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Abstract: Medical procedure entity normalization is an important task to realize medical information 
sharing at the semantic level; it faces main challenges such as variety and similarity in real-world 
practice. Although deep learning-based methods have been successfully applied to biomedical entity 
normalization, they often depend on traditional context-independent word embeddings, and there is 
minimal research on medical entity recognition in Chinese Regarding the entity normalization task as 
a sentence pair classification task, we applied a three-step framework to normalize Chinese medical 
procedure terms, and it consists of dataset construction, candidate concept generation and candidate 
concept ranking. For dataset construction, external knowledge base and easy data augmentation skills 
were used to increase the diversity of training samples. For candidate concept generation, we 
implemented the BM25 retrieval method based on integrating synonym knowledge of SNOMED CT 
and train data. For candidate concept ranking, we designed a stacking-BERT model, including the 
original BERT-based and Siamese-BERT ranking models, to capture the semantic information and 
choose the optimal mapping pairs by the stacking mechanism. In the training process, we also added 
the tricks of adversarial training to improve the learning ability of the model on small-scale training 
data. Based on the clinical entity normalization task dataset of the 5th China Health Information 
Processing Conference, our stacking-BERT model achieved an accuracy of 93.1%, which outperformed 
the single BERT models and other traditional deep learning models. In conclusion, this paper presents 
an effective method for Chinese medical procedure entity normalization and validation of different 
BERT-based models. In addition, we found that the tricks of adversarial training and data augmentation 
can effectively improve the effect of the deep learning model for small samples, which might provide 
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some useful ideas for future research. 

Keywords: Chinese medical procedure entity normalization; BERT; Siamese-BERT; stacking; 
adversarial training 

 

1. Introduction  

Mining medical text data from electronic health records (EHRs) to generate clinical evidence has 
been widely applied in clinical decision-making. One fundamental problem in medical text mining is 
entity normalization, which aims to map entity mentions to standard concepts in a given knowledge 
base (KB) or controlled vocabulary. Accurate entity normalization can solve the problem of 
consistency in the expression of entity mentions and realize information sharing at the semantic level. 
In China, with increasing implementation of a healthcare payment policy by diagnostics-related groups 
in hospitals, a large amount of irregular writing in clinical notes need to be manually mapped to the 
standard concepts of the International Classification of Diseases (ICD); additionally, the entity 
normalization task of diagnoses and procedure has become very important, as it requires sufficiently 
trained staff with a good knowledge of both medicine and coding rules. In the real world, medical 
entity normalization tasks are time-consuming and labor-intensive; thus, this paper mainly focuses on 
the Chinese medical procedure entity normalization task and describes an automated and efficient 
method to map clinical terms into ICD codes in Chinese. 

There are three major challenges to optimizing the Chinese medical procedure entity 
normalization task: 1) Variety. Due to diverse writing habits, the experience of physicians and the 
requirements of medical institutions, there are many different non-standard expressions in Chinese; 
the same concept may be linked by different entity mentions; for example, entity mentions that 
“Mile’s”, “直肠癌根治术 (Dixon)” are all linked to the normalized concept “腹会阴直肠切除术

(abdominoperineal resection of the rectum)” in Chinese control vocabulary ICD-9-CM-3. 2) 
Similarity. Chinese words have similar glyphs but different semantics, such as the two-procedure 
concepts “硬脊膜外病损切除术 (excision of epidural lesion)” and “硬脊膜下病损切除术 (excision 
of subdural lesion)” in Chinese control vocabulary ICD-9-CM-3; their similarity interferes with the 
exact matching of terms. 3) Limited context information. Mention-level entity is short text whose 
critical context information is limited, and the concept in ICD has no semantic relationship information 
available. To solve these problems, we regarded the mention-level entity normalization as a sentence-
pair classification task in this study and designed a stacking-bidirectional encoder representations from 
transformers (BERT) fusion model to capture the semantic information of clinical entity mentions. 
External KB and easy data augmentation (EDA) skills were used to increase the diversity of training 
samples, which provided rich term variation features to model. In addition, we generated difficult 
negative samples to train the model to learn the subtle differences between concepts and added 
adversarial learning in the training process to improve the discrimination ability of the model to deal 
with similar samples. 

The normalization task here could be referred to as entity linking in the computer science 
community. In the biomedical domain, many previous studies focus on the development of rule-based 
methods [1–3]. Their work relied on large, expert-curated vocabularies of standardized medical 
terminology for string matching-based approaches, with great success [4]. In recent years, deep 
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learning-based systems have addressed the limitations of string matching and achieved good 
performance of entity normalization. In general, deep learning-based systems could consist of two 
steps [5]: (i) Candidate Concept Generation – to retrieve candidate concepts related to a given entity 
mention; (ii) Candidate Concept Ranking – to rank the candidate concepts and decide on the one most 
relevant to the given entity mention. To improve the efficiency of candidate concept generation, 
Vashishth et al. [6] introduced a semantic-type prediction module to alleviate the problem of the 
overgeneration of candidate concepts by filtering out irrelevant candidate concepts based on the 
predicted semantic type of a mention. 

