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Abstract: This paper copes with event-triggered stabilization for networked control systems subject
to deception attacks. A new switched event-triggered scheme (ETS) is designed by introducing a term
regarding the last triggering moment in the trigger condition. This increases the difficulty of triggering,
thus reducing trigger times compared to some existing ETSs. Furthermore, to cater for actual deception
attack behavior, the occurrence of deception attacks is assumed to be a time-dependent stochastic
variable that obeys the Bernoulli distribution with probability uncertainty. By means of a piecewise-
defined Lyapunov function, a sufficient condition is developed to assure that the close-loop system
under deception attacks is exponentially stable in regards to mean square. On the basis of this, a joint
design of the desired trigger and feedback-gain matrices is presented. Finally, a simulation example is
given to confirm the validity of the design method.
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1. Introduction

Networked control systems (NCSs) have been widely studied and applied in many fields in the past
few decades, including DC motor [1], intelligent transportation [2], teleoperation [3], etc. Compared
with traditional feedback control systems, the components in NCSs transmit data packets through
communication networks, which reduce wiring requirements, save installation costs, and improve the
maintainability [4]. However, public and open communication networks are vulnerable to malicious
attacks by hackers. Cyber attacks can not only disrupt data transmission but also indirectly cause
controlled plants to malfunction and stop operating by injecting fake data [5]. For example, in 2011, the
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“Stuxnet” virus invaded Iran’s Bolshevik nuclear power plant, causing massive damage to its nuclear
program [6]; in 2015, the “BlackEnergy” trojan virus successfully attacked Ukraine’s power companies
and cut off the local power supply [7]. Therefore, the security of NCS under cyber attacks has received
increasing attention, and many illuminating results have been reported (see surveys [8, 9]).

Current cyber-attacks may be roughly divided into two categories: denial of service (DoS) attacks
and deception attacks. DoS attacks can cause network congestion or paralysis by sending a large
amount of useless request information, thereby blocking the transmission of signals [10, 11]. Com-
pared to the simple and direct blocking of signal transmission in DoS attacks, deception attacks are
more subtle and difficult to detect. More specifically, deception attacks compromise data integrity
by hijacking sensors to tamper with measurement data and control signals. In some cases, they may
be more damaging than DoS attacks [12]. Therefore, many researchers have conducted analysis and
synthesis of NCSs under deception attacks. For instance, Du et al. [13] presented stability conditions
for wireless NCSs subjected to deception attacks on the data link layer, and determined the maximum
permissible deception attack time. Hu et al. [14] examined discrete-time stochastic NCSs with de-
ception attacks and packet loss, and gave security analysis and controller design. In [15], Gao et al.
investigated nonlinear NCSs faced with several types of deception attacks, and proposed asynchronous
observer design strategies. Notably, the existing literature characterized the random occurrence of de-
ception attacks by introducing a stochastic variable that obeys the Bernoulli distribution with a fixed
probability, which is over-limited in reality.

In previous literature on NCSs, control tasks are often executed in a fixed/variable period, giving rise
to the so-called sampled-data control (time-triggered control) [16–19]. Although this control scheme
is simple and easy to implement, it has two shortcomings. On the one hand, to stabilize the system
in some extreme scenarios, it is necessary to set a small sampling interval, which results in a large
number of redundant data packets and may cause network congestion. On the other hand, due to the
lack of a judgment condition for the system state, even if the stabilization of the system is achieved,
the sampling task will not stop, which is undoubtedly a waste of network resources. In contrast to
the time-triggered scheme (TTS), the event-triggered scheme (ETS) can significantly conquer these
shortcomings and save communication resources [20–22]. In the ETS, the execution frequency of the
control task is limited by introducing an event generator. That is, only when the change in system state
exceeds a given threshold, an event will be generated and the controller will execute [23–25]. Based
on the above facts, a multitude of studies have been conducted on event-triggered control for NCSs
suffering from deception attacks (see [26–30]). However, most ETS designs under deception attacks
adopted the periodic event-triggered scheme (PETS). The PETS can avoid the Zeno phenomenon by
periodically checking the event trigger conditions but inevitably lose some system state information. To
resolve this contradiction, Selivanov et al. proposed a switched event-triggered scheme (SETS) [31].
By switching between TTS and continuous event triggering [32], the SETS not only avoids the Zeno
phenomenon, but also fully utilizes the system information, thereby further reducing the number of
event triggers [33–36].

Inspired by the above facts, the subject of this study is SETS-based stabilization for NCSs un-
der random deception attacks. By means of the Lyapunov function method, a sufficient condition is
developed to assure that the close-loop system is mean square exponentially (MSE) stable. Then, a co-
design of the trigger and feedback-gain matrices for the SETS-based controller is presented in terms
of linear matrix inequalities (LMIs), which can be checked easily. The major contributions can be
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outlined as follows: 1) A new SETS (NSETS), which additionally introduces a term concerning the
last event triggering time, is designed. In contrast to the SETS in [31], the NSETS can further reduce
the number of trigger times while maintaining performance. 2) Compared with the existing literature
(see, e.g., [28–30]), the occurrence of deception attacks under our consideration is assumed to be a
time-dependent stochastic variable that obeys the Bernoulli distribution with probability uncertainty,
which is more realistic. 3) Stability analysis criterion and computationally tractable controller design
strategy are presented by utilizing a piecewise-defined Lyapunov function together with a few matrix
inequalities.

