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Abstract: In this paper, a new class of Cucker-Smale systems with distributed delays are developed
from the measurement perspective. By combining dissipative differential inequalities with a continuity
argument, some new sufficient criteria for the flocking dynamics of the proposed model with gen-
eral communication rate, especially the non-normalized rate, are established. In order to achieve the
prescribed pattern motion, the driving force term is incorporated into the delayed collective system.
Lastly, some examples and simulations are provided to illustrate the validity of the theoretical results.
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1. Introduction

In the last years, self-organization systems have been getting a great deal of attention from re-
searchers around the world, and have conducted a lot of research in many fields such as artificial
intelligence, physics, biology and social sciences. The famous Cucker-Smale model [1, 2] offered a
frame to describe aggregation behaviors, for instance, the flocking of birds, reaching a consensus. Con-
sidering that the interaction intensity depends on the number of agents, the Cucker-Smale model can
not well describe the flocking behavior of non-uniform multi-particle swarm optimization. Motsch and
Tadmor generalized the flocking system to the case of asymmetric interactions [3]. Recently, the clas-
sical Cucker-Smale model has been generalized and modified to several cases, such as various forms
of stochastic noise, cone-vision constraints, the presence of leadership and more general interaction
potentials [4–15, 22–28].
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In practical applications, time-delay often leads to system instability, and its impact can not be
ignored [29–31]. It has become a broad consensus that mathematical models with time delay always
have greater practicability[23–25, 32–35]. The authors took into account heterogeneous delays in
[23]. The velocity asymptotic alignment of the delayed Cucker-Smale model was investigated in the
presence or absence of noise [24]. Very recently, the authors in [25] proposed the following improved
model 

ṗi = ci,

ċi =
1

h(t)

N∑
m=1

∫ t

t−T (t)
β(t − s)Φ (pm(s), pi(t)) (cm(s)

− ci(t))ds, i = 1, 2, . . . ,N,

(1.1)

where pi(t) and ci(t) denote the position and velocity of agent i at time t, β : [0,T0] → [0,∞) is a
weight function which requires∫ T̂

0
β(s)ds > 0 and h(k) :=

∫ T (k)

0
β(s)ds, k ≥ 0. (1.2)

Φ(pm(s), pi(t)) is the normalized communication weights provided by

Φ (pm(s), pi(t)) =


ψ(|pm(s)−pi(t)|)∑

j,i
ψ(|p j(s)−pi(t)|) , if m , i,

0, if m = i,
(1.3)

with ψ: [0,∞)→ (0,∞), is positive, bounded, nonincremental and Lipschitz continuous on [0,∞), and
ψ(0) = 1. Besides, there has T̂ > 0 and T0 > 0 obeying

T (k) ≥ T̂ , T ′(k) ≤ 0, and T̂ ≤ T (k) ≤ T0 for k ≥ 0. (1.4)

On the one hand, assumption (1.4) is reasonable requirement for time-varying delays in specific
background [21, 27]. As we all know, measurement of velocity is much more sensitive than measure-
ment of position from the perspective of time delay and the measurement delay in this system mainly
responds to velocity, not position. Furthermore, the introduction of distributed delay can effectively
characterize the fact that the position and velocity of agents are not only affected by the behavior of
other individuals in a certain period of time, but also affected by the behavior of other individuals at
a varying time period [37]. And few researchers have considered the following distributed delay of
Cucker-Smale model which governed by

ṗ j = c j,

ċ j =
1

Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm, j(k)(cm(s)−c j(k))ds, j = 1, 2, . . . ,N, (1.5)

where Φm, j(k) = Φ(pm(k), p j(k)), (ϕ j, ψ j) ∈ S2 = S ×S and S := S ([−T, 0],Rd) is the Banach space of
all continuous functions. Moreover, Φ : R+ → R+ requires ϕ(k) ≤ 1 for each k ≥ 0. R+ denotes the set
of positive real number.

p j(s) =: Φ j(s), c j(s) =: ψ j(s), j = 1, · · · ,N, s ∈ [−T0, 0], (1.6)
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On the other hand, the pattern motion to self-organized systems come out so unaffectedly at lots
of physical and biological scenes, which is important for us to further study the mechanism of swarm
intelligence systems. However, there are few more practical research on flocking formation behavior
based on Cucker-Smale model.

