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Abstract: The management of HIV/AIDS has evolved ever since advent of the disease in the past
three decades. Many countries have had to revise their policies as new information on the virus,
and its transmission dynamics emerged. In this paper, we track the changes in Botswana’s HIV/AIDS
response and treatment policies using a piece-wise system of differential equations. The policy changes
are easily tracked in three epochs. Models for each era are formulated from a “grand model” that can
be linked to all the epochs. The grand model’s steady states are determined and analysed in terms
of the model reproduction number, R0. The model exhibits a backward bifurcation, where a stable
disease-free equilibrium coexists with a stable endemic equilibrium when R0 < 1. The stability of the
models for the other epochs can be derived from that of the grand model by setting some parameters
to zero. The models are fitted to HIV/AIDS prevalence data from Botswana for the past three decades.
The changes in the populations in each compartment are tracked as the response to the disease and
treatment policy changed over time. Finally, projections are made to determine the possible trajectory
of HIV/AIDS in Botswana. The implications of the policy changes are easily seen, and a discussion
on how these changes impacted the epidemic are articulated. The results presented have crucial impact
on how policy changes affected and continue to influence the trajectory of the HIV/AIDS epidemic in
Botswana.
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1. Introduction

The first official case of HIV in Botswana was identified in 1985. The nation’s response to the
epidemic dates from the late 1980s with the Short Term Plan (STP) for the years 1987-1989, followed

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023052


1123

by the Medium Term Plan I (MTP I) for the years 1991–1996, which outlined a medical and health
system response to HIV/AIDS [1]. The Medium Term Plan II (MTP II) for 1997–2002 developed the
institutional structures necessary to organise and manage the national response. The national policy
was revised in 1998 following new scientific, epidemiological and medical knowledge about the dis-
tribution and transmission of HIV and other sexually transmitted diseases (STDs) and proven effective
interventions in prevention and care. The evolution of the national response in Botswana’s continued
with developing the National Strategic Framework (NSF) for HIV/AIDS 2003–2009. The review of
MTP II informed the NSF. The second national strategic framework (NSF II) established in 2010 out-
lined the national priorities for the national response from 2010–2016. NSF II focused on a costed
multi-sectoral and rolling operational plan that guided the implementation of the national response.
Due to increased global research on HIV/AIDS dynamics, new knowledge and information on the
field rapidly kept changing. Therefore, a review of the HIV/AIDS policy was needed as new findings
emerged. As a result, the Botswana national policy on HIV and AIDS was revised in 2012.

Botswana is now on its third national strategic framework (NSF III) for 2019–2023. The NSF III
targets ending AIDS by 2030. This strategic framework has been informed by relevant global, regional
and national policies and strategic frameworks. NSF III goals include; prioritising an HIV combination
prevention strategy, targeting and exceeding the global target (90-90-90) of HIV testing and treatment,
reduce HIV related stigma, discrimination and gender vulnerability while promoting and protecting
the human rights of people living with HIV.

According to the World Health Organization (WHO), health policy refers to decisions, plans, and
actions undertaken to achieve specific health care goals within a society. An explicit health policy can
achieve several objectives; it defines a vision for the future, outlines priorities and the expected roles
of different population groups, and builds consensus and informs people [2]. Health policy categories
may be global, national, local, public and workplace-based. National health policies, strategies and
plans play an essential role in defining a country’s vision, policy directions, and strategies for ensuring
her population’s health. For example, an HIV/AIDS policy is a health policy that provides the basic
framework for reducing the spread of HIV/AIDS and managing its impacts. Countries have adopted
targets for achieving universal access to HIV prevention, treatment, care and support by producing
national HIV/AIDS policies.

Mathematical models have a vital role in assisting policymakers in developing HIV/AIDS pre-
vention and treatment strategies. They help in bridging the gap between theory and policy. Some
of the several ways models can assist HIV/AIDS policymakers are; comparing the impact and cost-
effectiveness of different interventions, generalising the results of randomised controlled trials to dif-
ferent settings, identifying threats to programme success and opportunities for maximising interven-
tion efficiency, evaluating and motoring the extent to which observed trends in HIV prevalence are
attributable to HIV/AIDS programme success [3]. Mathematical models have also been used to obtain
insights into other HIV/AIDS policy research. They include; evaluation of treatment as a prevention
strategy [4,5], the scale-up of microbicides [6], the impact and cost-effectiveness of HIV Pre-exposure
Prophylaxis (PrEP) targeting key populations [7, 8], the efficacy of the Post-Exposure Prophylaxis
(PEP) [9], projecting HIV diagnoses among children and adolescents [10, 11], HIV vaccines in fu-
ture with the presence of current interventions [12], the impact of voluntary medical male circum-
cision (VMMC) [13] and other recent recent developments in modelling techniques for HIV/AIDS
models [14–16]. Many mathematical models of HIV/AIDS, with different structures, complexity and
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parameter choices have contributed to HIV/AIDS research for many years. However, none of the mod-
els including the recent work, has tracked how the change in HIV/AIDS policy over the years have
impacted or influenced the trajectory of the epidemic. We thus present a unique model that traces the
impact of policy changes over time.

In this study, we track the changes in policy for HIV/AIDS testing and treatment in Botswana. In
the first phase of the national HIV/AIDS policy, voluntary counselling and testing are encouraged.
However, the policy is silent on treatment but rather focusing on behavioural change. Botswana was
the first African country to establish a national HIV/AIDS treatment programme, called “Masa”, the
Setswana word for “a new dawn”, in 2002, leading to the second phase of national HIV/AIDS poli-
cies. Since the start of the Masa programme, the national guidelines changed to take into account the
improved understanding of the biology of HIV, reduce adverse side effects associated with treatment,
and accommodate the availability of improved drugs [17]. In 2008, the eligibility criteria threshold for
Antiretroviral therapy (ART) changed from a CD4 cell count of 200 cells per cubic millimetre to 250
cells per cubic millimetre. In 2013, it changed again to 350 cells per cubic millimetre. In June 2016,
Botswana launched the “Treat All” strategy, promoting universal health coverage and ensuring that all
individuals who test positive for HIV get treatment immediately regardless of their viral load or CD4
count. Mathematical models have been developed and fitted to HIV/AIDS data in different countries,
see for instance [18,19]. All these articles fit one model to data spanning over a long period. However,
none of the models account for the change in dynamics due to the policy changes. We aim to develop
deterministic models to integrate HIV/AIDS prevalence data amongst adults, 15 years and above, for
Botswana and the change in policies. The objective of this study is to examine the impacts of change
in HIV treatment policy over time.