Candidate concept ranking is the key step for entity linking systems. Similarity-based methods 
have been proven to be effective for concept ranking. They commonly used sentence embedding as an 
upstream task before text classification, which adopts a vector space model to represent entity mentions 
and candidate concepts into a fixed length vector for semantic similarity calculations [7–9]. In recent 
years, deep representation learning models such as BERT [10] have been widely used to improve many 
natural language processing (NLP) tasks. In the medical domain, BioBERT [11] and ClinicalBERT [12] 
language representation models, which were pre-trained on biomedical texts and clinical notes based 
on BERT architecture, were introduced to advance the state-of-the-art performance on many domain-
specific NLP tasks. Li et al. [13] introduced a BERT-based model named EhrBERT that was trained 
using 1.5 million EHRs; they proved the effectiveness of their BERT-based model on entity 
normalization tasks, but they treated entity normalization as a multi-classification task of a single 
sentence, where the size of classes depends on the vocabularies used in a corpus; the performance of 
this model relies on having a large amount of training data for each class, so it is not suitable for small 
samples. Kalyan and Sangeetha [14] proposed a medical concept normalization system based on BERT 
and highway layers; our experimental results show that our model outperformed all existing methods 
on two standard datasets. Sung et al. [15] introduced a BIOSYN system for biomedical entity 
representation learning that uses synonym marginalization dispensing with the explicit needs of 
negative training pairs; our results show that the iterative candidate selection based on our model's 
representations is crucial for improving the performance, together with synonym marginalization. The 
above studies’ preliminaries proved the effectiveness of BERT on clinical entity classification tasks. 
In this study, we developed different sentence-pair similarity calculation models with different 
structures based on BERT, and stacking was performed to make full use of the advantages of BERT-
based models. 

Most previous studies have focused on the standardization of English entities. Up to now, there 
have been few studies specifically designed for Chinese-based clinical entity normalization. The real-
world public datasets in Chinese related to health informatics are almost nonexistent, and this has been 
a bottleneck for the development of text mining in the Chinese medical entity normalization domain. 
Some researchers have developed algorithms based on manually annotated datasets. Xia et al. [16] 
proposed a multi-field indexing approach, which accomplishes the term normalization task by using 
an information retrieval algorithm with four level indices: word, character, pinyin and its initial. Luo 
et al. [8] introduced a multiview convolutional neural network to address the normalization of 
diagnostic and procedure names simultaneously. Likewise, Zhang et al. [17] presented an unsupervised 
framework to normalize the Chinese medical concept by combining disease text with comorbidity. 
Wang et al. [18] developed and compared several entity-linking approaches to normalize disease and 
procedure terms in Chinese; their results showed that the BERT-based ranking method achieved the 
best performance on encoding both Chinese diagnosis and procedure terms.  
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Based on the previous studies, the entity normalization was regarded as a sentence-pair 
classification task in this study; we designed different sentence-pair similarity calculation models with 
different structures based on BERT and propose a stacking-BERT fusion model to capture the semantic 
information of clinical entity mentions. There are three major contributions of this paper:  

• We used an external KB and EDA skills to increase the diversity of training samples; the results 
show that EDA skills can provide more features of term variation for the model. 

• We proposed a concept ranking model with different structures based on BERT; it is fused by a 
stacking mechanism to further improve the performance of the model. Our detailed experimental 
analysis on Chinese medical procedure entity normalization tasks realized remarkable improvements 
over existing methods. 

• We added adversarial learning to the training process; the results show that adversarial learning 
can significantly enhance the robustness and generalization of the model. 

2. Materials and methods 

2.1. Study design 

Given the medical procedure entity set 𝐸 𝑒 , 𝑒 , … , 𝑒 , … 𝑒 , 𝑚 ∈ 𝑁, which recognizes Chinese 
clinical text, and a controlled vocabulary 𝐶 𝑐 , 𝑐 , … , 𝑐 , … 𝑐 , 𝑛 ∈ 𝑁 , which consists of a set of 
standard concepts, the entity normalization task of our study is to find the best corresponding concept 
𝑐  for each input entity 𝑒 , as shown in Eq (1), where the score is calculated by the text matching 
algorithm in our model:  

𝑐 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑠𝑐𝑜𝑟𝑒 𝑒 , 𝑐                                                                (1) 

Figure 1 shows the system architecture for entity normalization used in this study, which consists 
of three modules: 1) dataset construction: to increase the diversity of training samples by using an 
external KB and EDA skills; 2) candidate concept generation: to generate a list of candidate ICD 
concepts for a given entity, using a simple BM25 algorithm and an extended BM25 by integrating 
synonym knowledge of SNOMED CT and train data; and 3) candidate concept ranking: to rank 
candidate ICD concepts, we propose a stacking-BERT model with different structures based on BERT, 
which was fused by a stacking mechanism. Detailed descriptions of these methods are given in the 
following sections. 

