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Abstract: In order to cope with the rapid growth of flights and limited crew members, the rational
allocation of crew members is a strategy to greatly alleviate scarcity. However, if there is no appro-
priate allocation plan, some flights may be canceled because there is no pilot in the scheduling period.
In this paper, we solved an airline crew rostering problem (CRP). We model the CRP as an integer
programming model with multiple constraints and objectives. In this model, the schedule of pilots
takes into account qualification restrictions and language restrictions, while maximizing the fairness
and satisfaction of pilots. We propose the design of two hybrid metaheuristic algorithms based on a
genetic algorithm, variable neighborhood search algorithm and the Aquila optimizer to face the trade-
off between fairness and crew satisfaction. The simulation results show that our approach preserves
the fairness of the system and maximizes the fairness at the cost of crew satisfaction.

Keywords: airline crew rostering problem; multi-objective optimization; genetic algorithm; variable
neighborhood search algorithm; Aquila optimizer

1. Introduction

The aviation industry is an important industry in the current market. As a modern mode of trans-
portation, air transport plays an important role in economic activities. Since the founding of New
China, China has become the second largest civil aviation market in the world. In 2021, the total trans-
portation turnover of the whole industry will be 85.675 billion ton- kilometer, an increase of 7.3% over
the previous year. The total passenger traffic volume of the whole industry reached 440.557 million
passengers, an increase of 5.5% over the previous year [1].

At present, most airlines’ crew scheduling relies on the staff’s experience to do it manually. Al-
though it is practical, there are obvious shortcomings and the probability of error is not low. The
essence of the problem is an assignment problem. Many institutions and companies have carried out
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various degrees of discussion and research on related issues. This is an non-deterministic polynomia
hard (NP-hard) problem, and it has always been a hot topic of research by scholars at home and abroad.
The crew rostering problem (CRP) is a complex and huge workload. The crew resource is one of the
most precious resources in aviation operation, as it also determines the importance and necessity of
crew scheduling in aviation operation management. Figure 1 shows the number of captains and copi-
lots of some Chinese airlines in 2019. Due to the large scale of flights involved and the need to strictly
abide by complex working rules, in order to reduce the difficulty of solving the crew scheduling, the
crew scheduling is usually divided into two parts: the crew pairing problem (CPP) and crew rostering
problem (CRP). We must solve the CPP to get a set of flight pairings with excellent cost and quality
performance. The CRP is to assign these flight pairings to the crew. In most existing studies, the goal
of the CRP is set to minimize airline costs [2]. However, with the development of the aviation industry,
the cost of airlines is no longer the primary priority of crew scheduling. According to statistics, it
takes 5 million yuan for an airline to train a captain. The loss of a pilot is a huge loss for the airline;
especially, a highly qualified pilot is a valuable asset for the airline. Therefore, fairness and satisfaction
are key factors to be taken into account by the rosters when assigning flight pairings [3]. In this paper,
we also consider a multi-objective model, including fairness and satisfaction.

Figure 1. Number of pilots and copilots of airlines in 2019. On the abscissa, from left to
right are China Eastern, Air China, China Southern Airlines, Sichuan Airlines, XIAMEN
AIR, Hainan Airlines, Spring Airlines, Juneyao Airlines, YTO Cargo Airlines and SF Cargo
Airlines.

In China, there are many plateau airports and special airports, especially in Yunnan. Only pilots
with these qualifications can fly these airports, so these pilots are more scarce resources for airlines.
Therefore, in this paper, we mainly study the CRP with language and qualification constraints, and
the CPP will not be considered for the time being. A multi-objective model with the following two
objectives has been built for the CRP: 1) maximize fairness and 2) maximize satisfaction. The purpose
is to find a set of Pareto optimal solutions among a variety of possible combinations under the various
regulations of the Civil Aviation Administration. The main difficulty of this problem is that, with
the increase of the number of pilots and flights, the size of the portfolio grows exponentially and
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becomes difficult to solve. With the increase of the number of pairings and crew, the size of the search
space increases dramatically. Therefore, it is impractical if we enumerate each combination when the
problem size is large.

The multi-objective model we propose is a discrete optimization model [4]. It is difficult for tradi-
tional mathematical methods to yield optimal solutions for multiple objectives at the same time. There-
fore, three metaheuristic algorithms are mainly considered in this paper, including a genetic algorithm
(GA), the Aquila optimizer (AO) and a variable neighborhood search (VNS) algorithm. However, only
using a single algorithm makes it easy to fall into the local optimal solution, so we have designed two
hybrid metaheuristic algorithms. One is a hybrid algorithm of a GA and VNS, and the other is a hybrid
algorithm of a GA and a AO.

In this paper, we have three contributions:
1) We establish the CRP as a multi-objective model with qualifications and language constraints.
2) We propose two hybrid metaheuristic algorithms to effectively solve the proposed multi-objective

CRP.
3) In this study, we tested monthly scheduling problems of different scales. At the same time, we

have carried out many simulation experiments to verify the effectiveness of this method. From the
experimental results, we can see that our algorithm is effective in large-scale CRPs.

The rest of this paper is structured as follows. In the second section, we review the relevant literature
on crew scheduling. In the third section, we establish a mathematical programming model for the CRP.
Then, in the fourth section, we introduce two hybrid heuristic algorithms and the design of the coding
method. The fifth section analyzes the experimental results of the algorithm; finally, we give the
conclusion in the sixth section.

2. Related work

Manual scheduling is time-consuming and laborious for airlines, and it is difficult to control multiple
targets. Therefore, in recent years, many scholars have studied crew scheduling optimization in airlines.
Next, we will review relevant literature from the perspective of objective function types.