This paper is arranged as follows: The models are developed in the next section and analysed in
Section 3. Numerical simulations are presented in Section 4 and the paper is concluded in Section 5.

2. Model development

The HIV/AIDS treatment policy for Botswana can thus be divided into three epochs with respect
to the treatment policy. It is important to note that additional epochs can be considered depending on
the nature of the response being considered. The first epoch captures the dynamics before introducing
the universal ART programme (1990–2001). The second epoch captures the period from which the
universal ART programme was rolled out (2002–2015) with criterion eligibility of CD4 count to enrol.
Finally, the third epoch captures the era (2017–to date) where eligibility to enrol on ART is a positive
test. Comparing the three models, it is notable that the first model changed by introducing treatment
in 2002. As a result, two compartments were added in the second epoch to cater for the treatment
policy. It is important to note that this modelling framework is similar to that used in [20, 21], where
individuals were classified according to their immunological staging when they test positive. In 2016,
when the treat all policy was launched, the model changed by dropping out of the waiting compartment.
We note that the second epoch model is the biggest, and the other two models can be deduced from
it by setting some parameters to zero. Given that the first and third epochs can be obtained from the
second epoch from a modelling perspective, we begin by looking at the model for the second epoch,
which we dub here the “grand model”.
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2.1. The grand model

We propose a model that captures the dynamics of HIV/AIDS with an ART programme that con-
siders CD4 cell count as an eligibility criterion for treatment. The population of sexually active adults,
N(t), is divided into five classes: S (t), for the adult population at risk of being infected by HIV and I(t),
for individuals who have contracted HIV and are unaware of their status. Due to unavailable data on
the CD4 cell count of the infected individuals, screened individuals are divided into two groups, IW(t)
and IT (t), where IW(t) represents those who tested positive for HIV but with a CD4 cell count above
the threshold, therefore not legible to enrol in ART and IT (t) represents those individuals who tested
positive for HIV and are legible to enrol into ART. A(t), represent HIV infected individuals who will
progress to the AIDS stage. Thus,

N(t) = S (t) + I(t) + IW(t) + IT (t) + A(t).

We assume that susceptible individuals are recruited, as they become sexually active, at a rate Λ.
Susceptible individuals are infected at a rate λ, whose full description is given with system (2.1).
Infected individuals in class I can either develop AIDS or get into treatment upon testing if their CD
4 cell count is below a set threshold or they wait till their CD4 count level decreases to the required
threshold. A proportion ϵ of those tested at a rate θ will have a CD4 count level above the threshold
while the remaining proportion will be treated upon testing. Individuals in IW will progress to the class
IT after a decrease in their CD4 cell count meets the required CD4 cell count level at a rate γ. All
individuals with HIV, i.e those in I, IW(t) and IT (t) will progress to the AIDS class A(t), at rates ρ1,
ρ2 and ρ3 respectively. Individuals in the AIDS class are assumed to transmit infection and they also
die due to the disease at a rate δ. Individuals in each class are assumed to die naturally at a rate µ. The
forces of infection are defined by λ = (λ1, λ2, λ3) for the three epochs. The explicit expressions are
given in the description of each epoch. The dynamics of the second epoch are presented in Figure 1.

Figure 1. Model 2 flow diagram.

A summary of the model parameters is given in Table 1.
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Table 1. Description of parameters of the models and their units.

Parameter Description Units
Λ Recruitment rate per time
µ Natural mortality rate per time
δ Mortality rate due to HIV/AIDS per time
β Transmission rate from Infected but unaware per person per time
β̂ Effective infectiousness per contact per person per time
η1 Amplification factor of transmission rate from infected

awaiting treatment
unitless

η2 Amplification factor of transmission rate from aware In-
fected awaiting treatment

unitless

η3 Amplification factor of transmission rate from Infected on
treatment

unitless

ρ1 Progression to AIDS status by unaware infected per time
ρ2 Progression to AIDS status by infected awaiting treatment per time
ρ3 Progression to AIDS status by infected on treatment per time
θ Testing rate per time
ϵ Proportion not legible for treatment unitless
γ Rate of enrolling into treatment after waiting to be legible per time
m The fear of infection parameter that results in behavioural

change
per person

p Level of protection by condoms unitless
n The number of sexual partners per person per time
λi Force of infection for each epoch for i = 1, 2, 3. per time

The following system of ordinary differential equations thus governs the second epoch model,

Ẋ2 = f (X2) =


Λ − (λ2 + µ)S

λ2S − (µ + θ + ρ1)I
ϵθI − (µ + γ + ρ2)IW

(1 − ϵ)θI + γIW − (µ + ρ3)IT

ρ1I + ρ2IW + ρ3IT − (µ + δ)A


, (2.1)

where X2 = (S , I, IW , IT , A)T and the force of infection λ2(t) is given by

λ2 =

(
β

1 + m(I + IW + IT + A)

) ( I + η1A + η2IW + η3IT

N

)
·

Here, β reflects not only the infectiousness per contact and the rate of sexual contact per unit time
but also incorporates the impact of condom use as a primary prevention tool. Assuming that the level
of protection by condoms is given by p, where 0 ≤ p ≤ 1. If p = 0 then condoms do not offer
any protection while p = 1 implies perfect protection. Thus, (1 − p) measures condom failure in
preventing HIV transmission, see [22] for a detailed explanation. The number of sexual contacts in
which condoms fail is represented by c = n(1 − p) where n is the number of sexual partners per unit
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time. We thus define β = β̂n(1 − p), where β̂ is the effective infectiousness per contact. This force
of infection is reasonable for HIV since as the infection spreads, it is most likely that the remaining
susceptible individuals become more cautious about their contacts and potential exposure to HIV, see
also [23]. The force of infection will begin to decline as the number of HIV/AIDS cases and deaths due
to the disease cases increases due to self-imposed fear [24]. Therefore m represents the fear of infection
that will result in behavioural change, driven by the prevalence of the infection in the population. The
parameter can be viewed as the measure in the reduction of the infection rate induced by the fear
generated per infected case.

2.2. The first epoch

Given that there was no treatment in the period 1990 to 2001. We set the parameters related to treat-
ment to zero in the grand model to obtain the first epoch model. The parameters related to treatment in
the grand model are θ, γ, ρ2, ρ3 and setting them to zero results an S IA model for the first epoch.

