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Abstract: The emergence and growth of drug-resistant cancer cell subpopulations during anti-cancer
treatment is a major challenge for cancer therapies. Combination therapies are usually applied for
overcoming drug resistance. In the present paper, we explored the evolution outcome of tumor cell
populations under different combination schedules of chemotherapy and p53 vaccine, by construction
of replicator dynamical model for sensitive cells, chemotherapy-resistant cells and p53 vaccine-
resistant cells. The local asymptotic stability analysis of the evolutionary stable points revealed
that cancer population could evolve to the population with single subpopulation, or coexistence of
sensitive cells and p53 vaccine-resistant cells, or coexistence of chemotherapy-resistant cells and p53
vaccine-resistant cells under different monotherapy or combination schedules. The design of adaptive
therapy schedules that maintain the subpopulations under control is also demonstrated by sequential
and periodic application of combination treatment strategies based on the evolutionary velocity and
evolutionary absorbing regions. Applying a new replicator dynamical model, we further explored
the supportive effects of sensitive cancer cells on targeted therapy-resistant cells revealed in mice
experiments. It was shown that the supportive effects of sensitive cells could drive the evolution of
cell population from sensitive cells to coexistence of sensitive cells and one type of targeted therapy-
resistant cells.

Keywords: drug-resistance; replicator dynamics; mathematical modeling; evolution; adaptive
therapy

1. Introduction

The emergence of drug resistance in cancer cell populations during anti-cancer therapies is a major
issue that is impeding the treatment of human cancers [1]. Most cancers are shown to develop
resistance to targeted therapies or chemotherapies, even highly drug-sensitive tumors may show initial
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responses but develop resistance gradually in the process of treatment, presenting major challenges to
personalized medicine [2, 3]. It is confirmed that the emergence of drug resistance in cancer cell
population stems from intratumor heterogeneity, that is, the coexistence of cellular populations
bearing different genetic or epigenetic alterations within the same individual tumors [4, 5]. The
interplay between intratumor heterogeneity and the tumor microenvironment drives the emergence of
resistance, which can be described by the tumor evolution process. Under environmental pressure,
subpopulations of cancer cells expressing phenotypes adapted to the local environment have selective
advantages, so that they emerge and expand at the expense of others [6]. The evolutionary adaption is
driven by the genetic modifications (e.g., mutations) and perturbations of the tumor microenvironment
induced by anti-cancer therapy agents. When cancer undergoes selective pressures imposed by
anti-cancer therapy, the more stress-resistant phenotypes emerge and expand, thereby cancer adapts to
the pharmacologic pressures and affects clinical outcomes. Therefore, it is important to consider the
evolution of tumors in implementation of therapeutic strategies [7, 8].

Certain combination therapies are shown to be more effective than single drugs, and some
preventive combination therapies could block the emergence of resistance [9–11]. The scheduling of
combination therapies is important for controlling different cancer cell subpopulations, and the
therapies implemented at each clinical time point must be determined in advance carefully. Adaptive
strategies targeting different branches of tumor cells with alternating administration of corresponding
drugs could foster competition between drug-sensitive and drug-resistant subpopulations [12–14].
The goal of adaptive therapy design is to keep a controllable and stable tumor load in cancer treatment
by allowing for sensitive cells to survive at a certain level in order to suppress proliferation of the less
adapted resistant populations [13, 15–20].

Mathematical modeling with evolutionary game theory and evolutionary adaptive dynamics has
been widely applied for the study of cancer evolution and design of adaptive therapy schedules [14–
18, 21]. Evolutionary game theory is a general modeling framework to study evolutionary dynamics
of frequency-dependent selection among populations [22–27]. Individuals with fixed strategies in the
population, as players in a game, interact randomly with other individuals. The payoff is interpreted
as the fitness which relies on the relative proportions (frequencies) of the different phenotypes in the
population. Strategies with higher fitness do well and reproduce faster whereas those with lower fitness
do poorly and are outcompeted.

Applying frequency-dependent competition models and evolutionary game theory, West J. et
al. [13] explored sequential and concomitant therapy strategies and presented novel multidrug
adaptive therapy regimens for metastatic castrate resistant prostate cancer patients, that is,
patient-specific therapeutic schedules which drive tumor evolution into cycles of a periodic and
controllable loop. Zhang J. et al. [14] integrated evolutionary dynamics into the treatment of
metastatic castrate-resistant prostate cancer by an evolutionary game theory model with
Lotka-Volterra equations, and explored strategies for the control of tumor progression which showed
significant improvement in outcomes in pilot clinical trial. Singh G. et al. [20] investigated the design
of adaptive therapy dosage by a Lotka-Volterra based population dynamics model of the
drug-sensitive, drug-resistant cells, and transient drug-hybrid state along with phenotypic switching
during adaptive therapy. Certain key parameter regimes were identified for effective adaptive therapy,
and the importance of intermediate drug-hybrid state in cancer was phenomenologically explained.
Gluzman M. et al. [24] proposed a method for systematically optimizing the roles of adaptive policies
based on an evolutionary game theory model of cancer dynamics and optimized the total drug usage
and time to recovery by solving a Hamilton-Jacobi-Bellman equation.

Basanta D. et al. [9] proposed a general evolutionary game theory framework for tumor cell
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evolution under the constraints of combination therapies. Applying a more specific version of the
general model, the authors explored evolutionary dynamics that how chemotherapy can improve the
efficacy of the p53 vaccine for small cell lung cancer. In their model, three different tumor
subpopulations are considered, that is, regular tumor cells that are susceptible to both p53 vaccine and
chemotherapy (sensitive cells), cells that are resistant to chemotherapy and cells resistant to p53
vaccine. By numerical simulation, the authors showed that the schedule that p53 vaccine is
administered first and then change to chemotherapy results in entire chemotherapy-resistant cells,
while the schedule that chemotherapy is applied first and then change to the p53 vaccine also leads to
entire chemotherapy-resistant cells, driving the susceptible and p53 vaccine-resistant populations
toward extinction. However, for the schedule that chemotherapy is applied first and then change to the
p53 vaccine, we found that, as the simulation time step is extended to 200, p53 vaccine-resistant cells
would emerge again and establish while chemotherapy-resistant population and sensitive population
are eradicated. Explanation of this phenomenon needs investigation of the underlying evolutionary
dynamics.

In this paper, we investigated the evolution outcomes of tumor composed of sensitive cells,
chemotherapy-resistant cells and p53 vaccine-resistant cells different schedules of chemotherapy and
p53 vaccine therapy by applying a replicator dynamical model with fitness defined by a payoff matrix
generalized from [9]. We further explored the design of adaptive therapy schedules with combination
of chemotherapy and p53 vaccine. The rest of this paper is organized as follows. In Section 2, we first
presented a generalized replicator dynamical model, and then explored analytically and numerically
the existence and local asymptotic stability of equilibria of the model. Furthermore, designs of
adaptive therapy schedules based evolutionary velocity and evolutionary absorbing regions were
illustrated.

Experimental studies on targeted therapy with BRAF, ALK, or EGFR kinase inhibitors showed that
these targeted therapies induces the release of sceretome by drug-sensitive cancer cells, which lead to
establishment of a tumor microenvironment that supports the expansion of drug-resistant clones [28].
In Section 3, applying the replicator dynamics similar to the model in Section 2, we explored the
influence of this supporting effect to the evolution of cancer cell populations under combination of two
targeted therapies, via local stability analysis and numerical simulation. The paper is ended by Section
4, where some discussion and conclusions were presented.

2. Tumor evolution under chemotherapy and p53 vaccine

2.1. Replicator dynamical model

We considered the evolution dynamics of three subpopulations of tumor cells, that is, regular tumor
cells susceptible to both the p53 vaccine and chemotherapy (sensitive cells, S ), chemotherapy-resistant
cells (C) and p53 vaccine-resistant cells (I). The dynamics and interactions of subpopulations are given
by the following replicator equations:

dPC

dt
= PC(WC −W),

dPI

dt
= PI(WI −W),

dPS

dt
= PS (WS −W).

(2.1)
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where PC(t), PI(t) and PS (t) represent the proportion of chemotherapy-resistant cells, p53
vaccine-resistant cells and sensitive cells at time t, respectively, with PC + PI + PS = 1; WC, WI and
WS indicate the fitness of chemotherapy-resistant cells, p53 vaccine-resistant cells and sensitive cells,
respectively; W denotes the average fitness of the entire population. To define the fitness, we assumed
the competitive interactions between these three cell types are given by the following payoff matrix:

A =


1 − cC − αdI 1 − cC − αγdI 1 − cC − αdI

1 − cI − βdC 1 − cI − βdC 1 − cI − βdC

1 − dC − dI 1 − dC − γdI 1 − dC − dI

 .
Here, we assumed as in [9] that chemotherapy-resistant cells and vaccine-resistant cells pay a cost

of resistance, cC and cI , respectively; the cost of vaccine to sensitive cells and chemotherapy-resistant
cells are dI and αdI , respectively, when it is administered; the cost of chemotherapy to sensitive cells
and vaccine-resistant cells are dC and βdC, respectively, when it is applied. Here, α and β represent the
extra cost of chemotherapy-resistant cells and vaccine-resistant cells being subjected to the different
drugs [9], that is, p53 vaccine and chemotherapy, respectively (α, β > 1). We also assumed that
sensitive cells and chemotherapy-resistance cells get support from vaccine-resistant cells as the vaccine
is applied and as they interact with vaccine-resistant cells [9], respectively, which is represented by a
factor γ (0 < γ < 1). The fitness of the three subpopulations are defined by

WC = (AP⃗)1 = 1 − cC − αdI + αdI(1 − γ)PI ,

WI = (AP⃗)2 = 1 − cI − βdC,

WS = (AP⃗)3 = 1 − dC − dI + dI(1 − γ)PI ,

(2.2)

where P⃗ = (PC, PI , PS )T . The average fitness is given by

W = PCWC + PIWI + PS WS . (2.3)

The fitness of population can be understood as reproduction rate of the population.

