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Abstract: In this article, we consider the global existence and stability issues of the nonlinear
Schrödinger equation with partial confinement. First, by establishing some new cross-invariant man-
ifolds and variational problems, a new sharp criterion of global existence is derived in the L2-critical
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1. Introduction

In the current paper, we investigate the global existence and stability issues of the following nonlin-
ear Schrödinger equation (NLS) with partial confinementiut = −∆u + V(x)u − |u|p−1u, (t, x) ∈ [0,T ) × RN ,

u(0, x) = u0, x ∈ RN ,
(1.1)

where N > 2 represents the spatial dimension, 0 < T ≤ ∞, u(t, x) : [0,T ) × RN → C, 1 < p < N+2
N−2 and

V(x) =
∑k

i=1 x2
i (1 ≤ k < N) denotes the partial confinement.

It is well-known that the model (1.1) with partial confinement emerges in various kinds of physical
environments, such as the propagation of a laser beam and plasma waves in the description of nonlin-
ear waves. For p = 3, Eq (1.1) is also used to describe the Bose-Einstein condensate (BEC) [1–3].
In the experiment by BEC [4], the condensation phenomenon is observed due to the presence of a
trapping potential, and the shape of external confining potential heavily influences the macroscopic
behavior. For this consideration, the external confinement is usually chosen to be harmonic, i.e.,
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V(x) =
∑N

i=1 ω
2
i x2

i , ωi ∈ R. In this manuscript, the model under consideration involves the simpli-
fied situation where ωi ≡ 1 for 1 ≤ i ≤ k and ωi ≡ 0 for k + 1 ≤ i ≤ N.

The energy space corresponding to Eq (1.1) is denoted by

Σ =

{
u ∈ H1(RN),

∫
RN

k∑
i=1

x2
i |u|

2dx < ∞
}

(1.2)

with the norm

‖u‖Σ = (‖∇u‖2L2(RN ) + ‖u‖2L2(RN ) +

∫
RN

k∑
i=1

x2
i |u|

2dx)
1
2 , f or 1 ≤ k < N.

The energy functional associated to Eq (1.1) is written as

E(u) =
1
2

∫
RN

(|∇u|2 +

k∑
i=1

x2
i |u|

2)dx −
1

p + 1

∫
RN
|u|p+1dx, u ∈ Σ. (1.3)

Our main goal of this manuscript is to derive the criterion of blow-up or global existence as well as
the orbital stability of standing waves to Eq (1.1).

We now review some earlier results on the above issues. Concerning the canonical NLS (i.e.,
V(x) = 0 in Eq (1.1)), Weinstein [5] and Zhang [6] derived several sharp thresholds of global and blow-
up solutions for Eq (1.1) in the mass-critical and mass-supercritical cases using variational arguments,
respectively. In addition, Berestycki and Cazenave [7] and Weinstein [5] addressed the instability issue
of standing waves under the L2-critical case p = 1 + 4

N , while the first work done by Cazenave and
Lions in [8] showed the orbital stability of normalized standing waves for the L2-subcritical situation
1 < p < 1 + 4

N by utilizing concentration compactness theory. We refer the readers to [9–12] for more
studies on Eq (1.1) which removes the confined potential, i.e., V(x) = 0.

For NLS with complete harmonic confinement V(x) =
∑N

i=1 x2
i , i.e., the case k = N, there is a

large number of literatures concerning the corresponding Cauchy problems on blow-up and stability
issues, see [13–20] for example. It is worth mentioning that Zhang [17] verified that the blow-up
solutions exist for some special initial values and studied the sharp stability threshold for the L2-
critical NLS using scaling techniques and some compactness arguments related to compact embed-
ding. Zhang [19], Shu and Zhang [20], Zhang and Ahmed [21] derived some sharp conditions for
finite time blow-up and global existence to NLS with L2-critical nonlinearity and L2-supercritical non-
linearity or with L2-supercritical nonlinearity respectively by constructing the cross-invariant sets and
using variational methods.

It is worth noting that when V(x) represents a trapping potential confined on partial directions in the
space, i.e., V(x) =

∑k
i=1 x2

i (1 ≤ k < N), it leads to the fact that the embedding from Σ (see (1.2)) to Lr

with r ∈ [2, 2N
N−2 ) loses compactness, which makes a huge difference with the situation V(x) = |x|2 on

the study of the stability and blow-up issues (see for example [13, 17]). Due to this reason, particular
interest and increasing attention have been received for the study on the criterion of global existence
versus blow-up and stability of normalized ground state to NLS or nonlinear Schrödinger system with
a partial confinement, see for instance [22–27]. In particular, Zhang [23] studied the optimal condition
of global existence to the L2-critical NLS and showed that there exist solutions blowing up at finite

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18207–18229.



18209

time for some special initial data via scaling approach. Based on the variational characterization of the
ground state of a canonical elliptic equation without potential and the refined compactness argument
established in [11], Pan and Zhang [28] derived a sharp threshold of blow-up versus global existence
and researched the mass concentration phenomena for NLS with mass-critical nonlinearity and partial
confinement in dimension N = 2. Recently, by employing the cross-constrained variational approach,
Wang and Zhang [29] derived the sharp criterion of global existence and blow-up for the NLS with a
special partial confinement V(x) = x2

N for 1 + 4
N−1 ≤ p < N+2

(N−2)+ and N ≥ 2. It’s also worth to mention
that the researchers in [30] proved a sharp criterion of global existence to Eq (1.1) in dimension N = 3
by proposing some cross-invariant sets and using variational arguments. We are interested in extend-
ing the results of [30] to the case with space dimensions N > 2 and deriving a new criterion for sharp
global existence. With regard to the stability issues of the normalized standing waves, to overcome the
loss of compactness, Bellazzini et al. [25] used the concentration compactness argument to investigate
the existence of orbitally stable standing waves to Eq (1.1), including partial confinement in the L2-
supercritical case in dimension N = 3. Jia, Li and Luo [31] generalized the arguments in [25] to the
cubic coupled Schrödinger system with a partial confinement in dimension N = 3. In [32], the concen-
tration compactness principle was also applied to the study on the existence of stable standing waves
for the Lee-Huang-Yang corrected dipolar NLS with partial confinement. More recently, for the NLS
(1.1) with a partial confinement and inhomogeneous nonlinearity |x|−b|u|p−1u (0 < b < 2), the authors
in [33] showed the stability of normalized standing waves by utilizing the profile decomposition prin-
ciple in the L2-subcritical and L2-critical cases and by applying concentration compactness principle in
the L2-supercritical case. It is shown in [34] that there exist normalized standing waves for the mixed
dispersion NLS with a partial confinement and these solutions are orbitally stable, in which the main
ingredients of the proofs are the profile decomposition principle and the concentration-compactness
theory in H2(RN) ∩ {u ∈ L2(RN),

∫
RN

∑k
i=1 x2

i |u|
2dx < ∞}.

