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Abstract: Blood cell image segmentation is an important part of the field of computer-aided 
diagnosis. However, due to the low contrast, large differences in cell morphology and the scarcity of 
labeled images, the segmentation performance of cells cannot meet the requirements of an actual 
diagnosis. To address the above limitations, we present a deep learning-based approach to study cell 
segmentation on pathological images. Specifically,  the algorithm selects UNet++ as the backbone 
network to extract multi-scale features. Then, the skip connection is redesigned to improve the 
degradation problem and reduce the computational complexity. In addition, the atrous spatial 
pyramid pooling (ASSP) is introduced to obtain cell image information features from each layer 
through different receptive domains. Finally, the multi-sided output fusion (MSOF) strategy is 
utilized to fuse the features of different semantic levels, so as to improve the accuracy of target 
segmentation. Experimental results on blood cell images for segmentation and classification (BCISC) 
dataset show that the proposed method has significant improvement in Matthew’s correlation 
coefficient (Mcc), Dice and Jaccard values, which are better than the classical semantic segmentation 
network. 
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1. Introduction  

With the combination of clinical medicine and information science, medical image processing 
technology has gradually developed and been applied in various medical laboratories, which can 
reduce the workload of doctors and improve detection accuracy. In traditional medical examination, 
professional doctors mainly rely on the eyes to observe the diseased part or tissue of the patient, and 
judge the disease condition according to their own experience. This method is easily affected by the 
professional knowledge of doctors, and different doctors may draw different inspection conclusions 
for the same patient, so it lacks objectivity. When examining specimens containing cells, such as 
pathological sections, blood smears, etc., it will be a time-consuming task to examine or count them 
due to a large number of samples. It can provide an objective and reliable reference for doctors to 
judge diseases by automatically segmenting and discriminating the lesion location images through 
medical imaging technology. Therefore, it is of great practical significance and social value to carry 
out automatic blood smear cell image segmentation based on deep learning theory and has broad 
application prospects in the medical field. 

At present, the convolutional neural network (CNN) [1–5] has been widely used in the field of 
medical image segmentation. The method uses a large amount of medical image data to train the 
network so that the desired features in the images can be extracted. The most popular deep learning 
network for nuclear segmentation is the U-Net model [6], which combines shallow, low-level, 
fine-grained features from the encoder, and deep, semantic, coarse-grained features from the decoder 
via long skip connections to effectively improve the accuracy of nuclear detection. With the 
deepening of the research, various extended frameworks have emerged [7–12]. Considering the 
complex background of white blood cell images and the appearance changes of tissues, Lu et al. [13] 
proposed a deep learning segmentation framework based on UNet++ [14] and ResNet [15]. Firstly, a 
contextual feature sensing module with residual function is designed to extract multi-scale 
information. Then, dense convolution blocks are introduced to obtain more features on multi-scale 
channels. Using U-Net as the backbone architecture, Chan et al. [16] proposed a deep architecture for 
image segmentation with better performance, showing strong competitiveness. Jumutc et al. [17] 
proposed an enhanced version of the U-Net approach, which introduces the concept of a single 
receptive field path to obtain better coarse, fine-grained information. To overcome the interference of 
light conditions and other external factors for the cell nucleus, Thi Le et al. [18] adopted fuzzy 
pooling operation to maintain the salient features of the image, thus overcoming the problem of noise 
generation. By choosing image enhancement algorithms such as Fourier transform and mean-shift 
clustering, Makem et al. [19] proposed a deep-based network framework for white blood cells, and 
the experimental results proved the effectiveness and robustness of this method. 

Although various algorithms have been proposed, blood cell segmentation in pathological 
images still faces great challenges for several reasons: 1) The complex structure, diverse shape, 
irregular boundary and other factors cause high variability of blood cell image. 2) Accurate 
segmentation of blood cells from microscope images requires expert knowledge and can be 
labor-intensive, resulting in limited cell image databases for specific diseases. 3) The sample data of 
abnormal cells are relatively small, resulting in the imbalance of distribution among classes, which 
affects the segmentation effect of the deep learning model on rare data. Figure 1 shows different 
types of cell images from the BCISC dataset. It can be seen that the shapes, sizes and boundaries of 
cells in different images are different, which may lead to difficulties in nucleus segmentation. 
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Therefore, the existing methods can only deal with a specific image, and there is no general method 
that can automatically and effectively segment the cell images of all modes. 

 

Figure 1. Different types of original blood cell images. The first row: original images. 
The second row: their respective masks. 

Inspired by the UNet++ model, we apply the end-to-end deep learning method to blood cell 
image segmentation.  By adding the ASSP module to UNet++ framework, the cell segmentation 
accuracy is improved without significantly increasing the number of parameters. Then the model 
structure of the jump connection is redesigned to ensure a stronger learning ability and feature 
extraction effect. On this basis, MSOF strategy is used to fuse the feature information from different 
semantic levels to further improve the accuracy of detection and recognition. Finally, the Dice loss 
function is utilized for training the network. 