Notation. In this paper, we use Rm×n and Rm to denote m × n-dimensional real matrices and m-
dimensional Euclidean space, respectively. For each Z ∈ Rm×n, we use Z < 0 (Z ≤ 0) to indicate
that the matrix Z is real symmetric negative definite (semi-negative definite), S{Z} to denote the sum
of Z + ZT , and λM(Z) and λm(Z) to represent the maximum eigenvalue and the minimum eigenvalue of
the symmetric matrix Z, respectively. We use || · ||, Pr, and E to represent the Euclidean norm, proba-
bility operator, and expectation operator, respectively. In addition, we use diag{·} to denote a diagonal
matrix and ∗ to denote a symmetric term in a symmetric matrix.

2. Preliminaries

In this section, we first give the system description, deception-attack model, and NSETS design,
and then formulate the switched closed-loop system.

Consider a linear time-invariant system (LTIS) described as

ẋ(t) = Ax(t) + Bu(t). (2.1)

In system (2.1), A and B are known system matrices of suitable dimensions, x(t) ∈ Rnx , u(t) ∈ Rnu ,
denote the state, control input, respectively.

In the event-triggered NCS, an event generator is used to determine whether the lately sampled data
should be forwarded to the controller. When cyber-attacks do not happen, any state signals that satisfy
the triggering condition can be received successfully by the controller, and the corresponding control
signals can be received successfully by the actuator. However, when the communication network is
subject to deception attacks, the control signal will be substituted with fake data, the performance of
the controller will inevitably decline, and even lead to system instability in some extreme cases.

In view of the openness of network protocols, it is quite possible that attackers can inject the infor-
mation transmitted in NCSs with fake data. In this paper, we suppose that the deception signal d(x(t))
satisfying Assumption 1 will totally substitute the original transmission data.

Assumption 1. [26] The signal of deception attack d(x(t)) satisfies

||d(x(t))|| ≤ ||Dx(t)||, (2.2)

where D is a real constant matrix.

To demonstrate the randomness of deception attacks, a Bernoulli variable β(t) ∈ {0, 1}with uncertain
probability is introduced:

Pr(β(t) = 1) = α + ∆α(t), Pr(β(t) = 0) = 1 − α − ∆α(t). (2.3)
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Clearly, E{β(t)} = α + ∆α(t). Then, the signal transmitted under deception attacks can be presented as

x̃(t) = (1 − β(t))d(x(t)) + β(t)x(t).

Remark 2.1. Motivated by [26–30], the deception attacks are assumed to be randomly occurring.
However, different from these references, this paper supposes that the probability of deception attack
occurrence allows for some uncertainty; that is, there is a small positive constant ᾱ such that ||∆α(t)|| ≤
ᾱ.

Taking into consideration the constrained network resources, a NSETS is devised as follows:

tσ+1 = min{t ≥ tσ + h | [x(t) − x(tσ)]T M[x(t) − x(tσ)]
> ε1xT (t)Mx(t) + ε2xT (tσ)Mx(tσ)}, (2.4)

where tσ is the last triggering moment with σ ∈ N, M > 0 is a trigger matrix to be determined, h > 0
and εi (i ∈ {1, 2}) are predefined parameters that stand for the waiting interval and triggering thresholds,
respectively.

Remark 2.2. Inspired by [31, 33–36], the SETS is used in this paper. However, unlike the existing
SETSs, the proposed NSETS introduces an additional term ε2xT (tσ)Mx(tσ) into the trigger condition
to more efficiently utilize the state information at the current moment and previous triggering moment.
The introduced ε2xT (tσ)Mx(tσ) increases the difficulty of the event triggering and, therefore, prolongs
the interval between triggered events.

In accordance with the proposed NSETS, the control input of system (2.1) under deception attacks
with uncertain probability can be designed as

u(t) = K(1 − β(t))d(x(t)) + Kβ(t)x(tσ), (2.5)

where K is the feedback gain that remains to be determined.
Then, we introduce T 1

σ = [tσ, tσ + h) and T 2
σ = [tσ + h, tσ+1), under event-triggered controller (2.5),

system (2.1) can be characterized as
ẋ(t) = [A + BKβ(t)]x(t) + BK(1 − β(t))d(x(t))

−BKβ(t)
∫ t

tσ
ẋ(s)ds, t ∈ T 1

σ ,

ẋ(t) = [A + BKβ(t)]x(t) + BK(1 − β(t))d(x(t))
+BKβ(t)e(t), t ∈ T 2

σ ,

(2.6)

where σ ∈ N and e(t) = x(tσ) − x(t) satisfying

eT (t)Me(t) ≤ ε1xT (t)Mx(t) + ε2xT (tσ)Mx(tσ). (2.7)

Remark 2.3. Unlike general ETSs, the controlled system with the SETS needs to switch between
periodic sampling and continuous event triggering to ensure the performance of the system. Inspired
by [31], we denote the sampling error and triggering error by

∫ t

tσ
ẋ(s)ds and e(t), respectively, and

rewrite the controlled system as switched system (2.6) with two different modes.
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Next, we introduce a definition of mean square exponential stability and several lemmas.