As far as we know, the orbitally stable standing waves to Eq (1.1) with partial confinement in the
L2-subcritical and L2-critical cases have not been investigated in the existing literatures. Inspired by
the literatures mentioned above, our main contribution of this work is to derive the sharp criterion of
global existence versus blow-up and the existence of stable standing waves to Eq (1.1) in the general
N-dimensional space.

To these aims, the main difficulty stems from the presence of partial confinement V(x) =
∑k

i=1 x2
i ,

which causes the loss of scale invariance and the lack of compactness. We first derive a new sharp
criterion of global existence for Eq (1.1) with 1 + 4

N ≤ p < N+2
N−2 by establishing some new so-called

cross-constrained manifolds and variational problems (see (1.7) and (1.8)), which are different from
those in [30]. Then, the existence of orbitally stable standing waves is obtained in the L2-subcritical
and L2-critical cases 1 < p ≤ 1 + 4

N , by taking advantage of the profile decomposition technique to
overcome the loss of compactness. Our work extends some earlier results of [17,30] and complements
partial arguments of [25, 33].

The first part of our paper is to consider the sharp criterion of global existence in the L2-critical and
L2-supercritical cases 1 + 4

N ≤ p < N+2
N−2 by establishing some new so-called cross-invariant manifolds

and proposing cross-constrained minimization problems. Before stating our results, for u ∈ Σ, we
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define three important functionals as follows

I(u) =
1
2

∫
RN

(|∇u|2 + |u|2 +

k∑
i=1

x2
i |u|

2)dx −
1

p + 1

∫
RN
|u|p+1dx, (1.4)

S (u) =

∫
RN
|∇u|2 + |u|2dx −

∫
RN
|u|p+1dx, (1.5)

P(u) =

∫
RN
|∇u|2dx −

N(p − 1)
2(p + 1)

∫
RN
|u|p+1dx, (1.6)

and set the following two minimizing problems by

dM = inf
u∈M

I(u), (1.7)

dB = inf
u∈B

I(u), (1.8)

where

M = {u ∈ Σ \ {0}, P(u) = 0, S (u) < 0},
B = {u ∈ Σ \ {0}, S (u) = 0}.

Let
d = min{dM, dB}, (1.9)

then from Lemmas 3.2 and 3.3, one can conclude that d > 0. Next define the following manifolds,

K = {u ∈ Σ \ {0}, I(u) < d, S (u) < 0, P(u) < 0},
K+ = {u ∈ Σ \ {0}, I(u) < d, S (u) < 0, P(u) > 0},
R+ = {u ∈ Σ \ {0}, I(u) < d, S (u) > 0},
R− = {u ∈ Σ \ {0}, I(u) < d, S (u) < 0},

which will be proved as invariant sets in Section 3.
The following two assertions are about the existence of global solution and blow-up to Eq (1.1) for

1 + 4
N ≤ p < N+2

N−2 .

Theorem 1.1. Suppose 1 + 4
N ≤ p < N+2

N−2 and u0 ∈ K+ ∪ R+, then the solution u(t, x) to Eq (1.1) exists
globally in time t ∈ [0,∞).

Theorem 1.2. Suppose 1 + 4
N ≤ p < N+2

N−2 , and assume u0 ∈ K with |x|u0 ∈ L2(RN), then the solution
u(t, x) to Eq (1.1) blows up in finite time.

Remark 1.3. (i) From the definition of the invariant manifolds mentioned above, for 1 + 4
N ≤ p < N+2

N−2 ,
we see that

{u ∈ Σ \ {0}, I(u) < d} = K+ ∪ R+ ∪ K,

which indicates the conclusion of Theorem 1.1 is sharp if |x|u0 ∈ L2(RN).
(ii) Notice that for 1 < p < 1 + 4

N , we can easily get the existence of global solution u(t, x) without any
constrains. For p = 1 + 4

N and u0 ∈ Σ, the sharp threshold mass of blow-up versus global existence
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is given in [23]. In the case N > 2 and p = 1 + 4
N , one can derive the mass-concentration property

of blow-up solutions and the dynamical properties of L2-minimal mass blow-up solutions, which have
been discussed in [28] in the L2-critical case with N = 2 and p = 3, in terms of scaling techniques, a
refined compactness argument and the variational characterization of the positive ground state solution
Q(x) to the critical elliptic equation

− ∆Q + Q − Q
4
N Q = 0, x ∈ RN . (1.10)

(iii) When N = 3 and 1 + 4
N ≤ p < N+2

N−2 , Wang and Zhang [30] obtained a sharp criterion of global
existence for Eq (1.1) by introducing some cross-invariant sets and variational problems. Our work,
which is motivated by [20], derives a new sharp condition of global existence to Eq (1.1) in the case
N > 2 and 1 + 4

N ≤ p < N+2
N−2 by proposing some new cross-invariant manifolds and cross-constrained

minimization problems, where the functionals in the constrained sets and variational problems we
define (see (1.5)–(1.8)) are different from those in [30]. Moreover, we improve the corresponding
results of [30] to space dimensions N > 2.

The second part of this work discusses the stability of normalized standing waves in the cases
1 < p ≤ 1+ 4

N by taking advantage of the profile decomposition principle. Here, a solution u(t, x) to Eq
(1.1), possessing the special form u(t, x) = eiωtϕ(x), is said to be a standing wave, where ω ∈ R stands
for a frequency and ϕ ∈ Σ \ {0} is a solution to the following elliptic equation

−∆ϕ + ωϕ + V(x)ϕ − |ϕ|p−1ϕ = 0.

To research the orbital stability of normalized standing waves, applying the ideas of [8], we take
into account the constrained minimization problem below

m(c) = inf
ϕ∈S (c)

E(ϕ), (1.11)

where
S (c) = {ϕ ∈ Σ : ‖ϕ‖L2(RN ) = c}, f or c > 0.

For the L2-subcritical case 1 < p < 1 + 4
N , or in the L2-critical situation p = 1 + 4

N and 0 <

c < ‖Q‖L2(RN ), one can deduce from Gagliardo-Nirenberg inequality that E(ϕ) (see (1.3)) is bounded
from below on S (c), where Q(x) is the ground state solution to Eq (1.10). In addition, we know from
Theorem 4.2 that the constrained variational problem (1.11) is attained. In what follows, we denote the
set of whole minimizers to (1.11) by

Mc = {ϕ ∈ S (c) : E(ϕ) = m(c)}.

Let’s now review the definition on orbital stability of standing waves.

