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Abstract: The traditional image encryption technology has the disadvantages of low encryption effi-
ciency and low security. According to the characteristics of image information, an image encryption
algorithm based on double time-delay chaos is proposed by combining the delay chaotic system with
traditional encryption technology. Because of the infinite dimension and complex dynamic behavior
of the delayed chaotic system, it is difficult to be simulated by AI technology. Furthermore time delay
and time delay position have also become elements to be considered in the key space. The proposed
encryption algorithm has good quality. The stability and the existence condition of Hopf bifurcation
of Lorenz system with double delay at the equilibrium point are studied by nonlinear dynamics theory,
and the critical delay value of Hopf bifurcation is obtained. The system intercepts the pseudo-random
sequence in chaotic state and encrypts the image by means of scrambling operation and diffusion op-
eration. The algorithm is simulated and analyzed from key space size, key sensitivity, plaintext image
sensitivity and plaintext histogram. The results show that the algorithm can produce satisfactory scram-
bling effect and can effectively encrypt and decrypt images without distortion. Moreover, the scheme
is not only robust to statistical attacks, selective plaintext attacks and noise, but also has high stability.

Keywords: image encryption; chaotic encryption; double time-delay Lorenz system; Hopf
bifurcation

1. Introduction

Images provide an important means of transferring statistical information is online. When plain
images are transmitted directly online, they will be vulnerable to various cyber-attacks such as stealing
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and tampering, which may cause huge losses to the owner of the images. Therefore, image encryp-
tion plays an important effect in ensuring the security of information [1–4], which also progresses the
study of cryptography. At present, there have been a wide range of secure and effective data encryp-
tion technologies proposed by cryptographic experts [5–7], such as DES [8], AES [9], RSA, and RC6.
However, most of the existing algorithms are designed for textual information, which is compounded
by some inherent disadvantages in the encryption of images, such as time lag and low efficiency. Be-
sides, these algorithms ignore the relationship between the adjacent image’s pixels. Consequently, it is
easy for the image information to be leaked in case of pixel statistics attack. Moreover, it is practically
difficult for traditional encryption algorithms to meet the requirements on security and speed simulta-
neously. Therefore, it is necessary to develop a secure, efficient and fast encryption algorithm suitable
for multimedia information, so as to achieve the real-time encryption of files, sounds, images and other
sorts of multimedia information, which has attracted widespread attention for research at present.

Since the discovery of the correlation between chaos theory and cryptography, chaos theory has
been attracting increased attention from many cryptographic researchers [10, 11]. There are many
chaos’ properties that meet the requirements of cryptography technology, such as random-like, de-
terministic, non-periodic, non-convergent and initial value sensitivity [12–14]. Apart from that, the
desirable cryptographic characteristics of chaos can be taken advantage of to construct an excellent
image encryption system. Chaotic encryption technology relies on the chaotic sequences generated by
chaotic systems to encrypt information, which brings about such advantages as the ease of implemen-
tation, the robustness to attack, and the high level of applicability. Up to now, there have been many
articles published on chaotic cryptography and its applications, exploring how chaotic systems can be
applied to generate the chaotic sequences that meet various requirements, which is a problem that the
cryptographers of all countries aim to resolve. In 1989, Matthews proposed a stream cipher encryption
scheme based on Anamorphic Logistic mapping, as described in [15], with the concept of “chaotic
cryptography” first proposed to attract widespread attention. According to the exact developmental
process of encryption technology, the schemes of image encryption using chaotic systems can be clas-
sified into three categories. The first one is the scheme of image encryption using low-dimensional
simple chaotic system. The second is the scheme of image encryption using high-dimensional com-
plex chaotic system. The last one is the scheme of image encryption combining chaotic system with
other methods.

Matthews designed an encryption algorithm that can make use of the chaotic sequences derived
by Logistic mapping, the security of which is completely reliant on the generated chaotic sequences,
including the parameters, the number of iterations, and the initial conditions of Logistic mapping. Sub-
sequently, two-dimensional Baker mapping was performed in [16] to construct Bernoulli permutation,
and to develop the symmetric product cryptography algorithm and pseudo random number generator
for image encryption. However, it is difficult to ensure its operating efficiency due to a terrific amount
of visual data referred. In this respect, block-oriented symmetric cryptography is considered an effec-
tive solution [17]. It relies on Kolmogoroff flows and shift registers to scramble the small blocks of
data after image segmentation. Then, with parameters introduced into the chaotic system, the encrypted
blocks can be expanded, and substitution operations are performed. This scheme proves advantageous
over other encryption systems in security and efficiency. To sum up, above is the representative scheme
of image encryption using a low-dimensional simplified chaotic system.

Compared with those chaotic systems which is low-dimensional, high-dimensional, and the positive
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Lyapunov exponents of which exceed 1, is more complex in structure, involving multiple system vari-
ables and multiple system parameters. Besides, the high-dimensional attractors generated exhibit more
complex dynamic behaviors [18]. In other words, the time series produced by high-dimensional chaotic
systems are more irregular and unpredictable, while the algorithm’s key space designed according to
them is much larger than the key space of the encryption algorithm developed on the basis of low-
dimensional chaotic mapping [19, 20], which makes it more suitable for image encryption. With the
attempt made by many scholars to combine multiple chaotic maps, high-dimensional chaotic systems,
and hyperchaotic systems, the focus of study has shifted to the second type of image encryption tech-
nologies. In [21], the chaotic sequences were generated by Cat mapping to scramble the pixels of the
image at the bit level. Then, Logistic mapping was performed to change the positions and gray values
of scrambled pixels through bitwise diffusion. To improve the operating efficiency of the encryption
algorithm, a method of changing the position and distribution of image pixels was proposed on the ba-
sis of chaotic Henon mapping and Lorenz mapping in [22]. However, it involves only the scrambling
process while ignoring the substitution or diffusion process, which exposes the geometric features of
plaintext images. To solve this problem, a color image encryption scheme was designed in [23], with
the Logistic mapping sequence used to disrupt the pixel position of the image, and to replace the gray
value of the image with the Henon mapping sequence. In [24], the popularized 3D Cat map was used
to scramble the position of image pixels, while another sequence obtained from the map was adopted
to build a real-time secure symmetric encryption scheme by confusing the relationship between the
encrypted image and the plaintext image for multiple times. These algorithms are common in creat-
ing a sufficiently large key space to counter brute force attacks. With the advancement of computer
technology and cryptanalysis technology, there are various image encryption algorithms deciphered in
succession on the basis of low and high-dimensional chaotic systems and hyperchaotic systems, which
meet challenges to the existing methods of encryption. For example, the improved CKBA algorithm
of image encryption proposed in [25] was deciphered by C. Li et al. through attack [26] known and
selected plaintext. They adopted the same scheme to decipher the image encryption algorithm using
the hyperchaotic system proposed in [27].

The third category is the image encryption scheme combining chaotic systems with other methods,
the representative of which is the image encryption technology that integrates the chaotic system with
DNA coding technology. In [28], such operations as elongation, truncation, deletion, insertion and
sequence transformation in the DNA sequence processing method were performed to encode the pixel
position of plaintext image, while two-dimensional Logistic chaos mapping was carried out to scramble
and replace the pixel position and gray value of the encoded image. This algorithm is not only sensitive
to key and easy to implement, but also robust to statistical attacks. In [29], the plaintext image was first
encoded into a DNA sequence. Then, the chaotic mapping sequence was used to replace the encoded
image data, thus obtaining the encrypted image.

Despite plenty of chaotic cryptographic schemes proposed by experts and scholars to date, the the-
ory of chaotic cryptography is still immature. For example, these schemes prove secure only through
experiments, with no rigorous mathematical proof available. Therefore, it remains challenging but
worthwhile to conduct study on chaotic cryptography. The listed references are all based on finite-
dimensional chaotic systems to implement encryption algorithms. However, due to the development of
AI, the parameters of finite-dimensional chaotic systems can be simulated through intercepted chaotic
sequences. Therefore, the implementation of encryption by finite-dimensional chaotic systems no
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longer has good security. We present an algorithm of image encryption using the double delay Lorenz
system, which provides a safe, reliable and efficient feasible scheme for image encryption. The advan-
tages of the encryption algorithm are as follows: First, because of the infinite dimension of the delay
chaotic system, the randomness is stronger and it is more difficult to be simulated by AI technology,
so the security efficiency of the encryption algorithm is guaranteed. Second, the time-delay and the
location of time-delay make the key space expand further. Finally, the simple implementation of the
algorithm makes the image encryption more efficient.

