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Abstract: In this paper, we consider the dynamics of a slow-fast Bazykin’s model with piecewise-
smooth Holling type I functional response. We show that the model has Saddle-node bifurcation and
Boundary equilibrium bifurcation. Furthermore, it is also proven that the model has a homoclinic cycle,
a heteroclinic cycle or two relaxation oscillation cycles for different parameters conditions. These
results imply the dynamical behavior of the model is sensitive to the predator competition rate and the
initial densities of prey and predators. In order to support the theoretical analysis, we present some
phase portraits corresponding to different values of parameters by numerical simulation. These phase
portraits include two relaxation oscillation cycles, an unstable relaxation oscillation cycle surrounded
by a stable homoclinic cycle; the coexistence of a heteroclinic cycle and an unstable relaxation
oscillation cycle. These results reveal far richer and much more complex dynamics compared to the
model without different time scale or with smooth Holling type I functional response.

Keywords: predator-prey model; piecewise-smooth Holling type I functional response; relaxation
oscillation cycle; saddle-node bifurcation; boundary equilibrium bifurcation

1. Introduction

The study of the long term symbiosis and complex dynamics among different interacting species is
a hot topic and has attracted more and more attention of mathematicians and biologists over decades.
Under the observations of interactions between various species, researchers purposed many
appropriated mathematical models. Among these models, the Lotka-Volterra predator-prey model
proposed by Lotka [1] and Volterra [2] is a widely known model due to its universal application and
significance. Now, the various Lotka-Volterra models are developed to study the complex population
dynamics in different ecological situations. Hence, taking into consideration prey competition and
different functional responses, the original Lotka-Volterra model is extended to the generalized Gause
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type case [3, 4]

du
dt
= au − bu2 − vp(u),

dv
dt
= v(−c + dp(u)),

(1.1)

where u and v separately represent the amount of prey and predators; a and b separately represent the
intrinsic growth rate and compete rate of prey; c and d separately represent the death rate and maximal
growth rate of predators; p(u) is the functional response describes the variation of the amount of prey
affected by the attacks of predators.

However, it is worth noticing that not only is there competition among prey, but predators also
compete each other for the limited resource such as the size of the habitat to live and reproduce [5].
Hence, by introducing predator competition, system (1.1) can be rewritten as

du
dt
= au − bu2 − vp(u),

dv
dt
= v(−c + dp(u)) − hv2,

(1.2)

where h is the competition rate of predators. This is the well-known Bazykin’s predator-prey model
proposed in [6].

The functional response p(u) is usually classified into four types firstly purposed by the biologist
Holling [7, 8], for example the Holling Type I functional response

p(u) =


mu
α
, u < α,

m, u > α,
(1.3)

where m is a maximal per capita consumption rate and α is the half-saturation constant-the prey’s
number at which the per capita consumption rate is half of its maximum m, and other three Holling
Type functional responses, see Table 1. Note that these functional response are all bounded function
which is suitable for actual field data and the Holling type I functional response (1.3) is continuous but
not smooth, which is also called the piecewise-smooth Holling type I functional response.

Table 1. Holling types II, III and IV functional responses and their generalizations.

Holling type Definition Generalized form
II p(u) = mu

u+k

III p(u) = mu2

u2+k p(u) = mu2

k1u2+k2u+1 (k2 > −2
√

k1)
IV p(u) = mu

u2+k p(u) = mu
k1u2+k2u+1 (k2 > −2

√
k1)

Recent researches related to the Bazykin’s model with different functional responses obtain some
interesting complex dynamics and bifurcations. For example, Bzaykin [9] showed that there is a
threshold value c1 such that system (1.2) with the functional response p(u) = mu has the globally
asymptotically stable boundary equilibrium ( a

b , 0) if c > c1 and the unique globally asymptotically
stable positive equilibrium if c < c1; many researchers [5,6,9–17] including Bazykin et al. [5,6,9,10],

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17608–17624.



17610

Hainzl et al. [11, 12] and Lu and Huang [13] investigated system (1.2) with Holling type II functional
response by the theoretical analysis or numerical methods and got complex dynamics and rich
bifurcation phenomenons such as the location and stability of equilibriums, the existence of limit
cycles, the degenerate Bogdanov-Takens bifurcation, the Hopf bifurcation, etc.

