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Abstract: In this paper, we investigate the stability and bifurcation of a Leslie-Gower predator-prey
model with a fear effect and nonlinear harvesting. We discuss the existence and stability of equilibria,
and show that the unique equilibrium is a cusp of codimension three. Moreover, we show that saddle-
node bifurcation and Bogdanov-Takens bifurcation can occur. Also, the system undergoes a degenerate
Hopf bifurcation and has two limit cycles (i.e., the inner one is stable and the outer is unstable), which
implies the bistable phenomenon. We conclude that the large amount of fear and prey harvesting are
detrimental to the survival of the prey and predator.
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1. Introduction

Fishing is a method used in the industry to acquire fish products from natural or artificial bodies of
water. With the development of fisheries, fishing has become more common. We see that harvesting
for economic gain is a relatively regular occurrence in nature and that it significantly affects both the
ecological balance and system dynamics. It is crucial to develop biological resources at their maxi-
mum sustainable yield while preserving the survival of all interacting populations, both ecologically
and economically. However, if a species is overharvested, it can lead to ecological problems, as some
people may prioritize profit over protecting the environment. Thus, the authors of [1, 2] built mathe-
matical models to analyze these problems, whose dynamical behaviors have attracted the interest of
many scholars. There are three forms of harvesting: 1) constant harvesting, h(x) = h; 2) linear harvest-
ing, h(x) = qEx; 3) nonlinear harvesting, h(x) = qEx

m1E+m2 x , which is also called Michaelis-Menten-type
harvesting.

Leslie and Gower studied the predator-prey relationship between two species and developed the

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023825


18593

famous Leslie-Gower predator-prey model [3], which has been widely discussed [4–6]. For example,
the Leslie-Gower predator-prey model with the Allee effect and a generalist predator was studied in [7],
where the authors found that the system exhibits a multi-stability phenomenon and undergoes various
bifurcations. Huang et al. [8] studied the Leslie-Gower-type predator-prey model with constant-yield
harvesting, and they found that the dynamical behavior of the model is very sensitive to the constant
yield harvest of the predator.

Gupta et al. [9] considered the following Leslie-Gower predator-prey model with Michaelis-
Menten-type prey-harvesting:

ẋ = rx
(
1 −

x
K

)
− αxy −

qEx
m1E + m2x

,

ẏ = sy
(
1 −

y
nx

)
, if (x, y) , (0, 0),

ẏ = 0, if (x, y) = (0, 0),

(1.1)

where x and y are the prey and predator population densities, respectively. They studied the stability
and bifurcation (saddle-node bifurcation and Hopf bifurcation) of system (1.1). Also, the existence of
bionomic equilibria and optimal singular control were investigated. Based on system (1.1), Gupta and
Chandra [10] introduced the Holling type II functional response and obtained the bistable situation.
The model exhibits several local bifurcations (saddle-node, Hopf, homoclinic and Bogdanov-Takens)
which are ecologically important. Considering the group defense and nonlinear harvesting in prey,
Kumar and Kharbanda [11] obtained that the density of the predator increases as the harvest rate of the
predator decreases. Caraballo Garrido et al. [12] investigated the predator prey model with nonlinear
harvesting with both constant and distributed delay by varying parameters. Some scholars [13–17] have
combined other functional responses and harvesting to obtain more complex dynamical behaviors.

As with direct killing, indirect killing also has a significant impact on the dynamic behaviors of
the system. The studies mentioned above, however, solely take into account the predator’s direct
killing. Predation danger may drive the prey to engage in anti-predation behaviors, such as habitat
modifications or foraging, which may lower the prey’s birth rate. Hence, Wang et al. [18] incorporated
the fear effect into the reproduction of prey animals and obtained the following prey-predator model:

ẋ = r0x f (k, y) − dx − ax2 − pxy,
ẏ = cpxy − my,

(1.2)

where f (k, y) = 1
1+k0y accounts for the cost of anti-predator defense due to fear. They studied a model

with a linear functional response or Holling type II functional response. It was found that the fear effect
has no impact on the dynamic behaviors of model (1.2). However, the dynamic behavior of model
(1.2) with Holling type II functional responses can be affected by the fear effect. Chen et al. [19]
considered the influence of the fear effect and Leslie-Gower function on the dynamic behavior of
the predator-prey model, and they demonstrated that there are many types of bifurcation phenomena,
including transcritical bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. Zhang et al.
[20] studied a delayed diffusive predator-prey model with spatial memory and a nonlocal fear effect,
and they investigated the stability, Hopf bifurcation and Turing-Hopf bifurcation of the system. Many
scholars [21–25] have studied the prey-predator model with a fear effect.
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In this paper, we incorporate the fear effect into system (1.1) and obtain the following model:

ẋ = x
(

r0

1 + k0y
− d0 − ax − c0y

)
−

q0Ex
m1E + m2x

,

ẏ = s0y
(
1 −

y
hx

)
, if (x, y) , (0, 0),

ẏ = 0, if (x, y) = (0, 0),

(1.3)

where r0 is the birth rate of the prey and d0 is the natural death rate of the prey. In the ecological sense,
it is clear that r0 > d0. a represents the intra-species competition, c0 is the maximum predation rate, s0

is the intrinsic growth rates of the predators, h is a measure of the quality of the prey as food for the
predator, k0 is the fear parameter, q0 is the catchability coefficient, E is the effort applied to harvest the
prey species and m1,m2 are suitable constants. For simplicity, letting

x =
m2

m1E
x, y =

m2

m1Eh
y, t =

am2
1E2

m2
2x

t,

r =
r0m2

am1E
, k =

k0m1Eh
m2

, d =
d0m2

am1E
,

c =
c0h
a
, q =

q0m2

am2
1E
, s =

s0m2

am1E
,

for x, y be positive, and dropping the bars, system (1.3) becomes

ẋ = x2

(
r

1 + ky
− d − x − cy

)
−

qx2

1 + x
,

ẏ = sy (x − y) ,
(1.4)

where r > d, and r, k, d, c, q and s are positive constants.
The key aim of this study on prey-predator models is to discuss the impacts of prey fear and prey

harvesting on system dynamics. The bifurcation phenomenon that distinguishes system (1.4) from sys-
tem (1.1) deserves further discussion. In addition, by analyzing the observed bifurcation phenomena,
we can elucidate the benefits and drawbacks of prey harvesting on both populations.

The structure of the article is as follows. In Section 2, we obtain the boundedness of solutions
and analyze the dynamical behaviors of origin. In Section 3, we discuss the existence of boundary
equilibria and positive equilibria. In Section 4, we analyze the stability of equilibria. In Section 5,
we show that system (1.4) undergoes saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens
bifurcation. In Section 6, we have a summary of the article.

2. Preliminaries

We show that the positive solutions of system (1.4) are ultimately bounded.

Theorem 2.1. All solutions of system (1.4) are bounded for all t ≥ 0.

Proof. Since system (1.3) is equivalent to system (1.4), we now prove that the solution of system (1.3)
is bounded. From the first equation of system (1.3), we have

ẋ ≤ x(r0 − d0 − ax),
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for t ≥ 0, which immediately implies that lim sup
t→∞

x(t) ≤
r0 − d0

a
≜ M. Then from the second equation

of system (1.3), it follows that

ẏ ≤ s0y
(
1 −

y
hM

)
for t ≥ 0, that is, lim sup

t→∞
y(t) ≤ hM. Hence, x(t) and y(t) are bounded. The proof is completed.

Denote
q0 = (d + q)k + c + 1.

Next, we show the dynamic behaviors of the origin of system (1.4).

Lemma 2.1. The types of origin in system (1.4) are as follows:

1) if r − d < q or r − d = q ≤ q0, the origin of system (1.4) is a non-hyperbolic attractor;
2) if r − d > q or r − d = q > q0, the origin of system (1.4) is a non-hyperbolic repeller.

Proof. The Jacobian matrix of system (1.4) at the origin is degenerate; then, we apply the blow-up
method to analyze the type of origin. Notice that when x = 0, we have that ẋ = 0 and ẏ = −sy2 < 0,
which means that system (1.4) has the invariant line x = 0. Using the horizontal blow-up

(x, y) = (u, uv) and dτ = udt,

system (1.4) can be rewritten as

u̇ = u
( r
1 + kuv

− d − u − cuv −
q

1 + u

)
,

v̇ = sv (1 − v) − v
( r
1 + kuv

− d − u − cuv −
q

1 + u

)
.

(2.1)

(i) The equilibria of system (2.1) in u = 0 are A(0, 0) and B
(
0, 1 − r−d−q

s

)
when r − d < q + s. The

Jacobian matrix at the equilibria A and B are, respectively

JA =

 r − d − q 0

0 q + s − (r − d)


and

JB =


r − d − q 0

(s − r + d + q)R
s2 r − d − (q + s)

 ,
where

R = −kr2 + (ks − c + (d + q)k)r + (c − q + 1)s + c(d + q).

The eigenvalues of matrix JA are λJA1 = r − d − q and λJA2 = q + s − (r − d) > 0, and the eigenvalues
of matrix JB are λJB1 = r − d − q and λJB2 = r − d − (q + s) < 0. If r − d < q, that is, if λJA1 < 0 and
λJB1 < 0, A is a saddle and B is a stable node (see Figure 1(a)). If q < r − d < q + s, that is, if λJA1 > 0
and λJB1 > 0, A is an unstable node and B is a saddle (see Figure 1(c)).
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If r − d = q, that is, if λJA1 = 0 and λJB1 = 0, both A and B are degenerate equilibria. First, we
consider the degenerate equilibrium A. Taking the time variable

dτ = s dt,

we can obtain the Taylor expansion of system (2.1) as follows:
u̇ =

q − 1
s

u2 −
q
s

u3 −
dk + kq + c

s
u2v + o(|u, v|2),

v̇ = v −
q − 1

s
uv − v2 +

dk + kq + c
s

uv2 +
q
s

u2v + o(|u, v|2).

By Theorem 7.1 in [26], the degenerate equilibrium A is a saddle-node if q , 1. If q = 1, we have that
the equilibrium A is a degenerate saddle from −

q
s
< 0.

Next, for the degenerate equilibrium B, make the following transformation:

(u, v) = (X,Y + 1).

System (2.1) becomes
Ẋ = −

[
(k − 1)q + dk + c + 1

]
X2 +

[
(k2 − 1)q + dk2]X3 + o(|X,Y |2),

Ẏ =
[
(k − 1)q + dk + c + 1

]
X − sY −

[
(k2 − 1)q + dk2]X2

+
[
(2k − 1)q + 2dk + 2c + 1

]
XY − sY2 + o(|X,Y |2).

(2.2)

Using (X,Y) =
(
sX1,

[
(k − 1)q + dk + c + 1

]
X1 + Y1

)
and dτ = −s dt, system (2.2) becomes Ẋ1 = α20X2

1 + α30X3
1 + α21X2

1Y1 + o(|X1,Y1|
2),

Ẏ1 = Y1 + β20X2
1 + β11X1Y1 + β02Y2

1 + o(|X1,Y1|
2),

(2.3)

where

α20 = q0 − q, α21 = (d + q)k + c,
α30 = (k2 − k)q2 + (2d k2 − k2s + 2ck − dk − c + k + s)q + d2k2 − d k2s + 2cdk

+c2 + dk + c,
β20 =

(
−2k2 + 3k − 1

)
q2 +

(
−4d k2 + k2s − 4ck + 3dk + 3c − 3k − s + 2

)
q − 2d2k2

+d k2s − 4cdk − 2c2 − 3dk − 3c − 1, β11 = 1 − q, β02 = 1.