2.1. Single objective model

In many engineering problems, most researchers first consider a single objective model [5, 6], or
convert multiple objectives into a single objective model for solution. The same is true for the CRP.
For crew scheduling, in most studies, single objectives such as minimizing total cost, maximizing
crew satisfaction and balancing working hours have been considered. For example, Beasley et al. [7]
considered a problem of assigning K individuals to N tasks with fixed start times and fixed end times.
They established a 0-1 integer programming model for this problem, and in order to solve this model,
they proposed a tree search algorithm. Later, they found a new lower bound for the crew scheduling
problem based on dynamic programming; they then combined this lower bound into the tree search
algorithm to solve the problem of random generation between 50 and 500 [8]. In order to solve the
crew scheduling problem, Lučić et al. [9] constructed the monthly schedule of the crew using simulated
annealing, GA and Tabu search techniques. In order to reduce the overall operating cost of airlines,
Maenhout et al. [10] proposed a decentralized search algorithm for airline crew scheduling. Hadianti
et al. [11] considered Indonesian airlines. They took the average relative deviation between the total
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flight time and the ideal flight time as the objective function, and then used the simulated annealing
algorithm to solve it. The experimental results show that a satisfactory solution can be obtained in a
very short time. Quesnel et al. [12] considered the preferences of the crew and proposed to consider
their preferences in the CPP in order to create a pairing that makes the crew more satisfied. At the
same time, they used the column generation algorithm to obtain a solution. In order to maximize the
satisfaction of the crew, Quesnel et al. [13] proposed a partial pricing scheme based on deep learning.
The experimental results show that the solution generated by the branch pricing algorithm can be
solved in half the time of the branch pricing algorithm. Recently, Deng [14] proposed an improved
honey badger algorithm to solve the models while considering cost and fairness; they achieved good
results.

The work mentioned above only considers CRPs, but there are some studies that also consider CPPs
and CRPs. Souai et al. [15] proposed a new method to solve the CPP and CRP simultaneously based
on a hybrid GA. Saddoune et al. [16] considered an ensemble crew scheduling model and developed a
combined column generation algorithm to obtain the solution. Recently, Zeighami et al. [17] proposed
a model integrating crew pairing and personalized allocation, and developed an algorithm integrating
alternating Lagrangian decomposition, column generation and dynamic constraint aggregation to solve
it. Although the integrated model can be optimized globally, it takes a long time to directly solve the
integrated model.

2.2. Multi-objective model

In fact, multi-objective optimization is also considered in some related fields, including health care
routing [18], supply chain management [19], vehicle routing management [20] and flow-shop schedul-
ing [21]. Naturally, we will also consider whether to describe the CRP as a multi-objective problem.
In the real world, in addition to paying attention to costs, airlines also pay attention to pilots’ fatigue,
fairness and other indicators. Therefore, multi-objective models have also been investigated in some
studies. Ehrgott et al. [2] considered not only the cost of the solution, but also the robustness of the
solution. They described these two objectives as a multi-objective problem and developed a double
diagonal optimization framework to generate Pareto schedules for airlines. A multi-meme memetic
algorithm improves reliability and flexibility in the real world by Burke et al. [22]. Chutima et al. [23]
considered four optimization objectives and solved the crew scheduling problem of a low-cost airline.
Zhou et al. [3] proposed a multi-objective ant colony algorithm to optimize the fairness and satisfac-
tion of the crew. Baradaran et al. [24] considered two objectives, where one is to maximize the number
of planned vacation days and the other is to minimize the penalty costs associated with violating the
minimum and maximum working hours.

In recent years, COVID-19 has affected the development of the aviation industry to a certain extent.
However, with the control of COVID-19, the aviation industry has also begun to recover. Therefore, it
is a matter of concern to consider the airline CRP from the perspective of pilots. Although people have
done a lot of research on the airline CRP, there are few studies that consider the fairness and satisfaction
of pilots at the same time. Therefore, in this study, we designed two multi-objective optimization
algorithms to solve the problem of airline crew rostering.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1460–1487.



1464

3. Preliminaries

In this section, we introduce the input information, constraints and objective function of the CRP.
Then we describe a mathematical model considering qualification and language. Before doing these
works, we will first explain the terms in the CRP so as to help people without relevant knowledge to
understand the article well.

Flight segment: A flight from one airport to another (without a third airport stop in between).

Crew: In this paper, the crew includes only the pilot. In modern civil aviation, there are usually
only two types of pilots, namely, the captain and co-pilot.

Deadhead: It refers to the process in which the crew members take an airplane or ground transporta-
tion to complete the flight task according to the requirements of the company, but it does not include
the transportation to and from the local accommodation.

Duty: Duty consists of connection times between flight segments. The starting time of duty is
calculated from the departure time of the first flight performed on the day, and the end time is calculated
according to the arrival time of the last flight.

Pairing: Consecutive days of tasks originating from the base and eventually returning to the base,
which may include deadhead.

Personal schedule: The work schedule of a crew member over a longer period is linked by a series
of flight pairings and other training and vacation arrangements.

Time: Airline operations span time and space. All times are defined in singer same time zone (such
as the east eighth time zone), and the time division point of two adjacent days is midnight in the given
time zone.

Roster: Each crew member has a schedule within a schedule period, which consists of a series of
pairings.

As shown in Table 1, each row in the table represents a flight; it includes the departure airport and
departure time, as well as the arrival airport and arrival time. At the same time, Table 2 shows its
corresponding flight pairing, where P1 = [L1, L2, L3, L4] and P2 = [L5, L6, L7, L8].

Table 1. Example of flight information.

Leg Airport Dep Time Dep Airport Arr Time Arr
L1 Airport 1 2020-03-01 09:00 Airport 2 2020-03-01 11:00
L2 Airport 2 2020-03-01 13:00 Airport 1 2020-03-01 15:10
L3 Airport 1 2020-03-02 08:40 Airport 3 2020-03-02 10:34
L4 Airport 3 2020-03-02 11:20 Airport 1 2020-03-02 13:00
L5 Airport 1 2020-03-01 09:00 Airport 2 2020-03-01 11:00
L6 Airport 2 2020-03-01 13:00 Airport 1 2020-03-01 15:20
L7 Airport 1 2020-03-02 09:00 Airport 3 2020-03-02 11:00
L8 Airport 3 2020-03-02 13:00 Airport 1 2020-03-02 15:20
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Table 2. Example of pairing information.

Pairing No. Starting time End time Flight time Duty time Language Qualification
P1 2020-03-01 09:00 2020-03-02 13:00 464 min 570 min Chinese H
P2 2020-03-01 09:00 2020-03-02 15:20 520 min 760 min Chinese S

Note: H: High plateau airport qualification; S: Special airport qualification.