Definition 2.1 ( [37]). System (2.6) is said to be MSE stable if there exist two scalars c1 > 0 and c2 > 0
such that

E {||x(t)||} ≤ c1e−c2tE {||x0||} , ∀t ≥ 0,

Lemma 2.2 ( [38]). For any positive definite matrix S ∈ Rn×n, scalars a, b (a > b), and a vector
function η : [a, b]→ Rn, we have[∫ a

b
η(δ)dδ

]T

S
[∫ a

b
η(δ)dδ

]
≤ (a − b)

∫ a

b
ηT (δ)S η(δ)dδ.

Lemma 2.3 ( [39]). For given a, b ∈ Rn, and positive definite matrix Q ∈ Rn×n, we have

2aT b ≤ aT Qa + bT Q−1b.

Lemma 2.4 ( [40]). For a prescribed constant ϑ > 0 and real matrices Π, Xi, Yi, and Zi(i = 1, . . . , n),
if [

Π XY

∗ Z

]
< 0

holds, where XY = [X1 + ϑY1, X2 + ϑY2, . . . , Xn + ϑYn] and Z = diag {S{−ϑZ1},S{−ϑZ2}, . . . ,S{−ϑZn}},
then we have

Π +

n∑
i=1

S
{
XiZ−1

i YT
i

}
< 0. (2.8)

Now, the issue of event-triggered control in response to deception attacks can be expressed more
specifically as follows: given a LTIS in (2.1), determine the NSETS-based controller in (2.5) such that,
for all admissible deception attacks d(x(t)), the switched closed-loop system in (2.6) is MSE stable.

3. Main results

In this section, we first establish the exponential stability criterion for system (2.1), then develop a
joint design method for the trigger matrix and feedback gain.

3.1. Stability analysis

To be consistent with the switched closed-loop system (2.6), we construct the following Lyapunov
function:

V(t) =

V1(t) = Vp(t) + Vq(t) + Vu(t), t ∈ T 1
σ ,

V2(t) = Vp(t), t ∈ T 2
σ

(3.1)

where

Vp(t) = xT (t)Px(t),
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Vq(t) = (tσ + h − t)
∫ t

tσ
e−2θ(t−s) ẋT (s)Qẋ(s)ds,

Vu(t) = (tσ + h − t)
[

x(t)
x(tσ)

]T [
S{U1}

2 −U1 + U2

∗ S{
U1
2 − U2}

] [
x(t)
x(tσ)

]
,

and P, Q are symmetric positive matrices, U1, U2 are general matrices, and θ is a positive constant.
Based on Lyapunov function (3.1), an exponential stability criterion of system (2.6) can be estab-

lished, which is provided as follows:

Theorem 3.1. For given positive scalars ε1, ε2, h, θ, α, ᾱ and matrices K, D, under the NSETS (2.4)
and random deception attacks, system (2.6) is MSE stable, if there exist symmetric matrices P > 0,
Q > 0, M > 0, Λi > 0 (i ∈ {1, 2, 3, 4}), and general matrices U1, U2, W1, W2, W3, N1,1, N2,1, N1,2, N2,2,
such that

Σ =

P + hS
{

U1
2

}
−hU1 + hU2

∗ −hS
{
U2 −

U1
2

} > 0, (3.2)

Σ1 =

[
Ω11 Ω12

∗ Ω3

]
< 0, (3.3)

Σ2 =

[
Ω21 Ω22

∗ Ω3

]
< 0, (3.4)

Σ3 =

[
Ω31 Ω32

∗ Ω33

]
< 0 (3.5)