Illuminated by the aforementioned arguments, the main objective of this article is to establish the
flocking behavior of the system (1.5). Specifically speaking, the focus of this article is as follows.

(i) In this article, we propose a new class of Cucker-Smale model incorporating distributed delays
from the measurement perspective, which is different from the existing models, see, e.g., [23–25].

(ii) Under certain assumptions, by exploiting dissipative differential inequality, some new sufficient
criteria for the flocking behavior of (1.5) and (1.6) with general communication rate (especially
the non-normalized rate) are gained for the first time.

(iii) Numerical simulations are arranged to verify the effectiveness of the main theoretical analysis
results.

In the rest of this paper, we give the definition and several useful lemmas in Section 2. The flocking
result and motion pattern of the system (1.5) with a driving force are presented in Section 3. In Section
4, we also give the numeric calculations which are very good agreement with theoretical results. Lastly,
we draw a brief conclusion in Section 5.

2. Preliminaries

In this section, for purpose of obtaining the main results of this paper, we firstly require the following
definition and lemmas. Define the following quantities:

dP(t) := max
1≤ j,i≤N

||p j(t) − pi(t)||,

dC(t) := max
1≤ j,i≤N

||c j(t) − ci(t)||.

Definition 2.1 We say that a solution {p j(t), c j(t)}, j ∈ {1, ...,N} of the systems (1.5) and (1.6)
converges to flocking while the conditions as follow are satisfied.

sup
t≥0

dP(k) < ∞, and lim
k→∞

dC(k) = 0.

Due to the fact which the functions dP and dC usually are not at C1 smooth, we do with the upper
Dini derivative. For a function G(t), G’s upper Dini derivative at k is defined by

D+G(k) = lim sup
m→0+

G(k + m) −G(k)
m

.

In particular, the Dini derivative is the same as the usual derivative when G is differential at k. In this
paper, we assume that the function Φ is bounded, positive, nonincremental and at Lipschitz continuous
in R+, with Φ(0) = 1.

Remark 2.1 We notice that the theoretical analysis in [21] the assumption of the function Φ. that it
have the strictly positive lower bound . However, it isn’t needed in our framework.
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Lemma 2.2 Let
{
(p j, c j)

}N
j=1

be a solution to (1.5) and (1.6) and F = max
k∈[−T,0]

max
1≤ j≤N

|Ψ j(k)| > 0. Assume

the premier velocity Ψ j( j = 1, 2, ...,N) is continuous on [−T, 0]. Then the solution satisfies

max
1≤ j≤N

|c j(t)| ≤ F for k ≥ −T.

Proof Choose any ϵ > 0 and set

Qϵ := {k > 0 : max
1≤i≤N

|ci(t)| < F + ε, ∀t ∈ [0, k)}.

According to the assumption, Qε , ∅. Denote Rε := sup Qε > 0. We will prove that Rε = +∞. For
contradiction, suppose Rε < +∞. This gives, by continuity, max

1≤ j≤N
|c j(Rε)| = F + ϵ.

On another scale, from (1.5) and (1.6), for k < Rε and j = 1, · · · ,N, we have

1
2D+|c j(k)|2 ≤ ⟨c j(k), dc j(k)

dk ⟩

= ⟨c j(k), 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)(cm(s) − c j(k))ds⟩

= 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)

〈
c j(k), cm(s) − c j(k)

〉
ds

= 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)(

〈
c j(k), cm(s)

〉
− |c j(k)|2)ds

≤ 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)|c j(k)|(|cm(s) − |c j(k)|)ds.

Note that 1
N

N∑
m=1,m, j

Φm,i(k) ≤ 1 and max
1≤ j≤N

|cm(s)| < F + ϵ for k < Rϵ . Thus we receive

1
2D+|c j(k)|2 ≤ 1

h(t)

∫ k

k−T (k)
β(k − s)ds|c j(k)|(F + ϵ − |c j(k)|)

= |c j(k)|(F + ϵ − |c j(k)|),

which yields

D+|c j(k)| ≤ (F + ϵ) − |c j(k)|.