The structure of this article is as follows. The first part briefly introduces the research status of
image encryption technology. The second part discusses the Hopf bifurcation and stability of Lorenz
system with double delay. The third part adapts the double time-delay Lorenz system to encrypt the
digital image. The fourth part verifies the encryption effect by mathematical software. Finally, the
conclusion is drawn.

2. Double time-delay Lorenz system

In respect of secret communication, the value of a chaotic system is directly proportional to its be-
havioral complexity. Therefore, the Lorenz-like systems [30–35] are unable to meet the requirements,
which prompts scholars to create the new chaotic systems whose dynamic behaviors are difficult to pre-
dict, such as hyper chaos system, multiple-wing chaotic system and Lorenz system, etc. These chaotic
systems demonstrate more desirable chaos characteristics and higher complexity, many of which are
applied in the chaos encryption technology to produce satisfactory outcomes of encryption, while en-
suring security. A typical example of them is the time-delay Lorenz system developed on the basis of
Lorenz system. However short its time-delay is, the state space of the system is infinitely dimensional,
as is the solution space of it. That is to say, there are an infinite number of roots for the character-
istic equation of the corresponding linearized system. Being fundamentally different from ordinary
Lorenz systems in various respects, the time-delay Lorenz system shows completely different dynamic
behaviors, thus leading to high complexity. At present, there are some scholars who have also devel-
oped time-delay Lorenz systems for application in encryption algorithms. Their system equations are
similar to Eq (2.1) below: 

ẋ = ay − ax(t − τ)
ẏ = bx(t − τ) − xz
ż = −cz + xy

(2.1)

where x, y, and z represent the variables of state, a, b, c denote the parameters of system, and τ(> 0)
refers to a time-delay constant. It is always assumed that the impact of time-delay in the system is
always unchanged, which means the τ(> 0) value is a constant. In fact, the understanding of time-
delay chaotic systems must be improved. As the basic characteristic of dynamic behaviors of time-
delay chaotic systems, the evolution of the system over time depends not only on the current state but
also on the status in the past or the future. Besides, the previous or future impact of the system in
other dimensions is not necessarily the same. Therefore, in this paper, our consideration is given to the
dynamic behaviors of time-delay chaotic systems when the time-delay varies, for their application in
encryption.

The state equation of double time-delay Lorenz system is expressed as follows:
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
ẋ = −ax(t − τ1) + ay
ẏ = bx(t − τ2) − xz
ż = −cz + xy

(2.2)

where τ1(> 0) and τ2(> 0) represent constant time-delay. The system(2.2) consists of 6 terms in total,
including 4 linear terms and 2 nonlinear terms. Compared with other chaotic or hyperchaotic systems,
this system is simpler in structure and easier to achieve by circuit, which makes it applicable in the
practice of secure communication. Known as the double time-delay Lorenz system, a functional differ-
ential dynamical system is constructed by applying double time-delay to the state variables. There are
different choices available over time-delay applying positions, and 8 positions with P2

8 different forms
of combination. Therefore, this structure is effectively a secure means of encrypting communication.
In this paper, one of these structures is adopted as the method of encryption, as shown in the Eq (2.2).
Our main contribution of this paper is to linearize the double time-delay Lorenz system and analyze
the distribution of the characteristic equation’s roots after linearization. Besides, the system’s stability
at the zero equilibrium point and Hopf bifurcation conditions are determined. Finally, it is used to the
technology of image encryption , thus making the outcomes of encryption satisfactory.

The parameters of system are set as

a > 0, b < 0, c > 0

The equilibrium points meets the conditions as follows:
−ax(t − τ1) + ay = 0
bx(t − τ2) − xz = 0
−cz + xy = 0

(2.3)

According to Eq (2.3), system (2.2) has three equilibrium points, i.e.

(0, 0, 0), (
√

bc,
√

bc, b), (−
√

bc,−
√

bc, b)

The system’s stability at the equilibrium point is discussed and the following theorems are proposed.

Theorem 1. Assume τ1 = τ2 = 0, then system (2.2) is unstable at the point (
√

bc,
√

bc, b).

Proof. At the point (
√

bc,
√

bc, b), the system’s Jacobian matrix is expressed as:

M =


−ae−λτ1 a 0

be−λτ2 − b 0 −
√

bc
√

bc
√

bc −c

 (2.4)

The characteristic equation is presented as:∣∣∣∣∣∣∣∣∣
−ae−λτ1 − λ a 0
be−λτ2 − b −λ −

√
bc

√
bc

√
bc −c − λ

∣∣∣∣∣∣∣∣∣ = 0 (2.5)

Equation (2.5) can be converted into:

λ3 + p1λ
2 + p2λ + p3 = 0 (2.6)
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where p1 = ae−λτ1 + c, p2 = ace−λτ1 − abe−λτ2 + ab + bc, p3 = abc(e−λτ1 − e−λτ2 + 2).
When τ1 = τ2 = 0, Eq (2.6) can be transformed into:

λ3 + (a + c)λ2 + (a + b)cλ + 2abc = 0 (2.7)

As for the conditions a > 0, b < 0, c > 0, 2abc < 0. Therefore, by the Routh-Hurwitz criterion,
a positive real part will be appeared in the eigenvalue of Eq (6). When τ1 = τ2 = 0, system (2.2) is
unstable at the point (

√
bc,
√

bc, b). □

Given the invariance under the transformation of S : (x, y, z) → (−x,−y, z), which means there is
symmetry for z, system (2.2) is unstable at the point (−

√
bc,−

√
bc, b).

Next, the system’s stability at point (0, 0, 0) will be discussed. It is easy to identify the linearized
system (2.2) at the point (0, 0, 0). 

ẋ = −ax(t − τ1) + ay
ẏ = bx(t − τ2)
ż = −cz

(2.8)

Based on system (2.8), the Jacobian matrix is expressed as:

M =


−ae−λτ1 a 0
be−λτ2 0 0

0 0 −c

 (2.9)

According to the Jacobian matrix, the characteristic equation can be presented as:∣∣∣∣∣∣∣∣∣
−ae−λτ1 − λ a 0

be−λτ2 −λ 0
0 0 −c − λ

∣∣∣∣∣∣∣∣∣ = 0 (2.10)

Equation (2.10) can be converted into:

λ3 + p1λ
2 + p2λ + p3 = 0 (2.11)

where p1 = ae−λτ1 + c, p2 = ace−λτ1 − abe−λτ2 , p3 = −abce−λτ2 .
When τ1 = τ2 = 0, Eq (2.11) can be transformed into:

λ3 + (a + c)λ2 + (ac − ab)λ − abc = 0 (2.12)

As for the conditions, a > 0, b < 0, c > 0, therefore, −abc > 0, ac − ab > 0 and a + c > 0.
By Routh-Hurwitz criterion, negative real part will appeared in all characteristic roots of the above
equation. When τ1 = τ2 = 0, system (2.2) is asymptotically and locally stable at the point (0, 0, 0).

3. Hopf bifurcation analysis of double time-delay Lorenz

A discussion followed will be conducted about the preconditions for the Hopf bifurcation’s exis-
tence at the equilibrium point. It is assumed that the root of the characteristic Eq (2.11) is λ = ρ + iω,
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ρ ∈ R, ω ∈ R. To satisfy the conditions of Hopf bifurcation, there must be conjugated pure imaginary
roots in Eq (2.11). Let ρ = 0, so that the Equation below can be obtained as:

e−λτ = e−(ρ+ωi)τ = e−ωτi = cos(ωτ) − i sin(ωτ) (3.1)

By substituting Eq (3.1) into Eq (9), and separating the imaginary and real parts, the stability change
of the static solution will occur, i.e.,{

aω2 cos(ωτ1) − acω sin(ωτ1) + abc cos(ωτ2) + abω sin(ωτ2) = −cω2

acω cos(ωτ1) + aω2 sin(ωτ1) − abω cos(ωτ2) + abc sin(ωτ2) = ω3 (3.2)

The impact caused by time-delay variation on the system bifurcation will be discussed below.

