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Abstract: Applying machine learning techniques to electrocardiography and photoplethysmography 
signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood 
pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms 
are inevitably affected by motion and noise artifacts, so established machine learning architectures 
perform poorly when trained on data of the Multiparameter Intelligent Monitoring in Intensive Care II 
type, a publicly available ICU database. Our study addresses this problem by applying four well-
established machine learning methods, i.e., random forest regression, support vector regression, 
Adaboost regression and artificial neural networks, to a small, self-sampled electrocardiography-
photoplethysmography dataset (n = 54) to improve the robustness of machine learning to real-world 
BP estimates. We evaluated the performance using a selection of optimal feature morphologies of 
waveforms by using pulse arrival time, morphological and frequency photoplethysmography 
parameters and heart rate variability as characterization data. On the basis of the root mean square 
error and mean absolute error, our study showed that support vector regression gave the best 
performance for blood pressure estimation from noisy data, achieving an mean absolute error of 6.97 
mmHg, which meets the level C criteria set by the British Hypertension Society. We demonstrate that 
ambulatory electrocardiography- photoplethysmography signals acquired by mobile discrete devices 
can be used to estimate blood pressure. 

Keywords: non-occluding blood pressure; noisy data; machine learning; photoplethysmography; 
electrocardiography 
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1. Introduction  

Elevated blood pressure (BP) is known as hypertension, and it is a major healthcare burden as a major 
contributor to cardiovascular disease [1]; it is also a leading cause of heart disease and stroke [2,3]. 
Hypertension is a silent killer that can silently damage a person’s body for years before symptoms 
appear. Uncontrolled high BP can lead to disability, a poor quality of life or even a fatal stroke or heart 
attack. Regular and frequent measurement of BP is essential for management of the condition and to 
ensure that appropriate therapeutic measures are taken to reduce the risk of life-threatening 
complications. 

A systolic blood pressure (SBP) greater than 140 mmHg and a diastolic blood pressure (DBP) 
greater than 90 mmHg is termed hypertension [4]. In the traditional brachial cuff method of measuring 
BP, a cuff is applied to the arm to block blood flow in the brachial artery, whereas a variation of the 
auscultatory method or oscillometric method is used to derive SBP and DBP. However, in the 
continuous measurement of BP, the repeated squeezing of the upper arm by the cuff is uncomfortable 
for the subject, so the conventional brachial cuff method for ambulatory BP monitoring has low 
compliance. 

There is an ongoing clinical need for less invasive methods for continuous measurement of BP. 
Continuous measurement of BP without a cuff is an ongoing medical and scientific endeavor [5,6]. 

1.1. Background of electrocardiography-photoplethysmography based BP estimation 

Among the many methods developed for non-occlusive BP monitoring, electrocardiography 
(ECG)-and photoplethysmography (PPG)-based techniques have been studied extensively because of 
the relatively unobtrusive acquisition of ECG and PPG signals in a single individual [7–9]. In the clinic, 
ECG is the gold standard for diagnosing cardiovascular electrical activity. 

A single-lead ECG can be recorded in a person with two electrodes placed laterally over the heart. 
ECG acquisition is versatile and can be performed with wet Ag-AgCl electrodes on the skin or with 
the dry metal contacts of a wearable. The PPG signal, on the other hand, is a hemodynamic bio-optical 
measurement of blood volume obtained from the attenuation of transmitted or reflected light due to 
the spectral absorption of pulsatile blood flow in the region. PPG signals are usually acquired at an 
extremity, such as the fingertip [10] or wrist, and they are an important waveform for pulse oximetry 
and numerous other patient monitoring metrics [11,12]. 

The electrical activity of the heart produces the characteristic ECG waveform in which the QRS 
peak indicates contractile activity of the ventricle. This is called systole, and blood is pumped out of 
the heart into the vascular system. When the blood pulse reaches the extremity where the PPG sensor 
is located, the attenuation of the light produces the characteristic PPG waveform. 

When measured simultaneously, the time difference between the peak of the QRS wave and the 
systolic peak of the PPG waveform is known as the pulse arrival time (PAT). Figure 1 represents a 
coalesced sampling of 30 seconds of ECG and PPG signals with identified ECG and PPG pulse peaks 
from an individual that was used to determine the PAT. 
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Figure 1. When ECG and PPG signals are synchronized for 30 seconds, the 
result is a mean-value PAT, as indicated by the time difference between the R 
peak of the ECG and the systolic peak of the corresponding PPG. 

The relationship between PAT and BP has been evidenced by independent researchers [13–16], 
and the ECG-PPG approach has permitted a feasible way to determine non-occlusive BP due to the 
relative ease and non-invasiveness of acquiring ECG and PPG signals from an individual. 