If α20 > 0 (or α20 < 0), that is, if q < q0 (or q > q0), B a saddle-node with a stable parabolic sector
on the right (or left). If α20 = 0, which implies that k < 1, we get that q = dk+c+1

1−k . Next, substituting
q = dk+c+1

1−k into the coefficients of the X3 term of system (2.3), we have

α30 = s[dk + (1 + c)(1 + k)] > 0.

Explicitly, from Theorem 7.1 in [26] we know that the degenerate equilibrium B is a stable node if
q = q0.

In summary, when r − d = q ≤ 1, A and B are as shown in Figure 1(a). When 1 < r − d = q ≤ q0,
A and B are as shown in Figure 1(b). When r − d = q > q0, A and B are as shown in Figure 1(c).
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(a) (b) (c) (d)

Figure 1. Phase portrait around the origin of system (2.1). (a) r − d < q or r − d = q ≤ 1. (b)
1 < r − d = q ≤ q0. (c) r − d = q > q0 or q < r − d < q + s. (d) r − d ≥ q + s.

(a) (b) (c) (d)

Figure 2. (a) The origin of system (1.4) is an attractor when r − d < q or r − d = q ≤ 1. (b)
The origin of system (1.4) is an attractor when 1 < r − d = q ≤ q0. (c) The origin of system
(1.4) is a repeller when r − d = q > q0 or q < r − d < q + s. (d) The origin of system (1.4) is
a repeller when r − d ≥ q + s.

After a blow-down, the origin in system (1.4) is an attractor when r − d < q, r − d = q ≤ 1 (see
Figure 2(a)) or 1 < r − d = q ≤ q0 (see Figure 2(b)). The origin is a repeller when r − d = q > q0 or
q < r − d < q + s (see Figure 2(c)).

(ii) When r − d = q + s, system (2.1) has only one equilibrium, A(0, 0) at u = 0, whose Jacobian
matrix is

JA =

 s 0

0 0

 .
Expanding system (2.1) in a Taylor series and taking a time variable dτ = s dt, we have

u̇ = u +
q − 1

s
u2 + o(|u, v|2),

v̇ =
1 − q

s
uv − v2 + o(|u, v|2).

The coefficient of v2 is −1 < 0; from Theorem 7.1 in [26], we know that the equilibrium A is a saddle-
node (see Figure 1(d)). After a blow-down, we see that the origin is a repeller for system (1.4) (see
Figure 2(d)).

(iii) System (2.1) has a unique equilibrium A(0, 0) when r − d > q + s. The Jacobian matrix at the

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592–18629.
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equilibrium A is

JA =

 r − d − q 0

0 d − r + q + s

 .
Obviously, the two eigenvalues are r − d − q > 0 and d − r + q + s < 0. It shows that the equilibrium A
is a saddle (see Figure 1(d)). Similarly, the origin is a repeller for system (1.4) (see Figure 2(d)). The
proof is completed.

3. Existence of equilibria

In this section, we will discuss the existence of the boundary equilibria and the positive equilibria
of system (1.4).

First, we analyze the existence of boundary equilibria. When y = 0, the first equation of system
(1.4) can be simplified into

ẋ = x2 (r − d − x) −
qx2

1 + x
.

We have
f (x) = x2 − (r − d − 1) x − (r − d − q),

and the discriminant of f (x) is as follows:

∆1 = 4(q∗ − q),

where

q∗ =
(r − d + 1)2

4
.

The two roots of f (x) = 0 can be expressed as

x1 =
r − d − 1 −

√
∆1

2
, x2 =

r − d − 1 +
√
∆1

2
.

If r − d > q, f (x) = 0 has only one positive root x2. If r − d = q, f (x) = 0 has only one positive root
q − 1 if q > 1.

Assume that r − d < q. When r − d ≤ 1, obviously, f (x) = 0 has no positive roots. When r − d > 1,
obviously, q∗ > r − d. If q > q∗, then f (x) = 0 has no positive roots. If q = q∗, then f (x) = 0 has only
one positive root r−d−1

2 . If q < q∗, then f (x) = 0 has two positive roots x1 and x2.
To summarize, we have the following lemma.

Lemma 3.1. The following claims regarding the existence of the boundary equilibria of system (1.4)
are true.

1) If r − d > q, system (1.4) has a unique boundary equilibrium E2(x2, 0).
2) If 1 < r − d = q, system (1.4) has a unique boundary equilibrium E2(q − 1, 0).
3) If 1 < r − d < q, we have the following three cases:

(a) if 1 < r − d < q∗ < q, system (1.4) has no boundary equilibrium;
(b) if 1 < r − d < q = q∗, system (1.4) has a unique boundary equilibrium E

(
r−d−1

2 , 0
)
;

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592–18629.
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(a) (b)

(c) (d) (e)

Figure 3. (a) F(x) = 0 has a unique positive root x4 when r − d > q. (b) F(x) = 0 has a
unique positive root x4 when q0 < r − d = q. (c) When q0 < r − d < q and F(x∗) > 0,
F(x) = 0 has no positive root. (d) When q0 < r− d < q and F(x∗) = 0, F(x) = 0 has a unique
positive root x∗. (e) When q0 < r − d < q and F(x∗) < 0, F(x) = 0 has two different positive
roots x3 and x4.

(c) if 1 < r − d < q < q∗, system (1.4) has two boundary equilibria E1(x1, 0), E2(x2, 0).

Next, we will discuss the positive equilibria E(x, y) of system (1.4). Letting ẋ = ẏ = 0 in system
(1.4), we have 

r
1 + ky

− d − x − cy −
q

1 + x
= 0,

x − y = 0.

We denote

F(x) = k(c + 1)x3 + ((k + 1)(c + 1) + dk)x2 + (q0 − (r − d))x − (r − d − q)

and
F′(x) = 3k(c + 1)x2 + 2((k + 1)(c + 1) + dk)x + q0 − (r − d),

where the discriminant of F′(x) is

∆2 = 4((k + 1)(c + 1) + dk)2 − 12k(c + 1)(q0 − (r − d)).

Define

x∗ =
−2((k + 1)(c + 1) + dk) +

√
∆2

6k(1 + c)
, y∗ = x∗.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592–18629.
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From F(x) = 0, we have

q = −
(1 + x)

[
k(c + 1)x2 + (dk + c + 1)x + d − r

]
kx + 1

. (3.1)

The Jacobian matrix of system (1.4) at E(x, y) is

JE =


x2[q − (x + 1)2]

(1 + x)2 −
x2[rk + c(1 + kx)2]

(1 + kx)2

sx −sx

 ,
and

DetJE =

[
x2[rk + c(1 + kx)2]

(1 + kx)2 −
x2[q − (x + 1)2]

(1 + x)2

]
sx,

TrJE =
x2[q − (x + 1)2]

(1 + x)2 − sx.

Substituting (3.1) into DetJE and F′(x), we have

DetJE =
(x + s)(1 + x)2

x
F′(x). (3.2)

When r − d > q, it is easy to get that the equation F(x) = 0 has a unique positive root x4 (see Figure
3(a)).

When q0 < r − d = q, ∆2 > 0. We obtain that F(x) = 0 has only one positive root x4 (see Figure
3(b)). When q0 ≥ r − d = q, we find that F(x) = 0 has no positive roots.

When r − d < q, obviously, F(x) = 0 has no positive roots if q0 ≥ r − d. If q0 < r − d, we obtain
that F(x) = 0 has no positive roots when F(x∗) > 0 (see Figure 3(c)). When F(x∗) = 0, F(x) = 0 has
only one positive root x∗ (see Figure 3(d)). When F(x∗) < 0, F(x) = 0 has two positive roots x3 and x4

(see Figure 3(e)).
To summarize, we have the following lemma.

Lemma 3.2. The following claims regarding the existence of the boundary equilibria of system (1.4)
are true.

1) If r − d > q, system (1.4) has a unique positive equilibrium E4(x4, y4).

2) If q0 < r − d = q, system (1.4) has a unique positive equilibrium E4(x4, y4).

3) If q0 < r − d < q, we obtain the following results:

(a) if F(x∗) > 0, system (1.4) has no positive equilibrium;
(b) if F(x∗) = 0, system (1.4) has a unique positive equilibrium E∗(x∗, y∗);
(c) if F(x∗) < 0, system (1.4) has two positive equilibria E3(x3, y3) and E4(x4, y4).

4. Stability of equilibria

In this section, we will discuss the stability of the equilibria.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592–18629.
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4.1. Stability of the boundary equilibria E1 and E2

Theorem 4.1. 1) If r − d > q, the unique boundary equilibrium E2 is a saddle.
2) If 1 < r − d = q, the unique boundary equilibrium E2 is a saddle.
3) If 1 < r − d < q = q∗, the unique boundary equilibrium E is a saddle-node.
4) If 1 < r − d < q < q∗, E1 is unstable and E2 is a saddle.

Proof. 1) The Jacobian matrix of system (1.4) at E2 is

JE2 =


−
√
∆1x2

2

1 + x2
−(rk + c)x2

2

0 sx2

 .
Obviously, the equilibrium E2 is a saddle.
2) The Jacobian matrix of system (1.4) at E2(q − 1, 0) is

JE2(q−1,0) =

 −
(q − 1)3

q
−(rk + c)(q − 1)2

0 s(q − 1)

 ,
which implies that E2 is a saddle.
3) The Jacobian matrix of system (1.4) at E is

JE =


0 −

(rk + c)(r − d − 1)2

4

0
s(r − d − 1)

2

 ,
which means that E is a degenerate equilibrium. First, we transform E to the origin by letting X =

x −
r − d − 1

2
,Y = y. Then, system (1.4) can be rewritten as Ẋ = a01Y + a20X2 + a11XY + a02Y2 + o(|X,Y |2),

Ẏ = b01Y + b11XY + b02Y2 + o(|X,Y |2),
(4.1)

where

a01 = −
(r − d − 1)2(kr + c)

4
, a20 =

(r − d − 1)2

2(−r + d − 1)
, a11 = −(r − d − 1)(kr + c),

a02 =
(r − d − 1)2r k2

4
, b01 =

s(r − d − 1)
2

, b11 = s, b02 = −s.