 

Figure 1. Overall experimental framework for this study. 
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2.2. Dataset construction 

2.2.1. Dataset 

We evaluated our approach on the clinical entity normalization task dataset of the 5th China 
Health Information Processing Conference (CHIP2019) [19]. The dataset provides procedure entities 
recognized from Chinese electronic medical records, and the controlled vocabulary is “ICD-9-CM-3 
Peking union medical college hospital edition 2017”, which contains 9467 different procedure 
concepts in Chinese, where each entity in the dataset is manually linked to one or more than one 
standardized concept in the controlled vocabulary. The distribution of entities in the dataset is shown 
in Table 1 and the examples are shown in Figure 2. The dataset has the following problems: 1) the 
dataset does not give negative samples with entities that do not match with concepts; 2) due to the 
small training set, there were 23% concepts in the test set that were not in the training set; and 3) one 
entity may link to more than one concept, and approximately 5% of entities in the dataset map to 
multiple concepts. 

Table 1. Statistics of the dataset. 

 Training set Test set 
Entities 5000 2000 
One entity links to one concept 4751 (95.02%) 1901 (95.05%) 
One entity links to more than one concept 199 (4.98%) 99 (4.95%) 
Concepts of vocabulary 9467 

 

Figure 2. Example of the dataset. 

2.2.2. Easy data augmentation of training data 

In order to make the model learn more semantic information, the construction of the training set 
is very important. We adopted EDA skills to generated new pairwise training data based on the 
CHIP2019 dataset (Figure 3).  
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Data cleaning. We cleaned the useless punctuation and content in procedure entities to match 
regular expressions, such as “(腹腔镜)胆囊切除术 (51.2201)” to “腹腔镜胆囊切除术 (laparoscopic 
cholecystectomy)”. Then, English abbreviations that appear in the training set entities were extracted 
separately.  

Positive sample extension. Three methods were used to extend positive samples in our study: (i) 
data transmission expansion based on the pairs of training data; (ii) data symmetric extension based 
on the pairs of Step (i); and (iii) positive sample supplementation based on external clinical 
terminology. The Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) is a 
comprehensive multilingual clinical terminology guide used in EHRs and interoperability, and its 
components are concepts (codes), descriptions (terms) and relationships. Each concept has a unique 
concept ID, a fully specified name and multiple descriptions (including a preferred term and one or 
more synonyms); they all expressed the same semantics of one concept. We matched all descriptions 
in the same concept pairwise in SNOMED CT and added all synonym pairs to the training set as 
positive examples.  

Negative sample generation. Previous studies suggested that the construction of difficult 
negative samples can enhance the feature-learning ability of the model and thus improve its 
effectiveness. We generated negative samples for each entity with the commonly used information 
retrieval method BM25 introduced in Section 2.3. With the exception of the manually linked concept, 
other top 20 concepts were retrieved for each entity in training set.  

 

Figure 3. Methods of data augmentation. 

2.3. Candidate concept generation  

Due to the large size of the ICD-9-CM-3 data, if the whole vocabulary was used as a candidate 
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concept set, most of the concepts are irrelevant to the entity, it will bring a great burden to the model 
operation. The purpose of candidate concept generation is to ensure that all possible correct concepts 
are added to the candidate concept set as much as possible. Common recall methods include string 
similarity calculations based on text features and search engine retrieval. In order to improve the 
efficiency of model operation and ensure the recall rate of the best corresponding concept, the 
candidate concept generation component consists of two steps: (1) indexing all ICD codes and their 
preferred concepts in Chinese by invoking the Lucene application programming interface, and (2) 
retrieving the top n candidate concepts 𝐶 𝑐  from the index for a clinical entity 𝑒, by employing 
the BM25 model provided by Lucene [20].  

To achieve higher recall for candidate generation, we used the Chinese characters as the basic 
building blocks of both indexing and retrieval without considering Chinese word segmentation. In 
addition to the baseline index described above, another two indexes were proposed in this section by 
using annotated training data and synonym terms of SNOMED CT. We established the index of 
SNOMED CT terms and ICD concepts by aligning the fully specified name and preferred terms in 
SNOMED CT with the concepts in ICD-9-CM-3 by regularization. Figure 4 shows an example of the 
complete candidate concept generation process. 

 

Figure 4. Example of the candidate concept generation process. 

