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Abstract: In this paper, a delayed fractional Lotka-Volterra food chain chemostat model with
incommensurate orders is proposed, and the effect on system stability and bifurcation of this model
are discussed. First, for the system with no controller, the stability and Hopf bifurcation with respect
to time delay are investigated. Taking the time delay as the bifurcation parameter, the relevant
characteristic equations are analyzed, and the conditions for Hopf bifurcation are proposed. The results
show that the controller can fundamentally affect the stability of the system, and that they both have
an important impact on the generation of bifurcation at the same time. Finally, numerical simulation is
carried out to support the theoretical data.
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1. Introduction

In the last 100 years, with the continuous development of mathematical biology, food chain
models [1] have received much attention from scientists. In this field, mathematical models are
established by scientific methods and reasonable assumptions, then, the specific problems are
explained, predicted and controlled. In the 1920s, the Lotka-Volterra model explained the fluctuations
in the number of fish and shark populations. The chemostat is a simple and well-adopted laboratory
apparatus used to culture microorganisms. It can be used to investigate microbial growth and it has
the advantage that the parameters are easily measurable. A sterile growth medium enters the
chemostat at a constant rate; the volume within the chemostat is preserved by allowing excess
medium to flow out through a siphon. We inoculate this chemostat with a heterotrophic bacterium that
finds, in the medium, all of the necessary nutrients but one. This last nutrient is the limiting substrate.
Based on previous works, the Lotka-Volterra food chain chemostat model has attracted a lot of
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attention. It has long been recognized that there is a time lag in the growth response of the population
to environmental change. The growth of predators is based on the number of prey over a period of
time. Therefore, it is feasible to add distributed delay to the food chain chemostat model. In [2], a
model of the chemostat involving two species of microorganisms competing for two perfectly
complementary, growth-limiting nutrients is considered.

With the increasing complexity of the actual biological mathematical system and the increasing
requirements for control, the control technology of integer-order calculus theory has been unable to
achieve satisfactory results. However, using the model of an integer-order system can-not well
describe some systems’ dynamic processes; fractional calculus not only provides a new mathematical
tool for the model of biological mathematics, but it also can solve some problems in real life;
fractional calculus theory [3] can solve this problem. The order of integrals and differentials in
fractional calculus can be changed at will. To a certain extent, it better expands the description ability
of integral calculus. According to the historical information of the system, it is necessary and urgent
to analyze the impact of time delay on the dynamics of a biological model in order to accurately
describe the dynamics of the food chain model in theory and practice. In [4], a new integrated pest
management predator-prey model is presented, and the existence and stability of the order-1 periodic
orbit of the proposed model is discussed. Whether in population dynamics or epidemic
dynamics [5–7], the relevant research of mathematical biology has been ongoing. In the field,
fractional calculus has attracted the attention of engineers and scientists. It has been successfully
applied in various fields, such as medicine, industry, finance, physics, security communication,
system biology [8–10] and so on. With the rapid development of fractional calculus, the Hopf
bifurcation of fractional-order models [11, 12] has attracted more and more attention. In [13], the
author mainly uses fractional-order differential equations to describe the dynamic behavior of the
chemostat system. The integer-order chemostat model in the form of the ordinary differential equation
was extended to the fractional-order differential equations. The stability and bifurcation analyses of
the fractional-order chemostat model have been investigated using the Adams-type predictor-corrector
method. In [14], the fractional-order form of a three dimensional chemostat model with variable
yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to
study the dynamic behaviors of the mentioned fractional system, the well known the non-standard
finite difference scheme was implemented.

The time delay is inevitable in most practical dynamical networks, including biological models,
neural networks [15] and evolutionary dynamics. For delayed fractional-order systems, the bifurcation
problem has attracted more and more attention. Fractional calculus can be used as a mathematical
analysis tool to study arbitrary order integrals and derivatives. It can describe many systems in the real
world. However, due to these remarkable results, the influence of a time delay on bifurcation is ignored.
The chemostat is a simple and well-adopted laboratory apparatus used to culture microorganisms. It
can be used to investigate microbial growth and it has the advantage that the parameters are easily
measurable. A sterile growth medium enters the chemostat at a constant rate; the volume within the
chemostat is preserved by allowing excess medium to flow out through a siphon. We inoculate this
chemostat with a heterotrophic bacterium that finds, in the medium, all of the necessary nutrients but
one. This last nutrient is the limiting substrate.