hold true, where

Ω11 =


Ω1

1,1 Ω1
1,2 Ω1

1,3 Ω1,4

∗ Ω1
2,2 Ω1

2,3 Ω2,4

∗ ∗ Ω1
3,3 0

∗ ∗ ∗ −I

 + ᾱ2RT
1 (Λ1 + Λ2)R1,

R1 =
[
I 0 0 −I

]
,

Ω21 =


Ω2

1,1 Ω2
1,2 Ω2

1,3 Ω1,4 Ω1,5

∗ −S{N2,1} WT
2 Ω2,4 Ω2,5

∗ ∗ Ω2
3,3 0 hWT

3
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ Ω5,5


+ ᾱ2RT

2 (Λ1 + Λ2)R2,

R2 =
[
I 0 0 −I −hI

]
, R3 =

[
I 0 −I I

]
,

Ω31 =


Ω3

1,1 Ω3
1,2 Ω3

1,3 Ω3
1,4

∗ −S{N2,2} Ω3
2,3 Ω3

2,4
∗ ∗ Ω3

3,3 0
∗ ∗ ∗ −I

 + ᾱ2RT
3 (Λ3 + Λ4)R3,

Ω12 =

[
ΩT

1,6 0 0 0
0 ΩT

2,7 0 0

]T

, Ω32 =

Ω3T

1,5 0 0 0
0 Ω3T

2,6 0 0

T

,
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Ω22 =

[
Ω12

0

]
, Ω3 =

[
−Λ1 0

0 −Λ2

]
, Ω33 =

[
−Λ3 0

0 −Λ4

]
,

Ω1
1,1 = S

{
NT

1,1(A + BKα) −W1 + (2θh − 1)
U1

2

}
+ 2θP + DT D,

Ω2
1,1 = Ω1

1,1 − θhS{U1},

Ω1
1,2 = P −W2 − NT

1,1 +
h
2
S{U1} + (A + BKα)T N2,1,

Ω2
1,2 = Ω1

1,2 −
h
2
S{U1},

Ω1
1,3 = WT

1 −W3 + (1 − 2θh) (U1 − U2) , Ω2
1,3 = Ω1

1,3 + 2θh (U1 − U2) ,
Ω1,4 = (1 − α)NT

1,1BK, Ω1,5 = h(WT
1 − αNT

1,1BK), Ω1,6 = NT
1,1BK,

Ω1
2,2 = hQ − S{N2,1}, Ω1

2,3 = WT
2 − h(U1 − U2),

Ω2,4 = (1 − α)NT
2,1BK, Ω2,5 = h(WT

2 − αNT
2,1BK),

Ω2,7 = NT
2,1BK, Ω5,5 = −he−2θhQ,

Ω1
3,3 = S

{
W3 + (2θh − 1)

(U1

2
− U2

)}
,

Ω2
3,3 = Ω1

3,3 − S

{
2θh

(U1

2
− U2

)}
,

Ω3
1,1 = 2θP + S

{
NT

1,2(A + BKα)
}

+ (ε1 + ε2)M + DT D,

Ω3
1,2 = P − NT

1,2 + (A + BKα)T N2,2, Ω3
1,3 = NT

1,2BKα + ε2M,

Ω3
1,4 = NT

1,2BK(1 − α), Ω3
1,5 = NT

1,2BK, Ω3
2,3 = αNT

2,2BK,

Ω3
2,4 = (1 − α)NT

2,2BK, Ω3
2,6 = NT

2,2BK, Ω3
3,3 = (ε2 − 1)M.

Proof. Since

Vp(t) + Vu(t)

= xT (t)Px(t) + (tσ + h − t)
[

x(t)
x(tσ)

]T [
S{U1}

2 −U1 + U2

∗ S{
U1
2 − U2}

] [
x(t)
x(tσ)

]
=

tσ + h − t
h

[
x(t)
x(tσ)

]T

Σ

[
x(t)
x(tσ)

]
+

t − tσ
h

[
x(t)
x(tσ)

]T [
P 0
∗ 0

] [
x(t)
x(tσ)

]
, (3.6)

which, in conjunction with P > 0 and Σ > 0, ensures the positive definiteness of Vp(t) + Vu(t). From
(3.1) and (3.6), we have

min {λm(P), λm(Σ)} ||x(t)||2 ≤ V(t). (3.7)

For any t ∈ T 1
σ , σ ∈ N, differentiating V1(t) along the trajectories of the system (2.6) and taking

mathematical expectations on it yields:

E{V̇1(t)} = E{V̇p(t)} + E{V̇q(t)} + E{V̇u(t)},

where

E{V̇p(t)} = E{−2θVp(t)} + 2θxT (t)Px(t) + 2xT (t)Pẋ(t),
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E{V̇q(t)} = E{−2θVq(t)} −
∫ t

tσ
e−2θ(t−s) ẋT (s)Qẋ(s)ds

+(tσ + h − t)ẋT (t)Qẋ(t),
E{V̇u(t)} = E{−2θVu(t)}

+(tσ + h − t)[ẋT (t)S{U1}x(t) + 2ẋT (t)(−U1 + U2)x(tσ)]

+[2θ(tσ + h − t) − 1] ×
[
xT (t)

S{U1}

2
x(t)

+2xT (t)(−U1 + U2)x(tσ) + xT (tσ)S
{U1

2
− U2

}
x(tσ)

]
.

Thus

E{V̇1(t)} ≤ E{−2θV1(t)}+2θxT (t)Px(t) + 2xT (t)Pẋ(t) + (tσ + h − t)ẋT (t)Qẋ(t)

−e−2θh
∫ t

tσ
ẋT (s)Qẋ(s)ds + (tσ + h − t)[ẋT (t)S{U1}x(t)

+2ẋT (t)(−U1 + U2)x(tσ)] + [2θ(tσ + h − t) − 1]

×

[
xT (t)

S{U1}

2
x(t) + 2xT (t)(−U1 + U2)x(tσ)

+ xT (tσ)S
{U1

2
− U2

}
x(tσ)

]
. (3.8)

Denote

φ(t) =
1

t − tσ

∫ t

tσ
ẋ(s)ds,

where the case that φ(t)|t=tσ can be understood as limt→tσ φ(t) = ẋ(tσ) [41]. Then, utilizing Lemma 2.2
gives

−

∫ t

tσ
ẋ(s)Qẋ(s)ds ≤ −(t − tσ)φT (t)Qφ(t). (3.9)

Furthermore, using the Newton-Leibniz formula and the expectation of (2.6), we can write

0 = 2
[
xT (t)WT

1 + ẋT (t)WT
2 + xT (tσ)WT

3

]
×

[
−x(t) + x(tσ) + (t − tσ)φ(t)

]
, (3.10)

0 = 2
[
xT (t)NT

1,1 + ẋT (t)NT
2,1

]
[−ẋ(t) + Ax(t) + BK(α + ∆α(t))x(t)