In this paper, we investigate Bazykin’s predator-prey model (1.2) with piecewise smooth Holling
type I functional response (1.3). Before going into details, we apply the following rescaling
transformation

ū =
u
α
, v̄ =

mv
aα
, t̄ = at

and removing the bar notation, then the system (1.2) can be rewrote as the following non-dimensional
system

du
dt
= u(1 − bu) − vp(u) = f (u, v),

dv
dt
= ϵv(p(u) − c − hv) = ϵg(u, v)

(1.4)

with

p(u) =

u, u < 1,
1, u > 1,

where u and v are the non-dimensional variables; b =
bd
a

, ϵ =
dm
a

, h =
haα
dm2 and c =

c
dm

are non-
dimensional parameters. Furthermore, we assume the growth rate of predators is much smaller than
that of prey which means that system (1.4) is a piecewise-smooth slow-fast system with the small
parameter 0 < ϵ ≪ 1. Note that our assumption is reasonable because species at different trophic
levels have different growth rates, which may vary several orders of magnitude, and the growth time
of individuals increases gradually from the bottom of the food chain to the top [18]. Moreover, many
observations of interactions between prey and predators such as hares and lynx [19], phytoplankton
and zooplankton [20], insects and birds [21], etc. indicate the prey grow much faster than predators.

So far, there are few studies on the slow-fast Bazykin’s model and these studies mainly focus on
the dynamics of the model (1.2) with smooth Holling II functional response [15,16] such as relaxation
oscillation cycles, canard phenomenon and so on. Hence, Our main aim in this paper is to study
the dynamics of the slow-fast Bazykin’s model with a piecewise-smooth functional response (1.4) by
using the geometrical singular perturbation theory [22–29] and piecewise-smooth dynamical system
theory [30–35]. For the various values of parameters, we will show that there are the coexistence of two
relaxation oscillation cycles with different stability, an unstable relaxation oscillation cycle surrounded
by a stable homoclinic cycle and a heteroclinic cycle enclosing an unstable relaxation oscillation cycle.
Furthermore, the system (1.4) undergoes a series of bifurcations such as Saddle-node bifurcation and
Discontinuous saddle-node bifurcation of codimension 1. Moreover, we also give some conditions
of the global stability of the unique positive equilibrium. Numerical simulations with the help of the
“PPlane8” tool of Matlab [36] are presented to illustrate the theoretical results.

The rest of this paper is organized as follows. In Section 2, we study the critical manifold and the
existence and types of equilibriums of system (1.4). In Section 3, we show that the dynamics and
bifurcations of system (1.4) such as relaxation oscillation cycles, homoclinic cycle, heteroclinic cycle,
etc. A brief discussion is given in the last section.
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2. The critical manifold and equilibriums

Based on the ecological viewpoint, we are keen on the dynamics of the system (1.4) in the first
quadrant R2

+ = {(u, v) | u ≥ 0, v ≥ 0} and the switching boundary Σ = {(u, v) | u = 1} splits the first
quadrant into two regions denoted by Σ(−) = {(u, v) | 0 < u < 1, v ≥ 0} and Σ(+) = {(u, v) | u > 1, v ≥ 0}.
The system (1.4) is smooth in Σ(∓) and determined by the following systems

du
dt
= u(1 − bu − v) = f (−)(u, v),

du
dt
= ϵv(u − c − hv) = ϵg(−)(u, v), (u, v) ∈ Σ(−)

and

du
dt
= u(1 − bu) − v = f (+)(u, v),

du
dt
= ϵv(1 − c − hv) = ϵg(+)(u, v), (u, v) ∈ Σ(+).

Since the vector field is locally Lipschitz, the fundamental existence and uniqueness theory is true
for the system (1.4) [31]. Note that the trajectories of the system (1.4) transversally pass through the
switching boundary Σ. Moreover, in order to guarantee the density of preys can support the growth of
predators, we assume throughout the paper that 0 < b < 1

4 and 0 < c < 1. These are also the necessary
condition for the existence of relaxation oscillation cycles. Hence, we will study the system (1.4) in
the parametric region

D =
{
η = (b, h, c) | 0 < b <

1
4
, 0 < c < 1, h > 0

}
.

Before going into the detail dynamics, we firstly show some basic properties of the system (1.4).

Lemma 2.1. The system (1.4) has the invariant set

Ω =

{
(u, v) | 0 ≤ u ≤

1
b
, 0 ≤ v ≤

1 − bc
bh

}
and it also has no limit cycle which is entirely lied in the region Σ(−).