2.2. Stability analysis of equilibria

According the properties of general replicator dynamics [22, 23], the system (2.1) is defined on the
simplex S 3 = {(PC, PI , PS )| PC + PI + PS = 1, 0 ≤ PC, PI , PS ≤ 1}, and the edges and the interior of
the simplex are invariant, respectively. The system (2.1) has seven types of equilibria Ei(PC, PI , PS ),
i = 1, ..., 7, given as follows.

(I) The equilibria E1(0, 0, 1), E2(0, 1, 0) and E3(1, 0, 0) always exist.
(II) When dC + γdI < cI + βdC < dC + dI , there exists an equilibrium E4(0, P̄I , P̄S ), where

P̄I =
(dC + dI) − (cI + βdC)

dI(1 − γ)
, P̄S = 1 − P̄I =

(cI + βdC) − (dC + γdI)
dI(1 − γ)

); vaccine-resistant cells and

sensitive cells coexist.
(III) When cC + αγdI < cI + βdC < cC + αdI , there exists an equilibrium E5(P̃C, P̃I , 0), where P̃C =

(cI + βdC) − (cC + αγdI)
αdI(1 − γ)

, P̃I = 1 − P̃C =
(cC + αdI) − (cI + βdC)

αdI(1 − γ)
; chemotherapy-resistant cells

and vaccine-resistant cells coexist.
(IV) When dC + dI = cC + αdI , there exists a line of equilibria E6(P̂C, 0, P̂S ), where P̂C + P̂S = 1;

chemotherapy-resistant cells and sensitive cells coexist.
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(V) When dC + γdI < cI + βdC < dC + dI and (cC +αdI)− (cI + βdC) = α[(dC + dI)− (cI + βdC)], there

exists a line of equilibria E7

(
P∗C, P

∗
I , P

∗
S

)
, where P∗I =

(dC + dI) − (cI + βdC)
dI(1 − γ)

, P∗C + P∗S = 1 − P∗I ;

chemotherapy-resistant cells, vaccine-resistant cells and sensitive cells coexist.
Next we considered the local stability of these equilibria by linearizing the system (2.1) at the

equilibria. The stability of equilibria are shown in the following theorems.

Theorem 2.1. The equilibria E1(0, 0, 1), E2(0, 1, 0) and E3(1, 0, 0) of the system (2.1) always exist and
their stability conditions are given as follows:
(1) If dC + dI < min{cC + αdI , cI + βdC, 1}, then E1(0, 0, 1) is LAS;
(2) If cI + βdC < min{cC + αγdI , dC + γdI , 1}, then E2(0, 1, 0) is LAS;
(3) If cC + αdI < min{dC + dI , cI + βdC, 1}, then E3(1, 0, 0) is LAS.
Here, LAS means locally asymptotically stable.

Proof. (1) The Jacobian matrix of the system (2.1) at E1(0, 0, 1) is given by

J =


(dC + dI) − (cC + αdI) 0 0

0 (dC + dI) − (cI + βdC) 0
cC + αdI − 1 cI + βdC − 1 dC + dI − 1

 .
The corresponding eigenvalues are λ1 = (dC + dI) − (cC + αdI), λ2 = (dC + dI) − (cI + βdC),

λ3 = dC + dI − 1. Thus, if dC + dI < min{cC + αdI , cI + βdC, 1}, then λi < 0, i = 1, 2, 3, which implies
that the equilibrium E1(0, 0, 1) is locally asymptotically stable [29, 30].
(2) The Jacobian matrix of the system (2.1) at the equilibrium E2(0, 1, 0) is

J =


(cI + βdC) − (cC + αγdI) 0 0

(cC + αγdI) − 1 (cI + βdC) − 1 (dC + γdI) − 1
0 0 (cI + βdC) − (dC + γdI)

 .
The corresponding eigenvalues are λ1 = (cI + βdC) − (cC + αγdI), λ2 = (cI + βdC) − 1, λ3 =

(cI + βdC) − (dC + γdI), which are negative if cI + βdC < min{cC + αγdI , dC + γdI , 1}. Hence, the
equilibrium E2(0, 1, 0) is locally asymptotically stable if cI + βdC < min{cC + αγdI , dC + γdI , 1}.
(3) The Jacobian matrix of the system (2.1) at E3(1, 0, 0) reads

J =


(cC + αdI) − 1 (cI + βdC) − 1 (dC + dI) − 1

0 (cC + αdI) − (cI + βdC) 0
0 0 (cC + αdI) − (dC + dI)

 .
The corresponding eigenvalues are λ1 = (cC + αdI) − 1, λ2 = (cC + αdI) − (cI + βdC), λ3 = (cC +

αdI) − (dC + dI). We see that cC + αdI < min{dC + dI , cI + βdC, 1} implies λi < 0, i = 1, 2, 3, so that the
equilibrium E3(1, 0, 0) is locally asymptotically stable.

Theorem 2.2. For the system (2.1),
(1) If dC+γdI < cI+βdC < dC+dI , the equilibrium E4(0, P̄I , P̄S ) exists, and furthermore if cI+βdC < 1

and α[(dC + dI) − (cI + βdC)] < (cC + αdI) − (cI + βdC), then E4(0, P̄I , P̄S ) is LAS, where P̄I =
(dC + dI) − (cI + βdC)

dI(1 − γ)
, P̄S = 1 − P̄I =

(cI + βdC) − (dC + γdI)
dI(1 − γ)

;

(2) If cC + αγdI < cI + βdC < cC + αdI , the equilibrium E5(P̃C, P̃I , 0) exits, if in addition, cI + βdC < 1
and α[(dC + dI) − (cI + βdC)] > (cC + αdI) − (cI + βdC), then E5(P̃C, P̃I , 0) is LAS, where P̃C =
(cI + βdC) − (cC + αγdI)

αdI(1 − γ)
, P̃I = 1 − P̃C =

(cC + αdI) − (cI + βdC)
αdI(1 − γ)

.
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Proof. (1) The fitness of the three subpopulations at the equilibrium E4(0, P̄I , P̄S ) are given by

WC = 1 − cC − αdI + α[(dC + dI) − (cI + βdC)], W I = WS = 1 − cI − βdC.

The Jacobian matrix of the system (2.1) at E4(0, P̄I , P̄S ) reads

J4 =


WC −W I 0 0
−P̄IWC −P̄I[W I + (1 − γ)dI P̄S ] −P̄IWS

−P̄S WC P̄S [−W I + (1 − γ)dI(1 − P̄S )] −P̄S WS

 .
One of the corresponding eigenvalues is λ1 = WC −W I = (cI + βdC) − (cC + αdI) + α[(dC + dI)) −

(cI + βdC)], which is negative if α[(dC + dI) − (cI + βdC)] < (cC + αdI) − (cI + βdC). The other two
eigenvalues (λ2, λ3) have negative real parts if the following conditions are satisfied: − P̄I[W I + (1 − γ)dI P̄S ] − P̄S WS < 0,

P̄I[W I + (1 − γ)dI P̄S ]P̄S WS + P̄S [−W I + (1 − γ)dI(1 − P̄S )]P̄IWS > 0,

which are equivalent to  − P̄I P̄S (1 − γ)dI < WS ,

P̄I P̄S WS (1 − γ)dI > 0,
(2.4)

respectively, noticing that P̄I + P̄S = 1, W I = WS , P̄I , P̄S , dI > 0 and 0 < γ < 1. Hence, WS =

1 − (cI + βdC) > 0 ensures the two eigenvalues λ2 and λ3 have negative real parts. Therefore, if
cI + βdC < 1, α[(dC + dI) − (cI + βdC)] < (cC + αdI) − (cI + βdC), and the equilibrium E4(0, P̄I , P̄S )
exists, then it is locally asymptotically stable.
(2) The Jacobian matrix of the system (2.1) at E5(P̃C, P̃I , 0) is given by

J5 =


−P̃CW̃C P̃C[−W̃I + α(1 − γ)dI(1 − P̃C)] −P̃CW̃S

−P̃IW̃C −P̃I[W̃I + α(1 − γ)dI P̃C] −P̃IW̃S

0 0 W̃S − W̃I

 ,
where

W̃C = W̃I = 1 − cI − βdC, W̃S = 1 − (dC + dI) +
1
α

[(cC + αdI) − (cI + βdC)].