2.4. Candidate concept ranking 

This section mainly introduces the candidate concept ranking model, stacking-BERT, developed 
via our study. The stacking-BERT model consists of two layers, where the first layer includes four base 
ranking models with the different structures introduced in Sections 2.4.1 and 2.4.2, and the final 
layer is a simple logistic regression model. The Stacking mechanism and algorithm are introduced 
in Section 2.4.3.  
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2.4.1. BERT-based ranking model 

As a sentence-pair classification task, using the BERT-based model shown in Figure 5(a), we 
treated the word representation from the top layer of transformers as the features for the normalization 
task. Similar to Ji et al. [21], in our BERT-based classification model, for each input entity 𝑚 and a 
candidate concept 𝑐, we constructed a sequence < [CLS] 𝑒 [SEP] 𝑐 > as the input of the fine-tuning 
procedure, where [CLS] is the special word used as the representation of the whole sequence, and 
[SEP] is the special word used for separating 𝑒 and 𝑐. After encoding 12 or 24 layers of multi-head 
attention transformers, the final hidden state output of the special [CLS] token 𝐶 ∈ 𝑅  was passed to 
the softmax layer to compute the probability distribution of all classes, which is described as 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐶𝑊 , where 𝑊 ∈ 𝑅  is the parameter added during the fine-tuning procedure. Here, 𝐾 2 
means only two classifier labels in our task, the classifier 𝑙𝑎𝑏𝑒𝑙 1 means that 𝑐 is the mapping concept 
for 𝑒 and 𝑙𝑎𝑏𝑒𝑙 0 means that 𝑐 is not the mapping concept. We employed the probability of 𝑙𝑎𝑏𝑒𝑙 1 
as the final score of each input pair; after ranking all scores, the top-ranking candidate concept 𝑐 was 
found as the best mapping concept for 𝑒. 

𝑆𝑐𝑜𝑟𝑒 𝑒, 𝑐 𝑃 𝑙𝑎𝑏𝑒𝑙 1|𝑒, 𝑐 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐶𝑊                            (2) 

2.4.2. Siamese-BERT ranking model 

The Siamese neural network architecture [22] of two towers with shared weights and a distance 
function at the last layer has been effective in learning similarities in domains such as text [23] and 
images [24] by modeling the similarity directly based on pairs of inputs. Siamese networks lend 
themselves well to the semantic invariance phenomena present in entity normalization. Recently, 
Fakhraei et al. [25] have developed a solution based on a deep Siamese neural network model (Siamese 
Bi-LSTM) to embed the semantic information about the entities and empirically show the effectiveness 
of these embeddings in bio-entity normalization datasets. Using BERT, researchers have started to 
input individual sentences into BERT and derive fixed-size sentence embeddings. The most commonly 
used approach is to average the BERT output layer (known as BERT embeddings) or use the output of 
the first token [CLS] [26–28]; but, Reimers and Gurevych’s [29] work show that these common 
practices yield rather bad sentence embedding. They proposed a modification of the pretrained BERT 
network that uses Siamese and triple network structures to derive semantically meaningful sentence 
embeddings that can be compared using cosine similarity. 

As shown in Figure 5(b), a Siamese-BERT network was built in this study based on the work of 
Reimers and Gurevych [29] to generate sentence embeddings independently for the entity mention and 
candidate concepts; then, they were concatenated as the input of the classification function. In the 
training process, candidate mapping pairs and a class label expressed as < 𝑒, 𝑐, 𝑦 > were fed to the 
Siamese-BERT network, which was composed of mapping pairs (𝑦 1) and other non-mapping pairs 
(𝑦 0 ). The aim of training is to minimize the distance in an embedding space between positive 
examples and maximize the distance between negative examples. We fine-tuned BERT to update the 
weights and produced sentence embeddings 𝑣  and 𝑣 , and as in Nils’ work, a pooling operation was 
added to the output of BERT to derive the fixed-sized sentence embedding. For each candidate 
mapping pair 𝑒, 𝑐  , we concatenated the sentence embeddings 𝑣   and 𝑣   with the element-wise 
difference 𝑣 𝑣 ∨ and multiplied it with the trainable weight 𝑊 ∈ 𝑅 , where 𝑛 is the dimension of 
the sentence embedding and 𝐾 is the number of classifier labels: 
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𝑣 𝑊                                                                             (3) 

where 𝑣 is a vector of the 𝐾 ∗ 1 dimension. Then, we computed the probability of each classifier label 
using the softmax function. Finally, the same with the BERT model, we computed the probability of 
𝑙𝑎𝑏𝑒𝑙 1 and found the top-ranking candidate concept 𝑐; the loss function of the network was set as 
categorical softmax loss: 

𝑆𝑐𝑜𝑟𝑒 𝑒, 𝑐 𝑃 𝑖 1|𝑒, 𝑐                                                           (4) 

𝐿 ∑ 𝑦 𝑙𝑜𝑔 𝑆𝑗                                                               (5) 

where 𝑆𝑗 is the prediction of the probability that this sample belongs to the 𝑗𝑡ℎ classifier label, and 𝑦  
is the target probability the network should produce. This function makes the loss less when the 
prediction probability is close to the target probability, and larger when it is far away from the target 
probability. 