Proof. It is clear that u = 0 and v = 0 are two invariant straight lines of system (1.4) and the boundary
of set Ω is

∂Ω = L1 ∪ L2 ∪ L3 ∪ L4,

L1 =

{
(u, v) | u =

1
b
, 0 ≤ v ≤

1 − bc
bh

}
, L2 =

{
(u, v) | 0 ≤ u ≤

1
b
, v =

1 − bc
bh

}
,

L3 =

{
(u, v) | u = 0, 0 ≤ v ≤

1 − ec
eh

}
, L4 =

{
(u, v) | 0 ≤ u ≤

1
b
, v = 0

}
.
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For (u, v) ∈ ∂Ω, we have

du
dt

∣∣∣
(u,v)∈L1

= −v < 0,
dv
dt

∣∣∣
(u,v)∈L2

=

 ϵ(1−c)(bu−1)
bh < 0, 0 < u < 1,

ϵ
(
1 − 1

b

)
< 0, 0 ≤ u ≤ 1

b ,

dv
dt

∣∣∣
u=0
= −v(c + hv) < 0,

du
dt

∣∣∣
v=0
= u(1 − bu)

≥ 0, 0 < u ≤ 1
b ,

< 0, u > 1
b ,

which means that the vector field of the system (1.4) in the line ∂Ω never points outside. Hence, any
trajectories of the system (1.4) are confined in the set Ω as they enter Ω in finite time.

For (u, v) ∈ Σ(−), we construct the Dulac function φ(u, v) = 1
uv and have

∂φ f
∂u
+ ϵ
∂φg
∂v
= −

b
v
− ϵ

h
u

which implies the system (1.4) has no limit cycles in the region Σ(−) because of the Dulac’s criteria. □

Hence, if the system (1.4) has a limit cycle, it will either entirely locate in the region Σ(+) or consist
of trajectories in the regions Σ(+) and Σ(−) and transversally pass through the switching boundary Σ.

2.1. Critical manifold

Under the time scale transformation τ = ϵt, we can get the equivalent system

ϵ
du
dτ
= u(1 − bu) − vp(u),

dv
dτ
= v(p(u) − c − hv).

(2.1)

The systems (1.4) and (2.1) are individually known as the fast system and the slow system because of
their different time scales. By setting ϵ = 0 in systems (1.4) and (2.1), we get the degenerate system

0 = u(1 − bu) − vp(u),
dv
dt
= v(p(u) − c − hv)

(2.2)

and the layer system

du
dt
= u(1 − bu) − vp(u),

dv
dt
= 0.

(2.3)

Hence, the critical manifold is

S 0 = {(u, v) | u(1 − bu) − vp(u) = 0}
= S 1

0 ∪ S 2
0 ∪ S 3

0,

which is composed of the singular points of layer system (2.3) and can be divided into three parts as
follows, see Figure 1,

S 1
0 = {(u, v) | u = 0, v > 0} ,
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S 2
0 = {(u, v) | 0 < u < 1, v = 1 − bu ≜ H1(u)} ,

S 3
0 =

{
(u, v) | 1 < u <

1
b
, v = u(1 − bu) ≜ H2(u)

}
.

Note that the sub-manifold S 2
0 is a normally hyperbolic attracting sub-manifold and the non-normally

hyperbolic points A(0, 1) and M( 1
2b ,

1
4b ) separately split the sub-manifolds S 1

0 and S 3
0 into the normally

hyperbolic attracting sub-manifolds

S 1a
0 = {(u, v) | u = 0, v > 1} , S 3a

0 =

{
(u, v) |

1
2b
< u <

1
b
, v = H2(u)

}
and normally hyperbolic repelling sub-manifolds

S 1r
0 = {(u, v) | u = 0, 0 < v < 1} , S 3r

0 =

{
(u, v) | 1 < u <

1
2b
, v = H2(u)

}
.

For 0 < ϵ ≪ 1, the Fenichel theory [22, 23] indicates the normally hyperbolic attracting sub-
manifolds S 2

0, S 1a
0 and S 3a

0 can be perturbed to the attracting slow manifolds S 2
ϵ , S 1a

ϵ and S 3a
ϵ and

the normally hyperbolic repelling sub-manifolds S 1r
0 and S 3r

0 can be perturbed to the repelling slow
manifolds S 1r

ϵ and S 3r
ϵ . Hence, the trajectory starting near S 1a

0 is attracted to the v-axis, then it moves
down with O(ϵ) speed. It is clear that the trajectory passes the non-hyperbolic point A(0, 1) and leaves
the O(ϵ) neighborhood of S 1r

0 at the point (0, pϵ(v)) satisfying lim
ϵ→0

pϵ(v) = p0(v). The function p0(v) is
called the entry-exit function [28, 29] and satisfies the following lemma.