+BK(1 − α − ∆α(t))d(x(t)) −(t − tσ)BK(α + ∆α(t))φ(t)
]
. (3.11)

Setting ς1(t) = col{x(t), ẋ(t), x(tσ), d(x(t))}, ς2(t) = col{x(t), ẋ(t), x(tσ), d(x(t)), φ(t)}, by employing
Lemma 2.3, for positive definite matrices Λ1 and Λ2, we can write the following inequalities:

2xT (t)NT
1,1BK∆α(t)

[
x(t) − d(x(t)) − (t − tσ)φ(t)

]
= 2xT (t)NT

1,1BK∆α(t)
[
tσ + h − t

h
R1ς1(t) +

t − tσ
h
R2ς2(t)

]
Mathematical Biosciences and Engineering Volume 20, Issue 1, 859–878.
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≤
tσ + h − t

h
ᾱ2ςT

1 (t)RT
1 Λ1R1ς1(t) +

t − tσ
h

ᾱ2ςT
2 (t)RT

2 Λ1R2ς2(t)

+xT (t)NT
1,1BKΛ−1

1 KT BT N1,1x(t). (3.12)

Similarly,

2ẋT (t)NT
2,1BK∆α(t)

[
x(t) − d(x(t)) − (t − tσ)φ(t)

]
≤

tσ + h − t
h

ᾱ2ςT
1 (t)RT

1 Λ2R1ς1(t) +
t − tσ

h
ᾱ2ςT

2 (t)RT
2 Λ2R2ς2(t)

+ẋT (t)NT
2,1BKΛ−1

2 KT BT N2,1 ẋ(t). (3.13)

Moreover, by using Assumption 1, we can derive

xT (t)DT Dx(t) − dT (x(t))d(x(t)) ≥ 0. (3.14)

By using inequalities (3.8)–(3.14), we have

E{V̇1(t)} + 2θE{V1(t)}

≤
tσ + h − t

h
ςT

1 (t)Ω11ς1(t) +
t − tσ

h
ςT

2 (t)Ω21ς2(t)

+xT (t)NT
1,1BKΛ−1

1 KT BT N1,1x(t) + ẋT (t)NT
2,1BKΛ−1

2 KT BT N2,1 ẋ(t),

which, in conjunction with the Schur complement, Σ1 < 0, and Σ2 < 0, guarantees that

E{V̇1(t)} + 2θE{V1(t)} ≤ 0. (3.15)

Denote ξ3(t) = col{x(t), ẋ(t), e(t), d(x(t))}. Then, in a similar way to the above proof, it is not hard
to obtain

E{V̇2(t)} ≤ −2θE{V2(t)} + 2θxT (t)Px(t) + xT (t)DT Dx(t)
+2xT (t)Pẋ(t) + 2[xT (t)NT

1,2 + ẋT (t)NT
2,2]

× [−ẋ(t) + Ax(t) + BK(α + ∆α(t))x(t)
+BK(1 − α − ∆α(t))d(x(t))
+BK(α + ∆α(t))e(t)] + ε1xT (t)Mx(t)
+ε2 [e(t) + x(t)]T M [e(t) + x(t)]
−eT (t)Me(t) − dT (x(t))d(x(t)). (3.16)

By using Lemma 2.3, for given positive definite matrices Λ3 and Λ4, we can obtain

2xT (t)NT
1,2BK∆α(t)ς3(t)

≤ xT (t)NT
1,2BKΛ−1

3 KT BT N1,2x(t) + ᾱ2ςT
3 (t)RT

3 Λ3R3ς3(t), (3.17)
2ẋT (t)NT

2,2BK∆α(t)(t)ς3(t)
≤ ẋT (t)NT

2,2BKΛ−1
4 KT BT N2,2 ẋ(t) + ᾱ2ςT

3 (t)RT
3 Λ4R3ς3(t). (3.18)

Combining (3.16)–(3.18), we get

E{V̇2(t)} + 2θE{V2(t)} ≤ ςT
3 (t)Σ3ς3(t) + xT (t)NT

1,2BKΛ−1
3 KT BT N1,2x(t)
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+ẋT (t)NT
2,2BKΛ−1

4 KT BT N2,2 ẋ(t)

for any t ∈ T 2
σ , which together with the Schur complement and Ω31 < 0, implies that

E{V̇2(t)} + 2θE{V2(t)} ≤ 0. (3.19)

According to the expression of V(t), it is easy to obtain that

Vq(tσ) = Vu(tσ) = 0,
lim

t→(tσ+h)−
Vq(t) = lim

t→(tσ+h)−
Vu(t) = 0,

which confirms the continuity of V(t) at instants tσ and tσ + h.
Then combining (3.15) and (3.19), for t ∈ T 1

σ we can derive

E{V(t)} ≤ E{V(tσ)}e−2θ(t−tσ)

≤ E{V(tσ−1)}e−2θ(t−tσ−1)

· · ·

≤ E{V(0)}e−2θt.

Similarly, for t ∈ T 2
σ , the same results can be obtained. In the light of (3.1), we get

E{V(0)} ≤ λM(P)E{‖x(0)‖2}.