3.1. Input information

Whether manual or automated, we rely on two main types of information: pairing and crew. In the
actual scheduling system, the information from the aviation planning stage is usually recorded, and the
information from the flight pairing stage and the information of the crew are also recorded. For the
crew, as in Table 3, it usually includes the flight time of the current month, the flight time of the year,
rank, qualification, language, etc. For the pairings, as in Table 2, they usually include flight time, duty
time, start time, end time, minimum required qualifications, required language, etc. Therefore, we will
use this known information to find a near-optimal personal schedule for the CRP.

Table 3. Example of crew information.

Crew No. Rank Monthly flight time Annual flight time Language Qualification
n1 A1 37.23 h 110.45 h English and Chinese H
n2 C1 32.56 h 112.32 h Chinese S

Note: H: High plateau airport qualification; S: Special airport qualification.

3.2. Constraints and objectives

In reality, the CRP is very complicated; airlines in different countries may have different restric-
tions, and even different airlines in the same country have different restrictions. In this paper, only the
crew scheduling problem of Chinese airlines is studied. In order to simplify the process, we will not
consider all of the constraints of the airline, but only some very important constraints. For some other
constraints, if necessary, you can directly limit the corresponding restrictions in the code.

Constraints
1) Number of crew constraints: Each pairing must be assigned a given number of crew members.

For example, a pairing requires a minimum of two crew members, which is not feasible if only one
crew member is assigned.

2) Rank constraints: The Captain’s and First Officer’s ranks must be compatible to be assigned to
the pairing together.

3) Flight time constraints: The crew’s monthly and annual flying hours must be within the specified
limits.

4) Language constraints: At least one crew member flying the same pairing speaks the local lan-
guage.

5) Qualification constraints: Each crew member must have the qualifications required by the take-
off and landing airports.

6) Rest time constraints: The prescribed rest time must be satisfied between the two pairings as-
signed to each pilot.

7) Flight coverage constraints: All flights must be fully allocated.
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Objectives
Optimizing preference: Before the CRP, the pairing was already formed. Therefore, all crew mem-

bers can express their satisfaction with the pairing on the portal. In our work, the average preference
of all pilots is maximized. We set five levels of crew satisfaction, as shown in Table 4.

Table 4. Table of satisfaction score.

Satisfaction Very dissatisfied Dissatisfied Generally Satisfied Very satisfied
Points 1 2 3 4 5

Optimizing fairness: Workload balancing is an important indicator for achieving crew fairness. An
equitable schedule can lead to increased crew motivation.

3.3. Mathematical model

To build the mathematical model, we first define the main sets, parameters and decision variables, as
shown in Table 5. In Table 5, although we describe each crew member’s individual schedule as Set. But
we should know that, as a legal individual scheduling plan, they each should satisfy the qualification
constraints, language constraints and grade constraints, etc.

Table 5. Summary of notations.

Type of notation Notation Description
Set P Set of all pairings.

M Set of crew members.
Rm The set of all legal individual schedules of crew member m.

Parameter crm Total cost of crew member m to execute the schedule r ∈ Rm.
cp The cost of pairing p.
arp arp = 1 if pairing p is in the schedule r, 0 otherwise.
bm1m2 bm1m2 = 1 if crew members m1 and m2 can be matched, 0 otherwise.
srm Crew m’s satisfaction with the schedule r.
lpm lpm = 1 if crew member m satisfies the

language requirements of pairing p, 0 otherwise.
qpm qpm = 1 if crew member m satisfies the

qualification requirements of pairing p, 0 otherwise.
Variable xrm xrm = 1 if the crew m performs the schedule r, 0 otherwise.

Here, we consider two main objectives of fairness and satisfaction to build a multi-objective opti-
mization model for the CRP. The mathematical model can be described as follows:

Min f1 =

∑
m∈M
∑

r∈Rm
(crm − c)xrm

| M |
(3.1)

Max f2 =

∑
m∈M
∑

r∈Rm
srmxrm

| M |
(3.2)
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subject to: ∑
m1∈M

∑
m2∈M:m2,m1

∑
r1∈Rm1

∑
r2∈Rm2

bm1m2(ar1 pxr1m1 + ar2 pxr2m2) = 2 ∀p ∈ P (3.3)∑
m∈M

∑
r∈Rm

qpmarpxrm = 1 ∀p ∈ P (3.4)∑
m1∈M

∑
m2∈M:m2,m1

∑
r1∈Rm1

∑
r2∈Rm2

(lpm1arpxrm1 + lpm2arpxrm2) ≥ 1 ∀p ∈ P (3.5)∑
r∈Rm

xrm = 1 ∀m ∈ M (3.6)

xrm ∈ {0, 1} ∀r ∈ Rm,∀m ∈ M (3.7)

Objective function (3.1) optimizes fairness among crew members by minimizing the sum of the
deviations of the selected schedule cost value from the average cost. Here we take the form of mean
absolute deviation. In fact, the average cost is actually a constant, and it is calculated as follows:
c =
∑

p∈P cp/ | M |. Objective function (3.2) maximizes average satisfaction among the crew members.
Constraint (3.3) ensures that each ring is executed by two crew members, while guaranteeing that the
two crew members can be matched in rank. Constraint (3.4) ensures that the qualifications of each crew
member meet the requirements of the pairing. Constraint (3.5) ensures that at least one crew member
meets the language requirements of the pairing. Constraint (3.6) ensures that each crew member selects
a schedule. The binary conditions are defined by Constraint (3.7).

4. Solution approach

In the real world, there are often a large number of large-scale optimization problems. For this
type of problem, either it is often difficult to solve with exact algorithms, or it takes a lot of time to
solve. Therefore, in recent years, many metaheuristic algorithms have been proposed, including parti-
cle swarm optimization, a GA, honey badger algorithms, etc., and successfully applied them to different
problems [14, 25, 26]. But a single algorithm may not perform well on some problems. Therefore, in
this regard, hybrid optimization algorithms are of great significance for solving real-world large-scale
optimization problems. In this paper, we propose two different hybrid methods to solve this prob-
lem. The first method was constructed by using a hybrid Non-dominated sorting genetic algorithm II
(NSGA-II) and VNS algorithm, which we call GA-VNS. The second algorithm was constructed using
the newly proposed AO [27] and a GA, called AOGA.