Lemma 2.2. For system (1.4) and v0 ∈ (1,+∞), there is a unique p0(v0) ∈ (0, 1) satisfying∫ p0(v0)

v0

s − 1
s(hs + c)

ds = 0. (2.4)

Proof. Let

I(ṽ) =
∫ ṽ

v0

s − 1
s(hs + c)

ds =
(
1
h
+

1
c

)
ln

hṽ + c
hv0 + c

−
1
c

ln
ṽ
v0
, (2.5)

it is easy to verify that I(1) < 0 and lim
ṽ→0

I(ṽ) = +∞. Since

I′(ṽ) =
ṽ − 1

ṽ(hṽ + c)
< 0, ṽ ∈ (0, 1),

there is a unique ṽ∗ ∈ (0, 1) such that I(v∗) = 0 which implies p0(v0) = v∗. □

Note that the above proof indicates the entry-exit function p0(v0) is monotone decreasing function
in (1,+∞).

2.2. Equilibriums and their types

In this subsection, we mainly study the existence and stability of equilibriums of system (1.4). We
can get the equilibriums by a straight calculation of the following equations

f (−)(u, v) = 0, g(−)(u, v) = 0, 0 < u < 1,
f (+)(u, v) = 0, g(+)(u, v) = 0, u > 1

(2.6)

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17608–17624.
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Figure 1. The critical manifold and equilibriums of system (1.4) with different parameters
in region D.

and the dynamics of system (1.4) near these equilibriums are determined by the Jacobian matrix of
system (1.4) at these equilibriums, which is given by

J(−) =

(
1 − 2bu∗ − v∗ −u∗

ϵu∗ ϵ(u∗ − c − 2hu∗)

)
, (u∗, v∗) ∈ Σ(−)

and

J(+) =

(
1 − 2bu∗ −1

0 ϵ(1 − c − 2hu∗)

)
, (u∗, v∗) ∈ Σ(+)

here (u∗, v∗) is the coordinate of these equilibriums. Now, set

h1 = 4b(1 − c) and h2 =
1 − c
1 − b

,

we give the following lemmas about the existence and stability of equilibriums.

Lemma 2.3. For system (1.4), the following conclusions hold.

1) System (1.4) always has two trivial equilibriums O(0, 0) and B( 1
b , 0) which are both saddle.

2) If h < h1 or h > h2, then system (1.4) has a stable equilibrium E1(u1, v1) which are separately
located in S 2

0 and S 3a
0 , see Figure 1(a),(e). More precisely, the equilibrium E1(u1, v1) is a globally

stable node when h > h2, see Figure 2(a).

Proof. The number and locations of equilibriums of system (1.4) can be obtained by the straight
calculation of Eq (2.6). Next, we determine the types of equilibriums O(0, 0), B( 1

b , 0) and E1(u1, v1).
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Figure 2. The phase portrait of system (1.4) with (a) (b, c, h) = (0.2, 0.5, 0.8); (b) (b, c, h) =
(0.2, 0.5, 0.625).

For equilibrium O(0, 0), the eigenvalues of the Jacobian matrix J(−) are λ1 = 1 and λ2 = −ϵc < 0
which implies the equilibrium O(0, 0) is a saddle point. Similarly, the eigenvalues of the Jacobian
matrix J(+) at B( 1

b , 0) are λ1 = −1 and λ2 = ϵ(1 − c) > 0 which indicates the equilibrium B( 1
b , 0) is a

saddle point. For equilibrium E1(u1, v1) ∈ S 3a
0 , the similar calculation gives the eigenvalues of the

Jacobian matrix J(+) as λ1 = 1 − 2bu1 < 0 and λ2 = ϵ(c − 1) < 0, which implies E1(u1, v1) ∈ S 3a
0 is a

stable node. For equilibrium E1(u1, v1) ∈ S 2
0, we calculate the determinant and trace of Jacobian

matrix J(−) as

Tr(J(−)(E1)) = −bu1 − ϵ(u1 − c) < 0,

Det(J(−)(E1)) = ϵ
(h + c)(h + c + hb − hcb2)

(1 + hb)2 > 0,

which implies E1(u1, v1) ∈ S 2
0 is stable.

Next, we will prove the global stability of equilibrium E1 when h > h2. We construct the trapping
region

Ω1 =

{
(u, v) |

1
2b
≤ u ≤

1
b
, 0 ≤ v ≤

1
4b

}
(2.7)

and assert that the vector field of system (1.4) point inside at the boundary ∂Ω1. So the trajectories
cannot leave after entering the region Ω1. Furthermore, we construct the same Dulac function in
Lemma 2.1 as φ(u, v) = 1

uv and have

∂φ f (+)

∂u
+ ϵ
∂φg(+)

∂v
=

v − bu2

u2v
− ϵ

1 − c
uv2 < 0, (u, v) ∈ Ω1.