It can be concluded that for any t ∈ T 1
σ ∪ T

2
σ ,

E{V(t)} ≤ e−2θtE{V(0)},

which, together with (3.7), gives

E{‖x(t)‖} ≤

√
min {λm(P), λm(Σ)}

λM(P)
e−θtE{‖x0‖}.

This completes the proof.

When there is no deception attacks, d(x(t)) = 0, and system (2.6) becomesẋ(t) = (A + BK)x(t) − BK
∫ t

tσ
ẋ(s)ds, t ∈ T 1

σ ,

ẋ(t) = (A + BK)x(t) + BKe(t), t ∈ T 2
σ ,

(3.20)

and we can write the following sufficient condition:

Corollary 1. For given feedback gain matrix K and positive scalars ε1, ε2, h, θ, under the NSETS
(2.4), system (3.20) is exponentially stable, if there exist symmetric matrices P > 0, Q > 0, M > 0, and
general matrices U1, U2, W1, W2, W3, N1,1, N2,1, N1,2, N2,2, such that (3.2) and the following LMIs

Ω1
1,1 Ω1

1,2 Ω1
1,3

∗ Ω1
2,2 Ω1

2,3
∗ ∗ Ω1

3,3

 < 0, (3.21)
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869
Ω2

1,1 Ω2
1,2 Ω2

1,3 Ω1,5

∗ −S{N2,1} WT
2 Ω2,5

∗ ∗ Ω2
3,3 hWT

3
∗ ∗ ∗ Ω5,5

 < 0, (3.22)


Ω3

1,1 Ω3
1,2 Ω3

1,3
∗ −S{N2,2} Ω3

2,3
∗ ∗ Ω3

3,3

 < 0 (3.23)

hold true, where matrix blocks such as Ω1
1,1, Ω1

1,2, and Ω1
1,3 are the same as those in Theorem 3.1 except

that α = 1 and ᾱ = 0.

3.2. Event-triggered controller synthesis

In this section, we will explore the feasibility of the event-triggered controller design. On the basis
of Theorem 3.1, the trigger matrix M and feedback-gain matrix K can be derived from the following
result:

Theorem 3.2. For given positive scalars ε1, ε2, h, θ, α, ᾱ, ϑ and matrix D, under the NSETS (2.4) and
random deception attacks, switched system (2.6) with control gain K = X−1Y is MSE stable, if there
exist symmetric matrices P > 0, Q > 0, U > 0, M > 0, Λ̄i > 0 (i ∈ {1, 2, 3, 4}), and general matrices
X, Y, W̃1, W̃2, W̃3, Ñ1,1, Ñ2,1, Ñ1,2, Ñ2,2, such that (3.2) and the following LMIs[

Ω̃11 Ω̃12

∗ Ω̃3

]
< 0, (3.24)[

Ω̃21 Ω̃22

∗ Ω̃3

]
< 0, (3.25)[

Ω̃31 Ω̃32

∗ Ω̃3

]
< 0 (3.26)