3.1. Identical time-delay

As τ1 = τ2 = τ, Eq (3.2) can be converted into:{
(aω2 + q) cos(ωτ) − pω sin(ωτ) = −cω2

pω cos(ωτ) + (aω2 + q) sin(ωτ) = ω3 (3.3)

where p = ac − ab, q = abc.
The following steps will be done on the Eq (3.3). After squaring both sides and adding them,

Eq (3.4) can be obtained.

ω6 + (c2 − a2)ω4 − (p2 + 2aq)ω2 − q2 = 0 (3.4)

The following conclusions can be obtained for Eq (3.4).

Lemma 1. If a > 0, b < 0, c > 0, one or more positive real root appears in the set of roots of the
Eq (3.4).

Proof. Let u = ω2, so that Eq (3.4) can be transformed into:

u3 + (c2 − a2)u2 − (p2 + 2aq)u − q2 = 0 (3.5)

It is assumed that

g(u) = u3 + (c2 − a2)u2 − (p2 + 2aq)u − q2 (3.6)

Equation (3.6) can be transformed into:

g(u) =
1 + (c2 − a2)1

u − (p2 + 2aq) 1
u2 − q2 1

u3

1
u3

(3.7)

Therefore,
g(0) = −q2 < 0, lim

u→+∞
g(u) = +∞

According to the function zero existence theorem, at least one real number u0 ∈ (0,+∞) appears
that makes g(u0) = 0. Therefore, Eq (3.5) has one or more positive real root. As u = ω2, Eq (3.4) has
one or more positive real root.
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Supposed that a real root of Eq (3.4) is ω0, then Eq (3.4) has a pure imaginary root iω0. Also, the
following equation can be obtained.

cosωτ =
pω4 − cω2(aω2 + q)

(aω2 + q)2
+ p2ω2

(3.8)

By substituting ω = ω0 into Eq (3.8), the τ value is obtained as:

τk =
1
ω0

arccos(
pω4

0 − cω2
0(aω2

0 + q)

(aω2
0 + q)2

+ p2ω2
0

) +
2kπ
ω0
, k = 0, 1, 2, · · · (3.9)

Therefore, Eq (3.3) has a solution (ω0, τk), which means that a pair of conjugate pure imaginary
roots λ = ±iω0 appear on the Eq (3.3) when τ = τk. □

Suppose τ0 = min{τk}, then τ = τ0 is the minimum value according to the pure imaginary root
λ = ±iω0 of Eq (2.12). Following that, the lemma can be obtained.

Lemma 2. If a > 0, b < 0, c > 0, τ = τ0, then a dual pure imaginary roots λ = ±iω0 appears in the set
of roots of Eq (3.1).

Suppose the eigen roots of Eq (2.4) λ(τ) = α(τ) + iω(τ) satisfy the condition that α(τk) = 0 and
ω(τk) = ω0, then the transversal conditions are determined as follows.

Lemma 3. If a > 0, b < 0, c > 0, and g′(ω2
0) > 0, then dReλ(τ)

dτ

∣∣∣τ=τk > 0.

Proof. when τ1 = τ2 = τ, Eq (2.11) can be converted into:

λ3 + cλ2 + (aλ2 + pλ − q)e−λτ = 0 (3.10)

Taking the both sides’ derivative of Eq (3.10) using τ, the following equation can be obtained.

[3λ2 + 2cλ + (2aλ + p)e−λτ − τ(aλ2 + pλ − q)e−λτ]
dλ
dτ
= λ(aλ2 + pλ − q)e−λτ (3.11)

According to Eq (3.10), Eq (3.12) can be obtained as follows:

(aλ2 + pλ − q)e−λτ = −λ(λ2 + cλ) (3.12)

By introducing Eq (3.12) into Eq (3.11), Eq (3.13) can be obtained.

(
dλ
dτ

)−1 = −
3λ2 + 2cλ
λ2(λ2 + cλ)

+
2aλ + p

λ(aλ2 + pλ − q)
−
τ

λ
(3.13)

As τk = iω0, so that

Re[( dλ
dτ )
−1
∣∣∣τ=τk ]

= −Re[ 3λ2+2cλ
λ2(λ2+cλ)

∣∣∣τ=τk ] + Re[ 2aλ+p
λ(aλ2+pλ−q)

∣∣∣τ=τk ]

= Re[ −3ω2
0+2cω0i

ω2
0(−ω2

0+cω0i) ] + Re( p+2aω0i
iω0(aω2

0+q−pω0i) )

=
3ω4

0+2c2

ω6
0+c2ω4

0
−

p2+2a(aω2
0+q)

p2ω2
0+(aω2

0+q)2

(3.14)
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When τ = τ0, Eq (3.10) has a pure imaginary root iω0. By substituting it into Eq (3.10), the
following equation can be obtained.

− ω3
0i − cω2

0 + (−aω2
0 + pω0i − q)e−iω0τ0 = 0 (3.15)

As e−iω0τ0 = cosω0τ0 − i sinω0τ0, so
∣∣∣e−iω0τ0

∣∣∣ = 1. Then,∣∣∣−ω3
0i − cω2

0

∣∣∣ = ∣∣∣−aω2
0 + pω0i − q

∣∣∣ (3.16)

That is to say,

ω6
0 + c2ω4

0 = p2ω2
0 + (aω2

0 + q)2 (3.17)

By combining Eq (3.15) and (3.17), the following equation can be obtained.

Re[(
dλ
dτ1

)−1
∣∣∣τ=τk ] =

g′(ω2
0)

p2ω2
0 + (aω2

0 + q)2 > 0 (3.18)

As S ign[Re( dλ
dτ

∣∣∣τ=τk )] = S ign{Re[( dλ
dτ )
−1
∣∣∣τ=τk ]}, the lemma is proved. □

Therefore, according to Lemma 3.3, the following conclusions can be reached.

Theorem 2. If a > 0, b < 0, c > 0, and g′(ω2
0) > 0, then

1. When τ ∈ [0, τ0), system (2.2) is asymptotically stable at the point O(0, 0, 0);
2. When τ > τ0, system (2.2) is unstable at the point O(0, 0, 0);
3. When τ = τk(k = 0, 1, 2, · · · ) Hopf bifurcation occurs at the point O(0, 0, 0) in the system (2.2),

and τ = τk(k = 0, 1, 2, · · · ) is the Hopf bifurcation value.

3.2. Different time-delays

For the sake of ensuring the Hopf bifurcation with two different delays and the stability of sys-
tem (2.2), there are two extremes of Eq (2.11) considered, respectively. Since both τ1 and τ2 are
greater than 0, the delay boundary case is considered, i.e., τ1 = 0 or τ2 = 0. With one of the time-
delays fixed, an analysis is conducted as to the other time-delays’ impact on the stability and the Hopf
bifurcation using Rouche theorem. The advantage of this method is that, the impact of the two time-
delays on Hopf bifurcation and its stability can be analyzed according to the assumption that τ1 is fixed
and τ2 is regarded as a variable dependent on τ1. Then, the following process is conducted. First of
all, it is set that τ2 = 0, the system (2.2) with a time-delay τ1 is analyzed, and the stability interval of
τ1 is obtained using Rouche theorem, with τ1as the bifurcation parameter. On this basis, negative real
part appears in all the roots of Eq (2.11). Second, system (2.2) is analyzed at the stability interval of
τ1, and the Rouche theorem is applied to analyze the stability and Hopf bifurcationof the system, with
τ2 as the bifurcation parameter. Notably, the stability interval of τ2 is determined by τ1, so that the area
encircled by τ1 and τ2 represents the stability interval of system (2.2).

When τ1 = 0, Eq (2.11) can be transformed into:

λ3 + p1λ
2 + p2λ + p3 = 0 (3.19)
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where p1 = a + c, p2 = ac − abe−λτ2 , p3 = −abce−λτ2 . Equation (3.19) is converted into:{
q3 cos(ωτ2) + q2ω sin(ωτ2) = −q4ω

2

−q2ω cos(ωτ1) + q3 sin(ωτ1) = ω3 − q1ω
(3.20)

where q1 = ac, q2 = ab, q3 = abc, q4 = a + c. After squaring both sides and summing them, Eq (3.19)
can be obtained as follows:

ω6 + (q2
4 − 2q1)ω4 + (q2

1 − q2
2)ω2 − q2

3 = 0 (3.21)

By Eq (3.21), the following conclusions can be obtained.