Hence, based on the Dulac’s criteria, the system (1.4) has no limit cycles in the region Ω1, which
indicate the equilibrium E1 is globally stable in Ω1. Moreover, the trajectories starting in the region
Σ\Ω1 enter into the region Ω in finite time because of the Fenichel theory and Lemma 2.2. Then we
can assert that system (1.4) has a globally stable node E1 when h > h2. □

Lemma 2.4. If h = h1 or h = h2, then system (1.4) has two positive equilibriums. More precisely,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17608–17624.



17616

1) If h = h1, then system (1.4) has a stable equilibrium E1(u1, v1) located in S 2
0 and an attracting

saddle-node EM( 1
2b ,

1
4b ) which is the vertex point in S 3

0, see Figure 1(b).
2) If h = h2, then system (1.4) has a stable equilibrium E1(u1, v1) located in S 2

0 and a boundary
equilibrium EB(1, 1 − b) located in the switching boundary Σ, see Figures 1(d) and 2(b).

Proof. The existence and location of two positive admissible equilibriums follows from the straight
calculation of Eq (2.6). By some simple calculations, we get

Tr(J(−)(E1)) = −bu1 − ϵ(u1 − c) < 0,

Det(J(−)(E1)) = ϵ
(h + c)(h + c + hb − hcb2)

(1 + hb)2 > 0,

and the eigenvalues of equilibrium EM( 1
2b ,

1
4b ) are λ1 = 0 and λ2 = −ϵ(1−c) < 0. Hence, the equilibrium

E1 is stable and the equilibrium EM is an attracting saddle-node which can be proven based on the
conditions in [37]. □

Lemma 2.5. If h1 < h < h2, then system (1.4) has three positive equilibriums E1(u1, v1), E2(u2, v2) and
E3(u3, v3). More precisely, E1(u1, v1) is a stable equilibrium in S 2

0; E2(u2, v2) is a saddle in S 3r
0 and

E3(u3, v3) is a stable node in S 3a
0 , see Figure 1(c).

The proof of Lemma 2.5 is similar to that given in Lemmas 2.3 and 2.4 and so is omitted.

3. Dynamics of the slow-fast system

In this section, we are keen on various possible dynamics of the slow-fast system (1.4) including
relaxation oscillation, saddle-node bifurcation, boundary equilibrium bifurcation and so on.

3.1. Saddle-node bifurcation

According to Lemmas 2.3–2.5, we know that

S N = {(b, c, h) | h = h1 = 4b(1 − c)}

is a saddle-node bifurcation surface. When parameters change from one side of the surface S N to
another one, the number of positive equilibriums of system (1.4) in Σ(+) changes from zero to two.
So there is a critical competition rate h1 such that the two species coexist in the form of a positive
equilibrium for suitable choices of initial values when h = h1

In what follows, we show that system (1.4) has homoclinic orbit, heteroclinic orbit and relaxation
oscillation cycles in both sides of saddle-node bifurcation surface S N.

First, we investigate the relaxation oscillation cycles of system (1.4) when h < h1. Now, we denote
the function Î(ṽ) as the function (2.5) with v0 =

1
4e and state the main theorem as follows

Theorem 3.1. When 0 < b < 1
4 , 0 < c < 1 and 0 < h < h1, system (1.4) has a positive equilibrium

E1(u1, v1) which is stable. Moreover, if

Î(1 − b) =
1
h

ln
4b(1 − b)h + 4bc

h + 4bc
+

1
c

ln
4b(1 − b)h + 4bc

4b(1 − b)h + 16b2(1 − b)c
< 0,
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Figure 3. (a) The relaxation oscillation cycles of system (1.4) when 0 < b < 1

4 , 0 < c < 1 and
0 < h < h1; (b) The homoclinic cycle of system (1.4) when 0 < b < 1

4 , 0 < c < 1 and h = h1;
(c) The heteroclinic cycle of system (1.4) when 0 < b < 1

4 , 0 < c < 1 and h1 < h < h2.

then system (1.4) has a hyperbolically stable relaxation oscillation cycle Γ1
ϵ and a hyperbolically

unstable relaxation oscillation cycle γϵ which separately converges to

Γ1
0 =

⌢

MK1 ∪
⌢

K1Q1 ∪
⌢

Q1D1 ∪
⌢

D1M

and
γ0 =

⌢

D2K2 ∪
⌢

K2Q2 ∪
⌢

Q2B ∪
⌢

BD2

in the Hausdorff distance as ϵ → 0, see Figures 3(a) and 4(a).