We see that one corresponding eigenvalue is λ1 = W̃S − W̃I = (cI + βdC)− (dC + dI)+ 1
α
[(cC +αdI)−

(cI + βdC)], so that (cC + αdI) − (cI + βdC) < α[(dC + dI) − (cI + βdC)] implies λ1 < 0. The other two
eigenvalues λ2, λ3 have negative real parts, if − P̃CW̃C − P̃I[W̃I + α(1 − γ)dI P̃C] < 0,

P̃C P̃IW̃C[W̃I + α(1 − γ)dI P̃C] + P̃C P̃IW̃C[−W̃I + α(1 − γ)dI(1 − P̃C)] > 0,
(2.5)

which are equivalent to  − P̃I P̃Cα(1 − γ)dI < W̃C,

P̃I P̃Cα(1 − γ)dIW̃C > 0,
(2.6)

respectively, noticing that P̃C + P̃I = 1, W̃C = W̃I , P̃I , P̃C, dI > 0 and 0 < γ < 1. Therefore, W̃C =

1 − (cI + βdC) > 0 guarantees Re(λi) < 0, i = 2, 3. In summary, if the equilibrium E5(P̃C, P̃I , 0) exits,
and in addition, cI + βdC < 1 and (cC + αdI)− (cI + βdC) < α[(dC + dI)− (cI + βdC)], then E5(P̃C, P̃I , 0)
is locally asymptotically stable.
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Theorem 2.3. If and only if dC + dI = cC + αdI , there exists a line of equilibria, E6(P̂C, 0, P̂S ), where
P̂C + P̂S = 1, and they are locally stable if cC + αdI < min{cI + βdC, 1}.

Proof. The fitness of the subpopulations at the equilibrium E6(P̂C, 0, P̂S ) are

ŴC = 1 − cC − αdI , ŴI = 1 − cI − βdC, ŴS = 1 − dC − dI .

Note that ŴC = ŴS , if E6(P̂C, 0, P̂S ) exists. The Jacobian matrix of the system (2.1) at E6(P̂C, 0, P̂S )
is given by

J6 =


−P̂CŴC P̂C[α(1 − γ)dI(1 − P̂C) − ŴI − (1 − γ)dI P̂S ] −P̂CŴC

0 ŴI − ŴC 0
−P̂S ŴC P̂S [−α(1 − γ)dI P̂C − ŴI + (1 − γ)dI(1 − P̂S )] −P̂S ŴC

 .
The corresponding eigenvalues are λ1 = 0, λ2 = ŴI − ŴC = (cC + αdI) − (cI + βdC), λ3 = −ŴC =

(cC + αdI) − 1. Hence, if cC + αdI < min{cI + βdC, 1} , then λ2, λ3 < 0, so that E6(P̂C, 0, P̂S ) is locally
stable when it exists (shown numerically in the next subsection).

Theorem 2.4. If dC + γdI < cI + βdC < dC + dI and (cC + αdI)− (cI + βdC) = α[(dC + dI)− (cI + βdC)],

there exists a line of equilibria E7

(
P∗C, P

∗
I , P

∗
S

)
, where P∗I =

(dC + dI) − (cI + βdC)
dI(1 − γ)

, P∗C + P∗S = 1 − P∗I ;

they are locally stable if cI + βdC < 1.

Proof. The Jacobian matrix of the system (2.1) at E7

(
P∗C, P

∗
I , P

∗
S

)
reads

J7 =


−P∗CW∗ P∗C[α(1 − γ)dI(1 − P∗C) −W∗ − (1 − γ)dIP∗S ] −P∗CW∗

−P∗I W
∗ P∗I [−α(1 − γ)dIP∗C −W∗ − (1 − γ)dIP∗S ] −P∗I W

∗

−P∗S W∗ P∗S [−α(1 − γ)dIP∗C −W∗ + (1 − γ)dI(1 − P∗S )] −P∗S W∗

 ,
where W∗ = W∗

C = W∗
I = W∗

S == 1 − cI − βdC. Using the elementary transformation T−1J7T , with

T =


1 0 0
0 1 0
−1 0 1

 ,
the matrix J7 is transformed into

J∗ = T−1J7T =


0 P∗C[α(1 − γ)dI(1 − P∗C) −W∗ − (1 − γ)dIP∗S ] −P∗CW∗

0 P∗I [−α(1 − γ)dIP∗C −W∗ − (1 − γ)dIP∗S ] −P∗I W
∗

0 a −P∗CW∗ − P∗S W∗

 ,
where a = α(1 − γ)dIP∗CP∗I + (1 − γ)dIP∗I P∗S − P∗CW∗ − P∗S W∗. The two similar matrices J7 and J∗ have
the same eigenvalues, one of which is λ1 = 0. The real parts of the other two eigenvalues λ2, λ3 are
negative as the following conditions hold:P∗I [−α(1 − γ)dIP∗C −W∗ − (1 − γ)dIP∗S ] − P∗CW∗ − P∗S W∗ < 0,

P∗I [−α(1 − γ)dIP∗C −W∗ − (1 − γ)dIP∗S ](−P∗CW∗ − P∗S W∗) + aP∗I W
∗ > 0,
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which are equivalent to  − P∗I dI(1 − γ)(αP∗C + P∗S ) < W∗,

W∗(1 − γ)dI(αP∗C + P∗S ) > 0,

respectively, where P∗C, P
∗
I , P

∗
S , α, dI > 0 and 0 < γ < 1. Therefore, W∗ = 1 − cI − βdC > 0 permits

the other two eigenvalues have negative real parts, and the equilibrium E7

(
P∗C, P

∗
I , P

∗
S

)
is locally stable

(shown numerically in the next subsection), where P∗I =
(dC + dI) − (cI + βdC)

dI(1 − γ)
, P∗C + P∗S = 1 − P∗I .

The conditions for existence and local stability of the equilibria Ei, i = 1, ..., 7, were summarized in
Table 1, with introduction of the notations fC := cC +αdI , fI := cI +βdC, fS := dC +dI , f ∗C := cC +γαdI

and f ∗S := dC + γdI .

Table 1. The conditions for existence and local asymptotic stability of equilibria Ei, i =
1, ..., 7. Here, fC := cC+αdI , fI := cI+βdC, fS := dC+dI , f ∗C := cC+γαdI , and f ∗S := dC+γdI .

Equilibria Ei(PC , PI , PS ) Existence conditions LAS conditions

E1(0, 0, 1) Always fS < min{ fC , fI , 1}

E2(0, 1, 0) Always fI < min{ f ∗C , f ∗S , 1}

E3(1, 0, 0) Always fC < min{ fS , fI , 1}

E4(0, P̄I , P̄S ) f ∗S < fI < fS fI < 1, α( fS − fI) < fC − fI

E5(P̃C , P̃I , 0) f ∗C < fI < fC fI < 1, fC − fI < α( fS − fI)

E6(P̂C , 0, P̂S ) fS = fC fS < min{ fI , 1} *

E7(P∗C , P
∗
I , P

∗
S )

f ∗S < fI < fS ,
fC − fI = α( fS − fI)

fI < 1 *

* Note: The equilibria E6 and E7 are locally stable, but not asymptotically stable.

Notice that the existence and local stability of the evolutionary stable points Ei, i = 1, ..., 7, are
mutually exclusive. Here, we explain some of them, except for the obvious ones. For example,
E1(0, 0, 1) and E5(P̃C, P̃I , 0) cannot be bistable: The existence condition of E5, fI < fC, and its LAS
condition, fC − fI < α( fS − fI), together imply that fI < fS , under which, E1 is unstable. Similarly,
E3(0, 0, 1) and E4(0, P̄I , P̄S ) (or E7(P∗C, P

∗
I , P

∗
S )) cannot be bistable. The stability condition of

E2(0, 1, 0), fI < f ∗S , and the stability condition of E6(P̂C, 0, P̂S ), fS < fI , cannot hold simultaneously
since f ∗S < fS for 0 < γ < 1; hence E2 and E6 cannot be bistable.

The replicator system (2.1) has the property that if one cell subpopulation does not exist initially,
then it cannot emerge forever. In this case, the dynamics of the system is determined by the interaction
between other two subpopulations. For example, there are three different possibilities for convergence
of the solutions with initial values PS = 0, 0 < PC, PI < 1, that is, evolutionary stable points E2(0, 1, 0),
E3(1, 0, 0) and E5(P̃C, P̃I , 0); the conditions for convergence to the three evolutionary stable points are
given in Table 2. The convergence possibilities of solutions of (2.1) in the other two cases and the
corresponding conditions are also shown in Table 2.
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Table 2. The possibilities and conditions for convergence of solutions of (2.1) with initial
values absent of one subpopulation.