Next, applying the following transformation:

X = u + v, Y = −
2s

(kr + c)(r − d − 1)
v, dτ =

r − d − 1
2

dt,

system (4.1) becomes  u̇ = c20u2 + c11uv + c02v2 + o(|u, v|2),

v̇ = v + d11uv + d02v2 + o(|u, v|2),
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where

c20 = −
r − d − 1

s(r − d + 1)
, c11 =

2
[
(r − d − 1)2 − s(r − d + 1)

]
(r − d + 1)(r − d − 1)s

,

c02 =
k2r5 + (−3d k2 − 2k2s + 2ck − 3k2)r4 + h1r3 + h2r2 + h3r + h4

(r − d + 1)(kr + c)2(r − d − 1)2s
,

d11 = −
2

r − d − 1
, d02 = −

2
[
− kr2 + (dk − c + k)r + cd + c − 2s

]
(r − d − 1)2(kr + c)

,

h1 = 3d2k2 + 4d k2s − 2k2s2 − 6cdk − 4cks + 6d k2 + c2 − 6ck + 3k2,

h2 = (−d3 − 2s d2 + 4s2d − 3d2 − 3d + 2s − 1)k2 + (6c d2 + 8cds + 12cd + 4s2

+6c)k − 3c2d − 2c2s − 3c2,

h3 = (3d2 + 4sd + 6d + 3)c2 + (−2d3k − 4s d2k − 6d2k − 6dk + 4sk + 4s2 − 2k)c
−2d2k2s2 − 4dk s2 + 2k2s2 + 4k s2,

h4 = (−d3 − 2s d2 − 3d2 − 3d + 2s − 1)c2 + (−4d s2 + 4s2)c.

Since c20 < 0, we get that E is a saddle-node from Theorem 7.1 in [26].
4) The Jacobian matrices of system (1.4) at E1 (x1, 0) and E2 (x2, 0), respectively, are

JE1 =


x2

1

√
∆1

1 + x2
1

−x2
1(rk + c)

0 sx1


and

JE2 =

 −
x2

2

√
∆1

1 + x2
2

−x2
2(rk + c)

0 sx2

 .
This proves that E1 is unstable and E2 is a saddle point. The proof is completed.

4.2. Stability of the interior equilibrium when r − d ≥ q

If E3 exists, from F′(x3) < 0 and (3.2), we obtain that DetJE3 < 0. That is, E3 is a saddle if it exists.
Hence, in the following discussion, we only study the stability of E4.

Define

s∗ =
x4

[
q − (1 + x4)2]
(1 + x4)2 .

Theorem 4.2. When r − d > q or r − d = q > q0, system (1.4) has a positive equilibrium E4. In
addition, the following statements are true.

1) If s∗ ≤ 0 or 0 < s∗ < s, E4 is locally asymptotically stable.
2) If s < s∗, E4 is an unstable node or focus.
3) If s = s∗ > 0, E4 is a center or weak focus.

Proof. The Jacobian matrix at the equilibrium E4(x4, y4) is

JE4 =


x2

4
[
q − (1 + x4)2]
(1 + x4)2 −

x2
4
[
rk + c(1 + kx4)2]

(1 + kx4)2

sx4 −sx4

 .
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Notice that F′(x4) > 0; so, from (3.2), we know that DetJE4 > 0.
Obviously,

TrJE4 = x4(s∗ − s).

Hence, it is easy to see that E4 is locally asymptotically stable if s∗ ≤ 0 or 0 < s∗ < s, an unstable node
or focus if s < s∗ and a center or weak focus if s = s∗ > 0. The proof is completed.

Define
q1 = −

1
8

s2 +
5
2

s + 1 +
1
8

√
s(s + 8)3.

Theorem 4.3. If E4 is locally asymptotically stable and 0 < q < q1, then E4 is globally asymptotically
stable.

Proof. Noting that r − d > q or r − d = q > q0, and according to Lemmas 3.1 and 3.2, system (1.4)
has a boundary equilibrium E2 and positive equilibrium E4. By Lemma 2.1 and Theorem 4.1, both the
origin and E2 are unstable. We assume that E4 is locally asymptotically stable. Now, we want to show
that there is no limit cycle around E4. Hence, taking the Dulac function Φ(x, y) = 1

x2y2 , we have

∂(ΦF)
∂x

+
∂(ΦG)
∂y

= −
x3 + (s + 2)x2 + (2s + 1 − q)x + s

x(1 + x)2y2 ,

where F = x2
(

r
1+ky − d − x − cy

)
−

qx2

1+x and G = sy (x − y).
Define

H = x3 + (s + 2)x2 + (2s + 1 − q)x + s.

Obviously, H > 0 for q ≤ 1 + 2s. In what follows, we only consider that q > 1 + 2s. By calculation,
the discriminant of H is

∆3 = −
q
[
4q2 + (s2 − 20s − 8)q − 4(s − 1)3]

108
.

By calculation, we obtain that q1 > 1 + 2s and

∆3

∣∣∣∣∣
q=1+2s

=
s(1 + 2s)(2s2 + 11s + 32)

108
> 0.

Thus, we have that ∆3 > 0 for 1 + 2s < q < q1, which means that H = 0 has no positive roots. Then,
H > 0.

To sum up, H > 0 when 0 < q < q1. Then, we have

∂(ΦF)
∂x

+
∂(ΦG)
∂y

< 0,

which implies that E4 is globally asymptotically stable. The proof is completed.

Remark 4.1. If q < min{1, r − d}, from Theorem 4.2, E4 is locally asymptotically stable. Therefore, by
Theorem 4.3, E4 is globally asymptotically stable. That is, when the intrinsic growth rate of the prey
is high and the catchability coefficient for prey is low, the prey and predator will reach a steady state.
Hence, a small catchability coefficient for prey will not lead to the extinction of prey and predator.
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Remark 4.2. Assume that r − d = q ≤ q0. From Lemma 2.1, the origin is a attractor. By Lemma 3.1
and Theorem 4.1, E2 is unstable if it exists. From Lemma 3.2, system (1.4) has no positive equilibrium.
Note that system (1.4) has no limit cycle. Therefore, the origin is globally asymptotically stable. That
is, when the intrinsic growth rate of the prey and the catchability coefficient for prey are low, the prey
and predator will become extinct.

4.3. Stability of the interior equilibrium when r − d < q

Lemma 4.1 ( [27]). The system{
ẋ = y + Ax2 + Bxy +Cy2 + o(|x, y|2),
ẏ = Dx2 + Exy + Fy2 + o(|x, y|2),

is equivalent to the system {
ẋ = y,
ẏ = Dx2 + (E + 2A)xy + o(|x, y|2)

in some small neighborhood of (0, 0) after changes to the coordinates.

Lemma 4.2 ( [27]). The system given by

ẋ = y,
ẏ = x2 + a30x3 + a40x4 + y(a21x2 + a31x3) + y2(a12x + a22x2) + o(|x, y|4),

is equivalent to the system given by

ẋ = y,
ẏ = x2 +Gx3y + o(|x, y|4)

by some nonsingular transformations in the neighborhood of (0, 0), where G = a31 − a30a21.

By computation, from F(x∗) = F′(x∗) = 0, we can express k and r in terms of x∗, c, d, s and q, as
follows:

k =
q − (1 + x∗)2(1 + c)

(2c + 2)x3
∗ + (4c + d + 4)x2

∗ + (2c + 2d + 2)x∗ + d + q
,

r =
[
(c + 1)x2

∗ + (c + d + 1)x∗ + d + q
]2

(2c + 2)x3
∗ + (4c + d + 4)x2

∗ + (2c + 2d + 2)x∗ + d + q
,

(4.2)

where q > (1 + x∗)2(1 + c) because k and r are positive.
Notice that

q − (r − d) =
x2
∗

[
(2(x∗ + 1)(c + 1) + d)q − (x∗ + 1)2(c + 1)2]

(x∗ + 1)2(2cx∗ + d + 2x∗) + q
,

(r − d) − q0 =
x∗

[
((3x∗ + 4)(c + 1) + 2d)q + (x∗ − 2)(x∗ + 1)2(c + 1)2]

(x∗ + 1)2(2cx∗ + d + 2x∗) + q
;

clearly, q − (r − d) > 0 and (r − d) − q0 > 0 when q > (1 + x∗)2(1 + c). Thus, q0 < r − d < q.
By computation, we have

(1 + x∗)2(1 + c) −
(x∗ + s)(1 + x∗)2

x∗
=

(1 + x∗)2(cx∗ − s)
x∗

.

From the above discussions, we can obtain the following theorem.
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Theorem 4.4. Assume that (4.2) and q > (1 + x∗)2(1 + c) hold; system (1.4) has a unique positive
equilibrium E∗(x∗, y∗).

1) If s ≤ cx∗ and q > (1 + x∗)2(1 + c), or if s > cx∗ and q >
(x∗ + s)(1 + x∗)2

x∗
, then E∗ is a saddle-node

with an unstable parabolic sector.

2) If s > cx∗ and (1 + x∗)2(1 + c) < q <
(x∗ + s)(1 + x∗)2

x∗
, then E∗ is a saddle-node with a stable

parabolic sector.

Proof. Obviously, we have that DetJE∗ = 0 by (3.2). Then, the type of E∗ depends on the sign of
TrJE∗ , as follows:

TrJE∗ =
x2
∗

(1 + x∗)2

(
q −

(x∗ + s)(1 + x∗)2

x∗

)
.

First, moving E∗(x∗, y∗) to the origin by the transformation (x, y) = (X + x∗,Y + y∗), it follows that
system (1.4) becomes Ẋ = â10X + â01Y + â20X2 + â11XY + â02Y2 + o(|X,Y |2),

Ẏ = b̂10X + b̂01Y + b̂20X2 + b̂11XY + b̂02Y2 + o(|X,Y |2),
(4.3)

where

â10 =
x2
∗

[
q − (1 + x∗)2]
(1 + x∗)2 , â01 = −

x2
∗

[
q − (1 + x∗)2]
(1 + x∗)2 , â11 = −

2x∗
[
q − (1 + x∗)2]
(1 + x∗)2 ,

â20 =
x∗

[
q(2 + x∗) − 2(1 + x∗)3]

(1 + x∗)3 , â02 =
x2
∗

[
(1 + c)(1 + x∗)2 − q

]2[
(1 + x∗)(cx∗ + d + x∗) + q

]
(1 + x∗)3

,

b̂10 = sx∗, b̂01 = −sx∗, b̂20 = 0, b̂11 = s, b̂02 = −s.

The eigenvalues of the Jacobian matrix at point E∗ are λ1 = 0 and λ2 = â10 + b̂01. If

q ,
(x∗ + s)(1 + x∗)2

x∗
, then λ2 , 0.

Next, taking the transformation (
X
Y

)
=

(
â01 â10

−â10 b̂10

) (
u
v

)
,

and, by introducing the new time variable

dτ = TrJE∗dt,

system (4.3) is rewritten as  ˙̂u = ĉ20û2 + ĉ11ûv̂ + ĉ02v̂2 + o(|û, v̂|2),

˙̂v = v̂ + d̂20û2 + d̂11ûv̂ + d̂02v̂2 + o(|û, v̂|2),
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where

ĉ20 =
s(â2

01â20x∗ − â01â10â11x∗ + â02 â2
10x∗)

(â01sx∗ + â2
10)TrJE∗

,

ĉ11 =
s
[
(−s3x2

∗ + â10 s2x∗)â01 + â02â10 s2x2
∗ + â2

10â11sx∗ + â3
10â20

]
(â01sx∗ + â2

10)TrJE∗
,

ĉ02 =
sx∗

[
(â20 − s)â2

10 + (â11sx∗ + s2x∗)â10 + â02 s2x2
∗

]
(â01sx∗ + â2

10)TrJE∗
,

d̂20 =
â10(â2

01â20 − â01â10â11 + â02 â2
10)

(â01sx∗ + â2
10)TrJE∗

,

d̂11 =
â2

01s2x∗ + (â10â11sx∗ + 2â10 s2x∗ + 2â2
10â20 − â2

10s)â01 − 2â02 â2
10sx∗ − â3

10â11

(â01sx∗ + â2
10)TrJE∗

,

d̂02 =
−â01 s3x2

∗ + â02â10 s2x2
∗ + â01â10 s2x∗ + â2

10â11sx∗ + â3
10â20

(â01sx∗ + â2
10)TrJE∗

.