With the help of Gronwall inequality, we have

|c j(k)| ≤ e−k(c j(0) − F − ϵ) + F + ϵ < F + ϵ.

Hence,

lim
t→Rϵ−

max
1≤ j≤N

|c j(k)| < F + ϵ,

which is in contradiction with hypothesis. Therefore, Rϵ = +∞. Moreover, since ϵ is arbitrary, the
lemma is proved.

Lemma 2.3. Let
{
(p j, c j)

}N
j=1

be the solution to (1.5) and (1.6). Afterwards, the diameters functions
dP(k) and dC(k) require

D+dP(k) ≤ dC(k),
D+dC(k) ≤ −Φ(dP(k))dC(k) + 2∆T

N(k),
(2.1)
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for all k > 0, where ∆T
N(k) is given by

∆T
N(k) = 1

Nh(k) max
1≤ j≤N

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)|cm(k) − cm(s)|ds, (2.2)

and satisfies

∆T
N(k) ≤

∫ k

k−T (k)
[∆T

N(s) + dC(s)]ds. (2.3)

Proof We firstly obtain from (1.5) that

D+dP(k) ≤ dC(k).

On account of the continuity of c j(k)( j ∈ {1, ...,N}), there is a times sequence {km}m∈N such that⋃
m∈N

[km, km+1) = [0,+∞).

And for each k ∈ N, there has i, j ∈ {1, ...,N} so that dC(k) = |c j(k) − ci(k)| for k ∈ [km, km+1).
Consequently, one can get

1
2 D+d2

C(k) = 1
2

d
dk |c j(k) − ci(k)|2

= ⟨c j(k) − ci(k), ċ j(k) − ċi(k)⟩

= ⟨c j(k) − ci(k), 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)[cm(s) − c j(k)]ds⟩

−⟨c j(k) − ci(k), 1
Nh(k)

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φm,i(k)[cm(s) − ci(k)]ds⟩

=: W1(k) +W2(k).

(2.4)

For any j ∈ {1, ...,N} and the function Φ is non-increasing, one can obtain

Φm,i(k) ≥ Φ(dP(k)), (2.5)

and

⟨c j(k) − ci(k), cm(k) − c j(k)⟩ ≤ 0, ∀k ≥ 0, m ∈ {1, ...,N}. (2.6)

According to the definitions of h(k), and with Φ ≤ 1, α(k), (2.5) and (2.6), we obtain as follows:

W1(k) = ⟨c j(k) − ci(k), 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)[cm(s) − c j(k)]ds⟩

= ⟨c j(k) − ci(k), 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)[cm(k) − c j(k)]ds⟩

+⟨c j(k) − ci(k), 1
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)[cm(s) − cm(k)]ds⟩

≤
Φ(dP(k))

N

N∑
m=1,m, j

⟨c j(k) − ci(k), cm(k) − c j(k)⟩

+
dC(k)
Nh(k)

N∑
m=1,m, j

∫ k

k−T (k)
β(k − s)Φm,i(k)|cm(k) − cm(s)|ds.

(2.7)
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Similarly

W2(k) = ⟨c j(k) − ci(k), −1
Nh(k)

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φk, j(k)[cm(k) − ci(k)]ds⟩

+⟨c j(k) − ci(k), −1
Nh(k)

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φk, j(k)[cm(s) − cm(k)]ds⟩

≤
−Φ(dP(k))

N

N∑
m=1,m,i

⟨c j(k) − ci(k), cm(k) − ci(k)⟩

+
dC(k)
Nh(k)

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φm,i(k)|cm(k) − cm(s)|ds.

(2.8)

From (2.4), (2.7) and (2.8), for k ≥ 0 we obtain that
1
2 D+dC(k)2 ≤ −Φ(dP(k))dC(k)2

+
2dC(k)
Nh(k) max

1≤ ji≤N

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φm,i(k)|cm(k) − cm(s)|ds.

Thereby,

D+dC(k) ≤ −Φ(dP(k))dC(k) + 2∆T
N(k).