Proof. Our first goal is to prove the existence of the stable relaxation oscillation cycle Γ1
ϵ . To begin

with, it is easy to see that the vertex point M( 1
2b ,

1
4b ) is a general fold and there exists v̂∗ ∈ (0, 1 − b)

such that p0( 1
4b ) = v̂∗ based on Î(1 − b) < 0 and the properties of function Î(ṽ). Hence, we construct

the singular slow-fast cycle Γ1
0, see Figure 3(a), as

Γ1
0 =

⌢

MK1 ∪
⌢

K1Q1 ∪
⌢

Q1D1 ∪
⌢

D1M,

where M( 1
2b ,

1
4b ), K1(0, 1

4b ), Q1(0, v̂∗), D1(û∗, v̂∗) and û∗ is the larger root of equation H2(u) = v̂∗.
Set

∆0 =

{
(1, v) | v ∈

(
1

4b
− δ,

1
4b
+ δ

)}
and ∆1 = {(1, v) | v ∈ (v∗ − δ, v∗ + δ)}

which separately are vertical region of
⌢

MK1 and
⌢

Q1D1 and δ is a small positive parameter. We construct
the Poincaré map Π as

Π = Π1 ◦ Π0 : ∆0 → ∆0

which consists of two maps Π0 : ∆0 → ∆1 and Π1 : ∆1 → ∆0. For the trajectory starting in ∆0, it will
arrive at the neighborhood of critical manifold S 1a

0 and move downwards until reach the neighborhood
of Q1. The trajectory will move along the layers of system (2.3) and pass through the region ∆1 before
reaching near the critical manifold S 3a

0 because system (1.4) is continuous on the switching boundary
Σ. Then the trajectory will move along S 3a

0 and jump into ∆0 in the neighborhood of fold point M.
Hence, the relaxation oscillation cycle Γ1

ϵ is equivalent to the fixed point of Poincaré map Π which is
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Figure 4. The phase portrait of system (1.4) with (b, c) = (0.2, 0.5), (a) a stable relaxation
oscillation cycle enclosing an unstable relaxation oscillation cycle when h = 0.3; (b) a stable
homoclinic cycle enclosing an unstable relaxation oscillation cycle when h = 0.4; (c) a
heteroclinic cycle enclosing an unstable relaxation oscillation cycle when h = 0.45.

a contraction map with exponential contraction rate O(e−
1
ϵ ) by Lemma 2.2 and Theorem 2.1 in [26].

According to the Contraction Mapping Theorem, there is an unique fixed point of Π corresponding to
the relaxation oscillation cycle Γ1

ϵ . Furthermore, it is clear that Γ1
ϵ is a hyperbolically stable limit cycle

and converges to the singular slow-fast cycle Γ1
0 as ϵ → 0.

Next we prove the existence of the unstable relaxation oscillation cycle γϵ . Since E1(u1, v1) is stable
and the relaxation oscillation cycle Γ1

ϵ is hyperbolically stable, we can conclude that there exists at least
an unstable limit cycle inside Γϵ based on Poincaré-Bendixson Theorem. According to the Geometric
Singular Perturbation Theory [23], the limit cycles of slow-fast system (1.4) are usually perturbed by
singular slow-fast cycles. Clearly, system (1.4) has an unique singular slow-fast cycle γ0 inside the
relaxation oscillation cycle Γ1

ϵ for ϵ → 0, see Figure 3(a), which are constructed as

γ0 =
⌢

D2K2 ∪
⌢

K2Q2 ∪
⌢

Q2B ∪
⌢

BD2,

with Q2(0, 1 − b), B(1, 1 − b), D2(ū∗, v̄∗) and K2(0, v̄∗). Note that p0(v̄∗) = 1 − b and ū∗ is the smaller
root of equation H2(u) = v̄∗. Hence, if the limit cycles exist, they must be in the neighborhood of γ0.
By the Corollary 4.3 in [38], the sign of the following integral∮

γϵ

(
∂ f
∂u
+ ϵ
∂g
∂v

)
dt =

∫ D2

A2

(1 − 2bu)dt + O(ϵ) > 0.

determines the limit cycle is hyperbolically unstable if it exists. Thus, we can claim that there is an
unique relaxation oscillation cycle γϵ near γ0 because two adjacent limit cycles don’t have the same
stabilities. □