However, the parameter PAT alone is inadequate as a linear relationship to BP [17], in part because 
of the complex non-Newtonian hemorheological behavior of blood [18], the viscoelastic properties of 
blood vessels [19–23], i.e., they flex and contract with each heartbeat [24] and the fact that the 
inclusion of the pre-ejection period (PEP) adds an indeterminate variable [25]. The arterial 
distensibility or stiffness resists the pressure exerted on the vessel walls by the pulsatile, circulating 
blood. The nonlinear hemodynamic properties of the cardiovascular network and the viscoelastic 
properties of blood [26] contribute directly to the effects on BP. 

Although the hemomechanical effects of arterial properties on BP are well known, the 
physiological influence on the beat-to-beat relationship BP is largely averaged and reduced in 
significance so that, by applying machine learning or deep learning to ECG-PPG and its constituent 
morphologies, BP can be estimated with a reasonable degree of high accuracy [27–36]. 

The recent popularity of smartwatches and fitness trackers with bio-monitoring capabilities has 
also enabled a convenient way for the biosignals to be obtained in daily life [37,38], thereby reinforcing 
the direction of BP monitoring with ECG-PPG machine learning approaches. 

Thus, it is important to acknowledge that just the PAT and feature extraction of pulse 
morphologies alone will not yield clinically acceptable BP values, and that further work is required for 
acceptance of machine learning-based BP estimation in a healthcare environment. 

1.2. Limitations of machine learning/deep learnings on ECG-PPG approaches 

Conventional machine learnings and unsupervised deep learning approaches applied to feature 
sets extracted from ECG and PPG signals to predict BP are well established in literature [29,31–35]. 
Despite the various machine learning models and techniques proposed, the majority of the current 
research relies on large publicly available datasets such as the Multi-Parameter Intelligent Monitoring in 
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Intensive Care (MIMIC-II) [39] or PhysioNet datasets [40], which are acquired from intensive care unit 
(ICU) patient monitors and include the required ECG, PPG and BP data, among others.  

From the same dataset, the application of different machine learning approaches leads to different 
results [41]. The best-performing recent studies almost always implemented deep learning [34,35]. 
Recent studies using convolutional neural networks (CNNs) with long short-term memory (CNN-
LSTM) [42], repetitive neural networks with long-short term memory (LSTM) [43] and artificial 
neural networks (ANNs) with LSTM [8] achieved very accurate predictions, with mean absolute 
differences of less than 2 mmHg.  

Although the performance is impressive, the calculation was based on “clean” ECG and PPG 
waveforms from a patient monitor in the ICU, where patients are often immobile or unconscious; hence, 
the long time series recorded are not affected by motion artifacts. While this is advantageous for 
LSTM-type deep learnings, which are best suited for longitudinal and time-series data, this is not the 
case in a real-world setting where input datasets from wearables may contain short sporadic sequences 
recorded for each subject, as LSTM and any time-series analysis approach perform poorly on 
disjointed or sporadic data. Table 1 summarizes the drawbacks of the deep learning methods in a real-
world setting. 

Table 1. Disadvantages of unsupervised deep learning models in real-world BP estimation. 

Too “clean” Too “slow” 

 The datasets are almost always acquired 
from “clean” clinical sources or patient 
monitors, where biosignals are free of 
motion and other corrupting artifacts. 

 The neural network models are heavily 
dependent and require training from a large 
dataset that researchers acquire from large-
domain open-source databases such as 
MIMIC-II or PhysioNet.  

 Unsupervised neural networks with “black-
box” architectures will face challenges in 
acquiring necessary regulatory approval, 
even in the De-Novo regulatory pathway 
with the Food and Drug Administration 
(FDA), due to low explainability of the 
model 

 The neural networks are extremely 
computationally intensive, often requiring 
high-performance computing; thus, they are 
unsuitable when battery life is limited. 

In CNNs, the main problem is that the neural network architecture is a black box, which translates 
into low explainability. As more layers are added, the network becomes more complex, and it becomes 
increasingly difficult to understand how and why the deep learning model produces a particular 
estimate. Since the regression task is a healthcare domain that potentially supports medical decisions, 
low explainability is not desirable, despite the low mean absolute error (MAE). For this reason, 
explanatory power is often overlooked as an important factor when evaluating and selecting machine 
learning models. In addition, convolutional-type neural networks have high computational costs and 
may not be suitable for edge computing or wearable applications where battery power availability is 
limited. 

Despite reports of the superiority of deep learning methods over traditional machine learning 
approaches in estimating BP from ECG-PPG data obtained from MIMIC-II, the same techniques 
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perform far worse than traditional machine learnings on small datasets or signals obtained from mobile 
ambulatory subjects. 