hold true, where

Ω̃11 =

[
Ω̃1

1 Ω̃1
2

∗ Ω̃1
3

]
, Ω̃21 =

[
Ω̃2

1 Ω̃2
2

∗ Ω̃1
3

]
, Ω̃31 =

[
Ω̃3

1 Ω̃3
2

∗ Ω̃3
3

]
,

Ω̃1
1 =


Ω̃1

1,1 Ω̃1
1,2 Ω̃1

1,3 Ω̃1,4

∗ Ω̃1
2,2 Ω̃1

2,3 Ω̃2,4

∗ ∗ Ω̃1
3,3 0

∗ ∗ ∗ −I

 + ᾱ2R̃T
1 (Λ̃1 + Λ̃2)R̃1,

R̃1 =
[
I 0 0 −I

]
,

Ω̃2
1 =


Ω̃2

1,1 Ω̃2
1,2 Ω̃2

1,3 Ω̃1,4 Ω̃1,5

∗ Ω̃2
2,2 W̃T

2 Ω̃2,4 Ω̃2,5

∗ ∗ Ω̃2
3,3 0 hW̃T

3
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −he−2θhQ


+ ᾱ2R̃T

2 (Λ̃1 + Λ̃2)R̃2,

R̃2 =
[
I 0 0 −I −hI

]
, R̃3 =

[
I 0 −I I

]
,
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Ω̃3
1 =


Ω̃3

1,1 Ω̃3
1,2 Ω̃3

1,3 Ω̃3
1,4

∗ −S{Ñ2,2} αGT Y Ω̃3
2,4

∗ ∗ (ε2 − 1)M 0
∗ ∗ ∗ −I

 + ᾱ2R̃T
3 (Λ̃3 + Λ̃4)R̃3,

Ω̃1
2 =

[
YTG 0 0 0

0 YTG 0 0

]T

, Ω̃2
2 =

[
Ω̃1

2
0

]
,

Ω̃3
2 =

[
YTG 0 0 0

0 YTG 0 0

]T

, Ω̃1
3 =

[
−Λ̃1 0

0 −Λ̃2

]
,

Ω̃3
3 =

[
−Λ̃3 0

0 −Λ̃4

]
, Ω̃3 = −ϑ

[
X 0
0 X

]
− ϑ

[
XT 0
0 XT

]
,

Ω̃12 =

[
Ω̃T

1,8 0 0 (1 − α)ϑY ϑY 0
αϑY Ω̃T

2,9 0 (1 − α)ϑY 0 ϑY

]T

,

Ω̃22 =

[
Ω̃T

1,8 0 0 (1 − α)ϑY −αϑhY ϑY 0
αϑY Ω̃T

2,9 0 (1 − α)ϑY −αϑhY 0 ϑY

]T

,

Ω̃32 =

[
Ω̃3T

1,8 0 αϑY (1 − α)ϑY ϑY 0
αϑY Ω̃3T

2,9 αϑY (1 − α)ϑY 0 ϑY

]T

,

Ω̃1
1,1 = 2θP + DT D + S

{
ÑT

1,1A − W̃1 + (2θh − 1)
U1

2
+ αGT Y

}
,

Ω̃2
1,1 = Ω̃1

1,1 − θhS{U1},

Ω̃1
1,2 = P − W̃2 − ÑT

1,1 +
h
2
S{U1} + AT Ñ2,1,

Ω̃2
1,2 = Ω̃1

1,2 −
h
2
S{U1},

Ω̃1
1,3 = W̃T

1 − W̃3 + (1 − 2θh) (U1 − U2) ,
Ω̃2

1,3 = Ω̃1
1,3 + 2θh (U1 − U2) ,

Ω̃1,4 = (1 − α)GT Y, Ω̃1,5 = h(W̃T
1 − αGT Y),

Ω̃1,8 = ÑT
1,1B −GT X + αϑYT , Ω̃1

2,2 = hQ − S{Ñ2,1},

Ω̃2
2,2 = −S{Ñ2,1}, Ω̃1

2,3 = W̃T
2 − h(U1 − U2),

Ω̃2,4 = (1 − α)GT Y,

Ω̃2,5 = h(W̃T
2 − αGT Y), Ω̃2,9 = ÑT

2,1B −GT X,

Ω̃1
3,3 = S

{
W̃3 + (2θh − 1)

(U1

2
− U2

)}
,

Ω̃2
3,3 = Ω̃1

3,3 − S

{
2θh

(U1

2
− U2

)}
,

Ω̃3
1,1 = 2θP + S

{
ÑT

1,2A + αGT Y
}

+ (ε1 + ε2)M + DT D,

Ω̃3
1,2 = P − ÑT

1,2 + AT Ñ2,2 + αYTG,

Ω̃3
1,3 = ε2M + αGT Y,

Ω̃3
1,4 = (1 − α)GT Y, Ω̃3

1,8 = ÑT
1,2B −GT X + αϑYT ,
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Ω̃3
2,4 = (1 − α)GT Y, Ω̃3

2,9 = ÑT
2,2B −GT X,

and G is an all-ones matrix with the same dimension as B.

Proof. By Lemma 2.4, it follows from (3.24) that

Ω̃11 + S





ÑT
1,1B −GT L 0

0 ÑT
2,1B −GT L

0 0
0 0
0 0
0 0


[
X 0
0 X

]−1 [
αY 0 0 (1 − α)Y Y 0
αY 0 0 (1 − α)Y 0 Y

]}
< 0,

which can be equivalently rewritten as [
Ω11 Ω12

∗ Ω3

]
< 0.

In other words, we can derive (3.3) from (3.24). Similarly, (3.4)–(3.5) can be obtained from (3.25)–
(3.26). The proof is complete.

Corollary 2. For given positive scalars ε1, ε2, h, θ, ϑ, under the NSETS (2.4), switched system (3.20)
with control gain K = X−1Y is exponentially stable, if there exist symmetric matrices P > 0, Q > 0,
U > 0, M > 0, and general matrices X, Y, W̃1, W̃2, W̃3, Ñ1,1, Ñ2,1, Ñ1,2, Ñ2,2, such that (3.2) and the
following LMIs 

Ω̃1
1,1 Ω̃1

1,2 Ω̃1
1,3 Ω̃1,8

∗ Ω̃1
2,2 Ω̃1

2,3 Ω̃2,9

∗ ∗ Ω̃1
3,3 0

∗ ∗ ∗ −ϑS{X}

 < 0, (3.27)


Ω̃2

1,1 Ω̃2
1,2 Ω̃2

1,3 Ω̃1,5 Ω̃1,8

∗ Ω̃2
2,2 W̃T

2 Ω̃2,5 Ω̃2,9

∗ ∗ Ω̃2
3,3 hW̃T

3 0
∗ ∗ ∗ −he−2θhQ −hϑYT

∗ ∗ ∗ ∗ −ϑS{X}


< 0, (3.28)


Ω̃3

1,1 Ω̃3
1,2 Ω̃3

1,3 Ω̃3
1,8

∗ −S{Ñ2,2} GT Y Ω̃3
2,9

∗ ∗ (ε2 − 1)M 0
∗ ∗ ∗ −ϑS{X}

 < 0 (3.29)

hold true, where matrix blocks such as Ω̃1
1,1, Ω̃1

1,2, and Ω̃1
1,3 are the same as those in Theorem 3.2 except

that α = 1 and ᾱ = 0.