We next estimate the term ∆T
N(k). One can get

∆T
N(k) = 1

Nh(k) max
1≤i≤N

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φm,i(s)|cm(k) − cm(s)|ds

≤ 1
Nh(k)

N∑
m=1

∫ k

k−T (k)
β(k − s)

∫ k

s
|ċm(θ)|dθds

≤ 1
N

N∑
m=1

∫ k

k−T (k)
|ċm(s)|ds

≤
∫ k

k−T (k)
|ċm(s)|ds.

(2.9)

Furthermore, it obeys from (2.7), that

|ċm(s)| = | 1
Nh(s)

N∑
l=1,l,m

∫ s

s−T (s)
β(s − θ)Φm,l(s)|cl(θ) − cm(s)|dθ|

≤ 1
Nh(s)

N∑
l=1

∫ s

s−T (s)
β(s − θ)Φm,l(s)(|cl(s) − cm(s)| + |cl(θ) − cl(s)|)dθ

≤ ∆T
N(s) + dC(s).

(2.10)

Hence, combining with (2.9) and (2.10), we obtain

∆T
N(k) ≤

∫ k

k−T (k)
[∆T

N(s) + dC(s)]ds, (2.11)

which proves the Lemma 2.3.
Remark 2.2 In the perspective of Lemma 2.3, we achieve

|ċm(s)| ≤ | 1
Nh(s)

N∑
l=1

∫ s

s−T (s)
β(s − θ)Φm,l(s)|cl(θ) − cm(s)|dθ| ≤ 2F.

Estimation are given as follow:

∆T
N(k) ≤ 2FT (k) for k ≥ 0.
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3. Main results

3.1. Asymptotic flocking for the Cucker-Smale system

Theorem 3.1.1 Make
{
(pi, c j)

}N
i=1

as the solution to (1.5) and (1.6). Assume that there have some
constants κ, δ > 0 satisfying

0 < κ < Φ(δ), dP(0) + C2
κ
< δ, (3.1)

where C2 := 2C1
Φ(δ)−κ with C1 > max { dC(0)

2 [Φ(δ) − κ], 2GT0}. Then, if

Φ(δ)−κ+2
κ[Φ(δ)−κ] (e

κT0 − 1) < 1, (3.2)

we have

dP(k) < δ and dC(k) ≤ C2e−κk, ∀k ≥ 0.

Aiming at proving Theorem 3.1.1, we give Lemma 3.1.2 as follow.
Lemma 3.1.2 Make

{
(pi, c j)

}N
i=1

as a global solution to the model (1.5) and (1.6) satisfying a priori
assumption on the relative position:

sup
0≤k<+∞

dP(k) ≤ δ. (3.3)

Then, we can gain

∆T
N(k) < C1e−κk and dC(k) < C2e−κk ∀k > 0, (3.4)

where κ > 0 and C1,C2 > 0 have been given in Theorem 3.1.1.
Proof Firstly if ∆T

N(k) < C1e−κk for all k ∈ [0,H] with fixing H > 0, we prove that dC(k) < C2e−κk

for all k ∈ [0,T ]. Actually, according to Lemma 2.3, one can easily obtain

D+dC(k) ≤ −Φ(dP(k))dC(k) + 2C1e−κk,

for k ∈ [0,H]. Using Growall’s inequality and the fact that dC(0) < 2C1
Φ(δ)−κ yield

dC(k) ≤ dC(0)e−Φ(δ)k + 2C1
Φ(δ)−κ

[
e−κk − e−Φ(δ)t

]
=
[
dC(0) − 2C1

Φ(δ)−κ

]
e−Φ(δ)k + 2C1

Φ(δ)−κe
−κk

< 2C1
Φ(δ)−κe

−κk.

Set

M :=
{
H > 0 : ∆T

N(k) < C1e−κk and dC(k) < C2e−κk, k ∈ [0,H]
}
.

Which obeys Lemma 2.3 and 2GT0<C1 that 0 ∈ M. Thus, M , ∅. We will prove sup M = ∞. Suppose
that H = sup M < ∞. Therefore by continuity of functions dC(k) and ∆T

N(k), we have

∆T
N(H) = C1e−κH or dC(H) = C2e−κH, (3.5)
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Afterwards H < M. Whatsmore, with using ∆T
N(k) and M yields definitions.