When signals are acquired from real biomonitoring devices or smart wearables, ECG/PPG 
waveforms are often corrupted by motion and noise artifacts. There is an urgent need to resort to 
supervised machine learning methods whose architecture and solution results are predictable, 
repeatable and flexible enough to be trained with a smaller dataset. Although many efforts have been 
made to suppress these artifacts, the elimination of random noise remains a very difficult task. Relying 
on clinically acquired signals from biomedical databases is not representative of real signals that are 
affected by artifacts. 

While simple models are preferred to fit small datasets, linear regression and other very simple 
machine learning models are also inappropriate because they are generally unable to detect the 
nonlinear relationship between PPG morphological features and BP. This is critical for estimating BP 
because the morphological PPG features make up the largest portion of the feature set, and failure to 
identify the relationship can result in these features being redundant or even negatively impacting 
performance.  

In this work, a small dataset of 54 subjects with imperfect ECG and PPG waveforms was self-
selected and a corresponding BP was recorded and trained. The goal was to compare different machine 
learning models and develop an optimal approach for BP estimation, including preprocessing, feature 
extraction, feature selection, an optimal machine learning model and hyperparameter tuning. 

Although the dataset is relatively small, more features were selected to compensate for this (24 
features), which allowed slightly more complex models, such as support vector regression (SVR) and 
artificial neural network (ANN) models with a hidden layer. 

To the best of our knowledge, few studies have intentionally applied training to a dataset with 
imperfect biosignal waveforms that are more consistent and representative of real-world conditions. 
When the PPG waveform is acquired, it contains numerous morphologies that are poorly discernible 
and not automatically flagged for the reference points to be identified; these essentially constitute 
artifact-like noise that could result from minute movements caused by the subject's breathing when the 
finger is placed on the PPG sensor. 

Finger pressure on the sensor causes amplitude and baseline changes that can be observed 
throughout the data acquisition. This is a key difference between a self-collected dataset and a 
clinically acquired "clean" dataset from databases such as MIMIC-II. Because the models from 
machine learning recognize patterns from the training dataset and make the final prediction based on 
the learned patterns, using imperfect waveforms as the training dataset can lead to more robust 
prediction even when noise and motion artifacts are present in the input signals. 

2. Materials and methods 

2.1. ECG-PPG acquisition device 

The Maxim Integrated MAX86150 chip was used for the implementation of PPG and ECG 
because the solution had built-in discrete LED drivers, an internal LED illuminator, an embedded 
photodiode sensor and specific discrete transimpedance op-amp filters with ambient light rejection and 
amplifiers with programmable gain Analog to Digital Converter and an ECG analog front-end. It is a 
ready-to-use reflectance-type complete heart rate monitor and SpO2 biopotential measurement 
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solution capable of synchronized PPG and ECG measurements with digital I2C output directly to an 
ARM Cortex-M4 microcontroller (Maxim MAX32630); the team also built a protective enclosure 
around the electronics to guide the participant’s finger onto the PPG sensor (see Figure 2). 

 

Figure 2. Labels A and B respectively show the top and bottom sections of the 
custom-designed protective enclosure for the electronics that was rapidly 
prototyped via additive manufacturing. C: Two prototype ECG-PPG data 
loggers completed for implementation in the study; the ECG wires were 
connected to wet electrodes when a study was conducted. 

The MAX86150 has low power consumption, which makes it suitable for battery-powered 
wearables, as well as a common mode rejection ratio of 136 dB; and, the ECG analog front-end can 
operate on dry electrode impedances without the need for a third electrode (right-leg drive). The device 
was built to stream data directly via Bluetooth to a Windows 10 laptop where they were recorded on a 
GUI script written in Python language. 

2.2. Signal acquisition 

The dataset collected consisted of information from 54 volunteer individuals (35 male, 19 female, 
aged 21–57 years); the ECG, PPG and BP data were recorded simultaneously for each person. 

A commercially available BP monitor (Omron Hem-7600T) attached to the participant's left upper 
arm was used for BP measurement, while ECG and PPG signals were obtained from 
MAX86150#VSYS software v2.4.01 by placing the participant's left index fingertip on a single PPG 
sensor and attaching two wet ECG electrodes to both wrists of the participant for ECG measurement 
(see Figure 3); ECG and PPG signals were recorded simultaneously for about 3 minutes at a sampling 
rate of 400 Hz, while the measurement of BP was repeated three times during the 3 minutes with a 1-
minute rest interval to allow blood to re-pool at the extremity after occlusion; for an individual with 
no cardiovascular history of stenosis or regurgitation, the PPG waveform was observed to return to 
expected amplitudes after several heartbeats. Table 2 describes the data acquisition protocol. 