Our model is thus governed by the following system of ordinary differential equations represented
as follows,

Ẋ1 = f (X1) =


Λ − (λ1 + µ)S
λ1S − (µ + ρ1)I
ρ1I − (µ + δ)A

 , (2.2)

where X1 = (S , I, A)T and

λ1 =

(
β

1 + m(I + A)

) ( I + η1A
N

)
·

Note that the mathematical analysis of system (2.2) is presented in [25].

2.3. The third epoch

In June 2016, the Botswana government launched the “Treat All” strategy, promoting universal
health coverage and ensuring that all individuals who test positive for HIV enrol to treatment imme-
diately regardless of their viral load or CD4 cell count. An assumption is made that all individuals
in IW will move to IT since they already know their status and have no reason to wait. Setting the
parameters, ϵ, ρ2 and γ, related to the non-legible to treatment compartment IW to zero in the grand
model, we obtain the third epoch model. As a result, we have a four-compartment deterministic model
of susceptible individuals (S ), infected individuals who are unaware of their HIV infection status (I),
infected individuals who have tested and immediately enrolled into treatment (IT ) and infected who
develop AIDS (A).

The third epoch model is thus governed by the following system of ordinary differential equations,

Ẋ3 = f (X3) =


Λ − (λ3 + µ)S

λ3S − (µ + θ + ρ1)I
θI − (µ + ρ2)TT

ρ1I + ρ3TT − (µ + δ)A

 , (2.3)

where X3 = (S , I,TT , A)T . The force of infection λ3(t) is given by

λ3 =

(
β

1 + m(I + IT + A)

) ( I + η1A + η3IT

N

)
· (2.4)
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The parameters are as described in Table 1.

3. Mathematical analysis of the models

Given that the first and the third epochs can be obtained from the grand model, we consider the
mathematical analysis of system (2.1). The mathematical analysis of the other two models can be
drawn from the big model by setting relevant parameters to zero. We present the mathematical analysis
of model (2.1) subject to the initial conditions:

S (0) = S 0 ≥ 0, I(0) = I0 ≥ 0, IW(0) = IW0 ≥ 0,
IT (0) = IT0 ≥ 0, A(0) = A0 ≥ 0, and N(0) = N0. (3.1)

It is important to note that the analysis results of the grand model captures those of the models of first
and third epochs given that they are “sub-models” of the grand model.

3.1. Model properties

Lemma 3.1. The model (2.1) with the initial conditions (3.1), has non-negative solutions and the
solution of the system will remain positive for all t > 0.

Proof. From the first equation of the model system (2.1), let λ = λ2, we have

dS
dt
= Λ − (λ2 + µ)S ≥ −(λ2 + µ)S .

We thus have

S (t) ≥ S 0 exp
[
−

∫ t

0
(λ2 + µ)dt

]
> 0.

From the second equation of the model system (2.1) we obtain

dI
dt
= λ2S − (µ + θ + ρ1)I ≥ −(µ + θ + ρ1)I,

whose solution is given by

I(t) ≥ I0 exp
[
−

∫ t

0
(µ + θ + ρ1)t

]
> 0.

In a similar manner we can demonstrate that IW(t) > 0, IT (t) > 0 and A(t) > 0 for all t > 0. □

Lemma 3.2. The model (2.1) solutions are uniformly bounded in the set

Ω =

{
(S (t), I(t), Iw(t), IT (t), A(t)) ∈ R5

+ | 0 ≤ N ≤
Λ

µ

}
.

Proof. All parameters and initial conditions in the system (2.1) are assumed to be positive.
The equations of system (2.1) gives

dN
dt
= Λ − µN − δA,
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≤ Λ − µN.

The solution of the differential inequality is given by

N(t) ≤
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt·

If N0 > Λ
µ

, the solutions of N(t) decreases to Λ
µ

and if N0 < Λ
µ

then N(t) → Λ
µ

as t → ∞. The
region Ω is thus positively invariant and solutions are bounded. This means that every solution of
(2.1) with initial conditions in Ω remain in Ω for all t ≥ 0. The model is thus epidemiologically and
mathematically well-posed in the region

Ω =

{
(S (t), I(t), Iw(t), IT (t), A(t)) ∈ R5

+ | 0 ≤ N ≤
Λ

µ

}
.

□

3.2. Model equilibria

The steady states of the model are obtained by setting the equation of system (2.1) to zero such that

Ẋ2 =


Λ − (λ2 + µ)S
λ2S − σ1I
ϵθI − σ2IW

(1 − ϵ)θI + γIW − σ3IT

ρ1I + ρ2IW + ρ3IT − σ4A


= 0 (3.2)

where σ1 = θ + ρ1 + µ, σ2 = γ + ρ2 + µ, σ3 = ρ3 + µ and σ4 = δ + µ.

The steady state variables expressed in terms of I∗ are given by,

I∗W = ψ1I∗, I∗T = ψ2I∗, A∗ = ψ3I∗ (3.3)

where
ψ1 =

ϵθ

σ2
, ψ2 =

(1 − ϵ)θ + γψ1

σ3
and ψ3 =

ρ1 + ρ2ψ1 + ρ3ψ2

σ4
·

We also have
λ∗2 =

ϕ2I∗

(1 + mϕ1I∗) N∗
, (3.4)

where ϕ1 = 1 + ψ1 + ψ2 + ψ3 and ϕ2 = β(1 + η1ψ3 + η2ψ1 + η3ψ2).
Substituting (3.4) into the second equation (3.2) and solving for I∗ we obtain

I∗ = 0 and
S ∗

N∗
=
σ1 (1 + mϕ1I∗)

ϕ2
· (3.5)

If I∗ = 0 then we have I∗W = I∗T = A∗0 = 0 and S ∗ = Λ
µ

. This corresponds to the disease-free state. The
model thus has a disease-free equilibrium (DFE) given by

D0 =

(
Λ

µ
, 0, 0, 0, 0

)
.
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3.2.1. The reproduction number

The reproduction number, R0, gives a threshold condition to the stability of the disease free disease-
free equilibrium [23]. We compute the reproduction number of the grand model system 2.1 using
the next generation method. Following [26], and adopting the matrix notation, the matrices for new
infection terms, F, and the transfer terms, V , at the DFE are given by

F =


β βη2 βη3 βη1

0 0 0 0
0 0 0 0
0 0 0 0

 and V =


σ1 0 0 0
−ϵθ σ2 0 0

−(1 − ϵ)θ −γ σ3 0
−ρ1 −ρ2 −ρ3 σ4

 .
FV−1 is the next generation matrix. The spectral radius, of the matrix FV−1 is the reproduction number
of the model. Thus

R0 = R1 + R2 + R3 + R4, (3.6)

where

R1 =
β

σ1
, R2 =

βη2ϵθ

σ1σ2
, R3 =

βη3(ϵθγ + (1 − ϵ)θσ2)
σ1σ2σ3

,

R4 =
βη1(ρ1σ2σ3 + ϵθρ2σ3 + ϵθγρ3 + (1 − ϵ)θρ3σ2)

σ1σ2σ3σ4
.