Lemma 4. If a > 0, b < 0, c > 0, one or more positive real root appears in the set of roots of Eq (3.21).

Proof. Let u = ω2, then Eq (3.21) can be converted into

u3 + (q2
4 − 2q1)u2 + (q2

1 − q2
2)u − q2

3 = 0 (3.22)

Assume,
h(u) = u3 + (q2

4 − 2q1)u2 + (q2
1 − q2

2)u − q2
3 (3.23)

Then, Eq (3.23) can be converted into:

h(u) =
1 + (q2

4 − 2q1)1
u + (q2

1 − q2
2) 1

u2 − q2
3

1
u3

1
u3

(3.24)

Therefore,
h(0) = −q2

3 < 0, lim
u→+∞

h(u) = +∞
According to the function zero existence theorem, there is one or more real number u0 ∈ (0,+∞)

that makes g(u0) = 0. Therefore, Eq (3.23) has one or more positive real root. Since u = ω2, Eq (3.21)
has one or more positive real root.

Assume Eq (3.21) has a real root ω0, so that iω0 is a pure imaginary root of Eq (3.10). Also,
Eq (3.25) can be obtained.

cosωτ2 =
q2(q1ω

2 − ω4) − q3q4ω
2

q2
3 + q2

2ω
2

(3.25)

By substituting ω = ω0 into Eq (3.25), τ is obtained as:

τ2k =
1
ω0

arccos(
q2(q1ω

2
0 − ω

4
0) − q3q4ω

2
0

q2
3 + q2

2ω
2
0

) +
2kπ
ω0
, k = 0, 1, 2, · · · (3.26)

Therefore, (ω0, τ2k) is the solution to Eq (3.25), which means that Eq (3.19) has a couple of conju-
gate pure imaginary roots λ = ±iω0 when the time-delay is τ = τ2k. □

Suppose τ20 = min{τ2k}, then the τ = τ20 is the minimum value when Eq (3.19) has pure imaginary
root λ = ±iω0. The following lemma can be obtained.

Lemma 5. If a > 0, b < 0, c > 0, τ2 = τ20, τ1 = 0, then a couple of pure imaginary roots λ = ±iω0

appears in the set of roots of Eq (3.19).
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Suppose that the eigen roots λ(τ) = α(τ1k)+ iω(τ1k) of Eq (3.19) satisfy the condition that α(τ1k) = 0
and ω(τ1k) = ω0, the following transversal conditions are presented.

Lemma 6. If a > 0, b < 0, c > 0, τ2 = τ20, τ1 = 0 and h′(ω2
0) > 0, then dReλ(τ2)

dτ2

∣∣∣τ=τ2k > 0.

Proof. When τ2 = τ20, τ1 = 0, Eq (3.19) can be transformed into:

λ3 + q4λ
2 + q1λ − (q2λ + q3)e−λτ2 = 0 (3.27)

The derivative of both sides of Eq (3.27) with respect to τ2 is taken to obtain Eq (3.28).

[3λ2 + 2q4λ + q1 − q2e−λτ2 + τ2(q2λ + q3)e−λτ2]
dλ
dτ2
= −λ(q2λ + q3)e−λτ2 (3.28)

According to Eq (3.27), Eq (3.29) can be obtained.

λ3 + q4λ
2 + q1λ = (q2λ + q3)e−λτ2 (3.29)

By substituting Eq (3.29) into Eq (3.28), Eq (3.30) can be obtained.

(
dλ
dτ2

)−1 = −
3λ2 + 2q4λ + q1

λ(λ3 + q4λ2 + q1λ)
+

q2

λ(q2λ + q3)
−
τ2

λ
(3.30)

Since τ2k = iω0, so that

Re[( dλ
dτ2

)−1
∣∣∣τ=τ2k ]

= −Re[ 3λ2+2q4λ+q1
λ(λ3+q4λ2+q1λ)

∣∣∣τ=τ2k ] + Re[ q2
λ(q2λ+q3)

∣∣∣τ=τ2k ]

= −Re[−3ω2
0+q1+2q4ω0i

ω4
0−q1ω

2
0−q4ω

3
0i

] − Re( q2

q2ω
2
0−q3ω0i )

=
(3ω2

0−q1)(ω4
0−q1ω

2
0)+2q2

4ω
4
0

(ω4
0−q1ω

2
0)2
+q2

4ω
6
0

−
q2

2ω
2
0

q2
2ω

4
0+q2

3ω
2
0

(3.31)

When τ1 = τ20, Eq (3.27) has pure imaginary roots iω0, which can be substituted into Eq (3.27) to
obtain Eq (3.32).

− ω3
0i − q4ω

2
0 + q1ω0i − (q2ω0i + q3)e−iω0τ20 = 0 (3.32)

As e−iω0τ10 = cosω0τ10 − i sinω0τ10, so that
∣∣∣e−iω0τ10

∣∣∣ = 1. Then,∣∣∣−ω3
0i − q4ω

2
0 + q1ω0i

∣∣∣ = |q2ω0i + q3| (3.33)

That is to say,

(ω3
0 − q1ω0)2 + q2

4ω
4
0 = (q2ω0)2 + q2

3 (3.34)

By combining Eq (3.32) and (3.34), the following equation can be obtained.

Re[(
dλ
dτ2

)−1
∣∣∣τ=τk ] =

h′(ω2
0)

(aq1ω0)2 + (aω2
0 + q4)2 > 0 (3.35)

Since S ign[Re( dλ
dτ1

∣∣∣τ=τ1k )] = S ign{Re[( dλ
dτ1

)−1
∣∣∣τ=τ1k ]}, so that it is proved validly.

Similarly, let τ2 = 0, with τ1 as the running parameter, then Re[( dλ
dτ2

)−1
∣∣∣τ=τ2k ] > 0 can also be proved

validly. □
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Therefore, according to Lemma 3.6, the following conclusions can be reached.

Theorem 3. The conclusions can be drawn for Eq (3.19) as follows.

1. If a > 0, b < 0, c > 0 and h′(ω2
0) > 0, then negative real part appears in all characteristic roots

of Eq (3.19), when τ1 ∈ τ10. Besides, when τ1 > τ10, Eq (3.19) has one or more root with positive
real parts.

2. If a > 0, b < 0, c > 0 and h′(ω2
0) > 0, with system from stable to unstable there are k transitions.

Next, considering that Eq (2.11) has τ2 in its stability interval and τ1 is deemed as the parameter,
the following lemma is proposed.

Lemma 7. If negative real part appears in the eigenroots of Eq (3.19), then there is τ1(τ2) > 0 thus
making negative real part appear in all the eigenroots of Eq (3.19) when τ1 ∈ [0, τ1(τ2)).

Proof. Notably, Eq (3.19) has no roots with a non-negative real part, nor does Eq (2.11) has any roots
with a non-negative real part when τ1 = 0. Given that τ1 is the parameter, it is apparent that the
left-hand side of Eq (2.11) is analytic with respect to τ1 and λ.

Similar to the proof of lemma in Literature [36], it is supposed that

f (λ, τ1, τ2) = λ3 + cλ2 + (aλ2 + acλ)e−λτ1 − (abλ + abc)e−λτ2 = 0

where a, b, c, d, τ1, τ2 represent the real numbers, τ1 ≥ 0 and τ2 ≥ 0. Thus, when τ1 varies, there
may be change in the sum of the multiplicity in the right half plane zeros only if one of its zero points
appears or crosses the imaginary axis.

With this conclusion applied, it is worth noting that no non-negative real part appears in the roots
of Eq (2.11) when τ1 = 0. Therefore, it can be concluded that there is τ10 that makes negative real part
appears in all the characteristic roots of Eq (2.11) when τ1 ∈ [0, τ10).

Based on a summary of the aforementioned lemma, it can be known that the following theorem is
the sufficient condition for the characteristic Eq (2.11) to have negative real parts. □

Theorem 4. For τ2 ∈ [0, τ20), there is τ1(τ2) > 0 that makes negative real part appear in all the
characteristic roots of Eq (2.11) when τ1 ∈ [0, τ1(τ2)).