Definition 1.4. The set A is said to be orbitally stable if for any given ε > 0, there exists δ > 0 such
that for any initial data u0 fulfilling

inf
ϕ∈A
‖u0 − ϕ‖Σ < δ,

then the corresponding solution u(t, x) to Eq (1.1) satisfies

inf
ϕ∈A
‖u(t, x) − ϕ‖Σ < ε, f or ∀ t > 0.
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The last result is concerned with the orbital stability of normalized standing waves to Eq (1.1) in
the L2-subcritical and L2-critical cases.

Theorem 1.5. Suppose that c > 0 if 1 < p < 1 + 4
N or 0 < c < ‖Q‖L2(RN ) if p = 1 + 4

N , where Q(x) is the
ground state solution to Eq (1.10). Then, Mc , ∅, and is orbitally stable.

Remark 1.6. (i) To demonstrate the existence of orbitally stable standing waves for NLS with partial
confinement V(x) =

∑k
i=1 x2

i (1 ≤ k < N), the main challenge comes from the lack of compactness. With
regard to NLS with complete harmonic potential V(x) =

∑N
i=1 x2

i , Zhang [17] used the key fact that
the embedding Σ ↪→ Lr with r ∈ [2, 2N

N−2 ) is compact to give the sharp stability threshold of standing
waves with prescribed mass for Eq (1.1) when p = 1 + 4

N . Whereas, regarding the NLS with partial
confinement, it’s worth to note that the embedding Σ ↪→ Lr with r ∈ [2, 2N

N−2 ) loses compactness, the
method used by [17] is not suitable to obtain the stable standing waves to Eq (1.1). In [33], to overcome
the main difficulty, Liu, He and Feng showed the orbital stability of normalized standing waves to the
NLS with an inhomogeneous nonlinearity |x|−b|u|p−1u and partial confinement for 0 < b < 2 by taking
advantage of the profile decomposition principle in the L2-subcritical and L2-critical cases, and by
applying concentration compactness theory for the mass-supercritical case.
(ii) In this work, we survey only the existence of stable standing waves in the cases 1 < p ≤ 1 + 4

N by
profile decomposition theory, which is an improvement to [17] and a complement to [25,33]. As far as
the authors know, there are few literatures researching the stable standing waves to NLS with partial
confinement in terms of the profile decomposition technique, except for [33,34]. When N = 3 and k = 2
in Eq (1.1), Bellazzini et al. [25] obtained the orbital stability of normalized standing waves to Eq (1.1)
in the L2-supercritical and H1-subcritical cases by utilizing concentration compactness principle and
variational methods. In the general N-dimensional space, considering Eq (1.1) with L2-supercritical
nonlinearity, we can apply the ideas of [25, 33] to verify the stability of normalized standing waves.
(iii) The papers [5,7] have addressed the instability of standing waves to Eq (1.1) without confinement
for p = 1 + 4

N . Our result (Theorem 1.5) reveals the stabilizing effect to the standing waves played by
partial confinement V(x) =

∑k
i=1 x2

i (1 ≤ k < N).

Throughout this article, for the sake of convenience, we use the abbreviation
∫
·dx to replace

∫
RN ·dx

and denote ‖ · ‖Lp(RN ) (1 < p < N+2
N−2 ) by ‖ · ‖p, and utilize C to represent a positive constant which may

vary from line to line.
Our article is structured as follows. In Section 2, some preliminaries are presented, including several

significant lemmas. In Section 3, the sharp criterion of global existence versus blow-up is established
and the proofs to Theorems 1.1 and 1.2 are given. In Section 4, we address the orbital stability of
normalized standing waves and prove Theorem 1.5. In the last section, the conclusions are given.

2. Preliminaries

In order to survey the global existence versus blow-up and the stability issues to standing waves,
one requires the well-posedness to Eq (1.1). Based on [22] and [9], in the following we introduce the
local well-posedness to problem (1.1).

Proposition 2.1. ( [9, 22]) Suppose u0 ∈ Σ and 1 < p < N+2
N−2 . Then, there exist T = T (‖u0‖Σ) and a

unique solution u(t, x) ∈ C([0,T ),Σ) to Eq (1.1). Assume that the solution u(t, x) is well-defined on the
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maximal interval [0,T ). If T < ∞, then lim
t→T
‖u(t, x)‖Σ = ∞ (blow-up). Moreover, for any t ∈ [0,T ), the

following conservation laws of mass and energy hold

‖u(t, x)‖2 = ‖u0‖2, E(u(t, x)) = E(u0). (2.1)

Remark 2.2. In the case 1 < p < 1+ 4
N , using Lemma 2.4 and Young’s inequality, it is not hard to verify

the existence of global solution for Eq (1.1). For the L2-critical case p = 1 + 4
N , the solution to Eq (1.1)

with mass strictly less than ‖Q‖2 is global. On the other hand, if the mass of initial data ‖u0‖2 ≥ ‖Q‖2,
then finite time blow-up solutions exist, see [23]. Furthermore, in the case 1 + 4

N < p < N+2
N−2 , using

the local well-posedness theory to Eq (1.1), one can show the existence of global solution for initial
data small enough, but for some large data, it is possible that the explosion of solutions happens at
finite time.

Next, based on Cazenave [9], we give the virial identity for the Cauchy problem (1.1), which is of
great importance in the analysis of blow-up behaviors to the solutions.

Proposition 2.3. Assume u0 ∈ Σ and u(t, x) is the corresponding solution to problem (1.1) in
C([0,T ); Σ). Let |x|u0 ∈ L2(RN) and take Γ(t) =

∫
|x|2|u(t, x)|2dx, then we get that

Γ′′(t) = 8
∫

(|∇u|2 −
k∑

i=1

x2
i |u|

2)dx −
4N(p − 1)

p + 1

∫
|u|p+1dx.

Now, we recall some useful lemmas.

Lemma 2.4. ( [5]) Let 1 < p < N+2
N−2 , then for all u ∈ H1(RN), we have the following sharp Gagliardo-

Nirenberg inequality ∫
|u|p+1dx ≤ CGN(

∫
|∇u|2dx)

N(p−1)
4 (

∫
|u|2dx)

p+1
2 −

N(p−1)
4 .

In particular, in the mass-critical case p = 1 + 4
N , CGN = N+2

N ‖Q(x)‖−
4
N

2 , where Q(x) is the positive
ground state solution to Eq (1.10).

Lemma 2.5. ( [25]) For 1 ≤ k < N, let

Λ0 = inf∫
|w|2dx=1

(
∫
|∇w|2dx +

∫ k∑
i=1

x2
i |w|

2dx)

and

λ0 = inf∫
Rk |u|2dx1dx2···dxk=1

(
∫
Rk
|∇u|2dx1dx2 · · · dxk +

∫
Rk

k∑
i=1

x2
i |u|

2dx1dx2 · · · dxk).

Then, we have Λ0 = λ0.