 

Figure 5. Structure of base ranking models. 

2.4.3. Stacking-BERT model 

Stacking is an effective ensemble learning method for classification problems, it generally use 
several basic classifier models to produce outputs, which are later used as features for the next 
stacking layer [30]. This paper presents a stacking-BERT model including two layers. Stacking models 
usually use several complex models for the base classifiers and a simpler combined model for the final 
model. Because we adopted a different language model, feature representation, network structure, 
corpus and adjustment strategy, the pretrained models learned different prior knowledge and performed 
differently in downstream tasks. In order to combine the characteristics of different pretrained models, 
we trained the two models introduced in the last section with the pretrained model BERTbase-chinese [31] 
and RoBERTalarge-pair [32] to generate four ranking models, i.e., the BERT-based model, RoBERTa-
based model, Siamese-BERT model and Siamese-RoBERTa model. They produced the probability of 
𝑙𝑎𝑏𝑒𝑙 1 for each input sentence pair; then, these probability values were used as input in the logistic 
regression model that was a final layer. The algorithm of the stacking-BERT model is shown in Table 
2. In particular, we used 5-fold cross-validation in the training process of each base ranking model. 
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Table 2. Algorithm of stacking-BERT. 

Algorithm : stacking-BERT 

Input: Train dataset 𝑫 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , . . . , 𝒙𝒏, 𝒚𝒏  
      Base ranking model 𝜻𝟏, 𝜻𝟐, . . . , 𝜻𝑻 ; 
      combined model 𝜻 ; 

1. For 𝒕 𝟏, 𝟐, . . . , 𝑻 do  
2.     𝒉𝒕 𝜻𝒕 𝑫  ; 
3. End for 

4. 𝑫 ∅ 
5. For 𝒊 𝟏, 𝟐, . . . , 𝒏 do 
6.     For 𝒕 𝟏, 𝟐, . . . , 𝑻 do 
7.   𝒛𝒊𝒕 𝒉𝒕 𝒙𝒊  ; 
8. End for 
9.      𝑫 𝑫 ∪ 𝒛𝒊𝟏, 𝒛𝒊𝟐, . . . , 𝒛𝒊𝑻 , 𝒚𝒊  ; 

10. End for 

11. 𝒉 𝜻 𝑫  
     Output: 𝑯 𝒙 𝒉 𝒉𝟏 𝒙 , 𝒉𝟐 𝒙 , . . . , 𝒉𝑻 𝒙  

3. Results 

3.1. Training details 

3.1.1. Experimental settings 

In this study, we built the experimental environment using a PyTorch 1.6 framework, using the 
library of Transfomers to load the pretrained models. The training set described in Section 2.2 was 
used to fine-tune the stacking-BERT model, wherein most model hyperparameters were the same as 
those saved in the pretrained model; we tuned the batch_size with 32 and fixed the max_sequence 
length with 128. In order to get the best result, we set learning rates of 1e-5, 2e-5 and 5e-5, respectively, 
for each model in the training process and tuned the number of training epochs from 1–10; finally, we 
saved the best performance for each model. The final hyperparameters of the four base ranking models 
are shown in Table 3. For the logistic regression model, we used the default parameters of sklearn [33]. 

Table 3. Hyperparameters of base ranking models. 

Models Learning rate Epoch Batch_size Max_sequence 
BERTbase-chinese 2e-5 4 32 128 
RoBERTalarge-pair 1e-5 3 32 128 
Siamese-BERTbase-chinese 2e-5 4 32 128 
Siamese-RoBERTalarge-pair 1e-5 5 32 128 

3.1.2. Adversarial training 

Adversarial training is the process of training a model to correctly classify both unmodified 
examples and adversarial examples. Adversarial training has been widely applied and achieved good 
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generalization performance on image classification tasks. Miyato et al. [34] extended these techniques 
to text classification tasks and sequence models by applying perturbations to the word embeddings in 
a recurrent neural network; the proposed method achieved state-of-the-art results on multiple 
benchmark semi-supervised and purely supervised text classification tasks. Furthermore, Madry et 
al. [35] proposed the projected gradient descent (PGD) method to improve the perturbations to the 
word embedding, their MNIST and CIFAR10 networks based on the PGD achieved good performance 
in response to a broad set of attacks.  

To improve robustness and the generalization ability of concept ranking models, we added the 
adversarial training to the process of model training. Instead of interfering with the original input 
sample itself, adversarial training feeds the adversarial samples to the model by adding some small 
perturbations to the word vector of the embedded layer. Generally, the optimization function of 
adversarial training can be represented as follows [35]:  

𝑀𝑖𝑛𝐸 , 𝑚𝑎𝑥
∈

𝐿 𝜃, 𝑥 𝑟 , 𝑦                                                       (6) 

The part of max () means that we need to find a set of adversarial samples that maximize loss in 
the sample space; the part of min () means that, when faced with the adversarial sample set of such a 
data distribution, we should minimize the expected loss of the model on the adversarial sample set by 
updating model parameter, where 𝑟  means the perturbations on input 𝑥. 