When τ1 = 0, it is obtained that τ2 = τ20 and ω = ω0. Therefore, the solution to Eq (3.2) is
τ1(τ20) = 0. According to this relation, τ1(τ2) can be deduced. Then, Eq (3.2) can be converted into:{

u1 cos(ω0τ1) − u2 sin(ω0τ1) + u3 cos(ω0τ2) + u4 sin(ω0τ2) = u5

u2 cos(ω0τ1) + u1 sin(ω0τ1) − u4 cos(ω0τ2) + u3 sin(ω0τ2) = u6
(3.36)

where u1 = aω2
0, u2 = acω0, u3 = abc, u4 = abω0, u5 = −cω2

0, u6 = ω
3
0. Thus, τ1(τ2) can be obtained.

cos(ω0τ1) =
u1u5 + u2u6 − (u1u3 − u2u4) cos(ω0τ2) − (u2u3 + u1u4) sin(ω0τ2)

u2
1 + u2

2

(3.37)

Then, τ1k can be obtained.

τ1k =
1
ω0

arccos(u1u5+u2u6−(u1u3−u2u4) cos(ω0τ2)−(u2u3+u1u4) sin(ω0τ2)
u2

1+u2
2

) + 2kπ
ω0
,

k = 0, 1, 2, · · ·
(3.38)
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τ

τ2

τ2

τ0

Figure 1. Distribution of bifurcation parameters τ1and τ2of the time-delay Lorenz system.

Based on Eq (3.38) as mentioned above, the relationship of τ1(τ2) can be obtained. Figure 1 shows
the distribution of τ1 and τ2 for the double time-delay Lorenz system.

In Figure 1, τ20 = 1
ω0

arccos(q2(q1ω
2
0−ω

4
0)−q3q4ω

2
0

q2
3+q2

2ω
2
0

), τ10 =

1
ω0

arccos(u1u5+u2u6−(u1u3−u2u4) cos(ω0τ20)−(u2u3+u1u4) sin(ω0τ20)
u2

1+u2
2

). Since dReλ(τ1)
dτ1

∣∣∣τ=τ1k > 0 and Re[( dλ
dτ2

)−1
∣∣∣τ=τ2k ] > 0,

they have the same bifurcation direction, the following theorem is deduced.

Theorem 5. The distribution of τ1 and τ2 of the system (2.2) are obtained from Eqs (3.28) and (3.38),
forming k = 0, 1, 2, · · · transition regions that range from stable to unstable regions. The stable and
unstable regions are segmented by a curve, which is determined by Eq (3.38). It can be drawn the
conclusions as follows:

1. The stable region of the system (2.2) is the region below the curve, which represents the value of
the gradually stable parameters τ1 and τ2;

2. The unstable region of the system (2.2) is the region above the curve, which represents the value
of the unstable parameters τ1 and τ2, as well as the conditions for the system (2.2) to enter chaos.

3. The region above the curve is the Hopf bifurcation value of the system, at which the Hopf bifur-
cation of the system (2.2) occurs.

4. Experimental simulation

The experimental simulation falls into the case of same delay and the case of different delay, re-
spectively demonstrating the bifurcation of double time-delay chaotic systems.

4.1. Double time-delay chaotic system with same delay

Since the system’s parameters a > 0, b < 0, c > 0, we might as well to take a = 10, b = −4,
c = 2.5 to carry out the numerical simulation of dual time-delays chaotic system. Subsequently, the
dual time-delays system can be transformed as:

ẋ = 10y − 10x(t − τ)
ẏ = −4x(t − τ) − xz
ż = −2.5z + xy

(4.1)

A mathematical software is used to achieve the results: Eq (3.4)’s positive real rootω0 = 10.6785, so
it is easy to obtain g′(ω2

0) = 1.5403× 104 > 0, and in Eq (3.9), τ0 = 0.1120. Accordingly, Theorem 3.1
can be concretized into the corollary below.
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Corollary 1. If a > 0, b < 0, c > 0, and g′(ω2
0) > 0, then

1. When τ ∈ [0, 0.1120), the system (4.1) is asymptotically stable at the point O(0, 0, 0);
2. When τ > 0.1120, the system (4.1) is unstable at the point O(0, 0, 0);
3. When τ = 0.1120+0.1873kπ(k = 0, 1, 2, 3, · · · ) i.e., the Hopf bifurcation value of the system(4.1),

the Hopf bifurcation occurs at the point O(0, 0, 0), thus creating the limit cycle.

Next, the mathematical software is used to draw the system’s phase diagram and the system’s tra-
jectory diagram when time-delays τ are different (Figures 2–4), which indicates the correctness of the
results.

According to Figure 2, when τ = 0.11, the x, y, z value tends to approach the point O(0, 0, 0) with
the passage of time t, so the system (4.1) is asymptotically stable at the point O(0, 0, 0).

According to Figure 3, when τ = 0.1120, the x, y, z value of the system (4.1) keep a periodic
oscillation forever with the increase of t, and the limit cycles appeared in O−xyz space, which indicates
that the Hopf bifurcation occurs at the point O(0, 0, 0).

(a) plots the change curve of the state
variables x, y, z of the system over time t

(b) presents the phase diagram of the
system in space O − xyz

(c) shows the phase diagram of the sys-
tem in space O − yz

(d) shows the phase diagram of the sys-
tem in space O − xy

Figure 2. The change trend of the system when τ = 0.11, x(t) = 1, y(t) = 2, z(t) = 3(t ∈
[−0.11, 0]).
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(a) plots the change curve of the state variables
x, y, z of the system over time t

(b) presents the phase diagram of the system in
space O − xyz

(c) shows the phase diagram of the system in
space O − yz

(d) shows the phase diagram of the system in
space O − xy

Figure 3. The change trend of the system when τ = 0.1120, x(t) = 1, y(t) = 2, z(t) = 3(t ∈
[−0.1138, 0]).

According to Figure 4, the x, y, z value is gradually away from the point over t, which means that
the system (4.1) is unstable at the point O(0, 0, 0) when τ = 0.1125.

The bifurcation diagram of system can be drawn as the τ affecting the bifurcation of system, as
shown in Figure 5. It can be seen that the system bifurcates at τ = 0.1120 from Figure 5, by which our
conclusion also can be verified.

4.2. Double time-delay chaotic system with different delays

Since the conditions a > 0, b < 0, c > 0, we might as well to take a = 10, b = −4, c = 2.5 to carry
out the numerical simulation of the double time-delays chaotic system.

ẋ = 10y − 10x(t − τ1)
ẏ = −4x(t − τ2) − xz
ż = −2.5z + xy

(4.2)

To determine the value of bifurcation parameters of the system (4.2), the bifurcation conditions of
the system (4.2) should be calculated first with single time-delay. Thus, τ1 = 0, τ2 , 0,
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(a) plots the change curve of the state variables
x, y, z of the system over time t

(b) presents the phase diagram of the system in space
O − xyz

(c) shows the phase diagram of the system in
space O − yz

(d) shows the phase diagram of the system in
space O − xy

Figure 4. The change trend of the system when τ = 0.1125, x(t) = 1, y(t) = 2, z(t) = 3(t ∈
[−0.1150, 0]).


ẋ = 10y − 10x
ẏ = −4x(t − τ2) − xz
ż = −2.5z + xy

(4.3)

The software of mathematics is used to obtain the following results, i.e., Eq (3.21)’s positive real
root ω0 = 3.7458, so it is easy to obtain h′(ω2

0) = 2.5972 × 103 > 0, and in Eq (3.20), τ20 = 0.4703.
Accordingly, Theorem 3.4 can be concretized into the corollary as follows.

Corollary 2. If a > 0, b < 0, c > 0 and h′(ω2
0) > 0, then

1. When τ20 ∈ [0, 0.4703), the system (4.3) is asymptotically stable at the point O(0, 0, 0);
2. When τ20 > 0.4703, the system (4.3) is unstable at the point O(0, 0, 0);
3. When τ2k = 0.4703 + 0.5339kπ(k = 0, 1, 2, 3, · · · ), i.e., the Hopf bifurcation value, i.e., the system

(4.3) creates the limit cycle at the point O(0, 0, 0).
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Figure 5. Bifurcation diagram of the system with bifurcation parameters τ

When the intervals of ω0 and τ2 are obtained, for any one τ20 ∈ [0, 0.4703), the value τ1 can be
calculated by Eq (3.21), because it depends on τ2. It is shown in Figure 6 that the value distribution of
τ1 and τ2 of the system (4.3)is displayed. According to Theorem 3.4, the system (4.3) is asymptotically
stable at the area below the curve, the system (4.3) is unstable at the area above the curve, and the
system is in a chaos state on the value of curve, namely, the system (4.3) enters the Hopf bifurcation.