To investigate the compactness of any minimizing sequence to (1.11), we introduce the correspond-
ing profile decomposition of a bounded sequence in Σ, which is slightly different from [11].
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Lemma 2.6. Suppose 1 ≤ k < N, 1 < p ≤ 1 + 4
N and let {un} be a bounded sequence in Σ. Then, there

exist a subsequence of {un} (still denoted by {un}), a family {x j
n}
∞
n=1 of sequences in RN−k and a sequence

{U j}∞j=1 in Σ satisfying
(i) for each m , j, |xm

n − x j
n| → +∞, as n→ ∞;

(ii) for each l ≥ 1 and x ∈ RN , we have

un(x) =

l∑
j=1

τx j
n
U j(x) + rl

n,

with lim supn→∞ ‖r
l
n‖q → 0 as l→ ∞ for any q ∈ [2, N+2

N−2 ), where τyU j(x) = U j(x1, · · · , xk,

xk+1 − y1, · · · , xN − yN−k) for x = (x1, · · · , xN) ∈ RN and y = (y1, · · · , yN−k) ∈ RN−k. In addition,

‖un‖
2
2 =

l∑
j=1

‖U j‖22 + ‖rl
n‖

2
2 + o(1), (2.2)

∫
V(x)|un|

2dx =

l∑
j=1

∫
V(x)|U j|2dx +

∫
V(x)|rl

n|
2dx + o(1), (2.3)

‖∇un‖
2
2 =

l∑
j=1

‖∇U j‖22 + ‖∇rl
n‖

2
2 + o(1), (2.4)

‖un‖
p+1
p+1 =

l∑
j=1

∫
|τx j

n
U j|p+1dx + ‖rl

n‖
p+1
p+1 + o(1), (2.5)

where o(1) = on(1)→ 0 as n→ ∞.

3. Sharp criterion of global existence

In this section, the authors propose several new cross-constrained variational problems and invariant
sets associated with problem (1.1) to discuss the sharp criterion of global existence.

Proposition 3.1. If 1 + 4
N ≤ p < N+2

N−2 , then M is not empty.

Proof. According to [35], there is u ∈ Σ \ {0} such that u is a nontrivial solution for Eq (1.10). Testing
Eq (1.10) against u and integrating over RN , we see that S (u) = 0. Furthermore, multiplying Eq (1.10)
by x · ∇u, one has the following Pohoz̆aev identity

−
1
2

(N − 2)
∫
|∇u|2dx +

N
p + 1

∫
|u|p+1dx −

N
2

∫
|u|2dx = 0. (3.1)

Combining (3.1) with S (u) = 0, we have P(u) = 0. Put v = νu(t, x) for ν > 1, then combining
S (u) = 0 and P(u) = 0, one can infer that S (v) < 0 and P(v) < 0. Taking vλ(t, x) = λ

2
p−1 v(t, λx) for

λ > 0, from (1.5) and (1.6), we obtain

P(vλ) = λ
2+2p−N p+N

p−1

∫
|∇v|2 −

N(p − 1)
2(p + 1)

|v|p+1dx,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18207–18229.
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S (vλ) = λ
2+2p−N p+N

p−1

∫
|∇v|2 − |v|p+1dx + λ

4−N p+N
p−1

∫
|v|2dx.

Owing to P(v) < 0, we deduce that there is λ0 > 1 satisfying P(vλ0) = 0. Besides, according to the
fact S (v) < 0 and λ0 > 1, we know that S (vλ0) < 0. Thus vλ0 ∈ M, which means M , ∅.

Lemma 3.2. Let 1 + 4
N ≤ p < N+2

N−2 , then dM > 0.

Proof. Take u ∈ M, it’s clear that u , 0. Since P(u) = 0, one has

I(u) = (
1
2
−

2
N(p − 1)

)
∫
|∇u|2dx +

1
2

∫
|u|2dx +

1
2

∫ k∑
i=1

x2
i |u|

2dx. (3.2)

We prove the assertion in two situations: the mass-critical case p = 1+ 4
N and the mass-supercritical

case 1 + 4
N < p < N+2

N−2 .
We first consider the case p = 1 + 4

N . In the current situation, we claim that dM > 0. Suppose
dM = 0, then we conclude from (1.7) that there exists a sequence {un}

∞
n=1 ∈ M satisfying I(un) → 0,

S (un) < 0 and P(un) = 0 as n→ ∞. (3.2) leads to∫
V(x)|un|

2dx→ 0,
∫
|un|

2dx→ 0, as n→ ∞, (3.3)

due to p = 1 + 4
N . Applying Lemma 2.4, we obtain∫

|un|
p+1dx ≤ CGN(

∫
|∇un|

2dx)(
∫
|un|

2dx)
2
N .

This, together with S (un) < 0, implies∫
|∇un|

2 + |un|
2dx < CGN(

∫
|∇un|

2dx)(
∫
|un|

2dx)
2
N .

Nevertheless, when n is sufficiently large, from (3.3) we have∫
|∇un|

2 + |un|
2dx > CGN(

∫
|∇un|

2dx)(
∫
|un|

2dx)
2
N ,

which is a contradiction. Therefore, dM > 0 when p = 1 + 4
N .

Now, let us handle the L2-supercritical case 1 + 4
N < p < N+2

N−2 . It follows from S (u) < 0 and the
continuous embedding H1(RN) ↪→ Lp+1(RN) that∫

|∇u|2 + |u|2dx <
∫
|u|p+1dx ≤ C(

∫
|∇u|2 + |u|2dx)

p+1
2 .

Thus, we derive ∫
|∇u|2 + |u|2dx ≥ C > 0. (3.4)

Keeping in mind that 1 + 4
N < p < N+2

N−2 and combining (3.2) with (3.4), one has

I(u) ≥ C > 0, f or any u ∈ M,

which means dM > 0 for 1 + 4
N < p < N+2

N−2 . Thus we claim that dM > 0 for 1 + 4
N ≤ p < N+2

N−2 .
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Lemma 3.3. Suppose 1 + 4
N ≤ p < N+2

N−2 , then the set B is nonempty and dB > 0.

Proof. According to [35], the set B is nonempty. By S (u) = 0, one can discover

I(u) = (
1
2
−

1
p + 1

)
∫
|∇u|2 + |u|2dx +

1
2

∫ k∑
i=1

x2
i |u|

2dx. (3.5)

Asserting Sobolev embedding inequality into S (u) = 0, we get∫
|∇u|2 + |u|2dx ≤ C

( ∫
|∇u|2 + |u|2dx

) p+1
2 . (3.6)

For 1 + 4
N ≤ p < N+2

N−2 and u , 0, one is able to infer from (3.5) that∫
(|∇u|2 + |u|2)dx ≥ C > 0.

Thus, when 1 + 4
N ≤ p < N+2

N−2 , it follows from (1.8) and (3.5)–(3.6) that dB > 0.

Next we shall show that K, K+, R+ and R− are all invariant sets related to Eq (1.1).