PGD obtains adversarial examples by multi-step variant fast gradient sign attack (FGSM). With the 
initialization word embedding 𝑥 𝑥, the perturbed data in the t-th step 𝑥  can be expressed as follows: 

𝑥 ∏ 𝑥 𝛼
∨ ∨

                                                           (7) 

𝑔 𝑥 𝛻 𝐿 𝑥 , 𝑦, 𝜃                                                                 (8) 

where 𝑠 𝑟 ∈ 𝑅 : ‖𝑟‖ 𝜀  denotes the projection of perturbations into the set 𝑠, 𝛼 is the step size, 𝐿 
is the loss function, the meaning of 𝛻  is to take the partial derivatives. The algorithm of PGD in the 
training process is described as shown in Table 4. 

Table 4. Adversarial training process for PGD. 

Algorithm 1: Adversarial training process for PGD 
Input: Initialization word embedding x of input data, perturbation accumulation steps 𝑲 
1. Compute the forward loss of 𝒙, then compute the gard of backward 𝒈 𝒙 , backing up the initial 

embedding; 
2. for t in range(𝑲): (𝒕 starts at 1) 
3.    Compute adversarial perturbation 𝒓𝒂𝒅𝒗 by the grad of the embedding, add 𝒓𝒂𝒅𝒗 to the current 

embedding, which is represented as 𝒙𝒕; 
4.    if 𝒕! 𝑲: 
5.       Zero the grad, then compute the forward loss and of 𝒙𝒕 in Step 3, then compute the 

𝒈𝒓𝒂𝒅𝒂𝒅𝒗 of backward; 
6.    else: 
7.       Restore the 𝒈 𝒙𝟎  of Step1, then compute the last forward loss of 𝒙𝒕 in Step 3, then 

compute the 𝒈𝒓𝒂𝒅𝒂𝒅𝒗 of backward 𝒈 𝒙𝒕  and add it to 𝒈 𝒙𝟎 ; 
8. Restore the embedding to the value of Step 1;  
9. Update the parameters according to the grad of Step 7. 
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3.2. Evaluation metrics 

We evaluated the performance of different entity normalization algorithms in terms of the 
evaluation metrics provided by the CHIP2019 organizer [19]. For each original entity 𝑒 , 𝑖 ∈ 1, 𝑘  
which has been manually annotated to 𝑁 concepts in the test dataset, assuming the model outputs 𝑀 
concepts for 𝑒 , 𝑁 and 𝑀 are a set of concepts and the score 𝑆 of the model is calculated as 

𝑆 ∩

,
                                                           (9) 

𝑆 ∑ 𝑆                                                                      (10) 

3.3. Evaluation results 

3.3.1. Comparisons with other different models 

Several unsupervised and deep learning models were selected as baseline methods in this paper:  
• Metric_LCS [36] method. Longest common subsequence (LCS) finds the subsequences of two 

given sequences, which appear in the same order in the two sequences but need not be continuous; it 
is often used as the unsupervised method for text matching and to measure the literal similarity of 
strings. We used the Metric_LCS method to measure the literal similarity of entities and concepts, and 
then found the most similar concept as the standardized result. 

• BM25 [20]. This is the most popular algorithm to calculate the query and document similarity 
score in the field of information indexing; we used the same method introduced in Section 2.2.3 and 
chose the top 1 candidate concept as the final result of this method. 

• Bert-as-service [37]. The bert-as-service system uses BERT as a sentence encoder and hosts it 
as a service via ZeroMQ, mapping a variable-length sentence to a fixed-length vector using the BERT 
model. We used the bert-as-service system to calculate the sentence vectors of all entities and concepts, 
and then used cosine similarity to find the best matching concept for each entity. 

• CNN-ranking model [7]. It was the best deep learning-based system to date on both the 
ShARe/CLEF and NCBI datasets. Since the language of data were different, we could not completely 
reconstruct the KBs as used but not released in Li et al.’s work; we just reimplemented the system in 
our data and used the same settings as described in their paper.  

• Siamese Bi-LSTM model [24]. This model significantly has outperformed other models on web 
document retrieval tasks. Because the tasks and datasets are different, we just reimplemented the 
system in our data and used the same settings as described in their paper. 

• BIOSYN model [15]. The BIOSYN model outperformed previous state-of-the-art models on 
four biomedical entity normalization datasets having three different entity types (disease, chemical, 
adverse reaction). We used the same method of sparse representation and the same settings described 
in their paper. However, the BioBERT model was replaced with the BERTbase-chinese model because the 
BioBERT model was pretrained by an English corpus. 