R0 is the sum of four terms representing the contribution of infection by classes, I, IW , IT and A.
We note that the R0 for the first epoch model can be found by setting the parameters, θ, γ, ρ2, ρ3, in
Eq (3.6) to zero. The same applies to the reproduction number of the third epoch, which is obtained by
setting the parameters ϵ, γ and ρ2 in Eq (3.6) to zero. It is defined as the expected number of secondary
cases produced by a typical infected individual during its entire period of infectiousness in a completely
susceptible population and is mathematically defined as the dominant eigenvalue of a positive linear
operator.

Following Theorem 2 in [26], we state the stability of the disease free equilibrium,D0, as follows:

Theorem 3.2.1. The DFE,D0, is locally asymptotically stable if R0 < Rc
0 < 1 and unstable otherwise.

Note that the expression for Rc
0 is defined in the next subsection.

3.2.2. Existence of the endemic equilibrium

The total population at the steady state is given by

N∗ = S ∗ + ϕ1I∗· (3.7)

Substituting (3.7) into Eq (3.5) yields

S ∗ = −
σ1ϕ1I∗(1 + mϕ1I∗)
σ1 + mσ1ϕ1I∗ − ϕ2

· (3.8)

Substituting Eqs (3.4), (3.7) and (3.8) into the first equation of the system (3.2) we obtain the quadratic
polynomial in I∗ given by

ν2I∗2 + ν1I∗ + ν0 = 0, (3.9)
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with

ν2 = mσ1ϕ1(σ1 − µϕ1),
ν1 = σ2

1 − σ1ϕ2 − σ1ϕ1(mΛ + µ),
ν0 = Λσ1 (1 − R0) .

Here, R0 is the model reproduction number given by the simplified expression

R0 =
ϕ2

σ1
= R1 + R2 + R3 + R4,

where R1, R2, R3 and R4 are define in (3.6).
The existence of the endemic equilibrium (EE) is subjected to the roots of the quadratic equa-

tion (3.9) being positive, we thus have

I∗ =
−ν1 ±

√
ν2

1 − 4ν2ν0

2ν2
.

σ1 − µϕ1 =
µϵθρ2δ + θρ3δ[γ + ρ2 + µ(1 − ϵ)] + ρ1δ(µ + γ + ρ2)(µ + ρ3)

(δ + µ)(µ + γ + ρ2)(µ + ρ3)
> 0.

The coefficient of I∗ in Eq (3.9) can either be positive or negative. Also, ν0 can be either positive or
negative depending on whether R0 is less or greater than unity. The results are presented in Table 2.

Table 2. Number of positive roots.

ν2 > 0
ν1 > 0 ν1 < 0

ν0 > 0 (R0 < 1) ν0 < 0 (R0 > 1) ν0 > 0 (R0 < 1) ν0 < 0 (R0 > 1)
no positive roots 1 positive root 2 positive roots 1 positive root

We note from Table 2 that for the existence and uniqueness of the endemic equilibrium, ν1 and ν0

must be negative as ν2 is always positive for R0 > 1. Thus,we have the following result.

Theorem 3.2.2. The model has:

i. a unique endemic equilibrium if ν0 < 0,R0 > 1,
ii. a unique endemic equilibrium if ν2

1 − 4ν2ν0 = 0,
iii. two endemic equilibria if ν1 < 0 and ν0 > 0,R0 < 1,
iv. no endemic equilibrium otherwise.

From case (i) of Theorem 3.2.2, there exist a unique endemic equilibrium whenever R0 > 1. Fur-
thermore, case (iii) indicates the possibility of backward bifurcation. Backward bifurcation in epidemic
models implies a co-existence of a stable DFE with a stable EE when the associated reproduction num-
ber is less than unity, see also [27]. The epidemiological implications of this phenomenon is that the
requirement R0 < 1 is not sufficient for the disease elimination effort rather the effort is described by
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the value of the critical parameter at the turning point [28]. We set the discriminant of Eq (3.9) to zero
and solve for the critical value of R0, denoted RC

0 so that

Rc
0 = 1 −

ν2
1

4Λσ1ν2
.
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Figure 2. shows a backward bifurcation model for the grand model for the following param-
eter values Λ = 0.7, µ = 0.038, θ = 0.154, ρ1 = 0.805, ϵ = 0.3, γ = 0.351, ρ2 = 0.219,
m = 0.3, δ = 0.156, ρ3 = 0.288, β = 0.1, η1 = 1.2, η2 = 1.3 and η3 = 0.3.

The backward bifurcation is depicted in Figure 2 for the parameter values given in the caption.
The backward bifurcation shows a locally stable DFE and an unstable and stable EE for R0 < 1. To
effectively control the disease, a globally stable DFE is desired for R0 < 1. In this case, the DFE is
globally stable below the threshold Rc

0 ≈ 0.6 making it challenging to eliminate the disease because it
is far from unity for the chosen parameter values. Backward bifurcation has been observed in models
for disease dynamics such as those for behavioural responses to perceived risk, treatment, in-host
dynamics, the imperfect vaccine, public health education campaigns and reinfection in the transmission
dynamics [27].

3.2.3. The global stability of the endemic equilibrium

Theorem 3.2.3.
The endemic equilibrium point D1 of the model system equations is globally asymptotically stable if
R0 > 1.

The proof of the theorem in given in Appendix A.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1122–1147.