Combined with the above analysis and applying numerical simulations by the “PPlane8” tool in
Matlab, we give the phase portrait of system (1.4) when b = 0.2, c = 0.5 and h = 0.3, see Figure 4(a).
Note that system (1.4) has a hyperbolically unstable relaxation oscillation cycle γϵ surrounded by a
hyperbolically stable relaxation oscillation cycle Γ1

ϵ .
Second, we investigate the existence of a homoclinic cycle of system (1.4) with h = h1 and have the

following theorem.
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Theorem 3.2. When 0 < b < 1
4 , 0 < c < 1 and h = h1, system (1.4) has a stable equilibrium E1(u1, v1)

and a attracting saddle-node EM( 1
2b ,

1
4b ). Moreover, if Î(1 − b) < 0, then system (1.4) has a stable

homoclinic cycles Γ2
ϵ and a unstable relaxation oscillation cycle γϵ which separately converge to

Γ2
0 =

⌢

EMK1 ∪
⌢

K1Q1 ∪
⌢

Q1D1 ∪
⌢

D1EM

and
γ0 =

⌢

D2K2 ∪
⌢

K2Q2 ∪
⌢

Q2B ∪
⌢

BD2

in Hausdorff distance as ϵ → 0, see Figures 3(b) and 4(b).

Proof. For ϵ = 0, it is clear that there is a singular orbit Γ2
0 in saddle-node EM, which can be constructed

by the same way of Γ1
0 in Theorem 3.1, see Figure 3(b). Furthermore, the layer of system (2.3) at EM

will be perturbed to one dimensional unstable manifold Wu
ϵ (EM) of system (1.4) at EM if 0 < ϵ ≪ 1. By

Lemma 2.2, the unstable manifold Wu
ϵ (EM) will be attracted to the neighborhood of S 1a

0 and move down
until it reach near Q1. Then Wu

ϵ (EM) move quickly from the neighborhood of S 1r
0 to the neighborhood

of S 3a
0 . Next, we show that the unstable manifold Wu

ϵ (EM) tends to saddle-node EM. We construct the
trapping regionΩ1 which is same to (2.7) in Lemma 2.4 and the orbit cannot leave if it enters the region
Ω1. Since the unstable manifold Wu

ϵ (EM) enter this region Ω1 and the orbits is monotone increasing in
v, the unstable manifold Wu

ϵ (EM) tends to saddle-node EM along its stable manifold W s
ϵ (EM) which is

perturbed by W s(S 3a
0 ) based on the Fenichel theorem. Hence, when 0 < ϵ ≪ 1, there is a homoclinic

cycle Γ2
ϵ which converges to singular orbit Γ2

0 as ϵ → 0.
Based on the Theorem 5 in [37], the stability of the homoclinic cycle Γ2

ϵ is determined by the sign
of the following integral ∮

Γ2
ϵ

(
∂ f
∂u
+ ϵ
∂g
∂v

)
dt =

∫ EM

D1

(1 − 2bu)dt < 0.

Hence, the homoclinic cycle Γ2
ϵ is stable.

The proof of existence and stability of the relaxation oscillation cycle γϵ is omitted because it is
similar to that in Theorem 3.1. □

According to the analysis of Theorem 3.2 and using numerical simulation by the “PPlane8” tool in
Matlab, the phase portrait of system (1.4) with b = 0.2, c = 0.5 and h = 0.4 is presented in Figure 4(b).
Note that system (1.4) has a stable homoclinic cycle Γ2

ϵ enclosing a hyperbolically unstable relaxation
oscillation cycle γϵ .

Third, we study the existence of a heterocilinic cycle of system (1.4) when h > h2. Similarly,
we denote Ĩ(ũ) as the function (2.5) with v0 =

1−c
h . By applying the similar analysis methods in

Theorem 3.2 and Lemma 1 in [39], we can derive the following theorem.

Theorem 3.3. When 0 < b < 1
4 , 0 < c < 1 and h1 < h < h2, system (1.4) has a saddle point E2(u2, v2)

and two stable equilibirums E1(u1, v1) and E3(u3, v3). Moreover, if

Ĩ(1 − b) =
1
h

ln[h(1 − b) + c] +
1
c

ln
(1 − c)[h(1 − b) + c]

(1 − e)h
< 0, (3.1)

then system (1.4) has a heteroclinic cycle Γ3
ϵ and a unstable relaxation oscillation cycle γϵ which

separately converge to

Γ3
0 =

⌢

E2K3 ∪
⌢

K3Q3 ∪
⌢

Q3D3 ∪
⌢

D3E3 ∪
⌢

E2E3
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and
γ0 =

⌢

D2K2 ∪
⌢

K2Q2 ∪
⌢

Q2B ∪
⌢

BD2

in Hausdorff distance as ϵ → 0, see Figures 3(c) and 4(c).