The Omron BP was activated three times, i.e., at the beginning of the measurement, in the middle 
of the measurement and after the measurement, resulting in three sets of SBP and DBP for each 
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participant. Since BP is influenced by posture [44], all participants adopted a sitting position during 
the 5 minutes of measurement to maintain the consistency of data collection. A total of 3 minutes of 
ECG-PPG recordings were then acquired for analysis. 

 

Figure 3. A: Close up of the enclosed MAX86150-based ECG-PPG capture 
device designed by the authors; active operation of the device with a user’s 
finger on the device finger sensor window can be seen with the red LED 
illuminated. B: Typical seated posture during signal acquisition; white arrows 
denote the positions on electrodes and brachial sphygmomanometer on the 
participant’s left arm. 

Table 2. Data acquisition protocol. 

Time Activity 

0th minute 1st BP reading taken with the Omron HEM-7600T and takes ~20 seconds 
1st minute ECG-PPG recording for 1 minute 
2nd minute 2nd BP reading taken 
3rd – 4th minute 
5th minute 

ECG-PPG recording for 2 minutes 
3rd BP reading taken 

2.3. Signal processing 

The raw signals or ECG and PPG signals recorded for each participant were susceptible to many 
external factors, such as the pressure applied by the index finger on the PPG sensor and noise [45]. 
Since this work was aimed to work on “imperfect” waveforms, only some simple but necessary data 
cleaning was performed. 

The extent of data cleaning was such that feature extraction, e.g., peak detection, could be 
performed without major problems, e.g., double peaks in a single waveform. This step of finding the 
balance is critical to the accuracy and reliability of the results from machine learning. Although this 
work is based entirely on the self-collected small imperfect waveforms that correspond to the real 
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scenario, if the basic features of these signals (peaks and troughs) were not correctly identified, the 
machine learning models would learn illogical inputs, which would inevitably lead to poor 
performance. 

Given this trade-off, the data cleaning presented in this paper was simplified while still allowing 
sufficiently good identification of the features of biosignals, unlike many other studies that focused 
exclusively on achieving de-noised or artifact-suppressed waveforms. Figure 4 represents the stages 
of signal processing implemented upon acquisition of ECG-PPG signals. 

Upon signal acquisition, the ECG and PPG signals were MIN-MAX normalized so that they all 
had precisely the same scale and differences in scale. A simple illustration of PPG preprocessing is 
shown in Figure 5. 

 

Figure 4. Simplified overview of the signal processing stages in this work. 

 

Figure 5. A: Raw PPG, and B: filtered and processed PPG that has been 
normalized and inverted to reflect the correct morphological representation; 10 
heartbeats are represented, the amplitude values of which were normalized 
across the entire bandwidth of the recording in the Y axis, so they are unitless 
for visualization. 

Since the MAX86150 is a reflectance-type PPG sensor that captures attenuated reflected light, 
the normalized PPG signals would need to be inverted for accurate morphological representation. The 
normalized and inverted PPG signals were then further processed to capture the first and second 
derivatives, i.e., the photoplethysmography velocity (VPG) and photoplethysmography acceleration 
(APG) signals to be obtained [10]. ECG, PPG, VPG and APG data were then applied to the filters 
listed in Table 3 for waveform smoothing and high-frequency noise removal. 
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Table 3. Selected cut-off frequencies. 

Signal Filter Cutoff (Hz) 
ECG 5th order Low pass 20 
PPG 5th order Low pass 5 
VPG 
APG 

5th order Bandpass 
5th order Bandpass 

[0.5,18] 
[0.5,30] 

The low-pass filters applied to the ECG and PPG signals are to remove high-frequency noise 
above 5 Hz. After preprocessing, the 1-minute data from all signals were then selected from the original 3-
minute recordings based on the criteria of consistency of waveforms and detectability of basic features 
(P-QRS-T for ECG, peaks, troughs and dicrotic notch for PPG). 

Using the normalized ECG and PPG time-synchronized signals, the PAT was then acquired 
(Figure 6). One-minute durations of data were selected for each subject to avoid repetitive waveforms 
causing additional computational costs during extraction of the features of each waveform. 

 

Figure 6. Detected ECG QRS peaks denoted by blue dotted lines and PPG 
pulse peaks denoted by red dotted lines; the signal acquisition time has been 
synchronized; the distance between the blue and red dotted lines is the PAT. 

2.3.1. PPG morphological features 

Numerous studies have proposed many different combinations from more than 107 PPG 
morphological features [10,31,32]. Before extracting these features, each PPG signal was tagged with 
some of the basic features. The annotation of labels was done automatically based on the represented 
parameters of the PPG signal. Only four main essential features of the PPG waveform were required 
and extracted for a section of the algorithm. They included the systolic peak, trough, dicrotic notch 
and diastolic peak. Figure 7 shows systolic peaks, diastolic peaks, dicrotic notches and troughs that 
were located for each waveform and have been identified and labeled based on their reference to the 
neighboring feature. The features were obtained by using Python package HeartPy [46]. 
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Figure 7. Labeled PPG. Red: Systolic peaks; Brown: Diastolic peaks; Blue: 
Dicrotic notch, Black: Pulse foot troughs. 