Figure 6. Value distribution of Bifurcation parameters τ1 and τ2 of the system (4.3).

Next, the software of mathematics is used to draw the dual time-delays Lorenz system’s trajectory
diagram and the dual time-delays Lorenz system’s phase diagram over t when the values of τ1 and τ2

are different (Figures 7–9), which proves the correctness of the results.
According to Figure 7, when τ1 = 0.1, τ2 = 0.2, the x, y and z values of the system (4.3) get

close to the point O(0, 0, 0) over t, so the system (4.3) is asymptotically stable at the equilibrium point
O(0, 0, 0).
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(a) plots the change curve of the state variables
x, y and z of the system over time t

(b) presents the phase diagram of the system in
space O − xyz

(c) shows the phase diagram of the system in
space O − yz

(d) shows the phase diagram of the system in
space O − xy

Figure 7. The change trend of the system when τ2 = 0.2, τ1 = 0.1, x(t) = 1, y(t) = 2,
z(t) = 3.

According to Figure 8, when τ2 = 0.2190 and τ1 = 0.1801, the x, y and z value of the system (4.3)
always keep periodic oscillations with the increase of time, and limit cycles appear in O − xyz space,
which indicates that the system (4.3) bifurcates at the point O(0, 0, 0).

According to Figure 9, the x, y and z values of the system are gradually away from the equilibrium
point over t, that is to say, when τ1 = 0.1521 and τ2 = 0.29, the system (4.3) is unstable at the point
O(0, 0, 0).

With double time-delays, the system has more complex chaotic phenomena. When τ1 is within the
interval [0.05,0.25] and τ2 is within the interval [0.05,0.65], the bifurcation diagram of the system can
be drawn with the changes of τ1 and τ2. Figure 10 shows that the system is in a stable state in the
enclosed region of τ1 and τ2 , the system is in the state of Hopf bifurcation on the boundary of the
enclosed region, and the system is in the chaotic states in other regions.

5. Image encryption scheme

At present, scrambling and diffusion are the basic operations of image encryption. Scrambling
aims to change the position of pixelof original image using a certain mathematical formula, reduce
the correlation between adjacent pixels and generate meaningless ciphertext images, which scrambles
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(a) plots the change curve of the state variables
x, y and z of the system over time t

(b) presents the phase diagram of the system in
space O − xyz

(c) shows the phase diagram of the system in
space O − yz

(d) shows the phase diagram of the system in
space O − xy

Figure 8. The change trend of the system when τ2 = 0.2190, τ1 = 0.1801, x(t) = 1, y(t) = 2,
z(t) = 3.

and encrypts the original image. However, this operation does not change the value of pixel of original
image. The original image still has different statistical characteristics, which is vulnerable to attack and
has low security. The scrambling methods mainly include affine transform, Arnold transform, Rubik’s
Cube transform, Knight-tour, etc. Diffusion aims to modify the pixels of the original image in a way
that can be reversed and then reduce the characteristics of statistics of the original image. Thus, the
encryption method combining scrambling and diffusion can more effectively encrypt the image.

Chaotic systems are favored by cryptographers for scrambling and diffusion in image encryption
because of their pseudo-random and initial value sensitivity. The common chaotic systems were con-
sisted of Logistic mapping, Tent mapping, Henon mapping, Lorenz and Lorenz-like mapping. The
chaotic systems produce large keyspace and have strongly adaptive key flows and high security. How-
ever, as indicated by the deep research on chaos theories, some low-dimensional chaotic systems have
some problems (e.g., simple structure and periodic window), which indicates that the pseudo-random
sequences came from the mentioned chaotic systems have weak anti-attack ability and are easy to
be cracked. Thus, these chaotic systems cannot ensure the security of the encryption of image. To
solve this problem, we produce a double-time-delay chaotic system, which produces pseudo-random
sequences with good randomness, wide ranges and no window. Since a double-time-delay chaotic
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(a) plots the change curve of the state vari-
ables x, y and z of the system over time t

(b) presents the phase diagram of the system
in space O − xyz

(c) shows the phase diagram of the system in
space O − yz

(d) shows the phase diagram of the system in
space O − xy

Figure 9. The change trend of the system when τ1 = 0.1521, τ2 = 0.29, x(t) = 1, y(t) = 2,
z(t) = 3.

system can replace Logistic mapping chaotic systems with weak dynamic characteristics and narrow
chaos range, it can ensure the security of the encryption algorithm.

Figure 10. Bifurcation diagram of the system with bifurcation parameters τ1 and τ2
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5.1. Image encryption and decryption process

According to Figure 11, the dual time-delay Lorenz system generates the pseudo-random sequence
(X,Y,Z) and then the sequence for scrambling and diffusion is used to the image encryption and de-
cryption process.

separate channels

use chaotic sequence X, Y, Z  separately 

X Y Z

X Y Z

Merge channels

separate channels

use chaotic sequence X, Y, Z  separately 

X Y Z

X Y Z

Merge channels

Encryption 

process

Decryption 

process

Plaintext

Ciphertext

Decrypted text 

Figure 11. Encryption and decryption process and intermediate results.
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5.1.1. Pseudo-random sequences are generated by time-delay chaotic systems

Time-delay chaotic systems have essential differences with non-time-delay chaotic systems in nu-
merous aspects, and their dynamic behaviors are completely different and show significantly complex
phenomena. The basic characteristic of the time-delay chaotic systems is that the evolution of the sys-
tems over time is dependent of their current and past states, which is usually referred to as the lag-type
time-delay dynamics system. This type of dynamic system is the infinite-dimensional dynamical sys-
tem usually described by delay-delay differential equations. No matter how small the delay is, the state
space of the system is infinite-dimensional, and the solution space is infinite-dimensional, i.e., the char-
acteristic equation of the corresponding linearized system has an infinite number of roots. Before en-
cryption and decryption, a dual time-delay chaotic system is adopted to produce three pseudo-random
sequences (X,Y,Z) simultaneously, corresponding to encryption and decryption operations after the
color image separation channel. Thud, the keyspace will be larger than that of the previous chaotic
systems. The keyspace will comprise three chaotic system parameters, two time-delay values and
interception positions of three pseudo-random sequences. If the image size is M × N × 3, the num-
ber of pseudo-random sequences produced by the chaotic system with time-delay will be far higher
than M × N. To be specific, M and N denote the horizontal and vertical pixel values of the image,
respectively.

5.1.2. Encryption method

Overall, an encryption algorithm consists of diffusion and scrambling. At the scrambling stage, the
pseudo-random sequence is ranked in an order of ascending, and the position of pixel of the plaintext
image is transformed in accordance with the sorted sequence to confuse the pixel position of the plain-
text image. At the diffusion stage, the matrix is built using the intercepted sequence and multiplied by
the scrambled pixel matrix to obtain the pixel matrix of encrypted image.

For a color plaintext image P, with a size of M × N × 3, 3 represents the channels’ number of the
color image, and P will fall into three layers (PR, PG and PB) according to the channels. Scrambling
and diffusion operations are conducted to the respective layer. With PR as an example, the image matrix
PR is expanded into a vector according to rows or columns, which is denoted as A. Using the sequence
X generated by the dual time-delay chaotic system, the following operations are conducted:

1. Intercept M × N numbers at the given position parameter d, X, and form {xi, i = 1, 2, · · · ,MN};
the respective element of {xi} is rounded by Eq (5.1).

xi = (xi ∗ 104) mod MN + 1 (5.1)

2. Arrange {xi}according to an ascending order and remove the repetitions, substract the set
{1, 2, 3, · · · ,MN}, and arrange the achieved results in an ascending order and add to the end of
{xi}.

3. Exchange the positions of A(xi) and A(xMN−i+1). After the scrambling operation, the vector after
scrambling is expressed as PS R.