According to the above analysis and some numerical simulations by the “PPlane8” tool in Matlab,
we give the phase portrait of system (1.4) with b = 0.2, c = 0.5 and h = 0.45, see Figure 4(c). Note
that the two unstable manifolds of saddle E2(u2, v2) tend to the stable node E3(u3, v3) and form the
heteroclinic cycle. From Figure 4, we know that the number of equilibriums of system (1.4) changes
from one to three when parameters pass through the saddle-node bifurcation surface. Furthermore,
under some conditions, system (1.4) always has a small relaxation oscillation cycle γϵ which is
separately surrounded by a big relaxation oscillation cycle, homoclinic cycle and heteroclinic cycle
for different values of parameter h in the neighborhood of h1.

3.2. Boundary equilibrium bifurcation

In this subsection, we will discuss the boundary equilibrium bifurcation of system (1.4). From
Lemma 2.4, we know that the boundary equilibrium EB(1, 1 − b) is an admissible equilibrium for both
systems in Σ(−) and Σ(+), which is a mark of boundary equilibrium bifurcation of codimension 1. Hence,
incorporating Lemmas 2.3 and 2.5, we present the discontinuous saddle-node bifurcation surface as
follows

DS N =
{

(b, c, h) | h = h2 =
1 − c
1 − b

}
.

When the parameters vary from one side of the surface to another, system (1.4) has two positive
equilibriums E1(u1, v1) and E2(u2, v2) which are separately located in regions Σ(−) and Σ(+). Then the
discontinuous saddle-node bifurcation gets two positive equilibriums.

4. Discussion

In this paper, we consider the slow-fast Bazykin’s predator-prey model with piecewise smooth
Holling I functional response. Our qualitative analysis on system (1.4) reveals that system has
complex dynamics and bifurcations and the competition rate h plays a critical role which affects not
only the number and type of equilibriums but also the type of bifurcations in this model. When the
values of parameters vary, system (1.4) undergoes the saddle-node bifurcation and the discontinuous
saddle-node bifurcation. For different values of parameters, it is clear that system (1.4) has a
hyperbolically unstable relaxation oscillation cycle which is respectively surrounded by a
hyperbolically stable relaxation oscillation cycle, a homoclinic cycle and a heteroclinic cycle. These
complex dynamics cannot occur in the system (1.4) with single time scale and smooth Holling type I
functional response. In fact, the system (1.4) with ϵ > 1 and smooth Holling type I functional
response [9] has at least one positive equilibrium which is globally stable if c < c1, here c1 is a
threshold value. Hence, compared with our result in this paper, it is clear that the different time scale
and piecewise-smooth functional response in system (1.4) can introduce more complex dynamical
behaviour.

These complex dynamical phenomenons of system (1.4) show that the complexity of dynamical
behaviors of the Bazykin’s model. For the biological interpretations of these complex dynamical
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phenomenons, we interpret biological meaning of the big relaxation oscillation cycle in Theorem 3.1
as an example. By Figure 4(a), it is clear that the big relaxation oscillation cycle is hyperbolically
stable, which indicates that that the prey and predator will coexist in system (1.4). The slow manifolds
represent the density of prey and predator vary slowly under the influence of interactions or low prey
density, and the fast movements implies the fast changes of prey density. The existence of the limit
cycle suggests that the predator density increases slowly with sufficient food, and once the predator
density exceeds the vertex point, the prey density decreases rapidly but not extinct due to large
consumption. In the absence of food, the predator density also slowly declines until the prey density
increases again quickly enough to support predator’s reproduction, where the cycle begins again.
Therefore, the relaxation oscillation cycle may show sudden outbreaks of pests in biology many years
after extinction.

It is worth noticing that Kooij and Zegeling [40] extend the piecewise-smooth Holling type I
functional response, which replace the linear function p(x) = x, 0 < x < 1 by cubic function
p(x) = x(1 + (x − 1)(a0 + a1x)), 0 < x < 1. Note that the new functional response is not only a
non-monotonic function but also contains different cases for different values of a1 and a2.
Furthermore, there may be more complex dynamics and bifurcations for system (1.4) with this new
function response. We leave these for future consideration.
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