∆T
N(H) = lim

k→H
−
∆T

N(k)

≤ lim
k→H

−

∫ k

k−T (k)
[∆T

N(s) + dC(s)]ds

≤ lim
k→H

−
(C1 +C2)

∫ t

k−T (k)
e−κsds

≤
C1+C2
κ

e−κH(eκT0 − 1)
< C1e−κH.

(3.6)

Thus, from the assertion of the proof of the lemma, we can get dC(H) < C2e−κH. Consequently, (3.5)
doesn’t hold, and we have H = ∞. This completes the proof.

Next, we prove Theorem 3.1.1.
We prove that a priori assumption (3.3) is effective for given δ in Theorem 3.1.1. Indeed, label

S := {H > 0 : dP(k) < δ, k ∈ [0,H]} .

In addition, through (3.3) and the function dP(t) continuity, one can conclude that S , ∅. We are now

ready to deduce that sup S = ∞. Suppose that H := sup S < ∞, then we get dP(H) < δ. On the other

hand, applying Lemma 3.1.2 yields that dC(k) ≤ C2e−κk for k ∈ [0,H). So, by defining dC(k), one can
obtain that for i, j ∈ {1, ...,N}

|pi(H) − p j(H)| ≤ |pi(0) − p j(0)| +
∫ H

0
|c j(s) − ci(s)|ds

≤ dP(0) +
∫ H

0
|dC(s)|ds

≤ dP(0) +
∫ H

0
C2e−κsds

< dP(0) + C2
κ
.

(3.7)

It can deduce dP(H) < dP(0) + C2
κ

. And we have

δ = dP(H) < dP(0) + C2
κ
< δ,

which conflicts. Thus, the priori assumption (3.3) is valid for δ. Combining with Lemma 3.1.2, we
finish the proof of Theorem 3.1.1.

3.2. Future work

In practical application, we hope that agents can form formation, so we establish a distributed
time-delay flocking model with controller. The driving force term is taken into account, precisely, a
suitable F is introduced into the system (1.5), so that all the agents converge to flocking and achieve
the prescribed pattern motion. The modified Cucker-Smale is given as follows:


ṗi = c j,

v̇i =
1

Nh(k)

N∑
m=1,m,i

∫ k

k−T (k)
β(k − s)Φm,i(k)(cm(s)−c j(k))ds + F(pi), i = 1, 2, . . . ,N. (3.8)

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1505–1518.
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Inspired by the work of [36], the function is taken as

F(pi(k)) = γ(sin(⟨p − a, c⟩) − ⟨p − a,w⟩)(c cos(⟨p − a, v⟩) − w), (3.9)

where a = 1
N

N∑
i=1

pi(k), v,w are two given vectors, γ is a positive force strength measured constant.

For the sake of brevity, we only list a framework model. Some simulations for special experiments
are conducted in the next section. The range of control parameters for formation of flock, how to select
the control design parameters effectively, and strict theoretical analysis will be our future study.

4. Numerical simulations

In this section, we provide several numerical simulations, which confirm the delay can affect the
dynamic position and velocity of system (4.1).

ṗ j = c j,

ċ j =
1

20h(k)

20∑
m=1,m, j

∫ k

k−T (k)
ϕm,i(k)(cm(s)−c j(k))ds, j = 1, 2, . . . , 20, (4.1)

with the initial functions as below

p j(s) =: Φ j(s), c j(s) =: ψ j(s), j = 1, · · · ,N, s ∈ [−T0, 0],

where ϕm,i(k) = ϕ(pm(k), pi(k)), (Φ j, ψ j) ∈ S2 = S × S and S := S ([−T, 0],Rd) is the Banach space of
all continuous functions. Moreover, Φ : R+ → R+ requires ϕ(k) ≤ 1 for each k ≥ 0. R+ denote the set
of positive real number.

The effectiveness and validity of the analytical results are demonstrated by the following examples.
Example 4.1 For system (4.1), we choose

ϕ(r) = 1
(1+r2)0.2 , Φi(s) = (0.01, i − 1), ψi(s) = (0.01, i − 1), i = 1, · · · , 20, s ∈ [−T0, 0]. (4.2)

Taking δ = 70, C1 = 0.84, T (k) ≡ T0 = 0.04, by some simple calculations, it is easy to see that all
conditions of Theorem 3.1.1 are satisfied. Therefore, system (4.1) under condition (4.2) will asymp-
totically converge to a flock. This conclusion can be verified by the following numerical simulations
in Figure 1.