Next, the pseudo-random sequence X is used to diffuse the image matrix which is scrambled from
original image. The diffusion operation of the scrambled image matrix is carried out using Eq (5.2), and
the inverse operation is Eq (5.3). In this way, the scrambling and diffusion operations are completed.
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Ci = Ci−1 × xi × PS Ri (5.2)

PS Ri = Ci ÷Ci−1 ÷ xi (5.3)

In general, the encryption algorithm can be summarized below:
Algorithm: An image encryption algorithm based on a double-time-delay chaotic
system
Input: Plaintext image
Encryption key: Chaotic system parameters, delay position, delay value and
intercept sequence position parameters.
Step1: Read the plaintext image, construct the matrixes PR, PG and PB, and form
the column matrixes AR, AG and AB, respectively.
Step2: Generate sequence (X,Y,Z) in accordance with the key information, and
intercept the sequence according to the position parameters.
Step3: Perform scrambling operation on PR, PG and PB, and round, sort and
append the intercepted sequence {xi} using Eq (48) to form a new sequence {xi}.
Subsequently, the positions of pixels in AR, AG and AB are exchanged to form the
scrambling matrixes PS R, PS G and PS B, respectively.
Step4: Perform diffusion operation on PS R, PS G and PS B, and adopt the
interception sequence {xi} for operation according to Eq (49), and then form the
matrixes PDR, PDG and PDB, respectively.
Step5: Merge PDR, PDG and PDB and output the cipher image.

5.1.3. Decryption method

For the decryption process, it can be regarded as the inverse process of encryption, as presented
below:
Algorithm: An image decryption algorithm based on double-time-delay chaotic
system
Input: Ciphertext image
Encryption key: Chaotic system parameters, delay position, delay value and
interception sequence position parameters
Step1: Read the ciphertext image, construct the matrixes CR, CG and CB, and form
the column matrixes WR, WG and WB, respectively.
Step2: Generate the pseudo-random sequence (X,Y,Z) according to the key
information, and intercept pseudo-random sequence {xi}based on the position
parameters.
Step3: Perform the diffusion inverse operation on CR, CG and CB, use the intercept
sequence {xi} for operation in accordance with Eq (50), and then form the matrixes
CDR, CDG and CDB, respectively.
Step4: Perform the inverse scrambling operation on CDR, CDG and CDB, and round,
sort and append the intercepted sequence {xi} using Eq (48) to form a new sequence
{xi}. Subsequently, the positions of pixels in CDR, CDG and CDB are exchanged to
build the matrixes CS R, CS G and CS B.
Step5: Merge CS R, CS G and CS B and output the decrypted image.
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5.2. Analysis of experimental results and algorithm performance

The Lena color image with a size of 512 × 512 × 3 serves as a test object to validate the algorithm.
The dual time-delay Lorenz system above is used to produce pseudo-random sequences to encrypt
and decrypt the image. The number of sequence elements produced by the dual time-delay chaotic
system is significantly higher than the size number of the color image, and these elements are used for
fixed storage. A certain number of elements is intercepted according to the positional parameters in
the sequence and participated in the scrambling and diffusion operations. The parameters and initial
values of the dual time-delay Lorenz system are a = 10, b = −4, c = 2.5, τ1 = 0.1521, τ2 =

0.29, x(t) = 1, y(t) = 2, z(t) = 3, respectively. At this time, the dynamic behavior of the double
delays chaotic system is highly complex, and it is in a chaotic state. After 300 points of the generated
sequence, a random sequence is taken, so the position parameter d ≥ 300. The encryption algorithm’s
performance is evaluated using histogram analysis, correlation coefficient analysis of adjacent pixels,
keyspace analysis, key sensitivity analysis, NPCR and UACI analysis.

5.2.1. Histogram

Figure 12 shows the R, G and B pixel histogram of the plaintext image; Figure 13 shows the R, G
and B pixel histogram of the encrypted image; Figure 14 illustrates the R, G and B pixel histogram of
the decrypted image.

Figure 12. R, G, and B pixel histogram of the plaintext image.

Figure 13. R, G, and B pixel histogram of the encrypted image.

According to Figure 11, the distributions of R, G and B channels’ pixel values of the plaintext image
show obvious rules of statistics, and the pixel values of the original image have a significant change
curve. After scrambling and expansion, the pixel values of ciphertext images are evenly distributed
within each grayscale interval (Figure 13), i.e., the frequency of each pixel in the encrypted image
is significantly close. Besides, the information of three channels is basically the same, so the attack
cannot be carried out with the use of statistical means. According to Figure 14, the distributions of R,
G, and B channels’ pixel values of the plaintext image are basically the same as those of the image
after decryption, which indicates that the decryption effect is high, and the plaintext image can be
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Figure 14. R, G, and B pixel histogram of the decrypted image.

recovered without being affected by the decryption algorithm. As indicated by the results above, the
information of the plaintext image is effectively diffused, and the encryption algorithm can effectively
resist statistical attacks.

5.2.2. Correlation coefficients of adjacent pixels

Pearson correlation coefficient is capable of effectively measuring the dependence of two adjacent
sequences in a certain direction. Next, the correlation coefficient of the image before and after encryp-
tion will be determined by Eq (5.4):

r =
n(

n∑
i=1

xiyi) − (
n∑

i=1
xi)(

n∑
i=1

yi)√
[n(

n∑
i=1

x2
i ) − (

n∑
i=1

xi)
2

][n(
n∑

i=1
y2

i ) − (
n∑

i=1
yi)

2

]

(5.4)

Where n(
n∑

i=1
xiyi)−(

n∑
i=1

xi)(
n∑

i=1
yi) denotes the sample variance, n(

n∑
i=1

x2
i )−(

n∑
i=1

xi)2 and n(
n∑

i=1
y2

i )−(
n∑

i=1
yi)2

represent the sample standard deviation of the sequences X j and Y j, ( j = 1, 2, · · · ,m − 1), respectively.
Correlation coefficient r is a critical indicator that reflects the performance of an encryption algorithm.
In general, the correlation coefficients between adjacent pixels can be calculated from the horizontal,
vertical and diagonal directions using Eq (5.4). When the coefficients are calculated from the horizontal
direction, m is the number of rows of the encrypted image; when the coefficients are calculated from
the vertical direction, m is the number of columns of the encrypted image; when the coefficients are
calculated from the diagonal direction, m is the number of diagonals of the encrypted image. Table 1
lists the calculation results.

Table 1. Pearson correlation coefficients between adjacent pixels in different directions.

Image Horizontal direction Vertical direction Diagonal direction
R G B R G B R G B

Original image 0.9002 0.9016 0.9675 0.9412 0.9522 0.9213 0.9423 0.9702 0.9772
Encrypted image 0.0122 0.0023 0.0206 0.0012 0.0056 0.0165 0.0025 0.0021 0.0024

According to Table 1, the correlation coefficients of the encrypted image on vertical, horizontal
and diagonal lines approach zero in the implementation of encryption under the mapping of the dou-
ble time-delays Lorenz system, whereas these results are general. In order to analyze the correlation
between any two adjacent pixels more specifically, the correlation between plaintext images and en-
crypted images in different directions is described using scatter plots. Figure 15 shows the correlation
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coefficient results of Lena images in the horizontal, vertical and diagonal directions. Figure 14 shows
the correlation coefficient results of encrypted images in the horizontal, vertical and diagonal direc-
tions.

Figure 15. Correlation coefficients of the Lena image in horizontal, vertical, and diagonal
directions. (a) Horizontal direction,r = 0.9002, (b) Vertical direction,r = 0.9412, (c) Diago-
nal direction,r = 0.9423.

Figure 16. Correlation coefficients of the encrypted image in horizontal, vertical, and di-
agonal directions. (a)Horizontal direction,r = 0.0122, (b)Vertical direction,r = 0.0012,
(c)Diagonal direction,r = 0.0025.

According to Figure 15, in plaintext images, there is a significant correlation between any two adja-
cent pixels in different directions. However, according to Figure 16, the correlation between adjacent
pixels corresponded by the encrypted image approaches 0. To be specific, the correlation coefficients
change from 0.9002, 0.9412 and 0.9423 to 0.0122, 0.0012 and 0.0025, respectively. Thus, the en-
cryption algorithm eliminates the correlation between the adjacent pixels of the plaintext image, so an
attacker cannot obtain any information of the plaintext image through correlation analysis.