4.1. Encoding and decoding schemes

For the input information of the question, the pilots are indexed by number. Therefore, in order to
solve the proposed CRP model, we first need to digitally encode the pilot’s information. A reasonable
coding scheme can simplify the problem. In our problem, we put all the pilots in a list; when the
list is fixed, the order of the pilots is fixed. We code the pilots in the order they appear in the list,
i.e., the pilot in the first position in the list will be coded it as 1, and the pilot in the second position
will be coded it as 2, as shown in Figure 2. In Figure 2, the upper part is the input information of
the airline, and the middle part is the information encoded for the pilot. Once we have coded the
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pilot’s information, we also need to code the solution. Since each flight pairing requires two pilots, we
describe the solution as an array. Each row in the array represents a flight ring, while the corresponding
first column represents the captain and the second column represents the first officer, as shown at the
bottom of Figure 2. When we decode the solution obtained by the algorithm, we only need to take the
number of the corresponding position from the list of pilots and flight pairings.

Pariring1 Pariring2 Pariring3 Pariring4

B0001 B0002 B0003 B0004 B0005 B0006 B0007 B0008

1 2 3 4 5 6 7 8

2 3 4 5 7 1 8 6

Encoding

EmpNo

Figure 2. Encoding.

a Pariring1 Pariring2 Pariring3 Pariring4

.2 5 1.4 4.2 3.7 7.9 1.1 8.2 5.4

b Pariring1 Pariring2 Pariring3 Pariring4

3 1 4 4 8 1 8 5

c Pariring1 Pariring2 Pariring3 Pariring4

3 1 4 2 8 3 6 5

Figure 3. RK technique.

In general, optimization algorithms are often used in continuous optimization. Therefore, in order
to be able to search in the feasible space, we will use the random-key (RK) technique proposed in
[28]. This technique is divided into two stages, where the first stage uses an algorithm to generate a
continuous solution, and the second stage parses this continuous solution into a feasible solution. This
technique is often used because it can apply continuous optimization algorithms to discrete problems.
For example, suppose we need to allocate four flight pairings on the same day. Figure 3a is a real
solution generated by the algorithm. We then generate an integer solution by rounding, as shown in
Figure 3b. An integer solution is obtained by rounding, but, obviously, this integer solution is not
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feasible. Therefore, we need to further obtain a feasible solution to the problem, as shown in Figure
3c.

4.2. Multi-objective optimization

After defining the search space and coding method, we also need to evaluate the pros and cons
of each solution. In our proposed CRP model, there are two conflicting objectives. Therefore, it
is impossible for us to optimize both objectives at the same time, but we need to make a trade-off

between the two objectives. In this case, instead of a single solution, we get a set of Pareto solutions.
For every Pareto solution, we cannot optimize one objective without degrading the other. Therefore,
in this work, our goal is to find a set of Pareto solutions. Suppose we get two Solutions A and B.
Their corresponding objective functions are ( f1(A), f2(A)) and ( f1(B), f2(B)), respectively. Solution A
dominates Solution B if f1(A) ≤ f1(B), f2(A) ≥ f2(B) and ( f1(A), f2(A)) , ( f1(B), f2(B)). We divide the
population set into different Pareto sets by crowding distance. Obviously, the first Pareto front is the
non-dominant solution. In a metaheuristic algorithm, the solution set for each iteration is divided into
different Pareto sets. Next, we will propose a hybrid metaheuristic algorithm.

4.3. Non-dominated sorting genetic algorithm II

The NSGA-II is a popular algorithm for solving multi-objective optimization problems. The basic
idea of the NSGA-II is to rank the population through the non-dominated sorting of the population,
calculate the crowding distance of the population of individuals to maintain the diversity of the popu-
lation and obtain the non-dominated solution when the termination condition is reached. The NSGA-II
randomly selects two individuals from the parent population as the father and mother. Then it performs
the crossover operation with the probability Pc, and performs a mutation operation with the probability
Pm.

Father
Pariring1 Pariring2 Pariring3 Pariring4

3 1 4 2 8 3 6 5

Pariring1 Pariring2 Pariring3 Pariring4

4 1 2 5 6 7 8 11

10 12 11 9 13 14

Pariring5 Pariring6 Pariring7

Pariring5 Pariring6 Pariring7

10 9 12 14 13 3

 Offspring 1
Pariring1 Pariring2 Pariring3 Pariring4

3 1 2 5 8 3 6 5

Pariring1 Pariring2 Pariring3 Pariring4

4 1 4 2 6 7 8 11

10 12 12 14 13 14

Pariring5 Pariring6 Pariring7

Pariring5 Pariring6 Pariring7

10 9 11 9 13 3

 Offspring 1

Mother

Figure 4. Crossover operation.

Crossover operation: First, we use a random function RC = randi(1, | P | /2) to generate the
number of cross positions, where | P | is the number of flight pairings. Then, the RC cross positions are
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generated through random functions randi(1, | P |). In Figure 4, we show an example of a crossover
operation. In Figure 4, the number of intersecting positions is 2; therefore, we need to randomly
generate two crossover positions. Here, we produce two crossover positions 2 and 6. Then, we swap
the second and sixth positions of Father and Mother to get two offsprings 1 and 2.

Mutation operation: As shown in Figure 5, we use the randomly generated mutation position 2.
Then, we randomly turn that position into an element in the feasible space.

We merge parent and child, using non-dominant sorting and crowding distance to produce a new
population of the size of the initial population. The flow chart of the NSGA-II is shown in Figure 6.

Pariring1 Pariring2 Pariring3 Pariring4

3 1 2 8 3 6 5

Pariring5 Pariring6 Pariring7

10 12 11 9 13 14

Pariring1 Pariring2 Pariring3 Pariring4

3 1 7 5 8 3 6 5 10 12 11 9 13 14

Pariring5 Pariring6 Pariring7

4

Figure 5. Mutation operation.

4.4. Variable neighborhood search algorithm

The VNS algorithm is one of the most popular local search algorithms [29], and it is often used to
solve large-scale optimization problems. The VNS algorithm is an improved local search algorithm. It
utilizes the neighborhood structure formed by different actions for alternate search and achieves a good
balance between concentration and evacuation. The VNS algorithm relies on the following facts: 1)
A local optimal solution for one neighborhood structure is not necessarily a local optimal solution for
another neighborhood structure; 2) The global optimum is the local optimum for all possible neighbor-
hoods. The VNS algorithm starts from a set of initial solutions and uses Nmax neighborhood structures
to find a better solution than the current one. Therefore, the effect of the VNS algorithm mainly de-
pends on the design of the neighborhood structure. Therefore, we can reasonably design the domain
structure to be embedded in other algorithms to improve the solution effect of the algorithm. In this
work, three types of neighborhood structures were mainly designed for the CRP, as follows:

Pilot exchange: In a solution X, randomly select two pilots to exchange, as shown in Figure 7 (Pilot
exchange).