The remainder of this paper is divided as: Section 2 reviews related work and Section 3 gives 
the proposed method. The results and discussion of our algorithm on the BCISC dataset are 
illustrated in Section 4. Finally, the conclusion is discussed in Section 5. 

2. Related works 

2.1. U-Net structure 

 

Figure 2. The network structure of U-Net. 
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U-Net [6] network is mainly designed to solve the problems of a small amount of data, unclear 
boundaries and large gray ranges in medical image analysis. Its structure is symmetric and similar to 
a U-shape, as shown in Figure 2. In the left part, 5 convolutional layers and 4 pooled down-sampling 
layers are used to decompose the image into features of different levels, which can capture the pixel 
information of the context. The right side is basically symmetric with the left side, and 5 convolution 
layers and 4 up-sampling layers are used to restore the input size of the image, which has the 
function of extracting the shallow, low-level and fine-grained features of the image. Another 
characteristic of U-Net is a skip connection, which completes the channel connection between the 
deep, semantic and coarse-grained feature maps from the decoder sub-network and the shallow, 
low-level and fine-grained feature maps from the encoder sub-network, so as to reduce the 
information loss in the process of feature extraction and achieve the purpose of accurate positioning. 

The simple structure of U-Net is just suitable for the task of medical image segmentation, 
and it has an excellent performance in cell image segmentation. However, due to the fixed 
structure, it has two limitations: 1) The deeper the network structure, the larger the computational 
load, but the results could not be necessarily better. 2) Different data sets determine the different 
optimal depths of the network. 

2.2. UNet++ structure 

 

Figure 3. The network structure of UNet++. 

Zhou et al. proposed a new neural network structure for semantic and instance segmentation, 
named UNet++ [14]. On the basis of maintaining the U-Net network structure, UNet++ improves the 
feature connection method between the encoder and the decoder, and its structure is shown in Figure 3. 
Take the node 𝑋 ,  as an example, it receives all previous convolution units of the same level (𝑋 ,  
and 𝑋 , ) and the corresponding up-sampled output of 𝑋 , , and then gets it through a convolution 
and nonlinear correction unit. In this way, the semantic level of the encoder feature map is closer to the 
corresponding decoder part, which is more suitable for optimizer optimization. Assuming 𝑥 ,  is the 
output of node 𝑋 , , the calculation of 𝑥 ,  can be computed: 
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𝑥 , 𝐻 𝑥 , , 𝑗 0

𝐻 𝑥 , , 𝑢 𝑥 , , 𝑗 0
       (1) 

where 𝑖 represents the ith down-sampling layer in the encoder; 𝑗 represents the jth convolution 
layer in skip connection, 𝐻 ⋅  is the convolution operation with activation function, 𝑢 ⋅  and ⋅  
indicate the up-sample and concatenation operations, respectively.  

The most obvious difference between UNet++ and U-Net is the new skip connection, which 
integrates different levels of semantic features of network output in network decoding. This method 
is very flexible, which can well remove unnecessary features and speed up the training. At the same 
time, UNet++ also introduces more parameters, and the memory occupied is greatly increased, which 
slows down the training speed and the convergence speed of the loss function. 

3. Proposed methods 

The improvement of UNet++ network mainly focuses on two parts: the feature extraction 
module and the feature output layer, as shown in Figure 4. Firstly, in order to better match blood cell 
features at different levels, the ASSP module is introduced to carry out the convolution of different 
cavities during feature extraction and connect feature map channels at different levels. Secondly, to 
make full use of the features of each level, the skip connection is redesigned and the multi-task 
learning module is introduced to optimize the segmentation results. The detailed technical and 
implementation of our modified Unet++ are explained below. 

 

Figure 4. The overview of our proposed UNet++. 

3.1. Redesigned skip connection 

UNet++ and its variant [20–25] have a great advantage in obtaining multi-scale feature maps 
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because of their nested dense jump paths. However, since each node in the encoder and decoder is 
connected through the intermediate connection, this kind of dense connection leads to many model 
parameters and high computational complexity.  Therefore, we present an improved UNet++ 
architecture, which only preserves the skip connections between the decoder and each node, the 
details are shown in Figure 4. The redesigned skip connection can ensure that the parameters are 
reduced without losing any information, and achieve better segmentation effect. The modified 𝑥 ,

 
can be represented as: 

𝑥 ,

𝐻 𝑥 , , 𝑗 0
𝐻 𝑥 , , 𝑢 𝑥 , , 𝑗 4 𝑖

𝐻 𝑥 , , 𝑢 𝑥 , , 𝑗 4 𝑖
       (2) 