The features included the frequency and time domains, statistical and demographic characteristics 
and features from the first and second derived PPG signals. The 45 features containing cardiovascular 
information that can be extracted for each cardiac cycle or waveform and then identified and divided 
into three parts: ECG-PPG time differences, heart rate variability (HRV) and PPG morphological 
features, and each of them is supported by physiological relevance. Each feature was then evaluated 
for its physiological association with BP, and, finally, 24 features were selected as input to the proposed 
machine learning models [28]. 

Numerous features can be extracted from the labeled PPG data, but too many features as input to 
machine learning models will not produce more accurate results. Instead, overfitting is likely to occur, 
i.e., the model learns too much detail and variation in the training data and is therefore less amenable 
to fitting an additional dataset, resulting in poor model performance. Using the data shown in Figure 7, we 
further processed the waveform to generate Figure 8 as a spatially layered labeled PPG plot with black 
dots labeling the pulse start and end troughs, red dots for the systolic peaks, brown dots for the diastolic 
peaks and blue dots for the dicrotic notches. The pulse duration variability can be clearly seen for each 
pulse wavelet when the starting pulse foot is pinned at t = 0. This process is important when using each 
ECG-PPG data window to acquire the PAT. 

 

Figure 8. Labeled PPG data that have been normalized and pulse-foot pinned 
to t = 0 for a single individual; the labeled systolic peaks are in red, the dicrotic 
notches are in blue, the diastolic peaks are in brown and the pulse troughs are 
denoted by black points. 
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Past studies suggested feature-ranking methods, including manually selecting PPG morphological 
features using physiological theory [47], statistical analysis methods such as variance selection [48] 
and the use of simple machine learning models such as random forest (RF) and k-nearest neighbor 
models [29,31]. Ten morphological PPG features were selected by applying a feature-ranking method. 

We applied theoretical analysis by selecting the simpler and more accurately detected features, 
because the waveforms were not perfect and more complex features would potentially affect 
robustness. In addition, feature-identification methods involving machine learning algorithms could 
lead to unexplained results, such as RF feature selection, which tends to select uninformative 
features for node partitioning [49]. 

2.3.2. VPG and APG morphological features 

VPG is the 1st derivative of PPG, and the 2nd derivative of PPG is known as the APG [10]. For 
detection of the systolic peaks and troughs of PPG signals, the gradients or slopes of the 1st-derivative 
PPG whenever it intersects the point (y = 0) were located as shown in Figure 9A. At the intersection 
point, a positive gradient or increasing slope suggests a positive change in the direction of the PPG 
wave, while a negative gradient or decreasing slope implies a negative change in the direction of the 
PPG wave. Thereafter, the steepness of the change in direction can be obtained from the magnitude of 
the gradients. 

For VPG data, four characteristic points have been proposed [50], as can be seen in the single 
VPG waveform in Figure 9B. However, since the self-collected PPG signals had imperfect waveforms, 
one feature, namely, the first local minima (x), was not observable in each waveform. Therefore, only 
three features were selected in a single VPG waveform, namely, the global maxima (w), global minima 
(y) and local maxima after the global minima (z). 

 

Figure 9. A: 0th-order PPG data were first analyzed for the detection of PPG 
peaks (systolic peaks) and troughs. B: 1st derivative of the PPG; a VPG 
waveform showing accepted and rejected intersection points from the 1st 
derivative of the PPG waveform. 
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By identifying the steepness of the changes in direction of the PPG waves, the systolic peaks and 
troughs were easily extracted where the points were only accepted if they were either less than the 
mean negative gradient or greater than the mean positive gradient for systolic peaks and troughs, 
respectively. Otherwise, the wavelets were rejected due to low gradient steepness. 

For APG data, five characteristic points were implemented: global maxima (a), global minima 
(b), local maxima (c), local minima (d) and the nearest local maxima after d (e). These features are 
similarly labeled in Figure 6 (left), but only a and b can be identified in all APG waveforms. Figure 10 
represents the ECG, PPG, VPG and APG data with the identified feature points on the waveforms. 

The final selected PPG morphological features are included in Table 4, along with all other 
features, with a brief description for each. From an individual’s 1-minute PPG data, the first three 
waveforms were selected for feature extraction and the average of these waveforms was used as input 
to machine learning. It was assumed that, after manual selection of the 1-minute waveforms, as described 
in Section 2.2, the first three individual waveforms in each 1-minute PPG recording would be consistent 
and sufficient to represent the person’s entire PPG data span. 