Table 5 shows the performance comparisons for different models. Compared with other methods, 
our stacking-BERT fusion clinical entity normalization system achieved the highest accuracy of 93.1% 
on the CHIP2019 test set. Respectively, all deep learning methods achieved better results than the 
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unsupervised methods. The BIOSYN model performed better than other deep learning models. For 
three unsupervised models, the bert-as-service system performed better, as the accuracy was improved 
by at least 10% as compared to Metric_LCS. It can be seen that pretrained models based on large-scale 
corpora can play an important role in both supervised and unsupervised methods. 

Table 5. Comparisons of different models for Chinese clinical entity normalization. 

Models Accuracy  
Metric_LCS 51.24% 
Bm 25 62.57% 
bert-as-servicebase-chinese 71.33% 
CNN-ranking model [9] 86.7% 
Siamese Bi-LSTM [20] 85.12% 
BIOSYN 91.31% 
Stacking-BERT 93.1%

*Note: The bold values denote the highest values 

3.3.2. Comparisons of ensemble models 

In order to verify the effectiveness of the stacking model proposed in this work, we compared it 
with different ensemble models. Two ensemble models named Voting-BERThard and Voting-BERTsoft 
were obtained by fusing four BERT-based classifiers with a hard voting mechanism and soft voting 
mechanism, respectively [38]. From the performance shown in Table 6, we can find that 1)  the 
ensemble model based on the stacking method performed better than voting methods; 2) compared 
with the single BERT-based ranking model, multi-model fusion can achieve a better result; 3) each 
BERT-based ranking model achieved a good result, i.e., the accuracy of each model was above 90%, 
and the result showed that the supervised learning model which fine-tuned with domain data was 
significantly better than that of unsupervised learning; 4) compared to the Siamese-BERT model with 
a structure of twin towers, the result of the BERT-based model was better; and 5) in the models with 
different structures, the pretrained model BERTbase-chinese had achieved a better result than 
RoBERTalarge-pair, but the difference between the results was smaller. 

Table 6. Comparison of ensemble models. 

Models Accuracy without PGD Accuracy with PGD 
Stacking-BERT 91.73% 93.1%  
Voting-BERTsoft 91.66% 92.98% 
Voting-BERThard 91.3% 92.11% 
BERT-based 91.31% 92.05% 
RoBERTa-based 91.15% 91.79% 
Siamese-BERT 90.7% 91.51% 
Siamese-RoBERTa 90.26% 91.33% 

*Note: The bold denotes the highest value; PGD: adversarial training method used in this paper 
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3.3.3. Effect of adversarial training 

Table 6 shows that, regardless of whether it was our stacking-BERT model or other ranking 
models, adversarial training based on the PGD algorithm could effectively improve the effect of the 
model. When PGD adversarial training was added to the training process, the accuracy of the BERT-
based model was even higher than that of the stacking model without PGD (92.05% vs. 91.73%). 

3.3.4. Effect of EDA 

Table 7 shows the results of our stacking-BERT model using different training data. D0 refers to 
the 8000 positive samples in the training data, D1, D2 and D3 respectively refer to the positive examples 
generated by the three methods introduced in Section 2.2.2. The results show that the negative 
examples generated by BM25 were much better than that randomly selected; in the case of identical 
positive samples, the accuracy improved by 22.8%. In addition, we validated the effects of different 
data augmentation methods through ablation experiments. By comparing the results of four 
experiments, it can be seen that three data augmentation methods all played a certain role in improving 
the effect of the model. Particularly, the positive samples supplemented by SNOMED CT were most 
effective, as the accuracy stabilized at more than 92% when we used the supplementary positive samples. 

Table 7. Comparisons of different training data types used in our stacking-BERT model. 

Training data 
Accuracy of stacking-BERT model 

Positive examples Negative examples 

D0 + D1 + D2 + D3 Top 20 candidate concepts (randomly) 70.12% 
D0 Top 20 candidate concepts (bm25) 91.33% 
D0 + D1 + D2 Top 20 candidate concepts (bm25) 91.56% 
D0 + D1 + D3 Top 20 candidate concepts (bm25) 92.8% 
D0 + D2 + D3 Top 20 candidate concepts (bm25) 92.44% 
D0 + D1 + D2 + D3 Top 20 candidate concepts (bm25) 93.1% 

*Note: The bold denotes the highest value 

3.3.5. Effect of candidate concept generation 

As described in Section 2.3, we adopted a BM25 algorithm to generate candidate concepts. 
Figure 6 reports the number of candidates per entity and the rate of standard entity recall for the 
candidate sets that were conducted using two types of strategies. The line “(total)” means the recall of 
candidate concepts in all test sets, while the line “(1 to 1)” only calculates the recall rate of samples 
which one entity linked to one concept. For the traditional information retrieval model BM25, to which 
we applied three indexes, the top 20 candidates were retrieved for each entity and a recall of 99.6% 
was obtained for one-to-one samples. When the number of candidate concepts was the same, the recall 
rate of the BM25 algorithm was higher than the bert-as-service system, which proves that our method 
is more efficient. 
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Figure 6. Comparisons of different methods of candidate concept generation. 