Initial values Possibility of convergence Convergence conditions

PS = 0,
0 < PC, PI < 1

E2(0, 1, 0) fI < min{ f ∗C, 1}

E3(1, 0, 0) fC < min{ fI , 1}

E5(P̃C, P̃I , 0) f ∗C < fI < fC, fI < 1,

PI = 0,
0 < PC, PS < 1

E1(0, 0, 1) fS < min{ fC, 1}

E3(1, 0, 0) fC < min{ fS , 1}

E6(P̂C, 0, P̂S ) fS = fC, fS < 1 *

PC = 0,
0 < PI , PS < 1

E1(0, 0, 1) fS < min{ fI , 1}

E2(0, 1, 0) fI < min{ f ∗S , 1}

E4(0, P̄I , P̄S ) f ∗S < fI < fS , fI < 1

* Note: The condition for local stability, but not asymptotic stability.

2.3. Numerical simulation results

2.3.1. Evolution of cancer cell populations to evolutionary stable points

The evolution trends of the three cancer cell subpopulations (i.e., chemotherapy-resistant,
vaccine-resistant, sensitive cells) under different stability conditions are illustrated in a simplex
{(PC, PI , PS )|PC + PI + PS = 1, 0 ≤ PC, PI , PS ≤ 1} which is presented in a triangle under trilinear
coordinate [22, 23](see Figure 1). Each point P in the simplex represents a particular structure of the
population, (PC, PI , PS ). At three vertices S , I and C of the simplex, (PC, PI , PS ) = (0, 0, 1), (0, 1, 0),
(1, 0, 0), respectively (see Figure 1(A)), that is, only one subpopulation is present (with 100%) while
the other two subpopulations become extinct in each case. The edges in the simplex are the sets of
points where two subpopulations coexist and another one becomes extinct. For example, the
coordinate of a point P in the edge S C is (PC, PI , PS ) with PI = 0, PC > 0, PS > 0, where PC and PS

show the distances from P to the side line IS , CI, respectively. The trilinear coordinates of points in
the other two edges are given similarly. The interior of the simplex is the set of points (PC, PI , PS )
with PC, PI , PS > 0; the trilinear coordinates (PC, PI , PS ) of an inner point P in the simplex are given
by the distances from P to the three edges; for instance, the distance from inner point P to the edge
S C represents the PI value of the point P (see Figure 1(A)).

Figure 1(B)–(H) demonstrated the evolution dynamics of the three cancer cell subpopulations
toward evolutionary stable points Ei, i = 1, 2, ..7, respectively. Figure 1(B) showed the evolution
toward evolutionary stable point E1(0, 0, 1) under the condition fS < min{ fC, fI , 1}, where the
parameter values were chosen as in Table 3. The arrows indicated the evolution trend and the red solid
circles denoted the stable equilibria. Note that the population with initial sensitive cell proportion
PS > 0 would evolve toward the evolutionary stable point E1(0, 0, 1), whereas if PS = 0 initially, the
population evolved toward the evolutionary stable points E2(0, 1, 0), E3(1, 0, 0) or E5(P̃C, P̃I , 0)
depending on the parameter values and the conditions as in Table 2; in Figure 1(B), the chosen
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parameters satisfied fC < min{ fI , 1}, so that the population with initial S cell proportion PS = 0
evolved toward E3(1, 0, 0) which was presented by the green solid square. In a similar way, the
evolution toward evolutionary stable points Ei, i = 2, ..., 7, were depicted in Figure 1(C)–(H), under
different parameter values shown in Table 3 satisfying the conditions in Table 1, respectively. The red
lines in Figure 1(G)–(H) presented the equilibria lines E6(P̂C, 0, P̂S ) with P̂C + P̂S = 1, and

E7(P∗C, P
∗
I , P

∗
S ) with P∗I =

(dC + dI) − (cI + βdC)
dI(1 − γ)

and P∗C + P∗S = 1 − P∗I , respectively, which are stable

but not asymptotically stable.
Note that fS := dC + dI was the collective cost of chemotherapy (dC) and vaccine (dI) to sensitive

cells as they encounter another sensitive cell or chemotherapy-resistance cells; f ∗S := dC+γdI indicated
the collective cost of chemotherapy (dC) and vaccine (dI) to sensitive cells as they play with vaccine-
resistant cells; fC := cC + αdI denoted the collective cost with the resistant cost of chemotherapy-
resistant cells (cC) and the cost of vaccine to chemotherapy-resistant cells (αdI); f ∗C := cC + γαdI was
the collective cost with the resistant cost of chemotherapy-resistant cells (cC) and the cost of vaccine to
chemotherapy-resistant cells (αdI) as they encounter vaccine-resistant cells; fI := cI + βdC represented
the collective cost with the resistant cost of vaccine resistant cells (cI) and the cost of chemotherapy to
vaccine-resistant cells (βdC).

Table 3. The parameter values for simulations in Figure 1(B)–(H).

Parameters* Figure 1(B) (C) (D) (E) (F) (G) (H)

dI 0.42 0.7 0.4 0.5 0.5 0.2 0.3

dC 0.42 0.2 0.5 0.4 0.45 0.42 0.25

* Note: (i) cC = 0.4, cI = 0.4, α = 1.1, β = 1.1, γ = 0.6 for Figure 1(B)–(G);
(ii) cC = 0.2, cI = 0.2, α = 1.2, β = 1.2, γ = 0.6 for Figure 1(H).

We found that if the collective cost for sensitive cells ( fS ) is less than the collective cost for
chemotherapy-resistant cells ( fC) and the collective cost for vaccine-resistant cells ( fI), and also less
than one, that is, fS < min{ fC, fI , 1}, then the populations containing sensitive cells initially would
evolve to the population with 100% of sensitive cells (i.e., E1(0, 0, 1), see Figure 1(B)); the
populations absent of sensitive cells initially would evolve to population with 100% of chemotherapy
resistant cells (i.e., E3(1, 0, 0)), as the collective cost for chemotherapy-resistant cells ( fC) is lower
than one and also less than the collective cost for vaccine resistant cells ( fI).
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Figure 1. Temporal dynamics in trilinear coordinate simplex. (A) The simplex in trilinear
coordinate. Each point P in the simplex represents a particular structure of the population,
(PC, PI , PS ). The three vertices S , I and C indicate E1(0, 0, 1), E2(0, 1, 0) and E3(1, 0, 0),
respectively. The coordinate of a point P in the edge S C are (PC, PI , PS ) with PI = 0,
PC, PS > 0, where PC and PS show the distances from P to the edges IS and CI, respectively.
The trilinear coordinates of points in the other two edges are given similarly. The trilinear
coordinates (PC, PI , PS ) of an inner point P in the simplex are given by the directed distances
from P to the three edges. (B)–(H): Temporal dynamics of the system (2.1) under the
local stability conditions of evolutionary stable points Ei, i = 1, 2, ..., 7, respectively. The
red solid circles and red lines represent the stable equilibria. The green squares show the
evolutionary stable point for evolution of the populations with the initial values on the edges
of the simplex. Every point on the red lines in (G) and (H) presents an equilibrium. The
values of the parameters are taken as in Table 3.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 656–682.



667

When only the chemotherapy is applied (i.e., dC > 0, dI = 0), the evolutionary stable points
E1(0, 0, 1), E3(1, 0, 0) and E6(P̂C, 0, P̂S ) are possible to be stable; if the monotherapy of vaccine is
implemented (i.e., dC = 0, dI > 0), the evolutionary stable points E1(0, 0, 1), E2(0, 1, 0) and
E4(0, P̄I , P̄S ) are possible to be stable. We explored the effects of timing for the effectiveness of
treatment when the drugs are administered sequentially as in [9]. Figure 3 showed the evolution of
cancer cell population when vaccine is applied first followed by chemotherapy (Figure 3(A)–(B)) or
when chemotherapy is applied first followed by vaccine (Figure 3(C)–(E)). We saw that if the drug is
changed to another one, then the corresponding resistant strain would grow up again or the sensitive
cells would grow up. As the vaccine is applied first and changed to chemotherapy later on, the cell
population with initial distribution of large sensitive cell proportion and very small resistant cell
proportions evolved toward the tumor entirely consisting of either sensitive cells or chemotherapy
resistant cells, depending on the chemotherapy dosage; the sensitive cell population would grow fast
under low dose of chemotherapy (see Figure 3(A)), while high dose of chemotherapy could keep the
sensitive cells’ growth under control (see Figure 3(B)). Under a very strict dosing schedule that
satisfies dC = cC < 1, the sensitive cells and chemotherapy-resistant cells could coexist. Similarly, as
chemotherapy is applied first and then changed to vaccine, the cell population evolved toward the
tumor consists entirely of either sensitive cells (see Figure 3(C)) or vaccine resistant cells (see Figure
3(D)), or coexistence of them (see Figure 3(E)), relying on the dosage of vaccine. In a long run, it is
impossible to maintain both the sensitive cells and vaccine resistant cells under control with the
implementation of chemotherapy as shown in [9], which could only be obtained in a short time scale.

2.3.2. Adaptive therapy schedules

We further investigated the design of adaptive therapy schedules with the chemotherapy and p53
vaccine, that is, a periodic treatment cycle that traps the tumor into periodic and repeatable temporal
dynamics of tumor composition. Evolutionary velocity is introduced for designing adaptive therapy
schedules [13]. A fast dynamic region is needed for control of high proportion of resistant cells,
whereas a slow dynamic region may be beneficial to the treatment holidays [13].