5.2.3. Keyspace

The keyspace elements of the encryption and decryption algorithm consist of the parameters of time-
delay Lorenz system a, b, c, initial conditions x(t), y(t), z(t), double time-delays τ1, τ2, double time-
delays position parameters, as well as position parameters of intercepting sequences. Using MATLAB,
96-bits storage system parameters, initial values and dual time-delays are required, and the rest of
keyspace can be stored with 64- bit integer. The position of parameters is the position relation of
double time-delays τ1, τ2 in the Lorenz system, and different position relations express a double time-
delay chaotic system. As indicated by Eq (4.2) , the time-delay parameters can be placed on 8 position
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vectors, so the position parameter will be P2
8. Moreover, the pseudo-random sequence interception

positions are three random values, respectively, representing the positions’ value on different vectors.
Accordingly, the number of all the combinations of this cryptosystem is significantly higher than 2256.
This form of encryption algorithm has sufficient keyspace to resist brute force attacks.

5.2.4. Key sensitivity

Key sensitivity is recognized as another significant indicator to measure the image encryption al-
gorithm’s performance. Encryption algorithms with prominent performance should generally be sen-
sitive to keys, so cryptanalysts cannot crack them by repeated trials. The sensitivity here reveals that
the decryption algorithm cannot recover the plaintext image or acquire the relevant information of the
plaintext image even after a small modification of any element in the keyspace. In other words, only
when a completely correct key is employed can the plaintext image be recovered by a decryption al-
gorithm. Figure 17 presents the image (17(b)) obtained by decryption with a correct key, the image
(17(c)) obtained by decryption with a wrong time-delay parameter τ1 and the image (17(d)) obtained by
intercepting position parameters in the direction of wrong pseudo-random sequencex under the double
time-delays τ1 = 0.1521, τ2 = 0.29.

Figure 17. Key sensitivity test.(a)Plaintext image, (b)Decryption image τ1 = 0.1521,
(c)Decryption image τ1 = 0.1522, (d)Decryption image dx = 400.

According to Figures 17(c) and 17(b), when the parameters of the double-time-delay Lorenz sys-
tem change slightly and other keys are adopted correctly, the decryption algorithm can neither recover
and obtain the plaintext image nor acquire any information of the plaintext image. According to Fig-
ures 17(d) and 17(c), the decryption algorithm cannot acquire any information of the plaintext image
when the position parameters intercepted by the pseudo-random sequence are changed, or other keys
remain unchanged. This is because the small changes of system parameters and the changes of se-
quence interception positions generally cause a completely different chaotic matrix B, so the matrix A
determined by A = CB is overall inconsistent with the correct scrambling matrix. Thus, the decryption
algorithm cannot recover the plaintext image.

5.2.5. NPCR and UACI

The unified averaged changed intensity (UACI) and The number of changing pixel rate (NPCR) are
two indicators applied for measuring the diffusion effect of encryption algorithms. NPCR compares
the number of the changed elements in the pixel matrix corresponding to the original image and the
encrypted image to ensure that sufficient elements in the pixel matrix are changed, while UACI reflects
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the average change in the value of pixel of the corresponding position of the plaintext image and the
encrypted image. They are defined below respectively:

NPCR =

M−1∑
i=0

N−1∑
j=0

D(i, j)

M × N
× 100% (5.5)

UACI =
1

M × N

M−1∑
i=0

N−1∑
j=0

|A(i, j) − AS D(i, j)|
255

(5.6)

where,

D(i, j) =
{

0, A(i, j) = AS D(i, j)
1, A(i, j) , AS D(i, j)

A denotes the pixel matrix of the plaintext image, with M and N as its number of rows and columns,
respectively, and AS D represents the pixel matrix of the encrypted image. For two random images,
the expected values of NPCR and UACI are 96.6094% and 33.4635%, respectively [37]. The NPCR
and UACI values of the encrypted image approach their respective expected values, which indicates
that the information of the plaintext image is well diffused into the encrypted image. Accordingly, it
would be futile for an attacker to attempt to acquire information about the plaintext image through a
differential attack.

The NPCR and UACI values of the encrypted image can be calculated according to Eqs (5.5) and
(5.6). The calculation results are shown in Table 2.

Table 2. NPCR and UACI test results of encrypted images.

Image NPCR(%) UACI(%)
R G B R G B

Encrypted image 99.6011 99.6066 99.6200 33.1101 33.2622 33.3230
Average 99.6092 33.2384

According to Table 2, the mean NPCR and UACI values of the encrypted image are 99.5905% and
33.0183%, respectively, both of which are significantly close to the expected value. To gain better
NPCR and UACI values, we need to only increase the number of columns in the substitution matrix
A. At this point, the size of the required chaotic matrix B will increase, so the information of the
plaintext image will be better diffused into the encrypted image. Accordingly, the algorithm can resist
differential attacks effectively.

5.2.6. Correlation comparison between adjacent pixels of encrypted images

The degree of reduction in the correlation coefficient between adjacent pixels in encrypted images
is an important indicator to measure the security of encryption algorithms. We attempt to demonstrate
the security of the proposed algorithm by comparing it with other encryption algorithms. The image
encryption schemes involved in the comparison include image encryption schemes [37] using multi
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chaotic systems, image encryption schemes [25, 38] using bit level scrambling and diffusion, image
encryption schemes [17] using generalized Arnold mapping, image encryption schemes [28] using
DNA sequence operation, and image encryption schemes [39] using cyclic shift and XOR operation.
The correlation coefficients between adjacent pixels in encrypted images under different schemes are
shown in Table 3. Specifically, by averaging the correlation coefficients of the pixel matrices in the R,
G, and B channels, the correlation coefficient results in each direction can be obtained.

Table 3. Comparison of correlation coefficients of adjacent pixels.

Encryption algorithm Ours Huang’s Lin’s Ye’s Zhang’s Zahra’s
Horizontal direction 0.0021 -0.0752 0.0315 0.0464 0.0713 0.0048

Vertical direction 0.0122 -0.0744 0.2642 0.0553 -0.3246 0.0212
Diagonal direction 0.0361 0.0457 0.0446 0.0388 -0.0414 0.0271

Average 0.0169 0.0661 0.2119 0.0478 0.1467 0.0190

According to Table 3, in the comparison of the correlation coefficients of adjacent pixels, the pro-
posed algorithm has the smallest correlation coefficient in vertical and horizontal directions. In the
diagonal direction, besides Zahra’s results, the proposed encryption method is capable of reducing the
correlation between encrypted image’s adjacent pixels. In the three directions, after the average abso-
lute value of the results of all the algorithms is taken, it can be found that the proposed algorithm is the
optimal.

The Stanford Cars dataset are used as a test object to verify the encryption efficiency of the algo-
rithm. The Cars dataset contains 16,185 images of 196 types of vehicles. The specific encryption time
is shown in Table 4. According to Table 4, the proposed algorithm has good encryption efficiency in
processing large data sets.

Table 4. Comparison of encryption efficiency.

Encryption algorithm Ours Huang’s Lin’s Ye’s Zhang’s Zahra’s
Encryption time(s) 55 124 86 92 183 78

6. Conclusions

In this paper, a safe, reliable and efficient image encryption algorithm is provided using the Lorenz
system with double time-delays, since chaotic systems with time delay are infinite dimensional and
have more complex dynamic behavior, which is difficult to be simulated by AI technology. The bifur-
cation condition of the system is analyzed by means of bifurcation study, and the critical value of the
bifurcation parameter with time delay is given. When the system enters the chaotic state, the pseudo-
random sequence of the system is intercepted, and the color image is encrypted by means of scrambling
and diffusion. Through the index analysis, the algorithm has good qualities: simple scheme structure,
large key space, low computational complexity, strong resistance to statistical attacks and differential
attacks, high key sensitivity, and easy implementation. Although the double time-delays Lorenz sys-
tem has complex dynamic behavior and can ensure the security of the algorithm by generating chaotic
sequences with strong randomness, the generation and calculation of the sequence takes a long time,
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so the generated sequences of the double time-delays Lorenz system can be stored in advance and then
randomly intercepted to achieve real-time encryption.
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