loop when (1, 4;) = (—0.033,-0.08). (f) A stable focus when
(41, 42) = (-0.06, -0.08).

6. Conclusions

In this paper, we consider a Leslie-Gower predator-prey model with the fear effect and nonlinear
harvesting. Fear of predator and nonlinear harvesting are the main factors affecting the dynamic behav-
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ior of system (1.4). Via numerical simulations, we show the influences of the fear effect and nonlinear
harvesting on the dynamic behavior of system (1.4).

First, let ¢ = 0.1,d = 0.1,s = 0.04,g = 2 and r = 2. When k = 0.06, system (1.4) has no
positive equilibrium (see Figure 7(a)). In a biological sense, the prey and predator will become extinct
when the fear effect is large. When k = 0.053, system (1.4) has two positive equilibria, where E3 is a
saddle and E; is an unstable node (see Figure 7(b)). Hence, in this case, the prey and predator are still
extinct. When k£ = 0.05, E4 becomes a stable node, and an unstable limit cycle appears around E, (see
Figure 7(c)). Then, for system (1.4), a bistable phenomenon occurs, in which the prey and predator
tend to steady states (or extinction), depending on the initial values lying inside (or outside) of the
unstable limit cycle. When k = 0.03, E, is still a stable node and an unstable limit cycle disappears
(see Figure 7(d)). Then, the prey and predator will survive or become extinct depending on the two
stable manifolds of the saddle that act as a separatrix curve. When k = 0, that is, without the fear effect,
the dynamic behavior of system (1.4) is similar to that shown in Figure 7(d) (see Figure 7(e)). Figure
7 shows that the prey and predator may survive or become extinct when the fear effect is small. With
the increase of the fear effect, the survival area of species decreases, until finally, the prey and predator
will become extinct if the fear effect is strong enough. Hence, a strong fear effect is not conducive to
the survival of the species.

Second, we consider the impact of nonlinear harvesting on system (1.4). Let ¢ = 0.1,d = 0.1, s =
0.1,k = 0.1 and r = 3. When g = 3.5, system (1.4) has no positive equilibrium and the origin is globally
asymptotically stable (see Figure 8(a)). When g = 3.3, system (1.4) has two positive equilibria, where
E5 is a saddle and E, is an unstable node (see Figure 8(b)). In this case, the prey and predator are still
extinct. When g = 3.287, system (1.4) has an unstable limit cycle and there is a bistable phenomenon
(see Figure 8(c)). That is, an unstable limit cycle acts as a separatrix curve, where the prey and predator
will become extinct or survive. When g = 3.283, there exists an unstable homoclinic loop in system
(1.4) (see Figure 8(d)). When g = 3.26, the unstable limit cycle and homoclinic loop disappear. Hence,
the prey and predator will tend to steady states (or extinction) if the initial values lies to the right (or
left) of the two stable manifolds of the saddle (see Figure 8(e)). When ¢ = 0, that is, without nonlinear
harvesting, system (1.4) has only one positive equilibrium, which is globally asymptotically stable
(see Figure 8(f)). This shows that overfishing can lead to the extinction of the predator and prey, so,
maintaining proper harvesting can help the survival of the prey and predator.

By conducting numerical simulations, we were able to clearly observe that, when k£ < 0.05 and
g < 3.281, the prey and predator tend to coexist around the stable positive equilibrium E,. In other
words, by effectively controlling the harvesting, we can ensure that the prey’s fear of being caught
remains within a smaller range, which benefits the survival of both populations. That is, weaker fear
effects and less capture are beneficial to the survival of both predator and prey. We have conducted
a theoretical analysis of system (1.4) and obtained some conclusions. However, when it comes to
solving practical problems, there are many external factors. The actual application of the model may
be difficult to achieve in the short term.

When r — d > ¢, the origin is a repeller, the only boundary equilibrium is a saddle point and
the unique positive equilibrium may be stable or unstable. From Remark 4.1, the unique positive
equilibrium is globally asymptotically stable if ¢ < 1. Then, the prey and predator will tend to a
positive coexistent steady state if the birth rate of the prey is high and the catchability coefficient is
small. When r —d = g < qo, from Remark 4.2, the origin is globally asymptotically stable, which
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Figure 7. Phase portraits of system (1.4) withc =0.1,d =0.1,5s =0.04,g = 2,r = 2.

implies that the prey and predator will become extinct. Whenr —d = g > gqp orr —d < g, system (1.4)
may have zero, one or two positive equilibria, and these equilibria may be stable or unstable. We show
that the unique equilibrium E, is a saddle-node or a cusp of codimension two (or three). Moveover,
system (1.4) undergoes saddle-node bifurcation and Bogdanov-Takens bifurcation around E.. Also,
system (1.4) undergoes a degenerate Hopf bifurcation and multiple limit cycles may appear around Ej.
In Figure 5, we show that system (1.4) has two limit cycles (the inner one is stable and the outer is
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(a) g=3.5

(c) g =3.287

(e) ¢ =326

(b) g=33

(d) g =3.283

() g=0

Figure 8. Phase portraits of system (1.4) withc =0.1,d =0.1,5s = 0.1,k = 0.1,r = 3.

unstable) around £, which implies the bistable phenomenon. That is a large amount of fear and prey
harvesting are detrimental to the survival of the prey and predator. Additionally, the prey and predator
will reach a steady state if the intrinsic growth rate of the prey is high and the catchability coeflicient
for the prey is low. However, the prey and predator will become extinct if the intrinsic growth rate for
the prey and the catchability coefficient for the prey are small.