Theorem 3.4. Assume 1 + 4
N ≤ p < N+2

N−2 , then K, K+, R+ and R− are all invariant sets of Eq (1.1). That
is, if u0 ∈ K, K+, R+ or R−, then the solution u(t, x) to Eq (1.1) also fulfils u(t, x) ∈ K, K+, R+ or R− for
∀ t ∈ [0,T ).

Proof. In the first, we demonstrate that the set K is an invariant manifold. Suppose u0 ∈ K and u(t, x)
is the unique solution to Eq (1.1). We infer from (2.1) that

I(u) = I(u0), f or arbitrary t ∈ [0,T ). (3.7)

Owing to I(u0) < d, we have I(u) < d for arbitrary t ∈ [0,T ).
Now we turn to show S (u) < 0 for arbitrary t ∈ [0,T ). If otherwise, using the continuity of S (u) in

t, one can find t0 ∈ [0,T ) satisfying S (u(t0, ·)) = 0. From (3.7), we obtain u(t0, ·) , 0. Combining (1.8)
and (1.9), we know that I(u(t0, ·)) ≥ d. Obviously, it’s contradictory to the fact I(u(t, ·)) < d for any
t ∈ [0,T ). Thus S (u) < 0 for all t ∈ [0,T ).

Subsequently, for t ∈ [0,T ), we claim that P(u) < 0. If P(u) < 0 is false, since the functional
S (u) is continuous, we could seek out t′ ∈ [0,T ) fulfilling P(u(t′, ·)) = 0. Since we have demonstrated
S (u(t′, ·)) < 0, we conclude from P(u(t′, ·)) = 0 that u(t′, ·) ∈ M. Thus, by utilizing (1.7) and (1.9), one
has I(u(t′, ·)) ≥ dM ≥ d. This causes a contradiction because I(u(t′, ·)) < d for every t ∈ [0,T ). Thus
P(u) < 0 when t ∈ [0,T ). Hence we have u(t, x) ∈ K for arbitrary t ∈ [0,T ).

By using similar method as the above process, one can also infer that the manifolds K+, R+ and R−
are all invariant sets.

Based on the conclusions we have proved, it is sufficient to show Theorems 1.1 and 1.2.
Proof of Theorem 1.1. We first study the case u0 ∈ R+. According to Proposition 2.1 and Theorem
3.4, the initial-value problem (1.1) possesses a unique solution u(t, x) ∈ R+ for arbitrary t ∈ [0,T ).
Then, for all t ∈ [0,T ), we have I(u) < d and S (u) > 0. This implies∫

(|∇u|2 + |u|2 +

k∑
i=1

x2
i |u|

2)dx <
2(p + 1)

p − 1
d.
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From Proposition 2.1, one can know that the solution u(t, x) is global in time t ∈ [0,∞).
Next we discuss the case u0 ∈ K+. In the light of Proposition 2.1 and Theorem 3.4, the unique

solution u(t, x) ∈ K+ for t ∈ [0,T ). Hence one has I(u) < d and P(u) > 0, which yields

(
1
2
−

2
N(p − 1)

)
∫
|∇u|2dx +

1
2

∫
|u|2dx +

1
2

∫ k∑
i=1

x2
i |u|

2dx < d. (3.8)

In what follows, we shall give out the proof on the global existence of solution in two situations.
One is the L2-critical case, the other one is the L2-supercritical case.

We first discuss the L2-critical case p = 1 + 4
N . By (3.8), we get

1
2

∫
|u|2dx +

1
2

∫ k∑
i=1

x2
i |u|

2dx < d. (3.9)

Set uλ(t, x) = λ
N

p+1 u(t, λx), then (1.6) gives us that

P(uλ) = λ
4

N+2

∫
|∇u|2dx −

N
N + 2

∫
|u|p+1dx.

Since P(u) > 0, then one can find 0 < λ∗ < 1 satisfying P(uλ∗) = 0. Putting (1.4) and (1.6) together,
we obtain

I(uλ∗) =
1
2

∫
(λ−

2N
N+2
∗ |u|2 + λ

−
4(N+1)

N+2
∗

k∑
i=1

x2
i |u|

2)dx.

Thus, from (3.9), one has that

I(uλ∗) < λ−
4(N+1)

N+2
∗ d. (3.10)

For S (uλ∗), only two possibilities exist. One case is S (uλ∗) < 0, and the remaining one is S (uλ∗) ≥ 0.
For the case S (uλ∗) < 0, since P(uλ∗) = 0, together (1.7) with (1.9), one can show that

I(uλ∗) ≥ dM ≥ d > I(u).

Then we have

(1 − λ
4

N+2
∗ )

∫
|∇u|2dx + (1 − λ−

4(N+1)
N+2

∗ )
∫ k∑

i=1

x2
i |u|

2dx + (1 − λ−
2N

N+2
∗ )

∫
|u|2dx < 0. (3.11)

Thus, from (3.9) and (3.11), one has∫
(|∇u|2 +

k∑
i=1

x2
i |u|

2 + |u|2)dx < C. (3.12)

For S (uλ∗) ≥ 0, it follows from (3.10) that

I(uλ∗) −
1

p + 1
S (uλ∗) < λ−

4(N+1)
N+2

∗ d,
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which implies

p − 1
2(p + 1)

λ
− 2N

N+2
∗

∫
λ2
∗ |∇u|2 + |u|2dx +

1
2
λ
−

4(N+1)
N+2

∗

∫ k∑
i=1

x2
i |u|

2dx < λ−
4(N+1)

N+2
∗ d.

Therefore, ∫
|∇u|2 + |u|2 +

k∑
i=1

x2
i |u|

2dx < C. (3.13)

Thus, for p = 1 + 4
N , (3.12) and (3.13) imply that the solution u(t, x) is uniformly bounded in Σ for

all t ∈ [0,T ). According to Proposition 2.1, we derive the global existence of u(t, x) in time t ∈ [0,∞).
We now argue the case 1 + 4

N < p < N+2
N−2 . It is easy to see from (3.8) that∫

|∇u|2 +

k∑
i=1

x2
i |u|

2 + |u|2dx < C.

Therefore, for 1 + 4
N ≤ p < N+2

N−2 , on account of Proposition 2.1, it suffices to show that the solution
u(t, x) to Eq (1.1) exists globally for t ∈ [0,∞).