The evolutionary velocity of the system (2.1) evolving toward different evolutionary stable points
(same as in Figure 1) was demonstrated in Figure 2, where the total velocity was calculated by L2-

Norm of vector
(
dPC

dt
,

dPI

dt
,

dPS

dt

)
for the system (2.1). It can be observed that the evolution velocity

near the evolutionary stable point is very low; the evolutionary velocity at an evolutionary stable point
is the lowest (equal to 0). For example, near the vertex S in Figure 2(A), that is, near the evolutionary
stable point E1(0, 0, 1), the evolution velocity is very small; the evolution velocity is also very small
near the vertices C and I, where the initial sensitive cell proportion is zero. A low velocity indicates a
slow change to the tumor composition. In a similar way, the evolution velocity for the case with stable
Ei, i = 2, 3, ..., 7, was given in Figure 2 (B)–(G), respectively. In order to control the tumor progression,
keeping the velocity of evolution towards evolutionary stable points at a relatively low level would be
beneficial to the design of adaptive therapy schedule, which means drug dosages should be changed to
avoid high evolution velocity.
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Figure 2. Evolution velocity towards evolutionary stable points. (A)–(G): The evolutionary
velocity of the system (2.1) toward evolutionary stable points Ei, i = 1, 2, ..., 7, respectively.
The color bar showed evolutionary velocity of the system (2.1). The red solid circles and red
lines represented the evolutionary stable points. The arrows on the side lines demonstrated
the evolution directions. The parameter values were taken the same as in Figure 1(B)–(H),
respectively.

The relative subpopulation velocity for chemotherapy-resistant cells (C), vaccine-resistant cells (I)
and sensitive cells (S ) were shown in Figure 4 under the condition for stability of Ei, i = 1, 3, 4, 5,
where positive (negative) velocity indicated growth (decline) of the corresponding subpopulation. In
order to examine the slow velocity (close to zero) regions, that is, slow dynamics regions, we derived
the relative evolution velocities of each subpopulations by rescaling the positive and negative velocities
separately.

Under each combination treatment (dC, dI) for a sufficiently long time, the tumor composition
(PC, PI , PS ) would evolve to one of the evolutionary stable points Ei, i = 1, ..., 7, relying on the
condition satisfied by dC and dI (see Table 4). Under the treatment strategy associated with E3, the
velocity of the chemotherapy-resistant cell population is positive for most of the state space (see
Figure 4(A2)). To control the chemotherapy-resistant cell population, it is necessary to switch to a
new treatment after some period of the treatment, for example, a treatment schedule associated with
E4, where the velocity of the chemotherapy-resistant cell population is negative for almost all the state
space (see Figure 4(A3)). Further, under the treatment schedule associated with E1, the velocity of the
sensitive cell population is positive for most of the state space (see Figure 4(C1)), therefore, to control
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sensitive cell population, it is necessary to change to another new treatment schedule after some
period of the treatment, for example, a treatment schedule associated with E5, where the velocity of
sensitive cell population is negative in some parts of the state space (see Figure 4(C4)). Under the
treatment schedule associated with E4, the vaccine-resistant cells have positive evolution velocities in
most of the state space (see Figure 4(B3)), so it is also necessary to change to another treatment
schedule after some period of the treatment to control the vaccine-resistant cells. It is possible to
design a cycle of the treatment schedules which could maintain growth of the three subpopulations
under control.
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Figure 3. The cancer cells dynamics under monotherapy. (A)–(B): Cell frequency dynamics
under the treatment with vaccine (dC = 0, dI > 0) followed by chemotherapy (dC > 0,
dI = 0). (C)–(E): Cell frequency dynamics under the treatment with chemotherapy (dC > 0,
dI = 0) followed by vaccine (dC = 0, dI > 0). (A) dC = 0.2 (t ≥ 200); (B) dC = 0.4 (t ≥ 200);
(C) dI = 0.1 (t ≥ 200); (D) dI = 0.26 (t ≥ 200); (E) dI = 0.3 (t ≥ 200); and dI = 0.45
(t < 200) for (A) and (B); dC = 0.4 (t < 200) for (C)–(E).

A design of a treatment schedule with sequential application of the three treatment strategies
associated with (E3, E5, E4) (see Table 4) according to the relative velocities was displayed in Figure
5(A)–(B). There existed at least one periodic cycle in the interior of the absorbing state region (region
in orange) whose boundary is given by the trajectories (dodger blue lines with arrows) connecting the
evolutionary stable points (red solid circles). Under the same treatment strategies (E3, E5, E4), it is
impossible for the tumor composition to go out of the region, once it is driven into the absorbing
regions. There may be other periodic cycles resulting from sequential administration of treatment
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strategies (E3, E5, E4). The outer rim of the absorbing region is the largest cycle under the treatment
regimen. Similarly, the sequential implementation of the treatment strategies associated with (E1, E5,
E3) could also be scheduled so that it results in periodic cycle evolution of the tumor compositions
(see Figure 5(C)–(D)). Under these treatment schedules, the proportion of the drug-resistant cells and
the sensitive cells are all under control with periodic oscillations, and the cancer could be treated as a
chronic disease.

Figure 4. Relative evolution velocity of cancer cell subpopulations towards the evolutionary
stable points E1, E3, E4 and E5. (A1)–(A4): Relative evolutionary velocity of chemotherapy-
resistant cells evolving toward the stable points Ei, i = 1, 3, 4, 5, respectively. (B1)–(B4):
Relative evolutionary velocity of vaccine-resistant cells evolving toward the stable points
Ei, i = 1, 3, 4, 5, respectively. (C1)–(C4): Relative evolutionary velocity of sensitive cells
evolving toward the stable points Ei, i = 1, 3, 4, 5, respectively. Red dots represents the
evolutionary stable points, Ei, i = 1, 3, 4, 5, respectively. The parameter values are the same
as in Figure 2.
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Table 4. Combination therapy schedules associated with the evolutionary stable points Ei,
i = 1, 2, ..., 7.

Stable Ei Strategies of combination therapy (dC , dI)

E1(0, 0, 1) (dI − cI)/(β − 1) < dC < min {cC + (α − 1)dI , 1 − dI}

E2(0, 1, 0) dC < min {(γdI − cI)/(β − 1), (αγdI + cC − cI)/β, (1 − cI)/β}

E3(1, 0, 0) dI < min{(dC − cC)/(α − 1), (βdC + cI − cC)/α, (1 − cC)/α}

E4(0, P̄I , P̄S )
(γdI − cI)/(β − 1) < dC < min{(dI − cI)/(β − 1), (1 − cI)/β},
(α + β − αβ)dC < cC + (α − 1)cI

E5(P̃C , P̃I , 0)
(cC − cI + αγdI)/β < dC < min{(cC − cI + αdI)/β, (1 − cI)/β},
(α + β − αβ)dC > cC + (α − 1)cI

E6(P̂C , 0, P̂S ) (dI − cI)/(β − 1) < dC = cC + (α − 1)dI < 1 − dI
*

E7(P∗C , P
∗
I , P

∗
S )

(−cI + αdI)/(β − 1) < dC < min{(dI − cI)/(β − 1), (1 − cI)/β},
(α + β − αβ)dC = cC + (α − 1)cI

*

* Note: The condition is local stable condition for E6 or E7.

3. The auxiliary effect of sensitive cells on drug-resistant cells

Experimental studies on targeted therapy with BRAF, ALK, or EGFR kinase inhibitors showed that
these targeted therapies induces the release of sceretomes by drug-sensitive cancer cells, which lead
to establishment of a tumor microenvironment that supports the expansion of drug-resistant clones
[28]. Applying the replicator dynamics similar to the system (2.1), we explored the influence of this
supporting effect of sensitive cells to drug-resistant cells for the evolution of cancer cell populations
under combination of two targeted therapies. Here, we considered the targeted therapy with kinase
inhibitors (KI) such as vemurafenib and dabrafenib (BRAF inhibitors) [28], which we denoted as KI-1
and KI-2, respectively. Assuming the support of sensitive cells to drug-resistant cells under targeted
therapy by reduction to the drug cost of KI-1-resistant cells and KI-2-resistant cells with factor ρ1 and
ρ2, respectively, we have the following payoff matrix

B =


1 − c1 − αd2 1 − c1 − αd2 1 − c1 − ρ1αd2

1 − c2 − βd1 1 − c2 − βd1 1 − c2 − ρ2βd1

1 − d1 − d2 1 − d1 − d2 1 − d1 − d2

 ,
where 0 < ρ1, ρ2 < 1. Similar to the system (2.1), c1 and c2 are the cost of resistant to two targeted
therapies, KI-1 and KI-2, respectively; d1 and d2 are the cost of KI-1 and KI-2 to sensitive cells; α and
β (α, β > 1) represent the extra cost of KI-1-resistant and KI-2-resistant cells being subjected to KI-2
and KI-1 drugs, respectively. In this case, the fitness of the subpopulations reads

W1 = (BP⃗)1 = 1 − c1 − αd2 + α(1 − ρ1)d2P3,

W2 = (BP⃗)2 = 1 − c2 − βd1 + β(1 − ρ2)d1P3,

W3 = (BP⃗)3 = 1 − d1 − d2,

(3.1)
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where P⃗ = (P1, P2, P3), and Pi, i = 1, 2, 3, denote the the proportions of KI-1-resistant cells, KI-2-
resistant cells and sensitive cancer cells, respectively, which satisfy P1+P2+P3 = 1. The corresponding
average fitness is

W = P1W1 + P2W2 + P3W3. (3.2)

The evolution of the three subpopulations is given by the replicator dynamics:

dPi

dt
= Pi(Wi −W), i = 1, 2, 3. (3.3)

In the following, we investigated the evolution dynamics of this replicator model.