4. Simulation example

In this section, we use a simplified inverted pendulum model [42] to illustrate the validity of the
proposed NSETS-based controller design scheme under random deception attacks. This model can be
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Table 1. Maximum exponential decay rate θmax under different probability uncertainty coef-
ficient αp.

αp 0.06 0.07 0.08 0.09 0.1
θmax 0.5843 0.5459 0.5080 0.4708 0.4341

Table 2. Maximum exponential decay rate θmax under different estimated probability α.

α 0.88 0.86 0.84 0.82 0.8
θmax 0.4655 0.4613 0.4549 0.4459 0.4341

0 2 4 6 8 10

Time(s)

-1

-0.5

0

0.5

1

1.5

3 3.5 4 4.5 5

-0.05

0

0.05

Figure 1. State trajectories.

described as follows:

ẋ(t) =

[
−1.84 0.33
7.18 −1.14

]
x(t)+

[
2.43
−0.42

]
u(t).

First, we will co-design the triggering matrix W and control gain K to guarantee the MSE stability
of the above system.

Choosing triggering thresholds ε1 = ε2 = 0.1, waiting interval h = 0.05, deception attack signal
d(x(t)) = tanh(0.15x(t)), uncertain probability term ∆α(t) = αp sin(t), and ϑ = 0.01. Then, based
on Theorem 3.2, when α = 0.8, for different probability uncertainty coefficient αp, the maximum
exponential decay rate θmax can be obtained, which is listed in Table 1. It is straightforward to see
that, as the probability uncertainty coefficient grows, the maximum exponential decay rate continues to
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Figure 2. Control inputs.

deteriorate. In addition, Table 2 gives the values of θmax under the different probability α of deception
attacks occurrence (when αp = 0.1). It can be found that as the value of α decreases (which means the
frequency of deception attacks increases), the performance of the controller declines.

Next, to further reflect on the impact of deception attacks, we consider two cases: with and without
deception attacks. In Case 1, the estimated probability of deception attacks and uncertainty coefficient
are fixed as α = 0.5, αp = 0.08, and other parameters are unchanged. By solving the LMIs in Theorem
3.2, the matrices M and K can be computed as

M =

[
0.7893 −0.0158
−0.0158 0.4791

]
, K =

[
−0.0695 −0.3175

]
.

In Case 2, α = 1 and αp = 0 (that is, the probability of occurring deception attacks is 0). By solving
the LMIs in Corollary 2, the matrices M and K are calculated as

M =

[
1.2333 0.4199
0.4199 1.3964

]
, K =

[
−0.1841 −0.2688

]
.

In the simulations, the initial condition is taken as x0 = [1,−1]T , and the running time is set as 10s.
Figures 1–3 depict the state trajectories, control inputs, and release moment intervals between any two
successively release moments of Cases 1 and 2, respectively. It can be seen that the state variables can
converge to zero faster in the absence of deception attacks, which is consistent with the information in
Table 2.

Finally, we will show the effect of triggering thresholds ε1 and ε2 in NSETS on the number of
transmitted signals. Let tn and tr denote the number of trigger times and the ratio of transmitted signals,

Mathematical Biosciences and Engineering Volume 20, Issue 1, 859–878.



874

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10
Time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10
Time(s)

Figure 3. Release moment intervals.
Table 3. Comparison of trigger times under different triggering thresholds.

Scheme TTS in [16] SETS in [31] NSETS in this paper
(ε1, ε2) (0, 0) (0.1, 0) (0.1, 0.05) (0.1, 0.1) (0.1, 0.15) (0.1, 0.2)
tn 200 71 54 43 36 32
tr 100% 35.5% 27% 21.5% 18% 16%

respectively, and other parameters are the same as those in Case 1. Then, as shown in Table 3, when
ε1 and ε2 are both set to 0, the NSETS degenerates into the TTS in [16], and tn is as high as 200; when
ε1 = 0.1 and ε2 = 0, the ETS changes into the SETS in [31], and tn is reduced to 71; when ε1 is fixed,
tn will continue to decrease as ε2 increases. It can be observed that compared with SETS, the tr of
the NSETS decreases by more than 8.5%, and compared with TTS, the rate can be reduced by more
than 73%. These results demonstrate that the addition of trigger condition xT (tσ)Mx(tσ) significantly
conserves network resources while ensuring stability.

5. Conclusions

In this paper, the event-triggered exponential stabilization of NCSs under deception attacks has been
investigated. Unlike existing ETSs, an NSETS, which additionally introduces a prescribed trigger
term regarding the last triggering moment (i.e., ε2xT (tσ)Mx(tσ)), has been designed in (2.4). It has
been demonstrated that the additional trigger term plays a positive role in reducing the number of
trigger times. Moreover, by using a Bernoulli variable with uncertain probability to characterize the
randomness of deception attacks, a new mathematical model of random deception attacks has been
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constructed in (2.3). A piecewise-defined Lyapunov function, which can make use of the system
information at the instants tσ and tσ + h, has been established, which allows us to establish a sufficient
exponential stability conation. Based on this, a co-design of the trigger and feedback-gain matrices
under NSETS has been derived in terms of LMIs. Finally, a simulation example has been given to
confirm the effectiveness of the developed design method. Future attention will be focused on the
event-triggered security control problem of time-delay Markov jump systems [43–46].
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