Proof of Theorem 1.2. Suppose u0 ∈ K and |x|u0 ∈ L2(RN), and assume u(t, x) is a solution to Eq
(1.1). Then combining Proposition 2.1 with Theorem 3.4, one could derive that the solution u(t, x) ∈ K
and |x|u(t, x) ∈ L2(RN) when t ∈ [0,T ). It follows from the virial identity (see Proposition 2.3) and
(1.6) that

Γ′′(t) < 8P(u(t, ·)), f or t ∈ [0,T ). (3.14)

Thus, for 0 ≤ t < T , u fulfils that S (u) < 0 and P(u) < 0. For µ > 0, we take uµ = µ
3

p+1 u(µx), then

S (uµ) = µ
5−p
p+1

∫
|∇u|2dx + µ

3(1−p)
p+1

∫
|u|2dx −

∫
|u|p+1dx,

P(uµ) = µ
5−p
p+1

∫
|∇u|2dx −

N(p − 1)
2(p + 1)

∫
|u|p+1dx.

Owing to 1 + 4
N ≤ p < N+2

N−2 and P(u) < 0, then there must exist µ∗ > 1 fulfilling P(uµ∗) = 0, and
P(uµ) < 0 for 1 ≤ µ < µ∗. When 1 ≤ µ < µ∗, due to S (u) < 0, S (uµ) may have the following two cases:

(i) S (uµ) < 0 for 1 ≤ µ < µ∗;
(ii) There is 1 < θ ≤ µ∗ satisfying S (uθ) = 0.
Concerning the first situation (i), we have P(uµ∗) = 0 and S (uµ∗) < 0, then uµ∗ ∈ M. Based on (1.7)

and (1.9), we discover
I(uµ∗) ≥ dM > d > I(u).

Furthermore, one has

I(u) − I(uµ∗) =
1
2

(1 − µ
5−p
p+1
∗ )

∫
|∇u|2dx +

1
2

(1 − µ
1−5p
p+1
∗ )

∫ k∑
i=1

x2
i |u|

2dx

+
1
2

(1 − µ
−

3(p−1)
p+1

∗ )
∫
|u|2dx,

P(u) − P(uµ∗) = (1 − µ
5−p
p+1
∗ )

∫
|∇u|2dx.
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Due to the fact µ∗ > 1 and 1 + 4
N ≤ p < N+2

N−2 , we derive

I(u) − I(uµ∗) ≥
1
2

[P(u) − P(uµ∗)] =
1
2

P(u). (3.15)

For the case (ii), we have uθ ∈ B. Thus, we deduce from (3.15) and (1.9) that

I(uθ) ≥ dB ≥ d.

And so, we could get

I(u) − I(uθ) ≥
1
2

[P(u) − P(uθ)] ≥
1
2

P(u). (3.16)

Since I(uµ∗) ≥ d, I(uθ) ≥ d, combining (3.15) with (3.16), we conclude

P(u) < 2[I(u) − d]. (3.17)

From (3.14), (3.17), (2.1) and u0 ∈ K, one has the following estimate

Γ′′(t) < 8P(u) ≤ 16[I(u0) − d] < 0.

Hence there exists 0 < T < ∞ satisfying Γ(T ) = 0. Then using Lemma 4.2 in [17], one obtains

lim
t→T
‖u‖Σ = ∞,

which indicates the solution u(t, x) to Eq (1.1) must blow up in finite time.

4. Orbital stability of standing waves

This part is concerned with the orbital stability of normalized standing waves of Eq (1.1) in the
L2-subcritical and L2-critical cases, in which the proof to Theorem 1.5 is given. To go further, let us
first introduce the non-vanishing conclusion as below.

Lemma 4.1. Let 1 ≤ k < N and 1 < p ≤ 1 + 4
N . Assume un is a minimizing sequence of (1.11), then

there must exist δ > 0 meeting

lim inf
n→∞

∫
|un|

p+1dx > δ. (4.1)

Proof. Assume by contradiction that there is a subsequence un j fulfilling

lim
j→∞

∫
|un j(x)|p+1dx = 0.

This, together with the definition of m(c), deduces that

m(c) = lim
j→∞

E(un j)

= lim
j→∞

[1
2

∫
(|∇un j |

2 +

k∑
i=1

x2
i |un j |

2)dx −
1

p + 1

∫
|un j |

p+1dx
]

= lim
j→∞

1
2

∫
(|∇un j |

2 +

k∑
i=1

x2
i |un j |

2)dx

≥ lim
j→∞

inf∫
|un j |

2dx=c2

1
2

∫
(|∇un j |

2 +

k∑
i=1

x2
i |un j |

2)dx. (4.2)
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Taking vn j =
un j

c , then (4.2) can be rewritten as

m(c) = lim
j→∞

E(un j) ≥ lim
j→∞

inf∫
|vn j |

2dx=1

c2

2

∫
(|∇vn j |

2 +

k∑
i=1

x2
i |vn j |

2)dx

≥
Λ0

2
c2, (4.3)

where the last inequality according to Lemma 2.5. Furthermore, in view of the argument that the em-
bedding H = {v ∈ H1(Rk),

∫ ∑k
i=1 x2

i |v|
2dx < ∞} ↪→ L2(Rk) is compact by Lemma 2.5, then there exists

some τ ∈ H1(Rk) with
∫
Rk |τ|

2dx = 1 such that λ0 is achieved. Let ψ ∈ H1(RN−k) satisfy
∫
RN−k |ψ|

2dx = c2

and set
uλ(x) = τ(x1, · · · , xk)ψλ(xk+1, · · · , xN),

where ψλ(xk+1, · · · , xN) = λ
N−k

2 ψ(λxk+1, · · · , λxN). Then for any λ > 0, we can deduce uλ ∈ S (c),
combining this fact and Lemma 2.5, we see that

E(uλ) =
1
2

(
∫
|∇uλ|2 +

k∑
i=1

x2
i |uλ|

2dx) −
1

p + 1

∫
|uλ|p+1dx

= I1 + I2 −
1

p + 1

∫
|uλ|p+1dx, (4.4)

where

I1 =
1
2

∫
|uλ|2dx

=
1
2
(
c2

∫
Rk
|∇x1···xkτ(x1, · · · , xk)|2dx1 · · · dxk

+ λ2
∫
RN−k
|∇xk+1···xN−kψλ|

2dxk+1 · · · dxN
)
,

and

I2 =
1
2

∫ k∑
i=1

x2
i |uλ|

2dx

=
c2

2

∫
Rk
|

k∑
i=1

x2
i τ(x1, x2, · · · , xk)|2dx1 · · · dxk,

which implies that (4.4) can be written as
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E(uλ) =
1
2
(
c2

∫
Rk
|∇x1···xkτ(x1, · · · , xk)|2dx1 · · · dxk + λ2

∫
RN−k
|∇xk+1···xN−kψλ|

2dxk+1 · · · dxN
)

+
c2

2

∫
Rk
|

k∑
i=1

x2
i τ(x1, x2, · · · , xk)|2dx1 · · · dxk

−
1

p + 1

∫
RN
|τ(x1, · · · , xk)|p+1|ψλ(xk+1, · · · , xN)|p+1dx

=

∫
RN−k
|∇xk+1···xNψλ|dxk+1 · · · dxN +

Λ0

2
c2

−
1

p + 1

∫
RN
|τ(x1, · · · , xk)|p+1|ψλ(xk+1, · · · , xN)|p+1dx

=
λ2

2

∫
RN−k
|∇xk+1···xNψ|dxk+1 · · · dxN +

Λ0

2
c2

−
λ

(N−k)(p−1)
2

p + 1

∫
RN
|τ(x1, · · · , xk)|p+1|ψ(xk+1, · · · , xN)|p+1dx

<
Λ0

2
c2,

where the last inequality bases on the fact 1 < p ≤ 1 + 4
N < 1 + 4

N−k when taking λ > 0 sufficiently
small. Moreover, since uλ ∈ S (c) for λ > 0 sufficiently small, one has

m(c) ≤ E(uλ) <
Λ0

2
c2,

which contradicts with (4.3). Thus (4.1) holds.

