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Abstract: We present the dynamical equation model of the axially moving system, which is expressed 
through one partial differential equation (PDE) and two ordinary differential equations (ODEs) 
obtained using the extended Hamilton’s principle. In the case of large acceleration/deceleration axially 
moving system with system parameters uncertainty and input saturation limitation, the combination of 
Lyapunov theory, S-curve acceleration and deceleration (Sc A/D) and adaptive control techniques 
adopts auxiliary systems to overcome the saturation limitations of the actuator, thus achieving the 
purpose of vibration suppression and improving the quality of vibration control. Sc A/D has better 
flexibility than that of constant speed to ensure the operator performance and diminish the force of 
impact by tempering the initial acceleration. The designed adaptive control law can avoid the control 
spillover effect and compensate the system parameters uncertainty. In practice, time-varying boundary 
interference and distributed disturbance exist in the system. The interference observer is used to track 
and eliminate the unknown disturbance of the system. The control strategy guarantees the stability of 
the closed-loop system and the uniform boundedness of all closed-loop states. The numerical 
simulation results test the effectiveness of the proposed control strategy. 

Keywords: adaptive boundary control; actuator input saturation; axially moving system; interference 
observer; large acceleration/deceleration 
 

1. Introduction 

The axially moving system is a significant part of mechanical system, which is widely used and 
plays a vital role in modern industry such as belts, string and so on. Involving precision electronic 
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manufacturing is applied to electronics, machinery, automation and other directions [1–3]. However, 
there are also some problems. These structures, on account of their flexible features, which move in 
an axial direction, show oscillations when disturbances are present. Too much or too little vibration 
will have a negative effect on machining accuracy and work rate, even trigger a spectrum of unsafe 
accident occurrences. It is critical to emphasize that non-smooth input non-linearities such as 
saturation, clearance, hysteresis and dead zones are widespread in industrial automation systems, 
including mechanical, fluid technology, medical biology and physical systems [4–7]. As researcher’s 
attention is increasingly focused on the work performance, the axially moving system has been 
widely concerned in recent decades. 

The axially moving structure is a typical class of infinite-dimensional distributed parameter 
systems. Most of the traditional control methods are designed based on truncated models, but 
unmodeled high-frequency modes may lead to spillover effects and affect the stability of system. 
Furthermore, if the control precision of the system is improved, the order of the controller will 
increase as the flexible mode increase, which is a difficult point. Boundary control can overcome the 
above disadvantages and is easy to implement. There are many studies on adaptive control and fuzzy 
control in ordinary differential equation systems [8–13]. There is also a great deal of research on partial 
differential systems. Among them, the control of the boundary building upon the infinite dimensional 
model of flexible structural systems has achieved fruitful research results [14–22]. In [14], an adaptive 
vibration control strategy with robustness is suggested for an axially moving beam system that 
experiences changing motion speeds. In [15], for Euler-Bernoulli beam system with input saturation, 
back-stepping technique is employed and a secondary system is created to offset input non-linearity 
for the purpose of attenuating vibrations. In [16], a formation control problem of multi-agent systems 
based on Volterra integral transformation is discussed. In [17], in an effort to suppress the 2D 
vibration of the Euler-Bernoulli beam, a plan for regulating boundaries is moved which is designed 
by the backstepping method to suppress the coupled vibration. In [18], neural network control and 
robust adaptive boundary control of the manipulator are the subject of discussion. In [19], an adaptable 
boundary management of the axial structure is studied under great acceleration/deceleration. In [20,21], 
the Lyapunov method is used to study the vibration suppression of axially moving strings under the 
perturbation of space-time tension and an unknown boundary. In [22], an interference detector is 
devised, employing a time-dependent gain, with the primary objective of preserving system stability 
in the presence of disruptions. 

However, all above-mentioned research results are developed without consideration of large 
A/D, input saturation and uncertainty of model parameters. The nonlinearity is usually due to 
physical constraints inherent in the dynamic system and constraints in the controllers that cannot be 
eradicated. Ignoring input nonlinearity in the system frame makes it severe to stabilize the actual 
axial motion system. 