1133

4. Numerical simulations

4.1. Parameter estimation

This section estimates the model’s unknown parameters by calibration or curve fitting. Our data is
extracted from the UNAIDS website (https://aidsinfo.unaids.org/). We consider data on the number of
adults (aged 15 year and above, living with HIV in Botswana from 1990 to 2019. We first attempt to fit
each of the three models, described by systems (2.1), (2.2) and (2.3), to the prevalence data of Botswana
for the entire modelling period. A Matlab built-in function ode45 is used to solve the systems and the
fminsearch algorithm is used for the minimisation routine. The data points are to be compared with
simulation results by minimizing the sum of square difference of the models’ prevalence P(t), (i.e the
number of all HIV and AIDS-infected people over the modelling time) and the HIV/AIDS prevalence
for the adults population data (ti, Xi) given as

S S E =
30∑
i=1

(Xi − P(ti))2· (4.1)

(a) Epoch 1 model fit (b) Epoch 2 model fit

(c) Epoch 3 model fit

Figure 3. Curve fitting for each epoch model to the Botswana data.
Epoch 1 estimated parameters; β = 0.9431, η1 = 2.933, ρ1 = 0.0307, δ = 0.02,m = 0.0287.
Epoch 2 estimated parameters; β = 0.8512, η1 = 1.768, ρ1 = 0.36, δ = 0.0175,m =

0.084, η2 = 3.989, η3 = 0.004, θ = 0.943, ϵ = 0.794, γ = 0.529, ρ2 = 0.083, ρ3 = 0.083.
Epoch 3 estimated parameters; β = 0.8999, η1 = 1.534, ρ1 = 0.491, δ = 0.0198,m =
0.031, θ = 0.973, ρ3 = 0.01.
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4.1.1. Fitting single models over the modelling time

For all the models, we use the pre-estimated and parameters ranges in Table 4. Figure 3 shows the
model fits to data from UNAIDS website for Botswana from 1990–2019 for the three epoch models.

Figure 3(a) shows the fitting the epoch 1 model (S IA) to the data using the inital conditions S (0) =
722000, I(0) = 35000 and A(0) = 5000, the SSE is equal to 8.1 × 103. Figure 3(b) shows the fitting of
the grand model (S IIW IT A ) to the data with inital conditions S (0) = 722000, I(0) = 35000, IW = 0,
IT = 0 and A(0) = 5000. The SSE equal to 3.5 × 103. Figure 3(c) shows the fitting of epoch 3 model
(S IIT A ) to the data with inital conditions S (0) = 722000, I(0) = 35000, IT = 0 and A(0) = 5000 to
data. The SSE in this case is equal to 7.01 × 103. The best-fit curves for all the three models do not
simulate the data ideally, as shown by Figure 3.

4.1.2. Fitting using the piece-wise system

We note that UNAIDS collected the data for almost three decades for various responses to
HIV/AIDS. In order to achieve a simulated best fit to a series of data points that captures the change in
HIV treatment policy in Botswana for almost three decades, we propose to calibrate the second epoch
model and allow some parameters to vary over the modelling period. We vary these parameters based
solely on the implementation strategy of ART in Botswana.The second epoch model fit the data to
Botswana’s treatment policy for the period 2002–2016. The implementation of antiretroviral therapy in
Botswana started in 2002. We, therefore, render all the parameters related to treatment (ϵ, θ, γ, η2, η3, ρ2

and ρ3) to zero for the period before 2002 because there was no HIV treatment. Botswana launched a
“Treat All” strategy in 2016, that is anyone who tests positive for HIV enrols on treatment immediately.
We, therefore, render all parameters related to waiting for eligibility to treatment based on CD4 count
(ϵ, γ, η2 and ρ2) to zero.

Below we show the implementation of shutting down parameters of the grandmodel to obtain the
models of epoch 1 and 3 using Matlab;
%parameters changing over modeling period

eta2 = 0*(t>=0).*(t<12) + p(1)*(t>=12).*(t<27) + 0*(t>=27);

eta3 = 0*(t>=0).*(t<12) + p(2)*(t>=12);

theta = 0*(t>=0).*(t<12) + p(3)*(t>=12);

epsilon = 0*(t>=0).*(t<12) + p(4)*(t>=12).*(t<27) + 0*(t>=27);

gamma = 0*(t>=0).*(t<12) + p(5)*(t>=12).*(t<27) + 0*(t>=27);

rho2 = 0*(t>=0).*(t<12) + p(6)*(t>=12).*(t<27) + 0*(t>=27);

rho3 = 0*(t>=0).*(t<12) + p(7)*(t>=12);
We thus have a piecewise system,

Ẋ =


f (X1), 1990 ≤ t < 2002,
f (X2), 2002 ≤ t < 2016,
f (X3), 2016 ≤ t ≤ 2019.

(4.2)

Although many mathematical modelers have fitted models to data see for instance [29] , they have
ignored the fact that factors influencing disease transmission change during the modelling period. We
aim to incorporate changes in policy in the fitting to data. We estimate the model parameters guided
by the Botswana statistics, literature and curve fitting algorithm. The natural death rate, µ, is taken
to be the reciprocal of the average life expectancy of Botswana [30]. The recruitment rate, Λ, is
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estimated by considering that our initial modelling time is 1990. The World Population Prospects
(www.population.un.org) estimates the total population of Botswana in the year 1990 to be 1 382 000
of which the adults (aged 15+) accounted for 55.2%. Therefore the total adult population, N = 762864.
The UNAIDS estimated the total number of adults living with HIV to be 40 000 in year 1990. Thus we
have I+A = 40000 since the data does not distinguish between infectious and AIDS staged individuals.
We thus estimate the initial conditions as follows;

• N = 762 864, adult population found in the year 1990.
• I(0) + A(0) = 40 000 , HIV adults prevalence in 1990.
• I(0)=35 000, assumed number of infected staged individuals.
• A(0)= 5000 , assumed number of AIDS patients.
• S (0) = N − I(0) − IT (0) − ID(0) − A(0) =722 864.

Table 3. Adults (15+) living with HIV/AIDS (ALWHIV).
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

ALWHIV 40000 59000 82000 110000 140000 170000 190000 220000 230000 250000
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

ALWHIV 260000 260000 270000 270000 270000 280000 290000 290000 300000 310000
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

ALWHIV 320000 320000 330000 340000 340000 350000 360000 360000 370000 370000

Figure 4 shows the fit of all three epoch models to the data of adults living with HIV/AIDS for
Botswana. It shown from Figure 4(a) that the model fits very well to the data and the SSE = 9.07×102.
The estimated parameters from the fitting are given in Table 4. Figure 4(b) shows a steady increase in
the number of infected adults by 2030, provided the HIV/AIDS policy for Botswana does not change.