Then, we deal with problem (1.11) by utilizing the profile decomposition theory of a bounded
sequence in Σ (see Lemma 2.6).

Theorem 4.2. Let c > 0 if 1 < p < 1 + 4
N or 0 < c < ‖Q‖2 if p = 1 + 4

N , where Q(x) is the ground state
solution to Eq (1.10). Then there must exist u ∈ S (c) satisfying m(c) = E(u).

Proof. We first demonstrate that the variational problem (1.11) is well-defined, and any minimizing
sequence for (1.11) is bounded in Σ. By Lemma 2.4 and (1.3), one has the following estimate

E(u) =
1
2
‖∇u‖22 +

1
2

∫ k∑
i=1

x2
i |u|

2dx −
1

p + 1

∫
|u|p+1dx

≥
1
2
‖u‖2

Σ̇
−CGN

( ∫
|∇u|2dx

) N(p−1)
4

( ∫
|u|2dx

) 2(p+1)−N(p−1)
4 ,

where ‖u‖2
Σ̇

= ‖∇u‖22 +
∫ ∑k

i=1 x2
i |u|

2dx. For the case 1 < p < 1 + 4
N , using Young’s inequality, one has

that for any 0 < ε < 1
2 , there is a positive constant C(ε,CGN , c) fulfilling

CGN‖u‖
N(p−1)

2

Σ̇

( ∫
|u|2dx

) p+1
2 −

N(p−1)
4 ≤ ε‖u‖2

Σ̇
+ C(ε,CGN , c),
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which implies

E(u) + C(ε,CGN , c) ≥ (
1
2
− ε)‖u‖2

Σ̇
. (4.5)

For p = 1 + 4
N and 0 < c < ‖Q‖2, applying Lemma 2.4 again, one derives from (1.3) that

E(u) ≥
1
2
‖u‖2

Σ̇
−

1
2
‖∇u‖22‖u‖

4
N
2

‖Q‖
4
N
2

>
‖Q‖

4
N
2 − c

4
N

2‖Q‖
4
N
2

‖u‖2
Σ̇
> 0. (4.6)

Thus, the energy functional E(u) possesses a finite lower bound and the constrained minimization
problem (1.11) is well-defined. In addition, it is clear that each minimizing sequence to (1.11) is
bounded in Σ from (4.5) and (4.6).

Second, we argue that there only exists one term U j0 , 0 in (4.7) with the aid of profile decompo-
sition technique in Σ. Let {un}

∞
n=1 be a minimizing sequence, using Lemma 2.6, then one gets

un(x) =

l∑
j=1

τx j
n
U j(x) + rl

n, (4.7)

with lim supn→∞ ‖r
l
n‖q → 0 as l→ ∞ when q ∈ [2, N+2

N−2 ). It follows from (4.7) and (2.2)–(2.5) that

E(un) =

l∑
j=1

E(τx j
n
U j) + E(rl

n) + o(1), as n→ ∞ and l→ ∞. (4.8)

Let τx j
n
U j
λ j

(x) = λ jτx j
n
U j(x) with λ j = c

‖U j‖2
, for every τx j

n
U j(1 ≤ j ≤ l), we deduce

‖τx j
n
U j
λ j
‖2 = c,

and

E(τx j
n
U j
λ j

) =
1
2
‖∇τx j

n
U j
λ j
‖22 +

1
2

∫
V(x)|τx j

n
U j
λ j
|2dx −

1
p + 1

∫
|τx j

n
U j
λ j
|p+1dx

= λ2
j E(τx j

n
U j) −

λ2
j(λ

p−1
j − 1)

p + 1

∫
|τx j

n
U j|p+1dx,

which means that

E(τx j
n
U j) =

E(τx j
n
U j
λ j

)

λ2
j

+
λ

p−1
j − 1

p + 1

∫
|τx j

n
U j|p+1dx. (4.9)

Similarly, we get the estimate of E(rl
n) as below

E(rl
n) =

‖rl
n‖

2
2

c2 E(
c
‖rl

n‖2
rl

n) +
( c
‖rl

n‖2
)p−1 − 1

p + 1

∫
|rl

n|
p+1dx + o(1)

≥
‖rl

n‖
2
2

c2 E(
c
‖rl

n‖2
rl

n) + o(1). (4.10)
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Due to ‖τx j
n
U j
λ j
‖2 = ‖ c

‖rl
n‖2

rl
n‖2 = c, one has

E(τx j
n
U j
λ j

) ≥ m(c), and E(
c
‖rl

n‖2
rl

n) ≥ m(c).

It follows from (4.8)–(4.10) that

E(un) ≥
l∑

j=1

(
E(τx j

n
U j
λ j

)

λ2
j

+
λ

p−1
j − 1

p + 1

∫
|τx j

n
U j|p+1dx)

+
‖rl

n‖
2
2

c2 E(
c
‖rl

n‖2
rl

n) + o(1)

≥
m(c)

c2

l∑
j=1

‖U j‖22 + inf
j≥1

λ
p−1
j − 1

p + 1
(

l∑
j=1

∫
|τx j

n
U j|p+1dx)

+
‖rl

n‖
2
2

c2 m(c) + o(1). (4.11)

By the convergence of
∑∞

j=1 ‖U
j‖22, there must exist j0 ≥ 1 such that

‖U j0‖22 = sup{‖U j‖22, j ≥ 1} and inf
j≥1
λ j = λ j0 =

c
‖U j0‖2

.

Let n→ ∞ and l→ ∞ in (4.11), applying Lemma 4.1, then one gets

m(c) ≥ m(c) + δ((
c

‖U j0‖2
)p−1 − 1),

which yields
‖U j0‖2 ≥ c.

Thus, combining (2.2), we have ‖U j0‖2 = c, and there only exists one term U j0 , 0 in (4.7).
Therefore, (4.7) can be rewritten as

un(x) = τx
j0
n

U j0(x) + rn(x).