Center outcomes of this study compared to the existing results can be generalized as follows: 
1) Large A/D have better flexibility which can ensure performance and reduce impact through 

the attenuation of acceleration in the starting stage. 
2) Actuator input saturation is considered. To overcome this issue, an auxiliary system is 

employed to make up for the inefficiency. Additionally, the interference observer is designed to 
monitor the system’s boundary interference, which varies with time. 

3) In the practical field of engineering, many factors will lead to the uncertainty of system 
parameters, which cannot be directly used in the controller, so it is necessary to design parameters 
adaptive law to counterbalance the influence of parameters indeterminacy. To enhance practicality, 
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we posit that every vital parameter of the closed-loop system is obscure, raising the challenge for 
this task. 

The subsequent portions of this document are organized as described below. In Section 2, we 
establish the dynamic restriction of the system utilizing the extended Hamilton’s principle. Section 3 
outlines the proposal of adaptable boundary regulation with an interference compensator, grounded 
in the Lyapunov theory, ensuring the consistent restriction of all states within the closed-loop 
system. Section 4 is dedicated to the presentation of numerical findings, while Section 5 represents 
the deductions. 

2. Axially moving system dynamics model 

Notations: The following terms are defined in this paper. 

    ,x t   ,    
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Figure 1. The diagram of input saturation model. 

In Figure 1, input saturation framework [23] is described as outlined below 
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Figure 2 displays a representative instance of the axial motion structure starting the coordinate 

system with its origin on the left side, and the controller input  u t  acting on the right end and in an 

upward direction,  ,n x t  is the offset of structural at that moment, cg  is the controller mass, 

 d t  is the end disturbance,  ,q x t  is the distributed disturbance,  b t  is the motion velocity, 

 r t is the accelerated/decelerated speed and h  is the structure length. 
The algebraic expression of the system characterized by large A/D is expressed by the 

generalized Hamilton’s principle [24] 

        2

1

0
t

k p f bt
E t E t W t W t dt                        (2) 



18233 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18230–18247. 

where   is the variational operator; 1t  and 2t  is two moments, 1 2t t t   is the operation period; 

kE  and pE  are respectively kinetic energy and potential energy; ( )fW t  is virtual work 

performed on non-conservative force; ( )bW t  is imaginary momentum of the right limit. 

 

Figure 2. The graphic portrayal of the axial motion structure. 

The system possesses kinetic energy, which is described as: 

       
2

2

0

1 1
( ) , , ,

2 2

h

k c t t xE t g n h t g n x t b t n x t dx                     (3) 

where g  is structure weight/unit length, the speed of motion is 

   0b t b r t t                                  (4) 

with 0b  being initial velocity and r  being motion acceleration/ deceleration. 

System potential energy is a function of 

 2

0

1
( ) ,

2

h

p xE t P n x t dx                              (5) 

where 0P   is system tension. 
The virtual energy performed by the non-conservative force of the system can be expressed as 

         
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     

   




         (6) 

where s  is the viscous damping attenuation factor of the axially moving structure of 
acceleration/deceleration, sd  represents actuator damping coefficient. 

The virtual momentum transmission at the right edge of the system is 

     ( ) [ ( , ) ( , )] ,b t xW t gb t n h t b t n h t n h t                   (7) 

By applying variational method with (3) and (5), integrating Eqs (6) and (7) by parts, we obtain 
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Substituting (8)–(11) into (2), the system dynamics equation can be derived as 

             
          

2, , 2 , , ,

, , , , 0

tt x xt xx

xx t x

gn x t gr t n x t gb t n x t gb x t n x t

Pn x t s n x t b t n x t q x t

  

    
         (12) 

where ( , ) (0, ) [0, )x t h    . 

The system’s boundary restriction is 

 
         

0, 0

, , , 0c tt x s t

n t

g n h t Pn h t u t d t d n h t


     

            (13) 

where [0, )t   . 

3. Controller design 

In the course of controller design and the examination of stability, we make use of the following 
lemmas, assumptions and properties. 