Insert: In a solution X, a pilot is randomly selected from the unassigned pilots and inserted into a
flight pairing at random, as shown in Figure 7 (Insert).

Pairing exchange: In a solution X, randomly select two pairings to exchange, as shown in Figure
7 (Pairing exchange).
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Figure 6. Flow chart of the NSGA-II.

X
Pariring1 Pariring2 Pariring3 Pariring4

3 1 4 2 8 3 6 5

 Pilot exchange Pariring1 Pariring2 Pariring3 Pariring4

3 4 1 2 8 3 6 5

Pariring1 Pariring2 Pariring3 Pariring4

3 1 4 9 8 3 6 5

Pariring1 Pariring2 Pariring3 Pariring4

3 1 8 3 4 2 6 5

Insert

 Pilot exchange

Figure 7. Neighborhood structure.
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4.5. Aquila optimizer

The AO is an optimization algorithm proposed by Abualigah et al. in 2021 based on the hunting
behavior of Aquila [27]. Due to the ability of the algorithm’s advanced evolutionary strategy to find
the global optimum, it has been widely used in a variety of optimization problems [30, 31]. Like other
metaheuristics, the AO starts from an initial population. In nature, there are four types of hunting
methods. Aquila bend vertically, soar high in the sky and select their search space. They conduct
high-altitude exploration in a forked search space. The Aquila flies at low altitude and slowly descends
to attack in the convergent search space. And, Aquila walk to catch prey.

4.5.1. Step 1: Expanded exploration

In the first hunting style, Aquila soar through the sky to determine the range of their prey. This
hunting behavior can be expressed mathematically by the following formula:

X1(t + 1) = Xbest(t) ∗ (1 −
t

Max iter
) + (XM(t) − Xbest(t) ∗ r),

where X1(t + 1) is the solution for the t + 1-th iteration, which is produced by the Aquila’s first method.
Xbest(t) is the best solution so far. This equation (1 − t

T ) controls the hunting range of the Aquila
through the number of iterations. r is a random value between 0 and 1. XM(t) represents the average
of all solutions in the t-th iteration. t and Max iter are the current iteration value and the maximum
iteration value, respectively.

4.5.2. Step 2: Narrowed exploration

In the second hunting style of the Aquila, the Aquila hovers over the target prey and then attacks.
This hunting method can be expressed by the following mathematical formula:

X2(t + 1) = Xbest(t) ∗ LF(D) + XR(t) + (y − x) ∗ r,

where LF(D) is the levy flight function. XR(t) is a randomly generated solution in the search space.
LF(D) can be calculated by using the following formula.

LF(D) = s ∗
u ∗ σ

| v |
1
β

, σ =
Γ(1 + β) ∗ sin(πβ2 )

Γ(1 + β) ∗ β ∗ 2
β−1

2

where s = 0.01 and β = 1.5. u and v are random numbers between 0 and 1. x and y can be calculated
by the following formulas:

x = r∗ ∗ sin(θ), y = r∗ ∗ cos(θ), r∗ = r1 + 0.00565 ∗ D1, θ = −ω ∗ D1 + θ1, θ1 =
3π
2
,

where r1 is the number of search cycles and ω = 0.005. D1 is an integer from 1 to dimension D.

4.5.3. Step 3: Expanded exploitation

In the third hunting style of the Aquila, the Aquila uses the selected area of the target to approach
the prey and attack. This hunting pattern can be calculated using the following mathematical formula:

X3(t + 1) = (Xbest(t) − XM(t)) ∗ α − r + ((UB − LB) ∗ rand + LB) ∗ σ,
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where α = 0.1 and σ = 0.1 are the parameters of the tuning algorithm, respectively. UB and LB are
the upper and lower bounds in the problem, respectively.

4.5.4. Step 4: Narrowed exploitation

In the fourth hunting method, the Aquila randomly move to attack the prey. This hunting method
can be expressed by the following mathematical formula:

X4(t + 1) = QF ∗ Xbest(t) − (G1 ∗ X(t) ∗ r) −G2 ∗ Levy + r ∗G1,

QF(t) = t
2∗rand−1

(1−Max iter)2 ,

G1 = 2 ∗ r − 1,

G2 = 2 ∗ (1 −
t

Max iter
),

where QF is used to balance the search strategy. G1 defines the motion parameters of the Aquila when
hunting, which is a random value between -1 and 1. G2 represents the flight slope of the Aquila when
hunting.

Figure 8. Multi-objective AO.
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4.5.5. Multi-objective Aquila optimizer

To improve the local and global search capabilities of the AO in multi-objective optimization, we
have established an archive of Pareto optimal results [32]. When the archive is full, we remove the
worst individuals from the archive. The flow chart of the multi-objective AO is shown in Figure 8.

4.6. Hybrid genetic algorithm and variable neighborhood search algorithm

Here we will use the local search metaheuristic VNS to improve the NSGA-II. In the previous
subsections, we defined the two algorithms separately. The NSGA-II is a classic multi-objective op-
timization algorithm proposed by Deb et al. in 2002 [33], and its performance has been proved in
many fields. In order to enhance the local search ability of the NSGA-II, we use the VNS algorithm to
further improve the solution generated by the NSGA-II. In this approach, our problem is divided into
two stages; in the first stage, the GA is applied, followed by the VNS algorithm to optimize the cur-
rent solution. Although the VNS algorithm can efficiently search the entire space of problems, it can
deeply optimize large-scale optimization problems. However, its search process is time-consuming.
Therefore, in order to balance the search time and the quality of the solution, we do not use VNS in
every iteration, but use the VNS algorithm at intervals. The pseudocode of the hybrid GA and VNS
algorithm is shown in Algorithm 1, where N is the population size.