Because fewer traits were selected in this study than in many other studies based on the remaining 
VPG and APG traits, the performance of the machine learning models differed. However, by using 
only features that were uniquely and accurately detected on each waveform (w, y, z for VPG and a, b 
for APG), the robustness of the machine learning models was increased [31], and this was in line with 
the aim of this work, which was to increase the robustness of BP estimation under real-world conditions. 

 

Figure 10. VPG and APG waveforms. VPG waveform with w, x, y and z all 
observable (left), and VPG waveform with only w, y and z observable. APG 
waveform with a, b, c, d and e all observable, and APG waveform with only a 
and b observable. 
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Table 4. Final feature set with 24 features. 

Features Definitions 

PAT 
Time difference between the peak of the ECG R wave and PPG systolic 
peak 

SDNN HRV subset; standard deviation of the PPG peak-to-peak (PP) intervals 

RMSSD HRV subset; root mean square of the successive differences (RMSSD) 

BPM Heart beats per minute 

Systolic Peak Amplitude Amplitude of systolic peak of PPG waveform 

Diastolic Peak Amplitude Amplitude of diastolic peak of PPG waveform 

Dicrotic Notch Amplitude Amplitude of dicrotic notch of PPG waveform 

Pulse Interval Time difference between two PPG waveforms 

Augmentation Index 
Ratio of diastolic peak amplitude to the corresponding systolic peak 
amplitude 

Systolic Peak Time 
Time difference between the start and the systolic peak of a single PPG 
waveform 

Diastolic Peak Time 
Time difference between the start and the diastolic peak of a single PPG 
waveform 

Dicrotic Notch Time 
Time difference between the start and the dicrotic notch of a single PPG 
waveform 

Time Between Systolic and 
Diastolic Peaks 

Time difference between the systolic peak and diastolic peak of a single 
PPG waveform 

w  Global maxima of VPG waveform 

Time to w Time difference between the start and w of a single VPG waveform 

y Global minima of VPG waveform 

Time to y Time difference between the start and y of a single VPG waveform 

z Local maxima of VPG waveform after y 

Time to z Time difference between the start and z of a single VPG waveform 

a Global maxima of APG waveform 

Time to a Time difference between the start and a of a single APG waveform 

b Global minima of APG waveform 

Time to b Time difference between the start and b of a single APG waveform 

b/a Ratio of b to the corresponding a 

2.3.3. HRV and PAT 

It is worth mentioning that, many studies used only the PAT [17] or only PPG morphological 
features [28,51,52]; however, we propose a feature set with three main categories: PAT, HRV features 
and PPG morphological features. The reason for having more categories of features instead of having 
more features in one category is that they each reflect different information [47], and we wanted to 
avoid overfitting. 
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The heart rate refers to the number of times the heart beats within a minute, while the changes in 
the time intervals between each successive heartbeat is HRV [53]. HRV is typically used for evaluation 
of general cardiac health, as well as the condition of the autonomic nervous system. It provides useful 
insight into the sympathetic-parasympathetic autonomic balance and, therefore, the potential risk of 
cardiovascular conditions. 

The remaining two parameters included in the feature set are HRV and the PAT components. In 
this case, a beat-to-beat time measurement was required for HRV (beat to beat between each R-R ECG 
peak) and the PAT (beat to beat between each ECG-PPG R-P peak).  

The RR interval (RRI) was derived from the intervals between peaks of two successive R waves 
of the QRS complex from the ECG, while the peak-peak interval (PPI) was derived from the intervals 
between two successive peaks of each PPG waveform [54,55]. Incidentally, the RRI is sometimes 
referred to as N-N intervals, which is derived from “normal” R peaks. Figure 11 represents how HRV 
can be extracted from ECG and PPG data respectively referred to as “RR-interval” and “PP-interval”. 

 

Figure 11. RR interval and PP interval. 

We acquired the PAT of each ECG-PPG pulse (see Figure 12), and each PAT value is now a 
contributing parameter to the input feature set. As discussed in Section 1.1, the PAT component 
alone is insufficient due to the PEP [25]; thus, HRV-related parameters are correlated with 
hypertension, such as the standard deviation of the interbeat intervals (SDNN) and RMSSD, which 
were found to be significantly lower in hypertensive individuals [56,57]. As such, the parameters 
SDNN and RMSSD were included in the feature set, as suggested by past research [56], to show the 
most significant change in the hypertensive subjects relative to the normotensive subjects and thus 
mitigate the PAT as a sole major component in BP estimation.  