3.1. Preliminaries 

Lemma 1 [25–27]: If  1 ,x t ,  2 ,x t R  , 0   and      , 0, 0,x t h    , the following 

properties hold 

 

2 2
1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2

, ,

1 1

R     

    


     

     

 

                   (14) 

Lemma 2 [25–27]: If  ,x t R   be a function with  0,x h  ,  0,t   and it is subject 

to the following boundary condition 
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 0, 0t                                      (15) 

The ensuing properties are applicable 

2 2 2

0 0

2 2

0

h h

x

h

x

dx h dx

h dx

 

 
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
 

 


                             (16) 

Assumption 1: We hypothesize the presence of constants 1 2, , ,d Q R  , such as to 

10 ( )b t   ,   2r t   ,  d t d  any time scale,  ,q x t Q , any temporal and spatial scope, 

which is justifiable since motion velocity  b t ,  r t ,  d t  and  ,q x t  possess restricted energy. 

Assumption 2: The assumption is made that the time rate of change for unspecified 
perturbations td  at the boundary is uniformly restricted, where there exists a constant 3 R , 

such that 3td    arbitrary time scale. 

Property 1 [28]: Given that the kinetic energy, as specified in (3) is capped any time, both tn  

and xtn  are restricted within set boundaries any temporal and geographic range. 

Property 2 [29]: In the case where the potential energy, as defined in Eq (4), is restricted any 
temporal and geographic range, both xn  and xxn  are restricted as well any temporal and spatial scope. 

3.2. Boundary-adapted regulation 

In the context of the axially moving model governed by control equation (12) and boundary 
condition (13), we put forward the ensuing adaptive boundary control scheme to achieve system 
stabilization under circumstances involving unknown system structural parameters P , cg , sd  and 

input saturation. 

         
   

0 1 3 3

4

ˆˆˆ( ) , , , , ,

ˆ           

t x c xt x s tu t l n h t l n h t l g n h t Pn h t d n h t

d t l t

       

 
       (17) 

where 1 3 4, , 0l l l   are control gains, ˆcg , P̂ , ˆ
sd ,  d̂ t  are the estimators of cg , P , sd , 

 d t  respectively. 

The interference observer is designed as 

     3
ˆ ˆ( ) , ,t t xd t d t n h t l n h t                             (18) 

The corresponding estimated error is 

ˆ

ˆ

ˆ

ˆ

c c c

s s s

P P P

g g g

d d d

d d d

  


 


 
  








                                  (19) 

where  ,   being positive constants. 
The adaptive control law is designed as 



18236 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18230–18247. 

     
     

     

1 1 1 3
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3 3 3 3

ˆ ˆ , , ,

ˆ ˆ , , ,

ˆ ˆ , , ,
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g g l n h t n h t l w h t

d d n h t n h t l w h t
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  

             


      

               (20) 

where 1 , 2 , 3 , 1 , 2  and 3  are all non-negative values. 

Derivative of (18) and (20), together with (19), we have 

   3
ˆ, ,t xd d n h t l n h t d      

                      (21) 

and 

     
     

     

1 1 1 3

2 2 2 3 3

3 3 3 3

ˆ , , ,

ˆ , , ,

ˆ , , ,

t x t x

ct c xt t x

st s t t x

P P n h t n h t l n h t

g g l n h t n h t l n h t

d d n h t n h t l n h t

  

  

  

           


     






               (22) 

In order to eliminate saturation, we designate the secondary system as 

 
     2

3
2 0

0

, , 0.5
,

0,    

t x

t

n h t l n h t u u
u lt    

 

          
 

          (23) 

where 2 3, 0l l  ,    0u u t u t   , 0  is a tiny positive design factor,   is the status of the 

secondary system. 
Remark 1: The displacement of the boundary  ,n h t  can be monitored by the position transducer, 

and the inclination angle of the boundary  ,xn h t  can be gauged via the inclinometer. For the 

signal  ,tn h t  and  ,xtn h t  are result of backward difference calculation. 

Assumption 3 [27]: Assuming that the axially moving system illustrated by the control equation (12) 
and the boundary conditions (13) with adaptive boundary control (17) is well-posed. 

3.3. Stability analysis 

Select the Lyapunov function as 

         1 2 3 4V t V t V t V t V t                          (24) 

among which, the energy term 1V , a small crossing term 2V , the addition item 3V , the error term 

4V  are expressed as follows, respectively. 