Table 4. Estimated parameter values from the fitting.

Parameter Range Nominal Value
Λ µ × S 0

µ 0.01818
δ (0.1,0.4) 0.15477
β (0,1) 0.7
η1 (1,3) 2
η2 (1,2) 1.0002
η3 (0,1) 0.9998
ρ1 (0.0667,0.125) 0.097980
ρ2 (0.0667,1) 0.16998
ρ3 (0.01, 0.0667) 0.01
θ (0,1) 0.99997
ϵ (0,1) 0.0010232
γ (0,1) 0.44029
m (0,1) 0.015
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(a) Fit for all three models to data

(b) Projection of the infected adults in Botswana by 2030.

Figure 4. Model fit for all three models to data and their forecast.
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(a) Infected (b) Non-legible for treatment

(c) On treatment (d) Aids stage

Figure 5. Dynamics of state variables of the system (4.2) corresponding to the the data
simulations from Figure 4

Figure 5 shows the time series plots of all state variables of the model. Figure 5(a) shows infected
increasing from 1990 and starts falling after 2002 before stabilizing. From 1990 to before 2002, the
number of individuals not legible for treatment is zero. After 2002 the number of individuals increased
starts falling after 2007 and stabilize from 2007 as shown in Figure 5(b). Individuals on treatment kick
off from 2002, shown in Figure 5(c), and have been growing since. Figure 5(d) shows an increase of
individuals on the AIDS stage, from 1990 to around 2002 before decreasing.

Figure 6 shows the projections of all state variables of the model provided the policy does not
change. Figure 6(a), shows that susceptible individuals would continue to decrease steadily. Fig-
ure 5(b) shows that the infected population also continue to decrease, infected individuals on treatment
would continue to increase every year as shown in Figure 6(c). The infected progressing to AIDS stage
would steadily decrease as seen in Figure 6(d).

4.2. Sensitivity analysis

The estimation of parameters through curve fitting is subjected to variation since the parameters are
selected from a range. Sensitivity analysis aims to quantify the influence of parameters variation in
the model output. We perform global sensitivity analysis to examine the sensitivity of R0 to variation
in parameters using the Latin Hypercube Sampling (LHS) and the partial rank correlation coefficients
(PRCCs). LHS is a statistical sampling method that allows for an efficient analysis of parameter varia-
tion across simultaneous uncertainty ranges in each parameter [31]. PRCCs illustrate the degree of the
effect that each parameter has on the outcome. Fixing µ = 1/55 while taking ranges of the rest of the
other parameters from Table 4, we compute the PRCCs of the parameters with respect to the R0. The
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(a) Susceptible (b) Infected

(c) On treatment (d) Aids stage

Figure 6. Projection of the population dynamics of the system (4.2) corresponding to the the
data simulations from Figure 4

PRCCs for each parameter against R0 obtained after 1000 LHS samples is presented in Figure 7. Pa-
rameters that have high absolute values of PRCCs are the most influential to the reproduction number.
The sign of the PRCCS gives the qualitative relationship between the input parameters and the output
variable, R0. The positive PRCCs imply that as the parameter value increases, the reproduction number
will also increase and vice versa. On the other hand, negative PRCCs imply that as the parameter value
increases, the R0 will decrease and vice versa. The parameters β, η1, η2, η3, ρ1 and ϵ have the potential
to cause a burden to the disease if not mitigated. Whilst the rest of the parameters, when enhanced, can
help ease the disease burden.

Figure 7(a) shows that the most influential parameters of the model are the transmission rate, β and
the AIDS induced deaths, δ. The box plot Figure 7(b) shows the five number distribution of obtained
values of R0, the lower quartile, the median and the upper quartile being about 2.19, 4.29 and 6.53,
respectively. The best fit parameter values yield an R0 = 6.8. The median value of R0 in African
countries is 4.5, the 90th percentile value of R0 is 6.3, and the maximum being 9.5 [32]. The best fit
parameter values yield an R0 = 6.8 for Botswana, which is within the estimated calculations given
in [32]. We note that although some parameters may have small magnitudes of PRCCs, they may still
make significant changes in the disease spread.

4.3. Effects of varying m and θ on the dynamics of HIV/AIDS

To investigate the effects of Botswana’s HIV/AIDS policies, we vary the parameters linked to be-
havioural change and treatment. The first epoch policy was mainly focused on behavioural change.
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Figure 7. Sensitivity analysis results (a) PRCCs of parameters on the reproduction number.
(b) five-quartile summary of the computed R0.

However, the second and third epochs policies included treatment at different rates. We, therefore,
vary the parameters m and θ to evaluate their effects on the dynamics of HIV/AIDS for Botswana.

Figure 8. The changes in dynamics of the infected individuals when we increase both testing
and treating rate (θ) and behavioural change (m). Scenarios a = (θ,m), b = (2θ, 2m), c =
(4θ, 4m) and d = (8θ, 8m) for values of θ and m given in Table 4.

Figure 8 shows the projected change in the number of HIV/AIDS infected adults. Increasing both
the testing and treatment rate and behavioural change. A decrease in HIV/AIDS infected adults is
observed as we keep doubling the testing and therapy efforts and behavioural change rate.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1122–1147.



1140

(a) (b)

Figure 9. Simulation results of (a) increasing θ only and (b) increasing both m and θ on I.

Figure 9(a) shows that increasing θ only, decreases the number of infected adults just from 2002
when treatment was introduced. Figure 9(b) shows that increasing both m and θ would decrease the
infected cases from the beginning of the modelling period. The shaded regions show the number of
cases averted by the increase in treatment and behavioral change. More cases would be averted by
increasing both m and θ.

(a) (b)

Figure 10. Simulation results of (a) increasing θ only and (b) increasing both m and θ on IT .

Figure 10(a) shows that increasing θ only, increases the number of infected adults enrolled on treat-
ment and the shaded area shows the number of individuals added into ART. Interestingly, Figure 10(b)
shows that increasing both m and θ would decrease the number of infected adults enrolled on treatment;
this is as a result of more averted infected cases shown by Figure 9(b). The shaded regions show the
number of treated cases averted by increasing both m and θ interventions. Therefore, this decrease can
be interpreted as a cost-saving measure for the country.
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(a) (b)

Figure 11. Simulation results of (a) increasing θ only and (b) increasing both m and θ on A.