Algorithm 1 Hybrid GA and VNS
1: Parameters to initialize GA and VNS include MaxIter (maximum number of iterations), N (pop-

ulation size), Pc (crossover probability) and Pm (mutation probability);
2: Initialize the individual and compute the objective function of the individual;
3: t = 0;
4: while t ≤ MaxIter do
5: Run the NSGA-II;
6: if t mod D = 0 then
7: Run the VNS algorithm;;
8: end if
9: end while

10: Returns the non-dominant solutions.

4.7. Hybrid genetic algorithm and Aquila optimizer

In this section, we use the traditional algorithm, i.e., a GA, to improve the recently proposed op-
timization algorithm, the AO, as a new metaheuristic hybrid algorithm. In the front, we defined the
multi-objective optimization algorithms corresponding to these two algorithms respectively. Next, we
propose a hybrid algorithm consisting of a GA and the AO. Briefly, we divide the population size N
into two groups (N1 and N2), where one group is optimized with the GA and one group is optimized
with the AO algorithm. In our hybrid algorithm, we first use the AO algorithm to optimize some in-
dividuals, and then we randomly select two individuals from all of the AO individuals and use the
crossover and mutation algorithm to generate the remaining individuals. To describe our algorithm in
more detail, the definition of the pseudocode is shown in Algorithm 2.
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Algorithm 2 Hybrid GA and AO
1: Parameters to initialize GA and AO include MaxIter (maximum number of iterations), N (popu-

lation size), Pc (crossover probability) and Pm (mutation probability);
2: Initialize the individual X and compute the objective function of the individual;
3: t = 0;
4: Update the Archive with non-dominant solutions;
5: while t ≤ MaxIter do
6: Randomly divide the population X into two groups X1 and X2;
7: for each individual in X1 do
8: Update X1 by running AO algorithm;
9: end for

10: for each individual in X2 do
11: Randomly select two individuals from X;
12: Update X2 by crossover and mutation operators;
13: end for
14: Merge X1 and X2;
15: Generate a new population with population size N according to the crowding distance;
16: Update the Archive with non-dominant solutions;
17: t = t + 1;
18: end while
19: Returns the Archive

5. Experimental results and analysis

In this section, we describe the use of a series of data to test our proposed hybrid algorithm. In order
to better test the performance of the algorithm, we used the Taguchi method to adjust the parameters of
all of the algorithms involved in the test. At the same time, in order to evaluate the performance of the
algorithm, we introduce some evaluation indicators of the multi-objective optimization algorithm. We
compare the two proposed hybrid algorithms and the basic algorithms that make up these two hybrid
algorithms, including the AO, GA and VNS. Going a step further, we compare the algorithm with an
exact algorithm for multi-objective optimization in some instances. We used PyCharm 2019.3.2 soft-
ware to call CPLEX to solve this exact algorithm. The experimental environment of this study was as
follows: 64-bit Windows 10; 2.80 GHz Intel i7-1165 CPU; 16G memory; programming environment:
PyCharm 2019.3.2 x64.

5.1. Test dataset

In our simulation experiments, we used the basic data from the 2021 Huawei Cup Graduate Math-
ematical Modeling Question F. The dataset consists of Data A and Data B, where Data A is a small
scale dataset and Data B is a large scale dataset. We only used the large-scale dataset, Data B, in
our simulation experiments. In dataset Data B, there are a total of 13,954 flights and 465 pilots in a
one-month period. In the pilot’s information table, EmpNo., Captain qualification, FirstOfficer qual-
ification, Deadhead, Base, DutyCostPerHr and ParingCostPerHr are included. At the same time, we
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randomly assigned qualification information and language information to each flight and pilot. We also
randomly generated for each pilot his satisfaction with flight pairings. We grouped these flights into a
pairing of 1784 flights. We divided these flight pairings and pilots into 10 test instances, as shown in
Table 6. In Table 6, we call ZT1 to ZT5 small scale instances and ZT6 to ZT10 large scale instances.

Table 6. Test problems.

Instance No. pairings No. pilots Instance No. pairings No. pilots
ZT1 60 97 ZT6 594 386
ZT2 75 192 ZT7 446 348
ZT3 148 289 ZT8 669 465
ZT4 198 308 ZT9 595 371
ZT5 222 330 ZT10 357 232

5.2. Taguchi method

In order to make several optimization algorithms reach the best state, we will adjust the parameters
of the algorithm. In this subsection, we will list the experimental design for tuning the parameters of the
algorithm. We will use Taguchi’s method [34] for tuning the experimental parameters of the algorithm.
So far, this approach has played an important role in parameter tuning in several fields [35, 36].

Table 7. Impact factors and their levels.

Algorithm Factor Level
GA Maximum Iteration (Max iter) A = 100, B = 150, C = 200, D = 250, E = 300

Number of populations (N) A = 100, B = 125, C = 150, D = 175, E = 200
Crossover probability (Pc) A = 0.7, B = 0.75, C = 0.8, D = 0.85, E = 0.9
Mutation probability (Pm) A = 0.1, B = 0.15, C = 0.2, D = 0.25, E = 0.3

AO Maximum Iteration (Max iter) A = 100, B = 150, C = 200, D = 250, E = 300
Number of populations (N) A = 100, B = 125, C = 150, D = 175, E = 200

VNS Maximum Iteration (Max iter) A = 100, B = 150, C = 200, D = 250, E = 300
Number of populations (N) A = 100, B = 125, C = 150, D = 175, E = 200

GA-VNS Maximum Iteration (Max iter) A = 100, B = 150, C = 200, D = 250, E = 300
Number of populations (N) A = 100, B = 125, C = 150, D = 175, E = 200
Crossover probability (Pc) A = 0.7, B = 0.75, C = 0.8, D = 0.85, E = 0.9
Mutation probability (Pm) A = 0.1, B = 0.15, C = 0.2, D = 0.25, E = 0.3
Interval iterations (D) A = 10, B = 20, C = 30, D = 40, E = 50

AOGA Maximum Iteration (Max iter) A = 100, B = 150, C = 200, D = 250, E = 300
Number of populations (N) A = 100, B = 125, C = 150, D = 175, E = 200
Crossover probability (Pc) A = 0.7, B = 0.75, C = 0.8, D = 0.85, E = 0.9
Mutation probability (Pm) A = 0.1, B = 0.15, C = 0.2, D = 0.25, E = 0.3
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Table 8. Orthogonal array ZT1 for AO and VNS.