     2 2
1 0 0

1 1
, , ,

2 2

h h

t x xV g n x t bn x t dx P n x t dx                     (25) 

      2 0
2 , , ,

h

x t xV g xn x t n x t bn x t dx                    (26) 
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     2 2

3 3

1 1
, ,

2 2a t xV g n h t l n h t t                         (27) 

 2 2 2 2
4

1 2 3

1 1 1 1

2 2 2 2a s
d

V d t P g d   
   

                       (28) 

where  ,  ,   are positive weight coefficients,  , 1 , 2 , 3  are defined as in (18) and (20). 

Lemma 3. The Lyapunov function (24) is bounded from above and below. 

           1 1 3 4 2 1 3 40 V t V t V t V V t V t V t                          (29) 

where 1 , 2  are supportive variables. 

Proof: According to Lemmas 1 and 2, it follows that 

           22
2 10 0

, , ,
h h

x t xV t gh n x t dx gh n x t b t n x t dx V t                 (30) 

where   satisfies the condition 

 
2

min ,

gh

g P


 

                               (31) 

Choosing appropriate parameters   and   satisfies that  

 

 

1

2

2
1 1 0

min ,

2
1 1 1

min ,

gh

g P

gh

g P

 
 
 
 

     


     


                      (32) 

Since 0 1  , which implies that  

 min ,

2

g P

gh

 
                               (33) 

Substituting (32) into (30) gives 

       1 1 1 2 2 10 V t V t V t V t                         (34) 

Therefore, we conclude that 

           1 1 3 4 2 1 3 40 V t V t V t V V t V t V t                         (35) 

where  1 1min ,1  ,  2 2max ,1  . 

Lemma 4. The Lyapunov function (24)’s alteration velocity relative to time has upper bound  

   tV t V t                                (36) 

where 0  , 0  . 
Proof: According to (25), we have  

 1 1 2 3 4tV t A A A A                              (37) 
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where 

     1 0
, , ,

h

t x ttA g n x t bn x t n x t dx    , 

     2
2 0

, , ,
h

t x xA g rn x t n x t brn x t dx     , 

       3 0
, , , ,

h

t xt x xtA g bn x t n x t bn x t n x t dx    , 

   4 0
, ,

h

x xtA P n x t n x t dx   

Integrating 3A  and 4A  by parts, using Lemma 1, substituting them into (37), we get 

         

       

         

2 2
1 1 0 0

1

22 2

2 2 2
3 3

3 3

, , ,

 0, , ,
2 2

, , , ,
2 2 2

h h

t t x

x t x

t x t x

V t s n x t bn x t dx q x t dx

b gb
P gb n t n h t bn h t

P P P
n h t l n h t n h t l b n h t

l l

 


 

  

      

     

      

 

       (38) 

where 1 0  . 

According to (26), we have 

       

       

2 0

0

2 , , ,

       2 , , , ,

h

t xt t x

h

x tt x xt

V t g xn x t n x t bn x t dx

g xn x t n x t rn x t bn x t dx





   

    




            (39) 

Performing integration by parts, by virtue of Lemma 1and Lemma 2, we deduce that   

         

      

   

2 2 2 2
2 0

2

2 2

0 0
3

2 2
1 2 3 0

2
, , ,

2
, , ,

2 2 ,

h

t t x

h h

t x t

h

x

h
V t ghn h t h gb P n h t q x t dx

sh
n x t bn x t dx g n x t dx

P g h sh n x t dx

 


 


     

   

  

   



 



           (40) 

where 2 3, 0   . 