In [9], the authors studied the stability of the equilibria and demonstrated that there exists a limit
cycle in system (1.1). Considering the Holling type II functional response, [10] showed that a unique
equilibrium is a cusp of codimension two and a limit cycle appears. Unlike [9, 10], we show that a
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unique equilibrium is a cusp of codimension three and confirm the occurrence of Bogdanov-Takens
bifurcation. We have found that system (1.4) has two limit cycles (the inner one is stable and the outer
is unstable), which exhibit the bistable phenomenon. Also, we have proven that the origin and equi-
librium are globally asymptotically stable under some conditions. The strong fear effect and nonlinear
harvesting are not conducive to the survival of the species. These indicate that the dynamic behavior
of system (1.4) is more complex than that of the systems in [9, 10].
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Appendix B. Coefficients of system (5.3)
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+ 25 + 4,
ny = (4s° + 105 + 8s + 2)a* + w1@° + wra® + wia + wy,
ns = 2c(s + 1)(2s% + 65 + 3)a’ + wsa? + wea + ¢ 8° + (10¢? + 4ded + 11¢)s* + (12¢% + 12¢%d + 3¢ d°
+36¢% + 18cd + 24c¢)s + 12¢° + 12¢%d + 3¢ d® + 24¢* + 12¢d + 12,
ne = 6¢(s + 1)2” + 3¢ (s + DBs +4dc+2d + 5)a + 33 (s + D(s +2c +d + 2),
ny = (s+ 17 + (s + 1)*(6¢ + 3d — s + 6)a* + (s + 1)(12¢* + 12¢d + 3d* — 2ds — 25 + 24c + 12d
—4s+ 12)a + 8¢ + (12d + 45 + 24)c? + (6d* — 35 + 24d + 24)c + (d + 2)(d + s + 2)(d — 25 + 2),
ng = 3c(s + 1)%a? + 2c(s + 1)(s + 6¢ + 3d + 6)a + 12¢% + (12d + 85 +24)c* + (d + s + 2)(3d — s + 6)c,
no = s(s + 1)°a° + (s + D(dcs +2ds + 25* + Ts + 1)a? + (s° + (9c + 4d + 12)s” + (4¢? + 4ed + d°
+20c+10d + 18)s +4c +2d + Da+ 5¢ +2d +5)s* +2Qc +d +3)2c+d + 2)s + Qc + d + 2)°,
nio = s(s + D(=s +20)* + (25> + Bc —d — 3)s* + (4c% + 2¢d + 10¢)s + 2¢)a + (85 + 4)c? + (4ds
+ 52 +2d+ 10s + 4)c — s*(d + s + 2),
nip =3(s+ 1% +2(s + 1)(s + 6¢ + 3d + 6)a + 12¢* + (12d + 65 + 24)c + (d + s + 2)(3d — s + 6),
nip = 2(s + D)(=s + 3¢)a + 126 + (6d + 12)c — 2s(d + s + 2),
nis = (s+ 1@ + (s + 1)*(6¢ + 3d — s + 6)a* + wrar + ws,
nis = 3c(s + 1)*a? + 2¢(s + 1)(s + 6¢ + 3d + 6)a + 12¢° + (12d + 85 + 24)c* + (d + s + 2)(3d — s + 6)c,
wi = (6¢ + 2d + 15)s” + (30c¢ + 14d + 48)s* + (36¢ + 18d + 46)s + 12¢ + 6d + 13,
wy = (13¢ + 4d + 19)s + (20¢? + 18¢d + 4d” + 90c + 41d + 79)s” + (48¢? + 48¢d + 12d° + 138¢
+69d + 93)s + 3(4c + 2d + 5)(2c + d + 2),
ws = (8¢ + 2d + 9)s® + (28¢? + 24cd + 5d* + T8¢ + 34d + 51)s* + (16¢° + 24c*d + 12¢ d* + 2d°
+96¢% + 96¢d + 24d* + 156¢ + 78d + 76)s + (4c + 2d + T)(2c + d + 2),
ws = (c+ 1)s* + (8¢ + 6¢cd + d* + 18¢ + 7d + 10)s” + (8¢> + 12¢%d + 6¢ d” + d° + 36¢* + 36¢d
+9d* +48¢ +24d + 20)s + 2c + d + 2)°,
ws = 9¢ s° + (22¢* + 10cd + 49¢)s* + (48¢* + 24cd + 69¢)s + 3¢(8c + 4d + 9),
we = 6¢ 5° + (32¢% + l4ed + 44¢)s® + (24¢% + 24¢%d + 6¢ d* + 96¢2 + 48¢d + T8¢)s
+6c(2c+d+3)2c+d+2),
wy = (s + D(12¢* + 12¢d + 3d* = 2ds — 25* + 24c¢ + 12d — 45 + 12),
wg = (=3¢ =2d —4)s* + (4c* —d* —4d —4)s + 2c +d + 2)°.

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592-18629.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	 Existence of equilibria
	 Stability of equilibria
	 Stability of the boundary equilibria E1 and E2
	 Stability of the interior equilibrium when r-dq
	 Stability of the interior equilibrium when r-d<q

	 Bifurcation
	Saddle-node bifurcation
	Hopf bifurcation
	Bogdanov-Takens bifurcation

	Conclusions