By a simple calculation, we get

ĉ20 =
sx4
∗

[
q − (1 + x∗)2]M

(1 + x∗)2TrJE∗
[
(1 + c)x2

∗ + (c + d + 1)x∗ + d + q
] ,

where
M = −

[
(3x∗ + 2)(1 + c) + d

]
q + (1 + c)2(1 + x∗)3.

Note that q > (1 + x∗)2(1 + c); then, q > (1 + x∗)2. By computation, we can obtain

M
∣∣∣∣∣
q=(1+x∗)2(1+c)

= −((2x∗ + 1)(c + 1) + d)(1 + x∗)2(1 + c),

which implies that M < 0 for q > (1 + x∗)2(1 + c). Therefore, the sign of ĉ20 is determined by TrJE∗ .
Considering the time transformation, and by using Theorem 7.1 in [26], if s > cx∗ and (1+ x∗)2(1+c) <
q < (x∗+s)(1+x∗)2

x∗
, that is, if TrJE∗ < 0, then E∗ is a saddle-node with a stable parabolic sector (see Figure

4(a)). If s ≤ cx∗ and q > (1 + x∗)2(1 + c), or if s > cx∗ and q > (x∗+s)(1+x∗)2

x∗
, that is, if TrJE∗ > 0, then E∗

is a saddle-node with an unstable parabolic sector (see Figure 4(b)). The proof is completed.

From F(x∗) = F′(x∗) = TrJE∗ = 0, we can express k, r and q in terms of x∗, c, d and s, as follows:

k =
s − cx∗

(2c + 2)x2
∗ + (d + 1)x∗ + s

,

r =
[
(c + 2)x2

∗ + (d + s + 1)x∗ + s
]2

x∗
[
(2c + 2)x2

∗ + (d + 1)x∗ + s
] ,

q =
(x∗ + s)(1 + x∗)2

x∗
,

(4.4)

where s > cx∗.

Theorem 4.5. Assume that (4.4) and s > cx∗ hold.
1) If one of the following conditions holds: (1.1) x∗ ≥ 1; (1.2) 0 < x∗ ≤ c

c+2 ; (1.3) c
c+2 < x∗ < 1, s ,

2x2
∗

1−x∗
, E∗ is a cusp of codimension two.

2) If c
c+2 < x∗ < 1 and s = 2x2

∗

1−x∗
hold, E∗ is a cusp of codimension three.
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Figure 4. Phase portraits of system (1.4). Let s = 2, c = 1 and d = 2. (a) E∗ is a saddle-node
with an attracting parabolic sector when k = 1

17 , q = 10 and r = 162
17 . (b) E∗ is a saddle-node

with a repelling parabolic sector when k = 7
39 , q = 15 and r = 529

39 . (c) E∗ is a cusp of
codimension two when k = 1

9 , q = 12 and r = 100
9 . (d) E∗ is a cusp of codimension three

when s = 1, c = 1, d = 1, k = 1
6 , q = 27

4 and r = 169
24 .

Proof. 1) Let X = x − x∗ and Y = y − y∗; then, system (1.4) can be rewritten as follows:

 Ẋ = sx∗X − sx∗Y +
sx∗ − x2

∗ + 2s
x∗ + 1

X2 − 2sXY +
x∗(cx∗ − s)2

(c + 2)x2
∗ + (d + s + 1)x∗ + s

Y2 + o(|X,Y |2),

Ẏ = sx∗X − sx∗Y + sXY − sY2 + o(|X,Y |2).
(4.5)

Applying the transformation (u, v) = (−
1

sx∗
X,−X + Y), system (4.5) becomes

 u̇ = v + e20u2 + e11uv + e02v2 + o(|u, v|2),

v̇ = f20u2 + f11uv + f02v2 + o(|u, v|2),
(4.6)
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where

e20 = −
sx3
∗T1

T2(1 + x∗)
, e11 =

2
[
c2x3
∗ − s(3c + 2)x2

∗ − s(d + 1)x∗ − s2]
T2

, e02 = −
(cx∗ − s)2

T2
,

f20 = −
s2x4
∗T1

T2(1 + x∗)
, f11 =

sx∗
[
2c2x3

∗ − s(5c + 2)x2
∗ + s(s − 1 − d)x∗ − s2]

T2
,

f02 = −
c2x3
∗ + s(2 − c)x2

∗ + s(d + 2s + 1)x∗ + s2

T2
,

T1 = −(3cx∗ + 2c + d + 3x∗ + 2)s + c2x2
∗ + c2x∗ − cx2

∗ − dx∗ − 2x2
∗ − x∗,

T2 = (c + 2)x2
∗ + (d + s + 1)x∗ + s.

By Lemma 4.1, system (4.6) is equivalent to the following:{
ẋ = y,
ẏ = D20x2 + D11xy + o(|x, y|2),

where

D20 = f20, D11 = f11 + 2e20 =
sx∗(2x2

∗ − s(1 − x∗))
1 + x∗

.

Substituting s = cx∗ into T1, we get

T1

∣∣∣∣
s=cx∗
= −x∗(c + 1)(2cx∗ + c + d + 2x∗ + 1) < 0.

So, T1 < 0 for s > cx∗, that is, D20 , 0.
Obviously, if x∗ ≥ 1, we have that D11 > 0, that is, E∗ is a cusp of codimension two by the result

in [28] (see Figure 4(c)). When x∗ < 1, from D11 = 0, we have that s = 2x2
∗

1−x∗
. Noting that s > cx∗, we

have
s − cx∗

∣∣∣∣
s= 2x2

∗
1−x∗

= x∗((c + 2)x∗ − c).

Therefore, if 0 < x∗ ≤ c
c+2 or c

c+2 < x∗ < 1, s , 2x2
∗

1−x∗
holds and E∗ is a cusp of codimension two.

2) If c
c+2 < x∗ < 1 and s = 2x2

∗

1−x∗
hold, that is, D11 = 0; we will show that E∗ is a cusp of codimension

three. When c
c+2 < x∗ < 1, s = 2x2

∗

1−x∗
and (4.4) reduces to the following:

k = −
cx∗ − c + 2x∗

2(c + 1)x2
∗ + (−2c + d − 3)x∗ − d − 1

,

r =
(cx2
∗ + (−c + d − 3)x∗ − d − 1)2[

2(c + 1)x2
∗ + (−2c + d − 3)x∗ − d − 1

]
(x∗ − 1)

,

q =
(1 + x∗)3

1 − x∗
.

(4.7)

Note that c
c+2 < x∗ < 1; then, k, r, q in (4.7) are positive.

Then, system (4.5) becomes
ẋ1 = g10x1 + g01y1 + g20x2

1 + g11x1y1 + g02y2
1 + g30x3

1 + g21x2
1y1 + g12x1y2

1
+g03y3

1 + g40x4
1 + g22x2

1y2
1 + g13x1y3

1 + g04y4
1 + o(|x1, y1|

4),

ẏ1 = h10x1 + h01y1 + h11x1y1 + h02y2
1 + o(|x1, y1|

4),

(4.8)
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where

g10 = −
2x3
∗

x∗ − 1
, g01 =

2x3
∗

x∗ − 1
, g20 = −

3x2
∗

x∗ − 1
, g11 =

4x2
∗

x∗ − 1
, g21 =

2x∗
x∗ − 1

,

g02 =
(cx∗ − c + 2x∗)2x2

∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(x∗ − 1)

, g30 = −
x2
∗

(x∗ − 1)(1 + x∗)
,

g12 =
2(cx∗ − c + 2x∗)2x∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(x∗ − 1)

, g40 =
1

(x∗ − 1)(1 + x∗)2 ,

g03 =
(cx∗ − c + 2x∗)3x2

∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)2(x∗ − 1)

, h10 = −
2x3
∗

x∗ − 1
,

g22 =
(cx∗ − c + 2x∗)2

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(x∗ − 1)

, h01 =
2x3
∗

x∗ − 1
,

g13 =
2(cx∗ − c + 2x∗)3x∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)2(x∗ − 1)

, h11 = −
2x2
∗

x∗ − 1
,

g04 =
(cx∗ − c + 2x∗)4x2

∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)3(x∗ − 1)

, h02 =
2x2
∗

x∗ − 1
.

Let x2 = y1 and y2 = ẏ1; then, system (4.8) becomes


ẋ2 = y2,

ẏ2 = i20x2
2 + i02y2

2 + i30x3
2 + i21x2

2y2 + i12x2y2
2 + i03y3

2 + i40x4
2 + i31x3

2y2

+i22x2
2y2

2 + i13x2y3
2 + i04y4

2 + o(|x2, y2|
4),

(4.9)

where

i20 = −
2((c + 4)(c + 1)x∗ − c2 + d + 1)x5

∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(x∗ − 1)

, i02 =
5

2x∗
,

i30 = −
2x4
∗Q1

(cx2
∗ + (−c + d − 3)x∗ − d − 1)2(1 + x∗)(x∗ − 1)

,

i21 =
x∗Q2

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(1 + x∗)(x∗ − 1)

, i12 = −
7 + 4x∗

2x2
∗(1 + x∗)

,

i03 = −
x∗ − 1

4x4
∗(1 + x∗)

, i40 = −
2x3
∗Q3

(cx2
∗ + (−c + d − 3)x∗ − d − 1)3(x∗ − 1)(1 + x∗)2 ,

i31 =
2Q4

(cx2
∗ + (−c + d − 3)x∗ − d − 1)2(1 + x∗)2 , i13 =

(x2
∗ + x∗ + 2)(x∗ − 1)

2x6
∗(1 + x∗)2 ,

i22 = −
Q5

2x3
∗(cx2

∗ + (−c + d − 3)x∗ − d − 1)(1 + x∗)2 , i04 = −
(x∗ − 1)2

8x9
∗(1 + x∗)2

,

Q1 = (4c3 + 20c2 + 24c + 8)x4
∗ + (−4c3 + 3c2d − 8c2 + 16cd − 24c + 12d − 20)x3

∗

+(−4c3 − 3c2d − 24c2 + 2cd + 2d2 − 70c − 50)x2
∗ + (4c3 − 3c2d + 9c2

−18cd + d2 − 18c − 22d − 23)x∗ + 3c2d + 3c2 − 3d2 − 6d − 3,
Q2 = (2c2 + 9c + 8)x3

∗ + (−2c2 + 3c + d + 5)x2
∗ + (−2c2 − 12c + 3d − 13)x∗ + 2c2 − 4d − 4,
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Q3 = (7c4 + 39c3 + 72c2 + 56c + 16)x7
∗ + (−7c4 + 9c3d − 26c3 + 45c2d − 63c2 + 60cd − 68c