3.1. Local stability analysis

Similar to the system (2.1), the system (3.3) is defined on the simplex
S 3 = {(P1, P2, P3)| P1 + P2 + P3 = 1, 0 ≤ P1, P2, P3 ≤ 1}, and the edges and the interior of the
simplex are invariant, respectively. There are seven types of equilibria for the system under certain
conditions, which are E1(0, 0, 1), E2(0, 1, 0), E3(1, 0, 0), E4(0, P̄2, P̄3), E5(P̃1, 0, P̃3), E6(P̂1, P̂2, 0) and

E7(P∗1, P
∗
2, P

∗
3), where P̄2 =

(d1 + d2) − (c2 + ρ2βd1)
β(1 − ρ2)d1

, P̄3 = 1 − P̄2; P̃1 =
(d1 + d2) − (c1 + ρ1αd2)

α(1 − ρ1)d2
,

P̃3 = 1 − P̃1; P̂1 + P̂2 = 1; P∗3 =
(c1 + αd2) − (d1 + d2)

α(1 − ρ1)d2
, P∗1 + P∗2 = 1 − P∗3.

The conditions for existence and local stability of these equilibria are given in Table 5, with the
notations g1 := c1 + αd2, g2 := c2 + βd1, g3 := d1 + d2, g∗1 := c1 + αρ1d2 and g∗2 := c2 + βρ2d1. Note that
the existence and local stability of the equilibria Ei, i = 1, ..., 7, are also mutually exclusive.

Table 5. The conditions for the existence and stability of the equilibria. Here, g1 := c1+αd2,
g2 := c2 + βd1, g3 := d1 + d2, g∗1 := c1 + αρ1d2 and g∗2 := c2 + βρ2d1.

Equilibria Existence conditions LAS conditions

E1(0, 0, 1) Always g3 < min{g∗1, g∗2, 1}

E2(0, 1, 0) Always g2 < min{g1, g3, 1}

E3(1, 0, 0) Always g1 < min{g2, g3, 1}

E4(0, P̄2, P̄3) g∗2 < g3 < g2
g3 < 1,
(g1 − g∗1)(g2 − g3) < (g2 − g∗2)(g1 − g3)

E5(P̃1, 0, P̃3) g∗1 < g3 < g1
g3 < 1,
(g1 − g∗1)(g2 − g3) > (g2 − g∗2)(g1 − g3)

E6(P̂1, P̂2, 0) g1 = g2 g1 < min{ g3, 1}*

E7(P∗1, P
∗
2, P

∗
3)

g∗1 < g3 < g1,
g∗2 < g3 < g2,
(g1 − g∗1)(g2 − g3) = (g2 − g∗2)(g1 − g3)

g3 < 1 *

* Note: The equilibrium E6 and E7 are locally stable, but not asymptotically stable.

The detailed proof of the stability of these equilibria are shown in the following theorem.
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Theorem 3.1. For the system (3.3),
(1) E1(0, 0, 1) always exists and is LAS if d1 + d2 < min{c1 + ρ1αd2, c2 + ρ2βd1, 1};
(2) E2(0, 1, 0) always exists; it is LAS if c2 + βd1 < min{c1 + αd2, d1 + d2, 1};
(3) E3(1, 0, 0) always exists; it is LAS if c1 + αd2 < min{d1 + d2, c2 + βd1, 1}.
(4) If c2 + βd1 > d1 + d2 > c2 + ρ2βd1, the equilibrium E4(0, P̄2, P̄3) exists, and furthermore if

dC + dI < 1 and α(1 − ρ1)d2[(c2 + βd1) − (d1 + d2)] < β(1 − ρ2)d1[(c1 + αd2) − (d1 + d2)], then

E4(0, P̄2, P̄3) is LAS, where P̄2 =
(d1 + d2) − (c2 + ρ2βd1)

β(1 − ρ2)d1
, P̄3 =

(c2 + βd1) − (d1 + d2)
β(1 − ρ2)d1

;

(5) If c1 + αd2 > d1 + d2 > c1 + ρ1αd2, the equilibrium E5(P̃1, 0, P̃3) exits, if in addition, d1 + d2 < 1
and α(1 − ρ1)d2[(c2 + βd1) − (d1 + d2)] > β(1 − ρ2)d1[(c1 + αd2) − (d1 + d2)], then E5(P̃1, 0, P̃3) is

LAS, where P̃1 =
(d1 + d2) − (c1 + ρ1αd2)

α(1 − ρ1)d2
, P̃3 =

(c1 + αd2) − (d1 + d2)
α(1 − ρ1)d2

;

Proof. (1) The Jacobian matrix of the system (3.3) at E1(0, 0, 1) is given by

J =


(d1 + d2) − (c1 + ρ1αd2) 0 0

0 (d1 + d2) − (c2 + ρ2βd1) 0
c1 + ρ1αd2 − 1 c2 + ρ2βd1 − 1 d1 + d2 − 1

 .
The corresponding eigenvalues are λ1 = (d1 + d2) − (c1 + ρ1αd2), λ2 = (d1 + d2) − (c2 + ρ2βd1), λ3 =

(d1 + d2) − 1. Thus, if d1 + d2 < min{c1 + ρ1αd2, c2 + ρ2βd1, 1}, then λi < 0, i = 1, 2, 3, which implies
that the equilibrium E1(0, 0, 1) is locally asymptotically stable.

(2) The Jacobian matrix of the system (3.3) at the equilibrium E2(0, 1, 0) is

J =


(c2 + βd1) − (c1 + αd2) 0 0

(c1 + αd2) − 1 (c2 + βd1) − 1 (d1 + d2) − 1
0 0 (c2 + βd1) − (d1 + d2)

 .
The corresponding eigenvalues are λ1 = (c2+βd1)− (c1+αd2), λ2 = (c2+βd1)−1, λ3 = (c2+βd1)−

(d1 + d2), which are negative if c2 + βd1 < min{c1 + αd2, d1 + d2, 1}. Hence, the equilibrium E2(0, 1, 0)
is locally asymptotically stable if c2 + βd1 < min{c1 + αd2, d1 + d2, 1}.

(3) The Jacobian matrix of the system (3.3) at E3(1, 0, 0) reads

J =


(c1 + αd2) − 1 (c2 + βd1) − 1 (d1 + d2) − 1

0 (c1 + αd2) − (c2 + βd1) 0
0 0 (c1 + αd2) − (d1 + d2)

 .
The corresponding eigenvalues are λ1 = (c1+αd2)−1, λ2 = (c1+αd2)− (c2+βd1), λ3 = (c1+αd2)−

(d1 + d2). We observe that c1 + αd2 < min{d1 + d2, c2 + βd1, 1} implies λi < 0, i = 1, 2, 3, so that the
equilibrium E3(1, 0, 0) is locally asymptotically stable.

(4) The Jacobian matrix of the system (3.3) at E4(0, P̄2, P̄3) is given by

J4 =


W1 −W2 0 0
−P̄2W1 −P̄2W2 P̄2[β(1 − ρ2)d1P̄3 −W3]
−P̄3W1 −P̄3W2 P̄3[−β(1 − ρ2)d1P̄2 −W3]

 ,
where W1 = 1 − c1 − αd2 + α(1 − ρ1)d2P̄3 and W2 = W3 = 1 − d1 − d2. One of the corresponding

eigenvalues is λ1 = W1 − W2 = (d1 + d2) − (c1 + αd2) + α(1 − ρ1)d2
(c2 + βd1) − (d1 + d2)

β(1 − ρ2)d1
, which is
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negative if α(1 − ρ1)d2[(c2 + βd1) − (d1 + d2)] < β(1 − ρ2)d1[(c1 + αd2) − (d1 + d2)]. The other two
eigenvalues (λ2, λ3) have negative real parts if the following conditions are satisfied: − P̄2W2 − P̄3W3 − P̄2P̄3(1 − ρ2)βd1 < 0,

− P̄2W2P̄3[−β(1 − ρ2)d1P̄2 −W3] + P̄2W2P̄3[(1 − ρ2)βd1P̄3 −W3] > 0.

which are equivalent to  − (1 − ρ2)βd1P̄2P̄3 < W2,

(1 − ρ2)βd1P̄2P̄3W3 > 0.

respectively, noticing that P̄2 + P̄3 = 1, W2 = W3, P̄2, P̄3, d1 > 0 and 0 < ρ2 < 1. Hence, W3 =

1−(d1+d2) > 0 ensures the two eigenvalues λ2 and λ3 have negative real parts. Therefore, if d1+d2 < 1,
α(1−ρ1)d2[(c2+βd1)− (d1+d2)] < β(1−ρ2)d1[(c1+αd2)− (d1+d2)], and the equilibrium E4(0, P̄I , P̄S )
exists, then it is locally asymptotically stable.