With the help of Lemmas 1 and 2, together with (17), (18) and (23) yields 

       

           

2 234
3 1 3 4

3 3

1
, ,

2 2 2

, , , , ,

t t x

t x a xt x s t

ll
V t l n h t l n h t l t

n h t l n h t l g n h t Pn h t d n h t d t

  



                
         

 
      (41) 

Similarly, from (28), we get 

 

 
           

2 2 2 2 2
4 1 2 3

4

2 2 2
1 2 3

3 2

1

2

       
2

, , , , ,

t a s t

a s

t x x a xt s t

V t P g d d d

P g d

n h t l n h t Pn h t l g n h t d n h t d t

    


   



 
     

 

  

         

 

  

     (42) 
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Thus, one can obtain from (38), (40), (41) and (42) that  

       

       

     

   

22 2

2 2 2
3

2

22
10 0

3

2 2
1 2 3 0

3
4

(0, ) , ,
2 2

, ,
2 2

2
, , ,

2 2 ,

1

2 2

t x t x

t x

h h

t t x

h

x

b gb
V t P gb n t n h t bn h t

P P
gh n h t l b h P gb n h t

k

sh
g n x t dx s n x t bn x t dx

P g h sh n x t dx

l
l

 

  

  


     

 

      

             
 

        
 

   

    
 

 



 

 

   

2 2

0
2 1

2 2 2 2 2 2 2 2
1 2 3 1 2 3

4

2 24 4
1 3

3

2
,

1

2 2

, ,
2 2 2 2

h

a s t a s

t x

h
q x t dx

P g d d d P g d

l P
l n h t l n h t d

l

 
 

       


 


 
  
 

 
        

 
                   



 



       (43) 

where the parameters  ,  ,  ,  , 1 , 2 , 3 , 1  to 5  are selected to fulfill the 

following requirements: 

 

 

3

3

32

1 1
2

2
2 1 2 3

4
3 1

3

4
4

4
5 2

min ,

2

0
2

0
2

0
2

2
0

2 2 0

0
2 2

0
2 2

1
0

2 2

g P

gh

Pb gb

P
gh

l

P l b
ghb Ph

sh
s

P g h sh

l P
l

l

l
l

 


 

 


 

 


     











 





 

 

  

    

     


        

   

         



               (44) 

Putting (44) into (43), combined with (25) to (29) leads to 
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       

   

     
     

 

22 2 2
1 2 3 1 0

2 23
2 40

2 1

2 2 2
3 3 4 5

3 1 43

, ,
2

1 2
          ,

2 2

         , ,

       

       

h

t a s t x

h

x

t x

V t P g d n x t bn x t dx

l h
n x t dx l t Qh

n h t l n h t d t

V t V t V t

V t

   

  
 

 

 

 

       

         
   

      
      

  





 

             (45) 

among which  

 3 2/   , 

3 51 2 4
3 1 1 2 2 3 3

2 22 2 2
min , , , , , , ,

a dg P g
      

    
    

  
 

,

2 2 2 2 2
1 2 3

2 1 4

2 1

2 a s t

h
Qh P g d d d

      
  

   
           
   

. 

Based on the above analysis, we shall prove stability theorems. 
Theorem 1: In the case of the axially moving system described by (12) and (13), given that the 

initial states are limited and the inequalities outlined in (44) are existed by selecting suitable 
parameters, in accordance with Assumptions 1 and 2, the planned controller (17) and the adaptation 
rules (18), (20), give rise to the following findings:  

1) Uniformly boundedness: The variables of a closed-loop axial motion structure remain within 
a limited range. 

    1 1: , ,n x t R n x t      

where      , 0, 0,x t h    ,  1
1

2
0 th

V e
P

 
  

    
. 

2) Ultimately evenly restrained: Dynamic variables of a closed-loop axial motion structure 
ultimately merge into a condensed quantity. 

    2 2: , lim ,
t

n x t R n x t 


     

where  0,x h  , 2
1

2h

P


  

 . 

Proof: Multiplying (45) by te , we have 

     t t t t t
tV t e V t e e V t e e

t
             

 

Thus, direct calculations yield that 

   0 tV t V e  


                             (46) 
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In that case, one can deduce that  V t  remains within limits due to the constrained nature of the 

initial values. 
Combining with (16), (24), (25), (29), one has 

             2 2
1 1 3 40

1

1
, ,

2 2

h

x

P P
n x t n x t dx V t V t V t V t V t

h

 


           (47) 

According to (46), (47), we have  

   
1

2
, 0 th

n x t V e
P

 
  

    
                        (48) 

where      , 0, 0,x t h    . 

From (48), we additionally obtain 

   
1 1

2 2
lim , lim 0 t

t t

h h
n x t V e

P P
  

     


 

     
               (49) 

where  0,x h . 