+24d − 24)x6
∗ + (−14c4 − 9c3d + 3c2d2 − 87c3 − 15c2d + 15cd2 − 234c2 − 30cd + 12d2

−229c − 24d − 68)x5
∗ + (14c4 − 18c3d − 3c2d2 + 51c3 − 96c2d + 3c d2 + d3 + 51c2

−198cd + 3d2 + 87c − 117d + 73)x4
∗ + (7c4 + 18c3d − 6c2d2 + 59c3 + 27c2d − 30c d2

+d3 + 189c2 − 24cd − 33d2 + 342c − 21d + 205)x3
∗ + (−7c4 + 9c3d + 6c2d2 − 27c3

+63c2d − 9c d2 − 2d3 + 9c2 + 150cd − 18d2 + 159c + 114d + 130)x2
∗ + (−9c3d + 3c2d2

−9c3 − 18c2d + 21c d2 − 3d3 − 21c2 + 42cd + 27d2 + 21c + 63d + 33)x∗ − 3c2d2

−6c2d + 3d3 − 3c2 + 9d2 + 9d + 3,
Q4 = (2c3 + 10c2 + 16c + 8)x5

∗ + (c2d + 7c2 + 4cd + 20c + 4d + 12)x4
∗ − (4c3 + 12c2 − 4cd

+12c − 8d + 8)x3
∗ + (−2c2d − 10c2 − 32c + 4d − 28)x2

∗ + (2c3 + 4c2 − 8cd + 2d2 − 8c
−12d − 14)x∗ + c2d + c2 − 2d2 − 4d − 2,

Q5 = (c2 + 4)x4
∗ + (−3c − 4d + 20)x3

∗ + (−2c2 + 6c − 7d + 41)x2
∗ + (−3c + 10d + 14)x∗

+c2 + d + 1.

Let x3 = x2 and y3 = (1 − i02x2)y2; then, system (4.9) becomes
ẋ3 = y3,

ẏ3 = j20x2
3 + j30x3

3 + j21x2
3y3 + j12x3y2

3 + j03y3
3 + j40x4

3 + j31x3
3y3

+ j22x2
3y2

3 + j13x3y3
3 + j04y4

3 + o(|x3, y3|
4),

(4.10)

where
j20 = i20, j30 = 2i02i20 + i30, j21 = i21, j12 = −i2

02 + i12,

j03 = i03, j40 = i2
02i20 − 2i02i30i40, j31 = i21i02 + i31,

j22 = −i3
02 + i22, j13 = i03i02 + i13, j04 = i04.

To delete the y3
3-term, x3y3

3-term and y4
3-term in system (4.10), we do the following two transformations:

x3 = x4 +
j03

2
x2

4y4 +
j13

6
x3

4y4 +
j04

2
x2

4y2
4, y3 = (1 + j03x4y4 +

j13

2
x2

4y4 + j04x4y2
4)y4;

x4 = x5, y4 = y5 +
1
2

j03 j20x4
5.

Hence, system (4.10) becomes ẋ5 = y5,

ẏ5 = m20x2
5 + m30x3

5 + m21x2
5y5 + m12x5y2

5 + m40x4
5 + m31x3

5y5 + m22x2
5y2

5 + o(|x5, y5|
4),

(4.11)

where

m20 = j20, m30 = j30, m21 = j21, m12 = j12, m40 = j40, m31 = j31 − 3 j20 j03, m22 = j22.

Using c
c+2 < x∗ < 1, we have that m20 = −

2((c + 4)(c + 1)x∗ − c2 + d + 1)x5
∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(x∗ − 1)

< 0. Letting

x6 = −x5, y6 =
y5

−
√
−m20

, τ =
√
−m20t,
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system (4.11) becomes (still denoting τ by t) ẋ6 = y6,

ẏ6 = x2
6 + n30x3

6 + n21x2
6y5 + n12x6y2

6 + n40x4
6 + n31x3

6y6 + n22x2
6y2

6 + o(|x6, y6|
4),

(4.12)

where

n30 =
m30

m20
, n21 = −

m21
√
−m20

, n12 = m12, n40 =
m40

m20
, n31 =

m31
√
−m20

, n22 = −m22.

By Lemma 4.2, system (4.12) is equivalent to the following system: Ẋ = Y,

Ẏ = X2 +GX3Y + o(|X,Y |4),

where

G =

√
2((c + 4)(c + 1)x∗ − c2 + d + 1)x∗

(cx2
∗ + (−c + d − 3)x∗ − d − 1)(x∗ − 1)

δ(x∗)

4((c + 4)(c + 1)x∗ − c2 + d + 1)2(cx2
∗ + (−c + d − 3)x∗ − d − 1)2(1 + x∗)2x3

∗

and

δ(x∗) =
9∑

i=0

Pixi
∗;

here, the coefficients of Pi, i = 0, · · · , 9 are given in Appendix A.
Using c

c+2 < x∗ < 1, the sign of G is determined by δ(x∗). By computation, we have that δ( c
c+2 ) =

(16(29c2+80c+56))(3c2+cd+5c+2d+2)4

(c+2)9 > 0 and δ(1) = 384c + 128d + 384 > 0. Using Lemma 3.1 in [29], the
number of roots for δ(x∗) in c

c+2 < x∗ < 1 is equal to that of positive roots for

µ(x∗) = (1 + x∗)9δ

(
cx∗ + c + 2

(c + 2)(1 + x∗)

)
=

16
(c + 2)9

9∑
i=0

Mixi
∗

in c
c+2 < x∗ < 1, and the coefficients of Mi, i = 0, · · · , 9 are given in Appendix A. Obviously, Mi, i =

0, · · · , 9 are positive. Hence, µ(x∗) > 0 in c
c+2 < x∗ < 1, which implies that δ(x∗) has no positive zeros

in c
c+2 < x∗ < 1. Then, δ(x∗) , 0, that is G , 0 in c

c+2 < x∗ < 1, which means that E∗ is a cusp of
codimension three (see Figure 4(d)). The proof is completed.

Theorem 4.6. Assume that q0 < r − d < q and F(x∗) < 0; system (1.4) has two positive equilibria
E3(x3, y3) and E4(x4, y4), where E3 is always a saddle point. Moveover,

1) if q <
(x4 + s)(1 + x4)2

x4
, E4 is a stable node or focus;

2) if q >
(x4 + s)(1 + x4)2

x4
, E4 is an unstable node or focus;

3) if q =
(x4 + s)(1 + x4)2

x4
, E4 is a center or weak focus.
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Proof. It is clear that F′(x3) < 0 and F′(x4) > 0 (see Figure 3(e)). Combining (3.2) again, we have
that DetJE3 < 0 and DetJE4 > 0. Thus, E3 is a saddle point.
In what follows, we consider that

TrJE4 =
x2

4
[
q − (x4 + 1)2]
(1 + x4)2 − sx4.

When TrJE4 < 0, E4 is a stable node or focus; when TrJE4 > 0, E4 is an unstable node or focus; when
TrJE4 = 0, E4 is a center or weak focus. The proof is completed.

5. Bifurcation

We will analyze the bifurcations of system (1.4) in this section, including saddle-node bifurcation,
Hopf bifurcation and Bogdanov-Takens bifurcation.

5.1. Saddle-node bifurcation

From Lemma 3.1, when 1 < r − d < q < q∗, system (1.4) has two boundary equilibria E1(x1, 0) and
E2(x2, 0). However, when q = qS N = q∗, only the boundary equilibrium E exists. Therefore, according
to Sotomayor’s theorem [28], system (1.4) will produce a saddle-node bifurcation at E.

Theorem 5.1. Assume that 1 < r − d < q, with q = qS N being the bifurcation parameter; then, system
(1.4) will undergo saddle-node bifurcation at E.

Proof. The eigenvalues of JE are λ1 = 0 and λ2 =
s(r − d − 1)

2
. Denote the eigenvectors of JE and JT

E
as

V =
(

1
0

)
and

W =

 1
(rk + c)(r − d − 1)

2

 ,
respectively.
Denote

F(x, y) =
(
F1(x, y)
F2(x, y)

)
=

x2

(
r

1 + ky
− d − x − cy

)
−

qx2

1 + x
sy(x − y)

 .
Then,

Fq(E; qS N) =

 − (r − d − 1)2

2(r − d + 1)
0

 ,
D2F(E; qS N)(V,V) =

 − (r − d − 1)2

r − d + 1
0

 .
Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592–18629.
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It is easy to know that

WT Fq(E; qS N) = −
(r − d − 1)2

2(r − d + 1)
, 0,

WT [D2F(E; qS N)(V,V)
]
= −

(r − d − 1)2

r − d + 1
, 0.

This proves the transversality conditions, which means that system (1.4) will undergo saddle-node
bifurcation at E. The proof is completed.

Similarly, it follows from Lemma 3.2 that a saddle-node bifurcation occurs at the positive equilib-
rium E∗.

Theorem 5.2. Assume that q0 < r − d < q and F(x∗) = 0; system (1.4) will undergo saddle-node
bifurcation at E∗.

5.2. Hopf bifurcation

It follows from Theorem 4.6 that, if q = (x4+s)(1+x4)2

x4
, then TrJE4 = 0. Noting that DetJE4 > 0, the

Jacobian matrix of E4 has a pair of purely imaginary eigenvalues. Thus, system (1.4) may undergo
Hopf bifurcation at E4.

For simplicity, similar to the analyses of Dai et al. [30] and Lu et al. [31], we prove the Hopf
bifurcation. Letting

x̃ =
x
x4
, ỹ =

y
y4
, t̃ = x2

4 t, r̃ =
r
x4
, k̃ = k x4,

d̃ =
d
x4
, c̃ = c, α̃ =

1
x4
, q̃ =

q
x2

4

, s̃ =
s
x4
,

and by dropping the tilde, system (1.4) becomes

ẋ = x2
(

r
1 + ky

− d − x − cy
)
−

qx2

α + x
,

ẏ = sy (x − y) ,
(5.1)

where r > d and the other parameters are positive.
Clearly, Ẽ4(1, 1) is an equilibrium of system (5.1), which implies that

r =
[
(c + d + 1)(α + 1) + q

]
(k + 1)

α + 1
.

Define

q̃0 =
α
[
(k + 1)(c + 1) + dk

]
(α + 1)

(1 − αk)
,

q̃1 =
(α + 1)2[(2k + 1)(c + 1) + dk

]
(1 − αk)

.

Assume that system (5.1) has another positive equilibrium Ẽ3(x̃3, ỹ3). By computation, x̃3 satisfies the
following equation:

(x − 1)Φ(x) = 0,

where

Φ(x) = k(c + 1)(α + 1)x2 + (α + 1)
[
(c + 1)(αk + k + 1) + dk

]
x + (1 − αk)(q̃0 − q).
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Note that x̃3 < 1 is a unique positive root of Φ(x), which implies that αk < 1 and q̃0 < q. Also,
substituting x = 1 into Φ(x), we have

Φ(1) = (1 − αk)(q̃1 − q) > 0,

that is, αk < 1 and q < q̃1.
The Jacobian matrix of system (5.1) at Ẽ4 is

JẼ4
=

 −1 +
q

(α + 1)2

[
(−2c − d − 1)α − 2c − d − q − 1

]
k − c(α + 1)

(k + 1)(α + 1)
s −s

 ,
and

DetJẼ4
=

s(1 − αk)(q̃1 − q)
(α + 1)2(k + 1)

, TrJẼ4
=

q − q̃
(α + 1)2 ,

where
q̃ = (s + 1)(α + 1)2.