(a) (b)

Figure 1. N=20, T = 0.04, the system (4.1) asymptotically converges to a flock.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1505–1518.
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Example 4.2 With the purpose of demonstrating the dynamic process of agents’ flock convergence,
for system (4.1), we choose

ϕ(r) = 1
(1+r2)0.4 ,Φi(s) = (0.01, 2i − 1), ψi(s) = (0.01, 2i − 1), i = 1, · · · , 20, s ∈ [−T0, 0]. (4.3)

Taking δ = 70, C1 = 0.84 and T (k) ≡ T0 = 0.01, by some simple calculations, it is easy to see that
all conditions of Theorem 3.1.1 are satisfied. Figure 2 shows the process of agents’ flock convergence,
which demonstrates that the dynamic graph of agents connected and changing until system (4.1) under
condition (4.3) flocking achieved.

Figure 2. The dynamic process of agents’ flock convergence.

Example 4.3 Aiming at demonstrating that agents starting at different initial position and initial
velocity can converging to varieties of different stable structure eventually. For system (4.1), we take
δ = 70, C1 = 0.84 and T (k) ≡ T0 = 0.01. It is easy to see that the below three situations satisfy
Theorem 3.1.1, and therefore, the system (4.1) can work normally.

(i) ϕ(r) = e−r0.8
, Φi(s) = (0.01, i − 1), ψi(s) = (0.01, i − 1), i = 1, · · · , 20, s ∈ [−T0, 0]. The simulation

results are shown at (a) in Figure 3
(ii) ϕ(r) = (sin r2)0.8, Φi(s) = (0.01, 2i − 1), ψi(s) = (0.01, 2i − 1), i = 1, · · · , 20, s ∈ [−T0, 0]. The

simulation results are shown at (b) in Figure 3.
(iii) ϕ(r) = (cos r2)0.8, Φi(s) = (0.01, 3i − 1), ψi(s) = (0.01, 3i − 1), i = 1, · · · , 20, s ∈ [−T0, 0]. The

simulation results are shown at (c) in Figure 3.

Figure 3 displays a variety of different stable formation of 20 agents which start at random initial
positions with different velocities.

(a) (b) (c)

Figure 3. Agents start at different position with different velocity, shape various different
stable formation at last.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1505–1518.
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Example 4.4 For system (4.1), we choose

Φ(r) = e−r0.6
,Φi(s) = (0.01, i − 1), ψi(s) = (0.01, i − 1), i = 1, · · · , 20, s ∈ [−T0, 0]. (4.4)

Taking T (k) ≡ T0 = 3.0, by some simple calculations, then the condition of Theorem 3.1.1 fails, which
is perfectly verified in Figure 4.
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(b)
Figure 4. N=20, T = 1.0, system (4.1) with (4.4) cannot asymptotically converges to a flock.

Example 4.5 Consider the system (4.1), where ϕ(r) = 1

(1+r2)
1
6
, and take γ = 1 as the communication

rate function and T (k) ≡ T0 = 0.8. Besides, we let pi(k) and ci(k) (i = 1, 2, . . . ,N) for k ∈ [−T0, 0]
generated randomly and diverse in the region [0, 10] × [0, 1]. Then our simulation verifies that the
solution of the system (4.1) can converge to a flock with the prescribed motion pattern, which is shown
in Figure 5.

(a) (b) (c)

Figure 5. The position distribution of population at t = 0 s, t = 20 s and t = 100 s, respectively.
And the values of each parameter are given as w = (0, 1) and v = (1, 0).

5. Conclusions

It is practical to understand how autonomous agents organize orderly movements based on finite in-
formation about the environment and monotonous rules. By utilizing dissipative differential inequality
with a continuity argument, abundant conditions are the key insurance to the existence of flocking for
the Cucker-Smale system with distributed delays from a measurement perspective. Several numerical
simulations, it is a confirmation of that distributing delays can affect the flocking behavior. Meanwhile,
the driving force term is added to the delay collective system to realize the specified pattern motion
through numerical experiments.
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