Figure 11(a) shows that increasing θ only decreases the number of infected adults progressing to
the aids stage just from 2002 when treatment was introduced. The shaded regions show the number
of averted AIDS cases. On the other hand, Figure 10(b) shows that increasing both m and θ decrease
the number of infected adults progressing to the aids stage from the beginning of the modelling pe-
riod. This result shows that more AIDS cases are averted by increasing both behavioral change and
treatment.

5. Conclusions

In this paper, a piecewise system of three models is proposed and analysed to track Botswana’s
HIV/AIDS policy changes. Introducing policy change in mathematical models is critical for a holistic
view of an epidemic influenced by policy dynamics. The structure of the models become dynamic to
capture the changes in policy and response to the disease. In this study, we looked at how the treatment
policies of Botswana evolved. As a result, this led to the development of models over three epochs. In
the 1990s, there was no treatment, and many of the models only involved those at risk, the infected and
those who would have developed AIDS. With the advent of treatment that depended on the CD4 cell
count, the models had to adapt to capture the rollout of ART programmes. Many researchers developed
several mathematical models, but the model presented in this paper represents the perfect summary of
the general structure of models that capture how the response to the epidemic should be modelled. The
treatment policies further developed into the “Treat All” strategy, which assumed that treatment had
the potential to reduce the viral load to undetectable levels, resulting in reduced transmission. We also
present the model that captures this policy.

Of the three models developed in this paper, the model of the second epoch captures the dynamics
of the first and third epochs if some chosen parameters values are set to zero. The analysis of the
grand model thus captures the study of the other two models. We, therefore, focused on the analysis of
the grand model. The steady states were determined and analysed in terms of the model reproduction
number R0. The model is fitted to data from UNAIDS over three decades. It is clear that the use of a
piece-wise models, captures the ideal scenario in which the disease transmission process is dynamic,
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changing as the policies change.
Many of the mathematical models presented with data fitting ignore aspects of changes in policies

over time. They thus consider the parameter values that are averaged over the entire modelling period.
It is however important to track the changes in the policies over time that will result in changes in the
parameter values over time. We fitted the three models and showed that the fitting in which policy
changes are not taken into consideration do not perfectly fit to the data. To address the changes in the
parameters over time, we then fitted the grand model to prevalence data from UNAIDS on Botswana.
Some of the parameters were considered as continuous piecewise functions to generate a perfect fit, as
shown in Figure 4. Sensitivity analysis is performed to determine how each of the parameters impacts
Botswana’s HIV/AIDS epidemic.

The early policies were based on campaigns to target behavioural change, and the later policies
were focused on the uptake of testing and treatment. However, the simulations results showed that
a combination of policies leads to effective management of the disease. Therefore, the policymakers
need to evaluate the policies and use the information to update the new policies adding to the latest
research findings and recommendations. Also, it is imperative to ensure that when new policies are
implemented, the earlier ones are not left behind but updated. Earlier policies may be updated to meet
the latest trends. For example, the testing and treatment enrollment campaigns to reach the 95-95-95
target should also carry a message of prevention from contracting the disease targeting behavioural
change as a package.

The models presented here capture the most straightforward scenarios in each epoch. It is thus
essential to note that further refinements can be done by including additional compartments to capture
the challenges of managing HIV/AIDS in Botswana. In particular, aspects of drop-out from treatment
programmes, defaulting, delays in accessing health care services, and excluding the migrant popula-
tion from accessing free HIV/AIDS treatment before September 2019 should be considered to give
a more realistic picture of how policies have impacted the epidemics in Botswana. Our study, how-
ever, provides a significant impetus in the modelling of HIV/AIDS dynamics in the presence of policy
changes.

A. Proof of the global stability of the endemic equilibrium point

Proof. We propose a Lyapunov function of the form

V =

(
S − S ∗ − S ∗ ln

S
S ∗

)
+ a2

(
I − I∗ − I∗ ln

I
I∗

)
+ b2

(
IW − I∗W − I∗W ln

IW

I∗W

)
+ c2

(
IT − I∗T − I∗T ln

IT

I∗T

)
+ d2

(
A − A∗ − A∗ ln

A
A∗

)
,

where a2, b2, c2 and d2 are positive constants to be determined. Note that V = 0 when
(S 1, I1, IW1, IT1, A1) = (S ∗, I∗, I∗W , I

∗
T , A

∗) otherwise V > 0. We now show that the time derivative of V
is negative. Therefore, the time derivative of the Lyapunov function is given by

V̇ =

(
1 −

S ∗

S

)
Ṡ + a2

(
1 −

I∗

I

)
İ + b2

(
1 −

I∗W
IW

)
˙IW + c2

(
1 −

I∗T
IT

)
İT
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+d2

(
1 −

A∗

A

)
Ȧ,

=

(
1 −

S ∗

S

)
(Λ − λS − µS ) + a2

(
1 −

I∗

I

)
(λS − σ1I)

+b2

(
1 −

I∗W
IW

)
(ϵθI − σ2IW) + c2

(
1 −

I∗T
IT

)
((1 − ϵ)θI + γIW − σ3IT )

+d2

(
1 −

A∗

A

)
(ρ1I + ρ2IW + ρ3IT − σ4A)·

From the system (3.2), we also have

Λ = (λ∗ + µ)S ∗, σ1 =
λ∗S ∗

I∗
, σ2 =

ϵθI∗

I∗W
,

σ3 =
(1 − ϵ)θI∗ + γI∗W

I∗T
, σ4 =

ρ1I∗ + ρ2I∗W + ρ3I∗T
A∗

. (A.1)

We express the derivative of the Lyapunov function as the sum of its components, V̇ = V̇1+V̇2+V̇3+V̇4,
and evaluating the components separately, we obtain

V̇1 ≤ µS ∗
(
1 −

S ∗

S

) (
1 −

S
S ∗

)
+ β

(
1 −

S ∗

S

) [
I∗S ∗

(
1 −

IS
I∗S ∗

)
+ η1A∗S ∗

(
1 −

AS
A∗S ∗

)
+ η2I∗WS ∗

(
1 −

IWS
I∗WS ∗

)
+ η3I∗T S ∗

(
1 −

IT S
I∗T S ∗

) ]
.