Moreover, note that ‖un‖2 = ‖U j0‖2+‖rn‖2+on(1), and ‖un‖2 = ‖U j0‖2 = c, one has limn→∞ ‖rn‖2 = 0,
which means rn → 0 in L2(RN). This, together with Lemma 2.4, deduces that limn→∞ ‖rn‖

q+1
q+1 = 0 for

q ∈ (1, N+2
N−2 ). Then we get ∫

|rn|
p+1dx→ 0.

By the lower semi-continuity, one has

lim inf
n→∞

E(rn) ≥ 0,

and
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lim inf
n→∞

E(τx
j0
n

U j0) ≤ lim inf
n→∞

E(τx
j0
n

U j0) + lim inf
n→∞

E(rn)

≤ lim inf
n→∞

(E(τx
j0
n

U j0) + E(rn))

= lim inf
n→∞

E(un) = m(c).

Besides, for n ≥ 1, we infer from ‖τ j0
xnU

j0‖2 = ‖U j0‖2 = c that E(τ j0
xnU

j0) ≥ m(c). Thus,

lim inf
n→∞

E(τ j0
xn

U j0) = m(c).

Next, we claim that the sequence {x j0
n } is bounded. Let us argue by contradiction and suppose that

up to a subsequence, |x j0
n | → ∞ as n → ∞. For convenience, let U j0 be continuous and compactly

supported. Thus, one has ∫
|τ j0

xn
U j0 |p+1dx→ 0, as n→ ∞.

This implies that

lim inf
n→∞

E(τ j0
xn

U j0) =
1
2
‖U j0‖Σ̇ = m(c).

Furthermore, by the definition of E(U j0) we infer that

E(U j0) +
1

p + 1

∫
|U j0 |p+1dx = m(c),

which means E(U j0) < m(c). This contradicts to E(U j0) ≥ m(c) since ‖U j0‖22 = c. Thus, the bounded-
ness of the sequence {x j0

n } ⊆ R
N−k is proved, and we could suppose that, up to a subsequence, x j0

n → x j0

in RN−k as n→ ∞.
Up to now, we can rewrite (4.7) as

un(x) = Ũ j0(x) + r̃n(x),

where Ũ j0(x) = τx
j0
n

U j0(x) and r̃n(x) = τx
j0
n

U j0(x) − τx
j0
n

U j0(x) + rn(x). Since ‖un‖2 = ‖U j0‖2 = c, then

r̃n ⇀ 0 in Σ and r̃n ⇀ 0 in L2(RN).

Thus, we have
E(un) = E(Ũ j0) + E(r̃n) + on(1).

Applying the lower semi-continuity to norm, together with limn→∞

∫
|r̃n|

p+1dx = 0, we know
lim infn→∞ E(r̃n) ≥ 0. Thus, it follows from ‖Ũ j0‖22 = c that

m(c) = lim inf
n→∞

E(un) ≥ lim inf
n→∞

(E(Ũ j0) + E(r̃n))

≥ E(Ũ j0) + lim inf
n→∞

E(r̃n)

≥ E(Ũ j0) ≥ m(c),

which indicates that E(Ũ j0) = m(c). Thus the proof is completed.
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We now show that the standing waves to Eq (1.1) are orbitally stable with the help of Theorem 4.2.
Proof of Theorem 1.5. According to Remark 2.2, we are aware the existence of unique global solution
u(t, x) to Eq (1.1) under the assumptions. We prove this conclusion by contradiction. Suppose that there
exists a sequence {u0,n}

∞
n=1 satisfying

inf
ϕ∈Mc
‖u0,n − ϕ‖Σ <

1
n
, (4.12)

and assume there exist a time sequence {tn}
∞
n=1 and a positive constant ε0 such that the solution sequence

{un(tn)}∞n=1 to Eq (1.1) fulfils
inf
ϕ∈Mc
‖un(tn) − ϕ‖Σ ≥ ε0. (4.13)

Next we show that there is v ∈ Mc satisfying

lim
n→∞
‖u0,n − v‖Σ = 0. (4.14)

In fact, from (4.12), we can find a sequence {vn}
∞
n=1 ⊂ Mc such that

‖u0,n − vn‖Σ <
2
n
. (4.15)

Since {vn}
∞
n=1 ⊂ Mc, then {vn} is a minimizing sequence to (1.11). In addition, applying the assertion

in Theorem 4.2, one can conclude that there exists v ∈ Mc fulfilling

lim
n→∞
‖vn − v‖Σ = 0. (4.16)

Thus, (4.14) follows immediately from (4.15) and (4.16). Then we have

lim
n→∞
‖u0,n‖

2
2 = ‖v‖22 = c2, lim

n→∞
E(u0,n) = E(v) = m(c).

In addition, we deduce from (2.1) that

lim
n→∞
‖un(tn)‖22 = c2, lim

n→∞
E(un(tn)) = E(v) = m(c).

Moreover, thanks to Theorem 4.2, one knows that {un(tn)}∞n=1 is bounded in Σ. Taking ũn =
cun(tn)
‖un(tn)‖2

,
one has ‖ũn‖2 = c and

E(ũn) =
c2

2‖un(tn)‖22
‖un(tn)‖2Σ −

1
p + 1

cp+1

‖un(tn)‖p+1
2

∫
|un(tn)|p+1dx

=
c2

‖un(tn)‖22
E(un(tn)) +

1
p + 1

(
c2

‖un(tn)‖22
−

cp+1

‖un(tn)‖p+1
2

)
∫
|un(tn)|p+1dx,

which yields that
lim
n→∞

E(ũn) = E(un(tn)) = m(c).

Therefore, ũn also becomes a minimizing sequence to (1.11). Then by Theorem 4.2, one can find
an element ṽ ∈ Mc such that

ũn → ṽ in Σ.
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Then, one has
ũn − un(tn)→ 0 in Σ.

It is clear that
un(tn)→ ṽ in Σ,

which is contradictory to (4.13). Thus the conclusion holds true.

5. Conclusions

In this paper, we investigate the sharp global existence of solutions and the stability of standing
waves for the NLS with partial confinement. More precisely, for 1 + 4

N ≤ p < N+2
N−2 , via constructing

some novel cross-invariant manifolds and variational problems, we derive a novel sharp criterion for
global existence. That is, the solution u(t, x) for Eq (1.1) exists globally in time t ∈ [0,∞) if the initial
data u0 ∈ K+ ∪ R+, while the solution u(t, x) blows up in finite time if u0 ∈ K and |x|u0 ∈ L2(RN).
In addition, we utilize the profile decomposition technique to overcome the lack of compactness and
show the existence and stability of normalized standing waves for 1 < p < 1 + 4

N or p = 1 + 4
N with

‖u0‖2 < ‖Q‖2, where Q(x) is the ground state to the critical elliptic equation (1.10).
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