Remark 2: Based on (46), (47), we are able to achieve that    1 4V t V t are bounded. Kinetic 

 kE t and positional energy  pE t  are then bounded, we can use Property 1 and 2 to summarize 

tn , xtn , xn  and xxn  are bounded within the stipulated time and area. From the boundedness of 

 4V t , it is easy to see P , cg , sd  and d  are bounded. According to the definition of  0u t , one 

obtains that  u t  is bounded. Integrating Eq (12) with the earlier statements, ttn  is also bounded 

within the given time and territory. This guarantees the practicability of the moved control strategy 
and all signals of the closed-loop system are bounded. 

4. Simulation 

Through simulation instances, this portion demonstrates the soundness of the proposed adaptive 

algorithm. Table 1 details the system specifications. The specified values for Sc-A/D include peak A, 

peak D and time scale: 3.5A Dr r G  , 1 , 2 ,3 ,7 ,8 ,9 ,10 ( 1 7)mt s s s s s s s m   . The following 

variables are used to control 1 10 ^ 4l  , 2 3 100l l  , 0.01  , 10 ^ 6  , 1 2 3 1     , 

1 2 3 0.1     . 0 0.001  . Original setup of the structure in following manner 

   ,0 ,0 0tn x n x  . The disruptions are in the form of  

   

   

1

1

, 0.00001 1 sin , 1,2,3

3 0.1 sin , 1,2,3

c

m

c

m

q x t x m xt m

d t m mt m






  
      


   




            (50) 
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Table 1. Variables of the axially shifting conveyor system. 

Variable Magnitude 

g  1.0 /kg m  

cg  5.0 kg  

h  1.0 m  

s  1.0 2/Ns m  

sd  0.25 /Ns m  

G  9.8 /N kg  

P  5000 N  

0b  0 

Figures 3 and 4 show the displacement of the system without control in constant speed and 
large acceleration/deceleration under scattered perturbation and border interference. The deflection 
of the system is illustrated in Figures 5 and 6, both of which represent scenarios with the presented 
control (17) under constant speed and large acceleration/deceleration, all while facing the same 
external conditions. The oscillatory displacements of the system at the mid and the end with and 
without control are shown in Figure 7. Figure 8 shows the simulation results of the unregulated and 
regulated reactions. Figure 9 provides a time-based comparison between prescribed input  0u t and 
non-linear input  u t . The interference tracking result and the estimation of error are given in 
Figure 10. 

 

Figure 3. Oscillatory motion of the system under a fixed speed without regulation. 
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Figure 4. Uncontrolled system vibrations under conditions of high acceleration/deceleration. 

 

Figure 5. System’s vibrational response with the recommended control under a steady speed. 

 

Figure 6. System’s oscillations under the provided control during rapid acceleration/deceleration. 
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Figure 7. Oscillatory motion of the structure at border and center. 
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Figure 8. Magnify the perspective of oscillatory excursion. 

 

Figure 9. The proffered adaptive boundary control input  0u t . Suggested adaptive 
limit saturated control signal  u t . 
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Figure 10. A tracing diagram of boundary interference. The tracing error diagram of 
boundary interference.

5. Conclusions 

We consider vibration suppression of the structure with large A/D and uncertain structural 
parameters in the context of interference and saturation constraints. Pursuant to the dynamic model 
of infinite dimensional partial differential equation, Lyapunov theory, Sc A/D method, adaptive 
technology and compensation system are designed to sort out saturation, an adaptive boundary 
regulator is developed, positioned on the rightmost side, which can quell the oscillation of the 
structure. The adaptive controller used cannot only solve the control overflow problem caused by the 
truncated reduced order model, but also balance for the imprecision of system structural parameters 
and the limitation of saturation. Therefore, the regulator designed has good robustness and 
adaptability, and verifies that the propounded system is stable and exhibits uniform boundedness. 
The numerical simulation of the proffered algorithm is implemented, and the simulation information 
prove that the moved directive algorithm is reliable. In future studies, we plan to study the influence 
of more non-linear inputs on the system and considerate practical experiments on actual systems to 
scrutinize the functionality of recommended control strategy. 
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