V̇2 ≤ a2β

(
1 −

I∗

I

) [
I∗S ∗

( IS
I∗S ∗

−
I
I∗

)
+ η1A∗S ∗

( AS
A∗S ∗

−
I
I∗

)
+η2I∗WS ∗

(
IWS
I∗WS ∗

−
I
I∗

)
+ η3I∗T S ∗

(
IT S
I∗T S ∗

−
I
I∗

) ]
.

V̇3 = b2

(
1 −

I∗W
IW

) [
ϵθI∗

(
I
I∗
−

IW

I∗W

)]
.

V̇4 = c2

(
1 −

I∗T
IT

) [
(1 − ϵ)θI∗

(
I
I∗
−

IT

I∗T

)
+ γI∗W

(
IW

I∗W
−

IT

I∗T

)]
.

V̇5 = d2

(
1 −

A∗

A

) [
ρ1I∗

( I
I∗
−

A
A∗

)
+ ρ2I∗W

(
IW

I∗W
−

A
A∗

)
+ ρ3I∗T

(
IT

I∗T
−

A
A∗

)]
.

Letting
S
S ∗
= E,

I
I∗
= F,

IW

I∗W
= G,

IT

I∗T
= H,

A
A∗
= J, (A.2)

the derivative of V them reduces to

V̇ ≤ −
µS ∗

E

(
E − 1

)2

+ Q(E, F,G,H, J),

where

Q(E, F,G,H, J) = βI∗S ∗ + βη1A∗S ∗ + βη2I∗WS ∗ + βη3I∗T S ∗ + a2βI∗S ∗ + a2βη1A∗S ∗
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+ a2βη2I∗WS ∗ + a2βη3I∗T S ∗ + b2ϵθI∗ + c2γI∗W + c2(1 − ϵ)θI∗ + d2ρ1I∗

+ d2ρ2I∗W + d2ρ3I∗T + E(−a2βI∗S ∗)
+ F(βI∗S ∗ − a2βI∗S ∗ − a2βη1A∗S ∗ − a2βη2I∗WS ∗ − a2βη3I∗T S ∗ + b2ϵθI∗

+ c2(1 − ϵ)θI∗ + d2ρ1I∗) +G
(
βη2I∗WS ∗ − b2ϵθI∗ + c2γI∗W + d2ρ2I∗W

)
+ H

(
βη3I∗T S ∗ − c2(1 − ϵ)θI∗ − c2γI∗W + d2ρ3I∗T

)
+ J

(
βη1A∗S ∗ − d2ρ1I∗ − d2ρ2I∗W − d2ρ3I∗T

)
+

1
E

(
−βI∗S ∗ − βη1A∗S ∗ − βη2I∗WS ∗ − βη3I∗T S ∗

)
+ EF (−βS ∗I∗ + a2βS ∗I∗) + EG

(
−βη2I∗WS ∗ + a2βη2I∗WS ∗

)
+ EH

(
−βη3I∗T S ∗ + a2βη3I∗T S ∗

)
+ EJ (−βη1A∗S ∗ + a2βη1A∗S ∗) +

+
EH
F

(
−aβη3I∗T S ∗

)
+

F
H

(−c2(1 − ϵ)θI∗) +
G
H

(−cγI∗W)

+
F
G

(−b2ϵθI∗) +
EJ
F

(−a2βη1A∗S ∗) +
EG
F

(−a2βη2I∗WS ∗)

+
F
J

(−d2ρI∗) +
G
J

(
−dρ2I∗W

)
+

H
J

(
−dρ3I∗T

)
· (A.3)

By setting

a2 = 1,

b2 =
βS ∗

[(
γη3I∗T I∗w + η2 I∗W

) (
I∗ρ1 + I∗Wρ2 + I∗Tρ3

)
+ η1A∗

(
I∗Wρ2 + γI∗T I∗wρ3

)]
ϵθI∗

(
I∗ρ1 + I∗Wρ2 + I∗Tρ3

) ,

c2 =
βη3I∗T S ∗

(1 − ϵ)θI∗ + γI∗w
+

βη1A∗S ∗ρ3I∗T(
(1 − ϵ)θI∗ + γI∗w

) (
ρ1I∗ + ρ2I∗W + ρ3I∗T

) ,
d2 =

βη1A∗S ∗

ρ1I∗ + ρ2I∗W + ρ3I∗T
,

the coefficients of F,G,H, J, EF, EG, EH and EJ become zero and

Q(E, F,G,H, J) = βI∗S ∗
(
2 −

1
E
− E

)
+ βη1A∗S ∗

(
2 −

EJ
F
−

1
E

)
+ βη2I∗WS ∗

(
2 −

EG
F
−

1
E

)
+ βη3I∗T S ∗

(
2 −

EH
F
−

1
E

)
+ b2ϵθI∗

(
1 −

F
G

)
+ c2(1 − ϵ)θI∗

(
1 −

F
H

)
+ c2γI∗w

(
1 −

G
H

)
+ d2ρ1I∗

(
1 −

F
J

)
+ d2ρ2I∗W

(
1 −

G
J

)
+ d2ρ3I∗T

(
1 −

H
J

)
.

(A.4)

We note that
(
2 − 1

E − E
)

is less than or equal to zero by the arithmetic-mean-geometric-mean inequal-
ity, with equality if and only if E = 1. Also, the following expressions;(

2 −
EJ
F
−

1
E

)
,

(
2 −

EG
F
−

1
E

)
and

(
2 −

EH
F
−

1
E

)
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are less than or equal to zero by the arithmetic-mean-geometric-mean inequality, with equality if and
only if E = 1 and F = G = J = H. After some tedious algebraic manipulations of replacing the
constants b2, c2 and d2 in Eq (A.4), we draw similar conclusions. We thus have

V̇ = −
µS ∗

E

(
E − 1

)2

+ Q(E, F,G,H, J) ≤ 0 and V̇ = 0

if and only if S = S ∗ and I
I∗ =

IW
I∗W
= IT

I∗T
= A

A∗ . Since S must remain constant at S ∗ then Ṡ = 0. Therefore,
I
I∗ =

IW
I∗W
= IT

I∗T
= A

A∗ = 1. Thus,the invariant set in Ω is the singleton (S ∗, I∗, I∗W , I
∗
T , A

∗). Thus the endemic
equilibriumD1 is globally asymptotically stable if R0 > 1 by the LaSalle invariance principle [33]. □
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