ZT1 Max iter N
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 2 1
7 2 2
8 2 3
9 2 4
10 2 5
11 3 1
12 3 2
13 3 3
14 3 4
15 3 5
16 4 1
17 4 2
18 4 3
19 4 4
20 4 5
21 5 1
22 5 2
23 5 3
24 5 4
25 5 5

With the Taguchi method, we used the signal-to-noise (S/N) ratio for experimental analysis. The
S/N ratio is the standard for evaluating the stability of the system, that is to say, the larger the ratio, the
smaller the impact of noise on the system. The S/N ratio measures quality characteristics that deviate
from expected values. It can be defined as follows:

S/N = −10log(MS D),

where MS D is the mean squared deviation of the mass characteristic.
In Table 7, we provide the impact factors for five algorithms, while providing five levels for each

factor. We should note that the Taguchi method uses a set of Taguchi orthogonal arrays to control
the running time of the algorithm, and that the Taguchi method reduces the total number of tests
compared to the full-experiment factorial method. The experimental combinations we designed for
the five algorithms are shown in Tables 8–10. In other words, each algorithm requires 25 sets of
experiments. To save algorithm time, we conducte all tests on a small-scale instance ZT1. In order to
get the best level of each algorithm, we used Minitab software to analyze the S/N ratio. The optimal
parameter values using the selected algorithm are reported in Table 11.
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5.3. Assessment metrics

In this subsection, we describe the use of metrics to evaluate the quality of the obtained non-
dominant solutions of the five metaheuristics. The four evaluation indicators are the percentage of
domination (POD), number of Pareto solutions (NPS), data envelopment analysis (DEA) and diversi-
fication metric (DM). Below we briefly describe these four evaluation indicators.

Table 9. Orthogonal array ZT1 for the AOGA and GA.

ZT1 Max iter N Pc Pm

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 1 5 5 5
6 2 1 2 3
7 2 2 3 4
8 2 3 4 5
9 2 4 5 1
10 2 5 1 2
11 3 1 3 5
12 3 2 4 1
13 3 3 5 2
14 3 4 1 3
15 3 5 2 4
16 4 1 4 2
17 4 2 5 3
18 4 3 1 4
19 4 4 2 5
20 4 5 3 1
21 5 1 5 4
22 5 2 1 5
23 5 3 2 1
24 5 4 3 2
25 5 5 4 3

POD: This metric can be used to assess the ability to dominate other algorithms [37]. POD metrics
are defined in terms of coverage metrics (CM). CM measures the coverage between two algorithms,
which can be calculated by using the following formula:

CM(X1, X2) =
| {x2 ∈ X2} | ∃x1 ∈ X1 : x1 ≤ x2 |

| X2 |
. (5.1)

When the number of algorithms is more than two, the CM indicator is no longer applicable. At this

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1460–1487.



1479

point, all algorithms should be compared. The POD indicator can be defined by the following formula:

POD(X1, X2, ..., Xn) =
| {xki ∈ Xi} | ∃xk j ∈ X1, i ∈ j : xki ≤ xk j |

| X j |
. (5.2)

Table 10. Orthogonal array ZT1 for GA-VNS.

ZT1 Max iter N Pc Pm D
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 1 5 5 5 5
6 2 1 2 3 4
7 2 2 3 4 5
8 2 3 4 5 1
9 2 4 5 1 2
10 2 5 1 2 3
11 3 1 3 5 2
12 3 2 4 1 3
13 3 3 5 2 4
14 3 4 1 3 5
15 3 5 2 4 1
16 4 1 4 2 5
17 4 2 5 3 1
18 4 3 1 4 2
19 4 4 2 5 3
20 4 5 3 1 4
21 5 1 5 4 3
22 5 2 1 5 4
23 5 3 2 1 5
24 5 4 3 2 1
25 5 5 4 3 2

Table 11. Optimal parameter values for the algorithm.

Algorithm Parameters
GA max iter = 250, N = 150 , Pc = 0.75, Pm = 0.15
AO max iter = 200, N = 125
VNS max iter = 150, N = 125
GA-VNS max iter = 250, N = 125, Pc = 0.8, Pm = 0.1, D = 40
AOGA max iter = 200, N = 125, Pc = 0.7, Pm = 0.25

NPS: NPS computes all non-dominant solutions of the algorithm [38].
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DEA: The DEA indicator can be used to determine the efficiency of the solution. For a detailed
description of DEA, please refer to Reference [39].

DM: The DM measures the spread of non-dominant solutions. For the bi-objective model proposed
in this paper, we can use the following formula to calculate:

DM =

√
( f max

1 − f min
1 )2 + ( f max

2 − f min
2 )2.

Regarding the several assessment metrics mentioned above, the more the better.

5.4. Comparison with other metaheuristic algorithms

Here, we will compare the two hybrid algorithms and the algorithms that constitute them. We use
the four evaluation indicators and computational time given in the previous section to compare the
algorithms.

Table 12. Performance measured by the method C(E, F) on instance ZT1.

Instance ZT1 ZT2 ZT3 ZT4 ZT5 ZT6 ZT7 ZT8 ZT9 ZT10
POD GA 0.18 0.18 0.17 0.19 0.24 0.22 0.19 0.21 0.22 0.19

AO 0.06 0.11 0.08 0.05 0.12 0.12 0.06 0.07 0.05 0.06
VNS 0.11 0.11 0.09 0.14 0.15 0.14 0.13 0.10 0.16 0.15
GA-VNS 0.18 0.22 0.25 0.23 0.31 0.27 0.22 0.26 0.27 0.22
AOGA 0.25 0.21 0.23 0.18 0.22 0.19 0.26 0.24 0.22 0.21

NPS GA 9 12 13 13 17 19 6 26 33 21
AO 125 125 125 125 55 125 86 125 125 125
VNS 7 5 5 9 6 11 13 11 10 9
GA-VNS 7 10 11 13 15 11 18 19 13 6
AOGA 16 17 18 17 14 22 14 20 19 19

DEA GA 0.16 0.11 0.17 0.08 0.21 0.18 0.15 0.11 0.15 0.18
AO 0.15 0.14 0.16 0.21 0.16 0.18 0.19 0.18 0.15 0.17
VNS 0.09 0.13 0.11 0.15 0.07 0.13 0.14 0.21 0.16 0.12
GA-VNS 0.23 0.22 0.23 0.22 0.16 0.24 0.22 0.24 0.22 0.27
AOGA 0.25 0.24 0.22 0.27 0.29 0.26 0.25 0.24 0.27 0.31