4. Discussion 

As shown in the results, the performance of the stacking-BERT model was better than that of 
other deep learning models. Stacking models can make full use of the learning ability of base classifiers 
and further improve the classification effect without increasing the complexity of a single model, or 
the amount of training data. The combination of classification models with different structures and 
pretrained models can produce better results. BERT can learn deeper semantic features through the 
mechanism of multi-head attention based on the transformer. At the same time, it used the task of next 
sentence prediction as the training goal and trained the language representation together with the mask 
language model. This design was used to capture the relationship between sentences, which was 
conducive to the application of pretrained general representation in text matching and other tasks. 
Second, the BERT pretraining models were all based on large-scale Chinese text corpus like wiki; they 
fully learned the grammatical features of Chinese words and phrases. Therefore, BERT-based models 
proved to be effective for Chinese clinical entity normalization tasks.  

However, the differences between four ranking models were not quite as large, and the BERT-
based models performed better than the Siamese-BERT models. Note that the Siamese-BERT 
framework was not optimal for sentence pairwise classification. It used a bi-encoder that mapped 
sentences independently to sentence embeddings. For classification, the classifier would take these 
two embeddings and derive a label. On the other side, BERT used a cross-encoder, which meant that 
both sentences were present at input time, and BERT compared the two inputs to derive the labels 
which gave much better classification results.  

The quality of the training dataset had a close relationship with the results of the model. 
Particularly, the generation of negative examples was very important. Negative examples generated 
by BM25 were hard samples for the model, and more detailed differences could be learned through 
hard similar samples to improve the discrimination ability of the model. For the three data 
augmentation methods for the positive samples, the external clinical terminology supplement in the 
same domain was the most effective method. Using a transitive extension can make the model learn 
more similar information; using a symmetric extension to exchange the position of text pairs will 
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change the position encoding so that the model can observe the similarity of the two texts from 
different angles. 

Candidate concept generation needs to consider both the recall rate and data scale. The BM25 
retrieval method based on a triple index proposed in this paper has been proved to be simple and 
effective. But, there is also a drawback, because our dataset had cases that one entity linked to multiple 
standard concepts in the CHIP2019 dataset; the candidate concept generation recall rate for the total 
test data did not reach 100%; thus, the concept ranking model could not find the correct concept. 
Deep generative models will be considered in the future to improve the recall rate of candidate 
concept generation. 

There were a lot of concepts with high similarity and redundant components in the original words 
of procedure in the data, and these will cause interference in the model in the process of training and 
prediction. The adoption of PGD confrontation training can improve the robustness of the model 
response to confrontation samples. However, a PGD algorithm will increase our training time, and it 
was not suitable for large-scale datasets. 

In our experiment, an entity in the test set may be linked to one or more concepts; the statistics 
show that our multi-model fusion system had a normalization accuracy of 96.48% for single mapping 
and 25.86% for multiple mapping. For the clinical entity standardization task of CHIP2019, the 
average score of all participating teams was 79.75%; the first ranked team constructed a ranking system 
of implication scores based on BERT and applied the best fine-tuning to the quantity prediction module, 
finally achieving an effective result of 94.83%; the final performance of our model was second only 
to the Top 1 team [19]. The analysis of the experimental results shows that our model needs to be 
improved in two aspects. On the one hand, our model had poor ability to predict the number of concepts; 
using a manual rule or deep learning model to predict the number of concepts will be the way to 
improve our methods in the future. On the  other hand, although we have dealt with common 
abbreviations in the data preprocessing stage, the normalization performance of new entities with 
professional abbreviations was still not ideal; for example, the entity mention “VVI 心脏起搏器植入

术(Cardiac pacemaker implantation)” was predicted as the normalized concept “心脏起搏器置入术

(Cardiac pacemaker implantation)” by our model, but the correct concept is “单腔永久起搏器置入

术”. The key to solving this problem is relying on a large number of medical professional KB. 

5. Conclusions 

A system that can automatically encode clinician-entered terms into ICD codes with high 
accuracy is of great importance to hospitals in China. It will not only save cost and time for clinical 
coding processes, but also improve the standardization of clinical data in China. In this paper, we 
proposed a stacking-BERT model for Chinese clinical entity normalization tasks which investigated 
the effectiveness of different BERT models. Our experiment proved that BERT-based normalization 
models outperformed some similarity-based methods; using the sentence-pair classification task of the 
original BERT architecture and the pre-trained model of Chinese can lead to satisfactory performance. 
In addition, we found that the tricks of adversarial training and EDA can effectively improve the effect 
of the deep learning model for small samples. However, our study lacks in-depth mining of Chinese 
clinical entity characteristics, so we are exploring the use of HowNet Sense and Lattice Graph to 
calculate the similarity of clinical entities.  
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