We have the following results.

Theorem 5.3. Assuming that αk < 1 and q̃0 < q < q̃1, system (5.1) has the equilibrium Ẽ4(1, 1).
Moveover,

1) Ẽ4(1, 1) is a stable hyperbolic node or focus if q < q̃;
2) Ẽ4(1, 1) is an unstable hyperbolic node or focus if q > q̃;
3) Ẽ4(1, 1) is a fine focus or center if q = q̃.

Now, we will study the Hopf bifurcation around Ẽ4 in system (5.1). Obviously, the transversality
condition

dTrJẼ4

dq

∣∣∣∣
q=q̃
=

1
(α + 1)2 , 0

holds. Then, we can determine the stability of the limit cycle around Ẽ4 by calculating the first Lya-
punov number. First, using the transformation (x̃, ỹ) = (x − 1, y − 1), the Taylor expansion of system
(5.1) at the origin takes the following form: ˙̃x = ã10 x̃ + ã01ỹ + ã20 x̃2 + ã11 x̃ỹ + ã02ỹ2 + ã30 x̃3 + ã21 x̃2ỹ + ã12 x̃ỹ2 + ã03ỹ3 + o(|x̃, ỹ|2),

˙̃y = b̃10 x̃ + b̃01ỹ + b̃20 x̃2 + b̃11 x̃ỹ + b̃02ỹ2,
(5.2)

where

ã10 = s, ã01 =

[
(−s − 1)α − 2c − d − s − 2

]
k − c

k + 1
, ã20 =

2sα + s − 1
α + 1

,

ã11 =

[
(−2s − 2)α − 4c − 2d − 2s − 4

]
k − 2c

k + 1
, ã02 =

(sα + α + c + d + s + 2)k2

(k + 1)2

ã30 =
α2s − 2α − 1

(α + 1)2 , ã21 =

[
(−s − 1)α − 2c − d − s − 2

]
k − c

k + 1
,

ã12 =
2(sα + α + c + d + s + 2)k2

(k + 1)2 , ã03 = −
(sα + α + c + d + s + 2)k3

(k + 1)3 ,

b̃10 = s, b̃01 = −s, b̃20 = 0, b̃11 = s, b̃02 = −s.
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Next, using the transformation (ũ, ṽ) =
(
−x̃,

ã10 x̃ + ã01ỹ
√

D

)
, where D = ã10b̃01 − ã01b̃10 = DetJẼ4

> 0,

system (5.2) becomes ˙̃u = −
√

Dṽ + c̃20ũ2 + c̃11ũṽ + c̃02ṽ2 + c̃30ũ3 + c̃21ũ2ṽ + c̃12ũṽ2 + c̃03ṽ3 + o(|ũ, ṽ|3),
˙̃v =
√

Dũ + d̃20ũ2 + d̃11ũṽ + d̃02ṽ2 + d̃30ũ3 + d̃21ũ2ṽ + d̃12ũṽ2 + d̃03ṽ3 + o(|ũ, ṽ|3),
(5.3)

where the coefficients are given in Appendix B.
According to the results of [26], the first-order Lyapunov number can be written as

l1 =
γ1k2 + γ2k + γ3

8
[
(αs + α + 2c + d + s + 2)k + c

]
(α + 1)2(k + 1)D

,

where

γ1 = (s3 + 2s2 + s)α4 + (4c s2 + 2d s2 + 4cs + 2ds − 2s2 − 6s − 4)α3

+(4c2s + 4cds − 5c s2 + d2s − 2d s2 − 2s3 − 16cs − 8ds − 15s2

−16c − 8d − 29s − 17)α2 + (−8c2s − 8cds − 6c s2 − 2d2s − 3d s2

−s3 − 16c2 − 16cd − 32cs − 4d2 − 17ds − 9s2 − 36c − 18d − 24s − 18)α
+c s2 − 4c2 − 4cd + 2cs − d2 + s2 − 4c − 2d + 2s,

γ2 = (2c s2 − s3 + 2cs − s2)α3 + (4c2s + 2cds − 5c s2 − d s2 − 8cs + 2s2 − 8c + 3s)α2

+(−8c2s − 4cds − c s2 + d s2 + 2s3 − 16c2 − 8cd − 9cs + 3ds + 10s2 − 18c + 12s
+2)α + 3c s2 + d s2 + s3 − 4c2 − 2cd + 10cs + 4ds + 6s2 + 2c + 2d + 10s + 4,

γ3 = (c2s − c s2)α2 + (−2c2s + c s2 − 4c2 + 3cs)α + c s2 − c2 + 4cs + 2c.

Thus, we can obtain the following theorem about the Hopf bifurcation.

Theorem 5.4. If αk < 1, q̃0 < q < q̃1 and q = q̃, then the following statements hold.

1) If l1 > 0, then system (5.1) undergoes subcritical Hopf bifurcation and an unstable limit cycle comes
out around Ẽ4.

2) If l1 < 0, then system (5.1) undergoes supercritical Hopf bifurcation and a stable limit cycle appears
around Ẽ4.

3) If l1 = 0, then system (5.1) undergoes a degenerate Hopf bifurcation and multiple limit cycles may
appear around Ẽ4.

By numerical simulation, we show the existence of limit cycles. Letting k = 0.1, α = 1, d = 1, c =
1, s = 1, q = 8 and r = 7.7, we have that l1 = 0.001984126984. We perturb q to q = 8 − 0.005;
then, there exists an unstable limit cycle around Ẽ4 (see Figure 5(a),(b)). On the other hand, letting
k = 0.1, α = 1, d = 1, c = 1, s = 0.7, q = 6.8 and r = 7.04, we obtain that l1 = −0.06095323795. We
perturb q to q = 6.8 + 0.03; then, there exists a stable limit cycle around Ẽ4 (see Figure 5(c),(d)).

Now, we give an example to illustrate the existence of two limit cycles. The parameters are given
as follows:

d = 1, c = 1, s = 1, α =
1
2
, k =

7
116
+

3
√

57
116

, r =
369
58
+

9
√

57
58
, q =

9
2
,

where l1 = 0. We perturb k and q to k = 7
116 +

3
√

57
116 + 0.03 and q = 9

2 + 0.01. Hence, system (5.1)
undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one is stable and the outer
is unstable) around Ẽ4 (Figure 5(e),(f)).

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18592–18629.



18616

Remark 5.1. In Figure 5(a),(b), the origin is a stable node and the boundary equilibria are unstable.
In addition, system (5.1) has two positive equilibria, where Ẽ3 is a saddle point and Ẽ4 is a stable
point, and an unstable limit cycle appears around Ẽ4. The orbits of the phase portraits reveal that the
prey and predator tend to coexistent in steady states only when the initial values of system (5.1) lie
inside the unstable limit cycle; otherwise, the prey and predator become extinct.

In Figure 5(c),(d), in addition to the origin being stable, the other two boundary equilibria and
the two positive equilibria are unstable. System (5.1) has a stable limit cycle that appears around Ẽ4.
When the initial values lie to the right of the two stable invariant manifolds of the saddle, the prey and
predator tend to coexist in periodic orbits. In addition, when the initial values lie to the left of the two
stable invariant manifolds of the saddle, the prey and predator tend to go extinct.

Figure 5(e),(f) show that system (5.1) undergoes a degenerate Hopf bifurcation and has two limit
cycles (the inner one is stable and the outer is unstable) around Ẽ4. Prey and predator will oscillate
and coexist if the initial values lie inside of the unstable limit cycle, while the prey and predator will
become extinct if the initial values lie outside of the unstable limit cycle.

5.3. Bogdanov-Takens bifurcation

From Theorem 4.5(1), the unique positive equilibrium E∗ of system (1.4) is a cusp of codimension
two, which means that a Bogdanov-Takens bifurcation of codimension two may occur. Hence, using q
and s as the bifurcation parameters, system (1.4) becomes

ẋ = x2

(
r

1 + ky
− d − x − cy

)
−

(q + λ1)x2

1 + x
,

ẏ = (s + λ2)y (x − y) ,
(5.4)

where λ = (λ1, λ2) is a parameter vector in a small neighborhood of the origin.

Theorem 5.5. Assuming that the conditions of Theorem 4.5 (1) hold, system (1.4) undergoes a
Bogdanov-Takens bifurcation of codimension two around E∗.

Proof. First, by initiating the transformation x1 = x − x∗ and y1 = y − y∗ to move the positive
equilibrium E∗ to the origin, system (5.4) becomes ẋ1 = g00 + g10x1 + g01y1 + g20x2

1 + g11x1y1 + g02y2
2 + o(|x1, y1|

2),

ẏ1 = h00 + h10x1 + h01y1 + h20x2
1 + h11x1y1 + h02y2

1 + o(|x1, y1|
2),

(5.5)

where

g00 = −
x2
∗λ1

1 + x∗
, g10 =

[
sx2
∗ + (2s − λ1)x∗ + s − 2λ1

]
x∗

(1 + x∗)2 , g01 = sx∗,

g20 =
−x4
∗ + (s − 2)x3

∗ + (4s − 1)x2
∗ + 5sx∗ + 2s − λ1

(1 + x∗)3 , g11 = −2s,

g02 =
(cx∗ − s)2x∗[

(c + 2)x2
∗ + (d + s + 1)x∗ + s

] , h00 = 0, h10 = (s + λ2)x∗,

h01 = −(s + λ2)x∗, h20 = 0, h11 = s + λ2, h02 = −s − λ2.
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Figure 5. (a) An unstable limit cycle appears in system (5.1) with k = 0.1, α = 1, d = 1, c =
1, s = 1, q = 8−0.005, r = 7.7. (b) The local amplified phase portrait of (a). (c) A stable limit
cycle appears in system (5.1) with k = 0.1, α = 1, d = 1, c = 1, s = 0.7, q = 6.8 + 0.03, r =
7.04. (d) The local amplified phase portrait of (c). (e) Two limit cycles (the inner one is
stable and the outer is unstable) appear in system (5.1) with d = 1, c = 1, s = 1, α = 1

2 , k =
7

116 +
3
√

57
116 + 0.03, r = 369

58 +
9
√

57
58 , q =

9
2 + 0.01. (f) The local amplified phase portrait of (e).
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Second, letting
x2 = y1,

y2 = h10x1 + h01y1 + h20x2
1 + h11x1y1 + h02y2

1,

system (5.5) can be written as follows:{
ẋ2 = y2,

ẏ2 = j00 + j10x2 + j01y2 + j20x2
2 + j11x2y2 + j02y2

2 + o(|x2, y2|
2),

(5.6)

where
j00 = g00h00, j10 = g00h11 + g01h10 − g10h01, j01 = g10h01,

j20 =
g01h10h11 + g02h2

10 − g10h02h10 − g11h01h10 + g20h2
01

h10
,

j11 =
g11h10 − 2g20h01 − h11h01 + 2h10h02

h10
, j02 =

g20 + h11

h10
.