(5) The Jacobian matrix of the system (3.3) at E5(P̃1, 0, P̃3) reads

J5 =


−P̃1W̃1 −P̃1W̃2 P̃1[α(1 − ρ1)d2P̃3 − W̃3]

0 W̃2 − W̃1 0
−P̃3W̃1 −P̃3W̃2 P̃3[−α(1 − ρ1)d2P̃1 − W̃3]

 ,
where W̃1 = W̃3 = 1 − d1 − d2 and W̃2 = 1 − c2 − βd1 + (1 − ρ2)βd1

(c1 + αd2) − (d1 + d2)
α(1 − ρ1)d2

.

We obtain that one corresponding eigenvalue is λ1 = W̃2 − W̃1 = (d1 + d2) − (c2 + βd1) + β(1 −

ρ2)d1
(c1 + αd2) − (d1 + d2)

α(1 − ρ1)d2
, so that α(1−ρ1)d2[(c2+βd1)−(d1+d2)] > β(1−ρ2)d1[(c1+αd2)−(d1+d2)]

implies λ1 < 0. The other two eigenvalues λ2, λ3 have negative real parts, if − P̃1W̃1 − P̃3[W̃3 + α(1 − ρ1)d2P̃1] < 0,

− P̃1P̃3W̃1[−W̃3 − α(1 − ρ1)d2P̃1] + P̃1P̃3W̃1[−W̃3 + α(1 − ρ1)d2P̃3] > 0,
(3.4)

which are equivalent to  − P̃1P̃3α(1 − ρ1)d2 < W̃1,

P̃1P̃3W̃1α(1 − ρ1)d2 > 0,
(3.5)

respectively, where P̃1, P̃3, d2 > 0 and 0 < ρ1 < 1. Therefore, W̃1 = 1 − d1 − d2 > 0 guarantees
Re(λi) < 0, i = 2, 3. In summary, if the equilibrium E5(P̃1, 0, P̃3) exits, and in addition, d1 + d2 < 1 and
α(1 − ρ1)d2[(c2 + βd1) − (d1 + d2)] > β(1 − ρ2)d1[(c1 + αd2) − (d1 + d2)], then E5(P̃1, 0, P̃3) is locally
asymptotically stable.

Theorem 3.2. For the system (3.3),
(1) If and only if c1 +αd2 = c2 + βd1, there exists a line of equilibria, E6(P̂1, P̂2, 0), where P̂1 + P̂2 = 1,

and they are locally stable if c1 + αd2 < d1 + d2 < 1.
(2) If c1+αρ1d2 < d1+d2 < c1+αd2, c2+βρ2d1 < d1+d2 < c2+βd1 and α(1−ρ1)d2[(c2+βd1)− (d1+

d2)] = β(1 − ρ2)d1[(c1 + αd2) − (d1 + d2)], there exists a line of equilibria E7

(
P∗1, P

∗
2, P

∗
3

)
, where

P∗3 =
(c1 + αd2) − (d1 + d2)

α(1 − ρ1)d2
=

(c2 + βd1) − (d1 + d2)
β(1 − ρ2)d1

, P∗1 + P∗2 = 1 − P∗3; they are locally stable if

c2 + βd1 < 1.
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Proof. (1) The fitness of the subpopulations at the equilibria E6(P̂1, P̂2, 0) are

Ŵ1 = 1 − c1 − αd2, Ŵ2 = 1 − c2 − βd1, Ŵ3 = 1 − d1 − d2.

Note that Ŵ1 = Ŵ2, if the equilibria E6(P̂1, P̂2, 0) exist. The Jacobian matrix of the system (3.3) at
E6(P̂1, P̂2, 0) is given by

J6 =


−P̂1Ŵ1 −P̂1Ŵ1 P̂1[α(1 − ρ1)d2P̂2 − Ŵ3 − β(1 − ρ2)d1P̂2]
−P̂2Ŵ1 −P̂2Ŵ1 P̂2[β(1 − ρ2)d1P̂1 − Ŵ3 − (1 − ρ1)d1P̂1]

0 0 Ŵ3 − Ŵ1

 .
The corresponding eigenvalues are λ1 = 0, λ2 = Ŵ3 − Ŵ1 = (c1 + αd2) − (d1 + d2), λ3 = −Ŵ1 =

(c1 + αd2) − 1. Hence, if c1 + αd2 < min{d1 + d2,1}, then λ2, λ3 < 0, so that the equilibria E6(P̂1, P̂2, 0)
are locally stable when they exist.

(2) The Jacobian matrix of the system (3.3) at the equilibria E7

(
P∗1, P

∗
2, P

∗
3

)
is given by

J7 =


−P∗1W∗ −P∗1W∗ P∗1[α(1 − ρ1)d2(1 − P∗1) −W∗ − β(1 − ρ2)d1P∗2]
−P∗2W∗ −P∗2W∗ P∗2[β(1 − ρ2)d1(1 − P∗2) −W∗ − α(1 − ρ1)d2P∗1]
−P∗3W∗ −P∗3W∗ P∗3[−α(1 − ρ1)d2P∗1 −W∗ − β(1 − ρ2)d1P∗2]

 ,
where W∗ = W∗

1 = W∗
2 = W∗

3 = 1 − c2 − βd1. Using the elementary transformation T−1J7T , with

T =


1 0 0
−1 1 0
0 0 1

 ,
the matrix J7 is transformed into

J∗ = T−1J7T =


0 −P∗1W∗ P∗1[α(1 − ρ1)d2(1 − P∗1) −W∗ − β(1 − ρ2)d1P∗2]
0 −(P∗1 + P∗2)W∗ a
0 −P∗3W∗ P∗3[−α(1 − ρ1)d2P∗1 −W∗ − β(1 − ρ2)d1P∗2]

 ,
where a = α(1− ρ1)d2P∗1P∗3 + β(1− ρ2)d1P∗2P∗3 − (P∗1 + P∗2)W∗. The two similar matrices J7 and J∗ have
the same eigenvalues, one of which is λ1 = 0. The real parts of the other two eigenvalues λ2, λ3 are
negative as the following conditions hold: − (P∗1 + P∗2)W∗ + P∗3[−α(1 − ρ1)d2P∗1 −W∗ − β(1 − ρ2)d1P∗2] < 0

− (P∗1 + P∗2)W∗P∗3[−α(1 − ρ1)d2P∗1 −W∗ − β(1 − ρ2)d1P∗2] + P∗3W∗a > 0

which are equivalent to P∗3[−α(1 − ρ1)d2P∗1 − β(1 − ρ2)d1P∗2] < W∗,

P∗3W∗[−α(1 − ρ1)d2P∗1 − β(1 − ρ2)d1P∗2] < 0.

respectively, where P∗1, P
∗
2, P

∗
3, α, β, d1, d2 > 0 and 0 < ρ1, ρ2 < 1. Therefore, W∗ = 1 − c2 − βd1 > 0

permits the other two eigenvalues have negative real parts. As a result, the equilibria E7

(
P∗1, P

∗
2, P

∗
3

)
are locally stable, where P∗3 =

(c1 + αd2) − (d1 + d2)
α(1 − ρ1)d2

=
(c2 + βd1) − (d1 + d2)

β(1 − ρ2)d1
, P∗1 + P∗2 = 1 − P∗3.
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Figure 5. Evolutionary cycles in absorbing state regions. (A) The periodic cycle (circled by
solid red, green and black curves) inside the absorbing state region (region in orange) resulted
from the sequential implementation of the three treatment strategies associated with (E3, E5,
E4), which are different combinations of chemotherapy and vaccine (dc, dI) satisfying the
conditions given in Table 4, respectively. (B) The evolution dynamics of the subpopulation
proportions, PC, PI and PS for chemotherapy-resistant cells, vaccine-resistant cells and
sensitive cells, respectively, under the sequential treatment schedule derived in (A). The red
solid circles represented the evolutionary stable points, E3, E5 and E4. The arrows indicated
the direction of evolution. The blue solid circles on the cycle denoted the switching point of
the therapy strategies. (C) The periodic cycle (circled by solid red, black and green curves)
inside the absorbing state region (region in orange) resulted from the sequential application of
the three treatment strategies associated with (E1, E5, E3). (D) The evolution dynamics of the
subpopulation proportions, PC, PI and PS for chemotherapy-resistant cells, vaccine-resistant
cells and sensitive cells, respectively, under the sequential treatment schedule derived in (C).
The parameter values for simulation of the trajectories converging to E1, E3, E4 and E5 are
the same as in Figure 1(B), (D)–(F), respectively.
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3.2. Influence of the supportive effect on tumor evolution

We investigated the effects of ρ1 and ρ2 on the evolution of cancer cell population. Figure 6
illustrated the evolution of cancer cell populations as the supports of sensitive cells to KI-1-resistant
cells and KI-2-resistant cells increased, that is, as ρ1 and ρ2 decreased, respectively. Different shaded
colors indicated evolution of cancer cell populations to different evolutionary stable points.