Interestingly, both the HRV and PAT yielded very similar time-series morphologies and appeared 
to have similar variances due to the nature of the parameters. However, because HRV represents the 
electrical function of the heart and PAT includes the hemomechanical components of pulsatile blood 
flow in the extremities, the two values are not directly comparable, and were therefore used as two 
different input characteristics. 
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Figure 12. Labels A to C show three wavelets in a window of three consecutive 
heartbeats, showing our method to capture successive beat-to-beat PAT values 
for three ECG-PPG pulses. D: Plots of the PAT values over time for a specific 
subject’s data capture duration. 

2.4. Machine learning processing 

Previous work on BP estimation based on ECG-PPG data have also shown much promise, as is 
evidenced by the use of RF regression (RFR) [56], support vector machines [57,58], Adaboost 
regression (Adaboost-R) [16,58] and repetitive neural networks [43].  

A standard train/test split of 80/20 approach was applied to the collected data randomly to train 
the machine learnings under study and balance the challenges of parameter variance versus variance 
in predicted estimation performance. Because the collected dataset was small, we performed cross-
validation by randomly selecting a subset of the entire dataset in an 80/20 training/testing profile and 
determining the performance on each validation set. 

That is, a training set was applied to Subjects #1, #5, #8, #9... (44 data points) to train each 
identified machine learning model for RFR, SVR, Adaboost-R and ANNs, and the remaining 10 data 
points were then used to test the predictive performance of the trained dataset. In the next run, Subjects 
#1, #3, #6, #10, #11 (44 data points) were randomly trained. This was then repeated over a series of 
runs to determine that the variances in parameters and predictive performance would be consistent 
regardless of the training or test dataset selected. 

2.5. Ethics approval for research 

This research and related protocols were approved by the Institutional Review Board (NTU-IRB) 
of Nanyang Technological University (IRB-2020-07-005; ERMP amendment-Ver 18.0). Project Title: 
Investigate the feasibility of non-invasive PPG/ECG biosignals to estimate an individual's BP/BGL 
values. All participants provided written informed consent prior to data collection as part of the study. 

3. Results 

As discussed in Section 1.2 on the Limitations of machine learning/deep learnings on ECG-PPG 
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approaches, we chose to avoid recent deep learning methods, and instead chose machine learning 
models that have direct and linear explainability that could be expected to perform relatively well on 
a small dataset.  

After establishing the parameters and characteristics of the ECG-PPG data for training, as 
mentioned in the previous section, we identified and implemented four models: RFR, SVR, Adaboost-
R and ANN. Each regression model was evaluated by using the performance metrics MAE and root 
mean square error (RMSE). The MAE is the average magnitude of the difference between the predicted 
outcome and the actual measurement, and the RMSE is the square root of the root mean square error. 
The performance of each of the four proposed machine learning models is shown in Figure 13. 

 

Figure 13. A: RMSE between measured SBP and predicted SBP for each of 
the four investigated machine learning models; error bars represent standard 
deviation. B: MAE between measured SBP and predicted SBP for each of the 
four machine learning models. RMSE and MAE show that SVR had superior 
performance of the four. 

The results suggests that SVR was the best performing model in terms of MAE and RMSE, 
achieving an SBP MAE of 6.97 and RMSE of 8.15, while the ANN model was the worst performing 
model, with an MAE of 13.5 and RMSE of 15.8; the ranking of models according to the MAE 
matched that for the RMSE (ranking from the best- to the worst-performing model: SVR, AdaboostR, 
RFR, ANN). The obtained MAE can be compared with the British Hypertension Society (BHS) 
grading criteria [4,59]. 

By comparing the MAE results to the BHS grading criteria, as shown in Figure 13 and Table 5, 
only SVR matched the recommended grade of C, while others fell into a grade of D. As a reference to 
the final goal of implementing the algorithms on a wearable device, it must achieve a grade of at least 
B for SBP [60]. 

The mean rank for all 54 subjects was then calculated and obtained for the BP. For the SBP, the 
obtained p-value for all mean errors was 0.005207; therefore, the null hypothesis was rejected at α = 0.05. 
For the diastolic condition, the p-value obtained for all mean error values was 0.3273; thus, the null 
hypothesis was not rejected at α = 0.05. Both the SBP and DBP estimation from our method with SVR 
appeared to be within ±15 mmHg of the actual BP measured by a traditional Omron HEM-7600T 
brachial sphygmomanometer. The results are promising and shed light in the direction of non-occlusive 
continuous BP estimation. Figure 14 shows the estimated BP from the SVR-trained model versus the 
actual BP with errors consistent when BP is at the extreme values (lower and upper value). 
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Table 5. Grading criteria used by the BHS summarized into MAE and the corresponding grades. 