3.2. ASSP module 

In deep learning, convolution is usually used for feature extraction. However, when the number 
of convolutions is too large, it is easy to lead to too many parameters and difficult weight 
optimization. By designing multiple parallel convolution kernels with different cavity rates, the size 
of the receptive field can be enlarged, and more spatial information can be retained while the number 
of parameters is unchanged. Figure 5 is the schematic diagram of dilated convolution, where (a) is a 
standard 3 × 3 convolution with the dilated factor of 1, and its receptive field size is 9; (b) is a 3 × 3 
convolution with the dilated factor of 2, and its receptive field size is 49; (c) is a 3 × 3 convolution 
with the dilated factor of 3, and its receptive field size is 225. It can be seen that the applicability of 
the network to multi-scale objects can be increased by setting the inflation factor to obtain filters 
with different receptive fields. 

 

Figure 5. Dilated convolutions with different dilated rates. 

The atrous spatial pyramid pooling module uses dilated convolution with different cavity rates for 
sampling, as shown in Figure 6. The ASPP module is mainly composed of eight convolution layers and 
one global average pooling (GAP) [26,27] layer in parallel. Specifically, a 3 × 3 convolution operation is 
performed on feature images 𝑋 , , 𝑋 , , 𝑋 ,  and 𝑋 ,  with stride of 16, 8, 4 and 2, respectively, 
while 𝑋 ,  is subjected to one 1 × 1 convolution, pooling pyramid (three 3 × 3 dilated convolution) and 
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global average pooling layer (1 × 1 convolution). After that, the corresponding results are concatenated. 
Therefore, the network not only realizes the acquisition of feature maps of different scales and the 
integration of cross-channel information, but also expands the regional and contextual features of the 
received information. 

 

Figure 6. Backbone network structure with atrous spatial pyramid pooling module. 

3.3. Multi-sided output fusion 

For the UNet ++ backbone network structure, its depth increases from left to right, and the 
feature map corresponding to each output result becomes more and more refined from left to right. 
At the rightmost end of the network, the segmentation effect of the cell region is the best because of 
the increase of convolutional layers. When making a change prediction, the deepest network output 
is generally selected as the final result. However, there is useful information in relatively shallow 
levels of output, even if there are error areas in the deepest output predictions. Therefore, our model 
combines the shallow features with the deepest output features, which is beneficial to improve the 
prediction and segmentation accuracy of the overall model. As shown in Figure 4, the feature maps 
generated by the five convolution units 𝑋 , , 𝑋 , ,  𝑋 , , 𝑋 , , 𝑋 ,  are calculated by a 1 × 1 
convolution and sigmoid function to get the final segmentation result. 

3.4. Loss function 

The Dice loss [28–30] is a region-based function, which can effectively solve the problem of 
imbalance between positive and negative samples because it only calculates a part of the region 
intersecting with the label without considering the background region. The loss function based on 
Dice coefficient can be expressed as: 
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𝐿 1
∑

∑ ∑
         (3) 

where 𝐿  represents Dice loss, 𝑁 denotes the total pixel, 𝑦  represents the probability that the 
network predicts that voxel 𝑖

 
belongs to the foreground target, and 𝑦  is the corresponding value of 

voxel 𝑖. 

4. Experiments and results 

In order to verify the high performance of the proposed method and its superiority for blood cell 
image segmentation, BCISC is used as the data set to test and discuss the experimental results. Next, 
we employ Mcc, Dice and Jaccard as evaluation indicators to compare with the current classical 
learning methods. 

4.1. Experimental settings 

4.1.1. Dataset description 

The BCISC dataset [31] was provided by the Third People’s Hospital of Fujian Province, which 
contains 400 training sets and 100 test sets. These images were from neutrophils, eosinophils, 
basophils, monocytes, and lymphocytes, to ensure the diversity of nuclear morphology. All images 
were taken by a physician for routine examination of the subject, and the ground truth was marked 
by a junior annotator and verified by an experienced radiologist. Taking into account the limitations 
of computer memory usage, we resized all images to 256 × 256 pixels. 

4.1.2. Evaluation metrics 

Considering the specificity of the nucleus segmentation task, the Mcc [32,33], Dice 
coefficient [34,35] and Jaccard index [36,37] are introduced as evaluation index. They are 
defined as: 

𝑀𝑐𝑐         (4) 

𝐷𝑖𝑐𝑒          (5) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑          (6) 

where TP, TN, FP, and FN denote numbers of true positives, true negatives, false positives, and false 
negatives on the pixels set, respectively. 