Taking a new time variable τ with dt = (1 − j02x2)dτ and x3 = x2, y3 = (1 − j02x2)y2, system (5.6)
becomes {

ẋ3 = y3,

ẏ3 = k00 + k10x3 + k01y3 + k20x2
3 + k11x3y3 + k02y2

3 + o(|x3, y3|
2),

(5.7)

where
k00 = j00, k10 = −2 j00 j02 + j10, k01 = j01,

k20 = j00 j2
02 − 2 j02 j10 + j20, k11 = − j11, k02 =

g20 + h11

h10
.

From the proof of Theorem 4.4, we have

k20

∣∣∣∣
λ1=λ2=0

=
sx3
∗T1[

(c + 2)x2
∗ + (d + s + 1)x∗ + s

]
(1 + x∗)

< 0,

where T1 is defined in Theorem 4.4. Letting

x4 = x3, y4 =
y3
√
−k20

, τ =
√
−k20t,

system (5.7) becomes{
ẋ4 = y4,

ẏ4 = m00 + m10x4 + m01y4 − x2
4 + m11x4y4 + o(|x4, y4|

2),
(5.8)

where

m00 = −
k00

k20
, m10 = −

k10

k20
, m01 =

k01
√
−k20
, m11 =

k11
√
−k20
.

Next, letting x5 = x4 −
m10

2
and y5 = y4, system (5.8) is equivalent to the following system:

 ẋ5 = y5,

ẏ5 = n00 + m01y5 − x2
5 + n11x5y5 + o(|x5, y5|

2),
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where

n00 = m00 +
m2

10

4
, n01 = m01 +

m11m10

2
, n11 = m11.

From the proof of Theorem 4.4, we obtain

n11

∣∣∣∣
λ1=λ2=0

=

√
−

(2x2
∗ + sx∗ − s)2[(c + 2)x2

∗ + (d + s + 1)x∗ + s
]

T1(1 + x∗)sx3
∗

, 0.

Finally, letting

x6 = −n2
11x5, y6 = −n3

11y5, τ = −
1

n11
t,

we obtain the universal unfolding of system (5.4) as follows:{
ẋ6 = y6,

ẏ6 = µ1 + µ2y6 + x2
6 + x6y6 + o(|x6, y6|

2),

where
µ1 = −n00n4

11, µ2 = −n01n11.

Using Maple software, we have∣∣∣∣∣∂(µ1, µ2)
∂(λ1, λ2)

∣∣∣∣∣
λ1=λ2=0

= −

[
(c + 2)x2

∗ + (d + s + 1)x∗ + s
]4(2x2

∗ + sx∗ − s)5

s3x8
∗(1 + x∗)2T 4

1

, 0.

By the results in [28], system (1.4) undergoes a Bogdanov-Takens bifurcation of codimension two.
The proof is completed.

The local expression of the bifurcation curves are given in [28] as follows:

(i) The saddle-node bifurcation curve

S N = {(λ1, λ2) : µ1(λ1, λ2) = 0, µ2(λ1, λ2) , 0};

(ii) The Hopf bifurcation curve

H =
{
(λ1, λ2) : µ1(λ1, λ2) < 0, µ2(λ1, λ2) =

√
−µ1(λ1, λ2)

}
;

(iii) The homoclinic curve

HL =
{

(λ1, λ2) : µ1(λ1, λ2) < 0, µ2(λ1, λ2) =
5
7

√
−µ1(λ1, λ2)

}
.

In what follows, we present the phase diagrams of system (5.4), as obtained by some numerical simu-
lations. Choosing c = 2, d = 1, s = 4, q = 20, k = 1

6 and r = 49
3 , and from Theorem 4.5(1), E∗(1, 1) is a

cusp of codimension two. Figure 6 shows that system (1.4) undergoes a Bogdanov-Takens bifurcation
of codimension two.
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Figure 6. Phase portraits of system (5.4). (a) A cusp of codimension two when (λ1, λ2) =
(0, 0). (b) No positive equilibria when (λ1, λ2) = (0.011,−0.08). (c) An unstable focus when
(λ1, λ2) = (−0.001,−0.08). (d) An unstable limit cycle when (λ1, λ2) = (−0.028,−0.08).
(e) An unstable homoclinic loop when (λ1, λ2) = (−0.033,−0.08). (f) A stable focus when
(λ1, λ2) = (−0.06,−0.08).

6. Conclusions

In this paper, we consider a Leslie-Gower predator-prey model with the fear effect and nonlinear
harvesting. Fear of predator and nonlinear harvesting are the main factors affecting the dynamic behav-
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ior of system (1.4). Via numerical simulations, we show the influences of the fear effect and nonlinear
harvesting on the dynamic behavior of system (1.4).

First, let c = 0.1, d = 0.1, s = 0.04, q = 2 and r = 2. When k = 0.06, system (1.4) has no
positive equilibrium (see Figure 7(a)). In a biological sense, the prey and predator will become extinct
when the fear effect is large. When k = 0.053, system (1.4) has two positive equilibria, where E3 is a
saddle and E4 is an unstable node (see Figure 7(b)). Hence, in this case, the prey and predator are still
extinct. When k = 0.05, E4 becomes a stable node, and an unstable limit cycle appears around E4 (see
Figure 7(c)). Then, for system (1.4), a bistable phenomenon occurs, in which the prey and predator
tend to steady states (or extinction), depending on the initial values lying inside (or outside) of the
unstable limit cycle. When k = 0.03, E4 is still a stable node and an unstable limit cycle disappears
(see Figure 7(d)). Then, the prey and predator will survive or become extinct depending on the two
stable manifolds of the saddle that act as a separatrix curve. When k = 0, that is, without the fear effect,
the dynamic behavior of system (1.4) is similar to that shown in Figure 7(d) (see Figure 7(e)). Figure
7 shows that the prey and predator may survive or become extinct when the fear effect is small. With
the increase of the fear effect, the survival area of species decreases, until finally, the prey and predator
will become extinct if the fear effect is strong enough. Hence, a strong fear effect is not conducive to
the survival of the species.

Second, we consider the impact of nonlinear harvesting on system (1.4). Let c = 0.1, d = 0.1, s =
0.1, k = 0.1 and r = 3. When q = 3.5, system (1.4) has no positive equilibrium and the origin is globally
asymptotically stable (see Figure 8(a)). When q = 3.3, system (1.4) has two positive equilibria, where
E3 is a saddle and E4 is an unstable node (see Figure 8(b)). In this case, the prey and predator are still
extinct. When q = 3.287, system (1.4) has an unstable limit cycle and there is a bistable phenomenon
(see Figure 8(c)). That is, an unstable limit cycle acts as a separatrix curve, where the prey and predator
will become extinct or survive. When q = 3.283, there exists an unstable homoclinic loop in system
(1.4) (see Figure 8(d)). When q = 3.26, the unstable limit cycle and homoclinic loop disappear. Hence,
the prey and predator will tend to steady states (or extinction) if the initial values lies to the right (or
left) of the two stable manifolds of the saddle (see Figure 8(e)). When q = 0, that is, without nonlinear
harvesting, system (1.4) has only one positive equilibrium, which is globally asymptotically stable
(see Figure 8(f)). This shows that overfishing can lead to the extinction of the predator and prey, so,
maintaining proper harvesting can help the survival of the prey and predator.

By conducting numerical simulations, we were able to clearly observe that, when k ≤ 0.05 and
q ≤ 3.281, the prey and predator tend to coexist around the stable positive equilibrium E4. In other
words, by effectively controlling the harvesting, we can ensure that the prey’s fear of being caught
remains within a smaller range, which benefits the survival of both populations. That is, weaker fear
effects and less capture are beneficial to the survival of both predator and prey. We have conducted
a theoretical analysis of system (1.4) and obtained some conclusions. However, when it comes to
solving practical problems, there are many external factors. The actual application of the model may
be difficult to achieve in the short term.

When r − d > q, the origin is a repeller, the only boundary equilibrium is a saddle point and
the unique positive equilibrium may be stable or unstable. From Remark 4.1, the unique positive
equilibrium is globally asymptotically stable if q < 1. Then, the prey and predator will tend to a
positive coexistent steady state if the birth rate of the prey is high and the catchability coefficient is
small. When r − d = q ≤ q0, from Remark 4.2, the origin is globally asymptotically stable, which
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Figure 7. Phase portraits of system (1.4) with c = 0.1, d = 0.1, s = 0.04, q = 2, r = 2.

implies that the prey and predator will become extinct. When r − d = q > q0 or r − d < q, system (1.4)
may have zero, one or two positive equilibria, and these equilibria may be stable or unstable. We show
that the unique equilibrium E∗ is a saddle-node or a cusp of codimension two (or three). Moveover,
system (1.4) undergoes saddle-node bifurcation and Bogdanov-Takens bifurcation around E∗. Also,
system (1.4) undergoes a degenerate Hopf bifurcation and multiple limit cycles may appear around Ẽ4.
In Figure 5, we show that system (1.4) has two limit cycles (the inner one is stable and the outer is
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Figure 8. Phase portraits of system (1.4) with c = 0.1, d = 0.1, s = 0.1, k = 0.1, r = 3.

unstable) around Ẽ4, which implies the bistable phenomenon. That is a large amount of fear and prey
harvesting are detrimental to the survival of the prey and predator. Additionally, the prey and predator
will reach a steady state if the intrinsic growth rate of the prey is high and the catchability coefficient
for the prey is low. However, the prey and predator will become extinct if the intrinsic growth rate for
the prey and the catchability coefficient for the prey are small.

In [9], the authors studied the stability of the equilibria and demonstrated that there exists a limit
cycle in system (1.1). Considering the Holling type II functional response, [10] showed that a unique
equilibrium is a cusp of codimension two and a limit cycle appears. Unlike [9, 10], we show that a
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unique equilibrium is a cusp of codimension three and confirm the occurrence of Bogdanov-Takens
bifurcation. We have found that system (1.4) has two limit cycles (the inner one is stable and the outer
is unstable), which exhibit the bistable phenomenon. Also, we have proven that the origin and equi-
librium are globally asymptotically stable under some conditions. The strong fear effect and nonlinear
harvesting are not conducive to the survival of the species. These indicate that the dynamic behavior
of system (1.4) is more complex than that of the systems in [9, 10].
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Appendix A. Coefficients in the proof of Theorem 4.5
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+ 3264d + 1978,
P3 = −177c6 + 100c5d + 115c4d2 − 1158c5 + 1979c4d − 63c3d2 − 74c2d3 − 2064c4 + 7346c3d

− 2310c2d2 + 16cd3 + 26d4 + 1169c3 + 9954c2d − 5080cd2 + 36d3 + 8734c2 + 5536cd − 3024d2
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+ 10632c + 1116d + 4150,
P4 = 70c6 + 350c5d − 130c4d2 + 1427c5 + 883c4d − 1098c3d2 + 36c2d3 + 6845c4 − 2440c3d

− 2088c2d2 + 344cd3 − 6d4 + 13906c3 − 12212c2d − 1692cd2 + 380d3 + 13912c2 − 16064cd

− 696d2 + 6964c − 6780d + 1470,
P5 = 275c6 − 380c5d − 11c4d2 + 1227c5 − 3244c4d + 372c3d2 + 55c2d3 + 395c4 − 9320c3d