MAE (mmHg) BHS Recommended Grade 
<4 Grade A A 
4–5 Mostly Grade A, less in Grade B A 

5–6 
Mostly in Grade B, less in Grade A, extremely less in 
Grade C and Grade D 

B 

6–7 Mostly in Grade C, less in Grade B and Grade D C 
7 Worse than Grade C D (unacceptable) 

 

Figure 14. Performance of our SVR BP estimation model in comparison with 
the reference SBP (left) and DBP (right). Measured BP plotted against 
estimated BP for the test set; SBP and DBP show high linearity for the 
population tested. 

4. Discussion 

SVR uses a nonlinear mapping method to map the input features to a higher dimensional space 
using a kernel function. The kernel used here was the radial basis function. The main advantage of 
SVR is that it can model nonlinear relationships well. Given a large number of PPG morphological 
features that have nonlinear relationships with SBP, this model showed the best result in BP estimation 
(systolic).  

In this work, the RFR model was implemented with 100 trees and a maximum depth of five trees, 
but there is a difficult trade-off between training time (and space) and a larger number of trees. A larger 
number of trees can improve the accuracy of the prediction but increase the computational cost. If the 
number of weakly learning trees is too small, underfitting can easily occur; but, if it is too large, 
computational costs increase with diminishing returns. In addition, RFR may overfit on data with a lot 
of noise. Decision trees tend to overfit in prediction. RFs reduce the degree of overfitting by tuning, 
but their prediction is still subject to more overfitting than a linear model. On the other hand, Adaboost-
R is another popular ensemble method based on many decision trees (weak estimators); but, in 
Adaboost-R, weights are applied to the results of these decision trees. The weights vary so that the 
algorithm focuses on the training samples that are more difficult to estimate in the training process.  

ANNs constitute the only model that uses neural networks. Here, only a hidden layer was built 
for the neural networks to reduce the complexity. Neural networks are best able to handle complex 
tasks, especially when the dataset is large. Due to its iterative learning process for the relationship 
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between features and SBP, ANNs are suitable for dealing with nonlinear relationships when estimating 
BP. However, as expected, the ANN model performed the worst due to the small dataset, a well-known 
weakness of neural network methods. 

Of the four proposed models, only SVR met the Grade C BHS criteria, while the remaining 
models were not acceptable. This suggests that there are limitations in the methodology and dataset, 
as many other studies have reported a MAE of less than 3 mmHg [61].  

A drawback of using our self-collected dataset is that the data were not divided into different age 
groups due to the small number of subjects, although age has been suggested as an important factor in 
PPG morphology, especially for the dicrotic notch and inflection point due to lower arterial elasticity 
in the elderly [62].  

In feature selection, the contribution of each category (PAT, HRV, PPG morphology) to machine 
learning remained unknown. Further feature selection techniques can be explored to remove less 
informative features. Because there is a trade-off between explainability and informativeness in the 
selection of machine learning/deep learning as model complexity increases, this work did not determine 
the extent to which model complexity should increase, which may be the cause of the less desirable results. 

5. Conclusions 

In this study, a self-sampled dataset containing ECG, PPG and BP data was analyzed, along with 24 
multivariate-derived trait parameters identified as input parameters for the four specific machine 
learning methods (i.e., RFR, SVR, Adaboost-R and ANN). Performance evaluation of the four machine 
learning methods in our study shows that SVR performs best for BP estimation with noisy data, 
achieving an MAE of 6.97 mmHg, which meets the BHS Grade C criteria. 

We demonstrated that ambulatory ECG-PPG signals collected from mobile discrete devices can 
be used to estimate BP under real-world conditions and discussed the theory of why, of the four 
machine learning models compared and evaluated, SVR emerged as the best-performing model; it is 
likely due to the algorithm's ability to handle the nonlinear relationship between features and BP.  

Because there is a trade-off between explainability and performance in the selection of machine 
learning/deep learning models with increasing model complexity, this work did not determine the 
extent to which model complexity should increase, which could be the cause of the less desirable 
results in other models. Previous work using "black box" deep learning approaches could potentially 
introduce FDA compliance issues. 

For ECG-PPG to be practical and economical for use in a wearable for monitoring BP, further 
research is needed to achieve an optimal balance between computational cost (limited battery power), 
explainability and prediction/estimation accuracy. Only when an appropriate balance or hybrid 
technique is achieved between the machine learning and deep learning approaches that can be applied 
to noisy, corrupted biosignals will non-occluding BP measurement devices become practical and 
reliable enough for clinical implementation. 

For feature selection, the contribution (e.g., Pareto analysis) of each category (i.e., PAT, HRV, 
PPG morphology) to machine learning is still unknown and could be part of further feature-selection 
procedures to remove less informative features and optimize computational costs. 

The authors will try to include a larger number of participants in a larger study to improve the 
receiver operating characteristic of the BP estimation model. With a larger dataset, we can attempt to 
benchmark our method against deep learning methods described by other authors that do not use a 
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smaller dataset. Benchmarking will be a goal of future work. 
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