4.1.3. Implementation details 

All algorithms use the open-source deep learning framework Keras to write the network 
structure and realize the training of the network. The hardware and environment of the 
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experiment are Windows10 workstation configured with an Intel Xeon Gold 6248R CPU@3.00 
GHz processor, 128 GB of 3200MHz DDR4 ECC RDIMM, NVIDIA Quadro RTX A6000 GPU 
memory of 48 GB. During model training, the original images and labels were sent to the 
network, and the Adam optimizer was used to optimize the network. The initial learning rate was 
set to 0.001, the number of training iterations was set to 400, and the batch size was set to 16. 

4.2. Quantitative and qualitative results 

 

Figure 7. Visualization of loss and accuracy during training. 

Figure 7 shows the convergence curve of the loss function and accuracy. It can be seen from 
Figure 7(a) that the number of trainings in this experiment is 400. During the first 20 training 
sessions, the gradient descends faster and the value of the loss function decreases faster. After that, 
the decline speed of the loss function becomes slower than before, which can avoid missing the 
optimal value due to the large gradient descent pace. When the loop reaches a certain level, the 
model optimization is no longer obvious. Figure 7(b) shows the changing trend of the accuracy index 
during the training process. As can be seen from the graph, the value of accuracy increases rapidly in 
the early stage of training, and then gradually becomes stable, with only a small range of fluctuation. 

Table 1. Results of different algorithms on blood cell images. 

Method Mcc Dice Jaccard 

DenseUnet [38] 0.9164 0.9189 0.8525 

FCN [39] 0.8016 0.7987 0.6842 

Segnet [40] 0.9221 0.9267 0.8656 

U-Net+++ [41] 0.9278 0.9333 0.8757 

UNet++ [14] 0.9370 0.9417 0.8902 

U-Net [6] 0.9088 0.9140 0.8441 

Our model 0.9418 0.9465 0.8989 

To verify the performance superiority of our proposed approach on blood cell segmentation 
task, it is compared with DenseUnet [38], FCN [39], Segnet [40], U-Net+++ [41], UNet++ [14] 
and U-Net [6] methods. The main evaluation indicators included Mcc, Dice and Jaccard, and the 
results are listed in Table 1. It can be seen from the table that after multiple pooling, the feature 
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map size of the FCN method is very small. Although it contains more semantic information, there 
are serious false detections and missed detections. Although it contains a lot of semantic 
information, there is still serious false detection and missed detection phenomena, so all indicators 
are the lowest. The U-Net and Segnet models allow the decoder to learn the relevant feature 
information lost in the encoder pooling at each stage through the skip-connected architecture, so the 
performance of each evaluation index is better than FCN. The DenseUnet structure greatly expands 
the actual depth of the network and improves feature utilization. Therefore, it has great advantages 
over ordinary convolutional networks. UNet++ and UNet+++ have nested dense jump paths, making the 
semantic level of the encoder feature graph closer to the level of the corresponding encoder part, so it has 
been significantly improved on the basis of U⁃Net, and the phenomenon of false detection and missed 
detection is reduced. After the introduction of the ASSP module and multi-sided output fusion strategy, 
the Dice loss function is adopted to reduce the impact of sample imbalance. When compared with the 
U-Net, the Mcc, Dice and Jaccard values of our model are increased to 3.30%, 3.25% and 5.48%, 
respectively. The comprehensive evaluation index shows that our network has great advantages in cell 
localization and extraction. 

 

Figure 8. Result of blood cell images by different algorithms. From left to right: original 
images,  their labels, DenseUnet, FCN, Segnet, U-Net+++, UNet++, U-Net and our 
method. 
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To further visually compare the differences in blood cell segmentation results by different 
network models, some results with obvious contrast were selected from the BCISC dataset for 
intuitive qualitative analysis and then compared with the segmentation results manually annotated by 
experts, as shown in Figure 8. According to the visualization results, the segmentation effect of FCN, 
Segnet and U-Net in the complex background is not very ideal, and the nucleus cannot be completely 
segmented. Through the multi-scale feature extraction techniques, U-Net+++ and UNet++ can 
improve the integrity of complex cell segmentation, but the edge details are obviously insufficient. 
However, the convolution kernel of the proposed model can extract information at different scales 
and suppress useless feature information, so it can better demonstrate the superiority of its 
segmentation performance. 

5. Conclusions 

In this study, based on the UNet++ architecture, we describe a new end-to-end method for blood 
cell segmentation on pathological images, which achieves good results in both localization and 
boundary segmentation. This is due to the introduction of the ASSP module, which can obtain blood 
cell image information features at each layer from different receiving fields. On the other hand, the 
multi-sided output fusion strategy can fuse feature information of different semantic levels to further 
improve the accuracy of detection and recognition. The quantitative and qualitative results on cell 
images indicate that, compared with other advanced deep learning-based methods, our model has 
great advantages in Mcc, Dice and Jaccard values. In the future, we will apply our technology to 
other cell images and medical images, and try to build an automated diagnostic system that can more 
accurately distinguish or predict benign and malignant lesions. 
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