DM GA 14,608 31,348 36,335 47,104 78,965 64,783 33,116 83,528 66,627 77,310
AO 13,560 5103 12,816 6170 9480 34,586 486 5070 29,046 39,170
VNS 14,312 11,672 31,254 27,121 15,216 51,621 32,267 34,215 42,182 51,261
GA-VNS 11,316 17,366 53,710 46,900 33,040 50,840 66,876 91,050 73,033 83,320
AOGA 26,640 14,693 56,913 49,376 33,716 75,370 46,010 95,006 49,626 59,920

The comparison results of the algorithm on the four evaluation indicators are shown in Table 12.
The search process of metaheuristic algorithm is not deterministic, so the value generated in each run
may be different. Therefore, we consider the average value of each algorithm running 10 times on the
same instance to be reliable. Table 12 describes the results of several metaheuristic algorithms on four
evaluation indicators. The best value in each instance is shown in bold. It can be seen in Table 12
that the AO algorithm performed well on the NPS index, which means that the non-dominant solution
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generated by the AO algorithm is more than other algorithms. But this does not mean that the AO
algorithm is superior to other algorithms as a whole, because it can be seen from the POD index that
the non-dominant solution generated by the AO algorithm will be dominated by the non-dominant
solution generated by other algorithms. Obviously, on the POD index, the solution generated by the
GA-VNS algorithm has a strong ability to dominate other algorithms on most instances. At the same
time, in terms of the DEA and DM indicators, the two hybrid algorithms we propose are better than
the three basic algorithms that make up the hybrid algorithm.

(a) POD (b) NPS

(c) DEA (d) DM

Figure 9. Comparison of algorithms.

In order to more accurately evaluate the multi-objective indicators on 10 instances reported by the
algorithm in Table 12, we standardized the multi-objective indicators on 10 instances by using relative
percentage deviation (RPD) [40]. The RPD can be calculated by the following formula:

RPD =
| ALGsol − BES Tsol |

BES Tsol
(5.3)

where BES Tsol is the best solution of the algorithm in each evaluation index and ALGsol is the solution
of the algorithm in each evaluation index. Obviously, the smaller the RPD value, the better the perfor-
mance of the algorithm. We first standardized all of the data in Table 12 based on the RPD, and then
performed a statistical test on the RPD value based on the 95% confidence level. The statistical results
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for the four evaluation indicators on five metaheuristic algorithms are shown in Figure 9. As shown
in Figure 9(a), the AOGA was the best algorithm on the indicator POD, while the AO was the worst
algorithm. Based on the NPS index in Figure 9(b), the best algorithm is the AO, and the AOGA is
the second best metaheuristic algorithm. However, the GA-VNS and AOGA were the best and second
best metaheuristics, respectively, for the index DEA in Figure 9(c). GA-VNS is the best metaheuristic
algorithm for the index DM in Figure 9(d).

Therefore, we can draw a conclusion from Figure 9 that GA-VNS is the algorithm with the best
performance on both indicators, while AOGA is the algorithm with a top 2 ranking on all three in-
dicators. In Figure 10, we show a comparison of the running times of several algorithms. It can be
seen from Figure 10 that the computing time difference between GA, GA-VNS and AOGA algorithms
on small-scale instances was small, but the computing time of the VNS and AO algorithms was long.
However, in all instances, the VNS algorithm took the most computing time, while the GA consumed
the least.

5.5. Comparison with exact methods

In this section, in order to further evaluate the reliability of the Pareto solution generated by the
AOGA and GA, we also compared it with the epsilon constraint (EC) method proposed by Haimes et
al. [41] Here, we regard f1 as the main goal and f2 as the constraint. Obviously, from the previous
description of f2, we can know that the upper bound of f2 is 5 and the lower bound is 0. Therefore, we
can convert the mathematical model as follows:

Min f1 (5.4)

subject to:

Eqs. (3.2) to (3.7) (5.5)
f2 ≥ ε (5.6)
0 ≤ ε ≤ 5 (5.7)

In order to compare the effectiveness of the exact algorithm and the metaheuristics algorithm we
proposed, we first calculated the NPS. We will use the aforementioned CM index to evaluate the
epsilon constraint method and metaheuristic algorithm. Like [40], we compared each solution of the
metaheuristic algorithm with the solution of the EC and defined the modified NPS by EC (MNPSC)
[40]. Here, we only ran EC method on small-scale instances ZT1 and ZT2. Table 13 reports our
analysis results. We can clearly see that the AOGA had a higher proportion of effective non-dominant
ratios than the GA-VNS algorithm. The effective non-dominant ratios of both algorithms exceeded
0.6, which shows that our algorithm has a good effect.
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Figure 10. Comparison of calculation time of algorithms.

Table 13. Validation of the proposed algorithms.

Instance
GA-VNS AOGA

NPS MNPSEC MNPSEC/NPS NPS MNPSEC MNPSEC/NPS
ZT1 7 5 0.71 16 11 0.69
ZT2 10 6 0.60 17 13 0.77
Average 8.5 0.655 16.5 12 13 0.73

6. Conclusions

Given the importance of crew resources in airlines, we studied the problem of crew scheduling. At
the same time, due to the existence of a large number of plateau airports and special airports in China,
pilots with these qualifications have become very scarce. In order to be able to make full use of these re-
sources and solve the CRP, considering fairness and satisfaction, a multi-objective framework has been
defined for the CRP. This issue is complicated by the objectives of the CRP and the various constraints
of aviation laws and regulations. This creates the need for efficient heuristics; therefore, we introduce
two metaheuristics including the AOGA and GA-VNS in this paper. Hybrid metaheuristics were com-
pared with other algorithms by using different criteria including CPU time and multi-objective criteria,
and the analysis results report the effectiveness of the algorithm.

In conclusion, although this research contributes to the aviation industry and algorithm research,
there are still some limitations. First, this study did not consider parameter uncertainty. Therefore
it is a new direction to develop a stochastic optimization model in future work. In addition, another
effective suggestion is to consider surrogate-assisted in the hybrid algorithm. Finally, we can apply our
hybrid metaheuristic algorithm to other optimization problems, including cloud computing [42] and
supply chain problems [40].
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