+ 2241c2d2 + 72cd3 − 6d4 − 7492c3 − 12879c2d + 3884cd2 + 44d3 − 18425c2 − 9696cd

+ 1992d2 − 17220c − 3276d − 5730,
P6 = −290c6 − 46c5d + 66c4d2 − 2724c5 + 672c4d + 567c3d2 − 31c2d3 − 9888c4 + 4870c3d

+ 1203c2d2 − 148cd3 − 18717c3 + 11647c2d + 1224cd2 − 124d3 − 21411c2 + 11340cd

+ 540d2 − 14416c + 3820d − 4268,
P7 = −43c6 + 204c5d − 23c4d2 + 312c5 + 1603c4d − 303c3d2 + 3204c4 + 4450c3d − 1116c2d2

+ 9837c3 + 6564c2d − 1420cd2 + 13344c2 + 5192cd − 576d2 + 8084c + 1664d + 1728,
P8 = 162c6 − 70c5d + 1355c5 − 761c4d + 4549c4 − 2836c3d + 8456c3 − 4580c2d + 9068c2

− 3328cd + 5120c − 896d + 1152,
P9 = −(c + 1)(55c5 + 530c4 + 1812c3 + 2752c2 + 1920c + 512),
M0 = 8(c + 2)9(3c + d + 3),
M1 = 4(c + 2)8(533c2 + 184cd + 15d2 + 1106c + 196d + 573),
M2 = 2(c + 2)7(9109c3 + 4629c2d + 751cd2 + 39d3 + 28867c2 + 10354cd + 891d2 + 30371c + 5737d

+ 10613),
M3 = (c + 2)6(69015c4 + 45510c3d + 10460c2d2 + 970cd3 + 29d4 + 289652c3 + 154958c2d + 25896cd2

+ 1334d3 + 454154c2 + 174818cd + 15852d2 + 315428c + 65354d + 81911),
M4 = 2(c + 2)5(73321c5 + 58214c4d + 16620c3d2 + 2014c2d3 + 87cd4 + 378112c4 + 263852c3d

+ 62784c2d2 + 5788cd3 + 156d4 + 776396c3 + 445684c2d + 78358cd2 + 4098d3 + 793634c2

+ 332644cd + 32310d2 + 403923c + 92598d + 81894),
M5 = (c + 2)4(189851c6 + 173592c5d + 57866c4d2 + 8320c3d3 + 435c2d4 + 1150784c5 + 976160c4d

+ 293568c3d2 + 36592c2d3 + 1560cd4 + 2891094c4 + 2177892c3d + 552334c2d2 + 52892cd3

+ 1392d4 + 3853380c3 + 2410536c2d + 457164cd2 + 25160d3 + 2873687c2 + 1324004cd

+ 140568d2 + 1136796c + 288792d + 186328),
M6 = 2(c + 2)3(3c2 + cd + 5c + 2d + 2)(25505c5 + 17632c4d + 3965c3d2 + 290c2d3 + 134140c4

+ 83604c3d + 16324c2d2 + 980cd3 + 280723c3 + 147364c2d + 22110cd2 + 824d3 + 292258c2

+ 114464cd + 9852d2 + 151382c + 33072d + 31212)
M7 = (c + 2)2(8325c4 + 3848c3d + 435c2d2 + 36898c3 + 14820c2d + 1380cd2 + 61025c2 + 18844cd

+ 1092d2 + 44632c + 7896d + 12180)(3c2 + cd + 5c + 2d + 2)2,

M8 = 2(c + 2)(377c3 + 87c2d + 1355c2 + 258cd + 1618c + 192d + 640)(3c2 + cd + 5c + 2d + 2)3,

M9 = (29c2 + 80c + 56)(3c2 + cd + 5c + 2d + 2)4.
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Appendix B. Coefficients of system (5.3)

c̃20 =
n1k2 + n2k + c2s + c2

(α + 1)(αks + αk + 2ck + dk + ks + c + 2k)2 ,

c̃11 =
2
√

D
[
n3k2 + (2αcs + 2αc + 4c2 + 2cd + 2cs + 4c)k + c2]

(αks + αk + 2ck + dk + ks + c + 2k)2 ,

c̃02 = −
(αs + α + c + d + s + 2)k2D

(αks + αk + 2ck + dk + ks + c + 2k)2 ,

c̃30 = −
n4k3 + n5k2 + n6k + c3(s + 1)(2α + 1)

(α + 1)2(αks + αk + 2ck + dk + ks + c + 2k)3 ,

c̃21 = −

√
D
[
n7k3 + n8k2 + 3c2(αs + α + 2c + d + s + 2)k + c3]

(αks + αk + 2ck + dk + ks + c + 2k)3 ,

c̃12 =
(sα + α + c + d + s + 2)k2(2αks + 2αk + 4ck + 2dk − ks + 2c + 4k)D

(αks + αk + 2ck + dk + ks + c + 2k)3 ,

c̃03 = −
(sα + α + c + d + s + 2)k3D

3
2

(αks + αk + 2ck + dk + ks + c + 2k)3 ,

d̃20 = −
n9k2 + n10k + αc2s − αc s2 + 2c2s − c s2 + c2

√
D (α + 1)(αks + αk + 2ck + dk + ks + c + 2k)2

,

d̃11 = −
[n11k2 + n12k + 3c2 − 2cs]s

(αks + αk + 2ck + dk + ks + c + 2k)2 ,

d̃02 =

√
Ds[(2αs + 2α + 3c + 2d + 2s + 4)k2 + (αs + α + 3c + d + s + 2)k + c]

(αks + αk + 2ck + dk + ks + c + 2k)2 ,

d̃30 =
s
[
n4k3 + n5k2 + n6k + c3(s + 1)(2α + 1)

]
√

D(α + 1)2(αks + αk + 2ck + dk + ks + c + 2k)3
,

d̃21 =
s
[
n13k3 + n14k2 + 3c2(αs + α + 2c + d + s + 2)k + c3]

(αks + αk + 2ck + dk + ks + c + 2k)3 ,

d̃12 = −
s(sα + α + c + d + s + 2)k2(2αks + 2αk + 4ck + 2dk − ks + 2c + 4k)

√
D

(αks + αk + 2ck + dk + ks + c + 2k)3 ,

d̃03 =
s(sα + α + c + d + s + 2)k3D

(αks + αk + 2ck + dk + ks + c + 2k)3 ,

n1 = (2s2 + 3s + 1)α2 + (3s2c + d s2 + 8sc + 4ds + 5s2 + 4c + 2d + 10s + 4)α + 4c2s + 4cds + 3s2c

+ d2s + d s2 + 4c2 + 4dc + 12sc + d2 + 6ds + 3s2 + 8c + 4d + 8s + 4,

n2 = (2s2c + 4sc + 2c)α + 4c2s + 2cds + 2s2c + 4c2 + 2dc + 6sc + 4c,
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n3 = (s2 + 2s + 1)α2 + (4cs + 2ds + s2 + 4c + 2d + 5s + 4)α + 4c2 + 4dc + 3cs + d2 + ds + 8c + 4d

+ 2s + 4,
n4 = (4s3 + 10s2 + 8s + 2)α4 + w1α

3 + w2α
2 + w3α + w4,

n5 = 2c(s + 1)(2s2 + 6s + 3)α3 + w5α
2 + w6α + c s3 + (10c2 + 4cd + 11c)s2 + (12c3 + 12c2d + 3c d2

+ 36c2 + 18cd + 24c)s + 12c3 + 12c2d + 3c d2 + 24c2 + 12cd + 12c,

n6 = 6c2(s + 1)2α2 + 3c2(s + 1)(3s + 4c + 2d + 5)α + 3c2(s + 1)(s + 2c + d + 2),
n7 = (s + 1)3α3 + (s + 1)2(6c + 3d − s + 6)α2 + (s + 1)(12c2 + 12cd + 3d2 − 2ds − 2s2 + 24c + 12d

− 4s + 12)α + 8c3 + (12d + 4s + 24)c2 + (6d2 − 3s2 + 24d + 24)c + (d + 2)(d + s + 2)(d − 2s + 2),
n8 = 3c(s + 1)2α2 + 2c(s + 1)(s + 6c + 3d + 6)α + 12c3 + (12d + 8s + 24)c2 + (d + s + 2)(3d − s + 6)c,
n9 = s(s + 1)2α3 + (s + 1)(4cs + 2ds + 2s2 + 7s + 1)α2 + (s3 + (9c + 4d + 12)s2 + (4c2 + 4cd + d2

+ 20c + 10d + 18)s + 4c + 2d + 4)α + (5c + 2d + 5)s2 + 2(2c + d + 3)(2c + d + 2)s + (2c + d + 2)2,

n10 = s(s + 1)(−s + 2c)α2 + (−2s3 + (3c − d − 3)s2 + (4c2 + 2cd + 10c)s + 2c)α + (8s + 4)c2 + (4ds

+ s2 + 2d + 10s + 4)c − s2(d + s + 2),
n11 = 3(s + 1)2α2 + 2(s + 1)(s + 6c + 3d + 6)α + 12c2 + (12d + 6s + 24)c + (d + s + 2)(3d − s + 6),
n12 = 2(s + 1)(−s + 3c)α + 12c2 + (6d + 12)c − 2s(d + s + 2),
n13 = (s + 1)3α3 + (s + 1)2(6c + 3d − s + 6)α2 + w7α + w8,

n14 = 3c(s + 1)2α2 + 2c(s + 1)(s + 6c + 3d + 6)α + 12c3 + (12d + 8s + 24)c2 + (d + s + 2)(3d − s + 6)c,
w1 = (6c + 2d + 15)s3 + (30c + 14d + 48)s2 + (36c + 18d + 46)s + 12c + 6d + 13,
w2 = (13c + 4d + 19)s3 + (20c2 + 18cd + 4d2 + 90c + 41d + 79)s2 + (48c2 + 48cd + 12d2 + 138c

+ 69d + 93)s + 3(4c + 2d + 5)(2c + d + 2),
w3 = (8c + 2d + 9)s3 + (28c2 + 24cd + 5d2 + 78c + 34d + 51)s2 + (16c3 + 24c2d + 12c d2 + 2d3

+ 96c2 + 96cd + 24d2 + 156c + 78d + 76)s + (4c + 2d + 7)(2c + d + 2)2,

w4 = (c + 1)s3 + (8c2 + 6cd + d2 + 18c + 7d + 10)s2 + (8c3 + 12c2d + 6c d2 + d3 + 36c2 + 36cd

+ 9d2 + 48c + 24d + 20)s + (2c + d + 2)3,

w5 = 9c s3 + (22c2 + 10cd + 49c)s2 + (48c2 + 24cd + 69c)s + 3c(8c + 4d + 9),
w6 = 6c s3 + (32c2 + 14cd + 44c)s2 + (24c3 + 24c2d + 6c d2 + 96c2 + 48cd + 78c)s

+ 6c(2c + d + 3)(2c + d + 2),
w7 = (s + 1)(12c2 + 12cd + 3d2 − 2ds − 2s2 + 24c + 12d − 4s + 12),
w8 = (−3c − 2d − 4)s2 + (4c2 − d2 − 4d − 4)s + (2c + d + 2)3.
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