We chose a set of parameters so that the cell population evolves to the 100% sensitive cell population
(see Figure 6) as the supports of sensitive cells to KI-1-resistant cells and KI-2-resistant cells are very
small (i.e., ρ1 and ρ2 are close to 1). As the supportive effect to KI-1-resistant cells increases, the KI-1-
resistant cells grow up and the cell population evolves to the equilibrium point where sensitive cells and
KI-1-resistant cells coexist (see the subplots in the first column of Figure 6). Similarly, as the supportive
effect to KI-2-resistant cells increases, the KI-2-resistant cells establish and the cell population evolves
to the coexistence of sensitive cells and KI-2-resistant cells (see the subplots in the first row of Figure
6). The three subpopulations could coexist (see subplots shaded with green in Figure 6) at very specific
situations when ρ1 and ρ2 satisfy ρ2 = 1 − (1 − ρ1)[αd2(c2 + βd1 − d1 − d2))]/[βd1(c1 + αd2 − d1 − d2)],
ρ1 < (d1 + d2 − c1)/(αd2) and ρ2 < (d1 + d2 − c2)/(βd1). The corresponding bifurcation diagrams are
shown in Figure 7.

Figure 7(A)–(C) demonstrated the bifurcations with respect to the proportions of sensitive cells
(P3), KI-1-resistant cells (P1) and KI-2-resistant cells (P2), respectively. The color bars indicated
the corresponding proportions of the three subpopulations. With ρ1 and ρ2 in the region S 1, that is,
ρ1 > (d1 + d2 − c1)/(αd2) and ρ2 > (d1 + d2 − c2)/(βd1), the cell population evolves to the evolutionary
stable point E1(0, 0, 1), so that sensitive cells establish. In the region S 2 with ρ1 < (d1 + d2 − c1)/(αd2)
and ρ2 > 1− (1−ρ1)[αd2(c2+βd1−d1−d2))]/[βd1(c1+αd2−d1−d2)], the KI-1-resistant cells establish
and coexist with sensitive cells at E5(P̃1, 0, P̃3). Similarly, the KI-1-resistant cell population evolves
to coexists with sensitive cells as ρ1 and ρ2 are in the region S 3 where ρ2 < (d1 + d2 − c2)/(βd1) and
ρ2 < 1 − (1 − ρ1)[αd2(c2 + βd1 − d1 − d2))]/[βd1(c1 + αd2 − d1 − d2)]. On the slanting line segment
ρ2 = 1 − (1 − ρ1)[αd2(c2 + βd1 − d1 − d2))]/[βd1(c1 + αd2 − d1 − d2)], the three subpopulations evolve
to coexist at E7(P∗1, P

∗
2, P

∗
3).
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Figure 6. The influence of ρ1 and ρ1 on the evolution of cancer cell population. The
vertex S indicated the cell population with 100% of sensitive cells, that is E1(0, 0, 1); the
vertices R1 and R2 denoted the cell populations with 100% of KI-1-resistant cells and 100%
of KI-2-resistant cells, respectively, that is, E3(1, 0, 0) and E2(0, 1, 0), respectively. Shaded
colors indicated different evolution outcome: Cyan showed evolution to E1(1, 0, 0); yellow
represented evolution to E4(0, P̄2, P̄3); magenta denoted cancer cell evolution to E6(P̂1, 0, P̂3);
green indicated evolution of cancer cell populations to E7(P∗1, P

∗
2, P

∗
3). The red stars on the

axes demonstrated the critical values where the evolution outcome changes for the first row
and column of plots, respectively. Here, α = 1.2, β = 1.4, c1 = 0.3, c2 = 0.3, d1 = 0.32,
d2 = 0.32.
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Figure 7. The bifurcation diagram with respect to ρ1 and ρ2. (A) The change of sensitive
cells proportion (P3) at the evolutionary stable points as ρ1 and ρ2 varies. The horizontal red
line segment (ρ1 = (d1+d2−c1)/(αd2), ρ2 > (d1+d2−c2)/(βd1)) denotes the threshold values
of ρ1 for transcritical bifurcation with the change of stability from E1(0, 0, 1) to E5(P̃1, 0, P̃3);
The vertical red line segment (ρ2 = (d1+d2−c2)/(βd1), ρ1 > (d1+d2−c1)/(αd2)) indicates the
threshold values of ρ2 for transcritical bifurcation with the change of stability from E1(0, 0, 1)
to E4(0, P̄2, P̄3). The slanting red line segment (ρ2 = 1 − (1 − ρ1)[αd2(c2 + βd1 − d1 −

d2)]/[βd1(c1 + αd2 − d1 − d2)], ρ1 < (d1 + d2 − c1)/(αd2), ρ2 < (d1 + d2 − c2)/(βd1)) gives
the bifurcation critical values of ρ1 and ρ2 with change of stability between E5(P̃1, 0, P̃3) and
E4(0, P̄2, P̄3). On this slanting segment, the equilibria E7(P∗1, P

∗
2, P

∗
3) exist and are stable,

so that the three subpopulation coexist. (B)–(C): The corresponding change of proportions
of KI-1-resistant cells (P1) and KI-2-resistant cells (P2) at the evolutionary stable points,
respectively, as ρ1 and ρ2 varies. The parameter values are the same as in Figure 6.

4. Discussion and conclusions

The emergence and growth of drug-resistant tumor cell subpopulations is a major problem
associated with cancer treatments. Drug resistance is often mitigated by application of combination
therapies. In the present paper, we investigated the evolution of cancer cell populations under different
schedules of combination treatment with chemotherapy and p53 vaccine, by constructing a nonlinear
replicator dynamical system model of sensitive cancer cells, chemotherapy-resistant cells and p53
vaccine-resistant cells based on the payoff matrix proposed by Basanta D. et al. [9]. By analyzing the
local stability of evolutionary stable points of the model and determining corresponding stability
conditions, we demonstrated that cancer cell populations could evolve to a pure cancer cell population
of sensitive cells (equilibrium E1(0, 0, 1)), chemotherapy-resistant cells (equilibrium E3(1, 0, 0)), or
vaccine-resistant cells (equilibrium E2(0, 1, 0)), respectively, or coexistence of sensitive cells and p53
vaccine-resistant cells (equilibrium E4(0, P̄I , P̄S )), or coexistence of chemotherapy-resistant cells and
p53 vaccine-resistant cells (equilibrium E5(P̃C, P̃I , 0)) under certain combination strategies of
chemotherapy and p53 vaccine (see Table 4 and Figure 1). The coexistence of sensitive cells and
chemotherapy-resistant cells (equilibria E6(P̂C, 0, P̂S )), or coexistence of the three subpopulations
(equilibria E7(P∗C, P

∗
I , P

∗
S )) could establish only under very strict conditions of combination therapy .

Under monotherapy with chemotherapy, the population evolved to 100% of sensitive cells or 100% of
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chemotherapy-resistant cells (see Figure 3 (A)–(B)), while under monotherapy of p53 vaccine, the
population evolved to 100% of sensitive cells or vaccine-resistant cells, or coexistence of them (see
Figure 3(C)–(E)).

We further explored the design of adaptive therapy schedules with combination of chemotherapy
and p53 vaccine, based on the evolutionary velocity and evolutionary absorbing regions under different
treatment scenarios. We demonstrated the design of treatment schedules with sequential application
of three treatment strategies associated with (E3, E5, E4) or (E1, E5, E3) which showed periodic cycle
evolution the proportions of three tumor cell subpopulations being under control (see Figure 5).

The experimental research on targeted therapy revealed that sensitive cells can support the survival
of drug-resistant cells by secreting cytokines. Through establishment a new replicator dynamical
model based on the previous model, we explored the supportive effect of sensitive cells on two kind of
BRAF inhibitor-resistant cells, that is, KI-1-resistant (vemurafenib-resistant) cells and KI-2-resistant
(dabrafenib-resistant) cells. The influence of the supporting effects of sensitive cells on the
evolutionary outcomes of the cancer cell populations are demonstrated by analysis of the existence
and local asymptotic stability of the equilibrium points of the model. With an increase of the
supporting effect to KI-1-resistant cells, the cell population could evolves from 100% of sensitive cells
toward coexistence of sensitive cells and KI-1-resistant cells, and similarly with the improvement of
the supporting effect to KI-2-resistant cells, cell populations evolved toward coexistence of sensitive
cells and KI-2-resistant cells (see Figure 6). The evolutionary bifurcation diagram were shown with
the the strength of supporting effects to KI-1-resistant cells and KI-2-resistant cells. At the bifurcation
boundary, the three subpopulations could coexist (see Figure 7).

The evolution outcome of the three subpopulations of sensitive cells and two types of resistant
cells, under corresponding combination therapy were explored in this paper by replicator dynamical
modeling and theoretical analysis of the model. The conclusions about the evolution outcome and the
design of the adaptive therapy schedules still need experimental and clinical verification.
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