In [16], we study the following n-dimensional linear fractional differential system with multiple
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time delays 

dq1 x1(t)
dq1t

= a11x1(t − τ11) + a12x2(t − τ12) + · · · + a1nxn(t − τ1n),

dq2 x2(t)
dq2t

= a21x1(t − τ21) + a22x2(t − τ22) + · · · + a2nxn(t − τ2n),

· · · · · ·

dqn xn(t)
dqnt

= an1x1(t − τn1) + an2x2(t − τn2) + · · · + annxn(t − τnn).

(1.1)

In [17], the authors considered the chaotic control of integer-orders and fractional-orders of a
chaotic Burke-Shaw system by using time delayed feedback control

Dαx(t) = −S (x(t) + y(t)),
Dαy(t) = −y(t) − S x(t)z(t) + K[y(t) − y(t − τ)],
Dαz(t) = V + S x(t)y(t).

They investigated the control of a chaotic Burke-Shaw system using the Pyragas method. This
system is derived from a Lorenz system which has several applications in physics and engineering.
The linear stability and the existence of Hopf bifurcation of this system were investigated.

In [18], the authors promote and consider a Lotka-Volterra food chain chemostat model that
incorporates both distributed delay and stochastic perturbations. In this paper, our main work is to
consider a fractional-order model with time delays

dS (t)
dt
= d(a − S ) −

m1S X
ε
,

dX(t)
dt
= m1S X − dX −

m2XY
η
,

dY(t)
dt
= m2XY − dY.

(1.2)

Next, in order to better study the control of System (1.2), an extended feedback controller can be
added; the controller is represented as follows

µ(t) = h[X(t) − X(t − ν)];

clearly, if h = 0 or ν = 0, it is obtained that the controller is meaningless. In this case, it will not change
the final result of the equilibrium point of System (1.2).

In this paper, the controller is added to an incommensurate order a delayed fractional-order model,
shown as the following system

Dα1
t S (t) = d(a − S ) −

m1S X
ε
,

Dα2
t X(t) = m1S X − dX −

m2XY
η
+ µ(t),

Dα3
t Y(t) = m2X(t − τ)Y(t − τ) − dY,

(1.3)

where αi ∈ (0, 1](i = 1, 2, 3), and the initial values are as follows:

S (t) = ϕ1(t), X(t) = ϕ2(t), Y(t) = ϕ3(t), ϕ1(t) ≥ 0, ϕ2(t) ≥ 0, ϕ3(t) ≥ 0, t ∈ [−max(τ, ν), 0];
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the model is based on the Caputo derivative. The meanings of various parameters in the system are
shown in the following figure.

Table 1. Definitions of parameters.

Parameter Description

S (t) The concentration of a nutrient at time t
X(t) The concentration of the prey at time t
Y(t) The concentration of the predator at time t
m1 The per capita growth rate of the prey
m2 The per capita growth rate of the predator
a The concentration of the growth limiting nutrient in the feed vessel
d The dilution rate
ε The yield constant for prey growth on a nutrient
η The yield constant for predator growth on the prey
h The negative feedback gain
ν The feedback control delay

Motivated by the works mentioned above, this paper introduces a controller to a delayed fractional
Lotka-Volterra food chain chemostat model with incommensurate orders. The architecture of our
current paper is as follows. In the second section, some preliminary preparations are made. In the
third section, some properties of the system, bifurcation control strategy and the stability of the
system under the influence of the controller are studied. In the fourth section, the numerical
simulation is described according to the theoretical knowledge of the previous sections. Finally, the
corresponding conclusions are given.

2. Preliminaries

In this paper, all results are based on the Caputo derivative definition. The definition of the Caputo
derivative can form the initial conditions of the fractional equation expressed in the form of integer
derivative. With this advantage, some practical problems can be better solved. For the convenience
of the reader, we present some necessary fractional definitions. The definitions can be found in recent
literature.

Definition 2.1. ( [19]) The Caputo fractional derivative of order α of a function f (t) is defined as

Dαt f (t) =
1

Γ(n − α)

∫ t

t0

f (n)(τ)
(t − τ)α+1−n dτ,

where n is the positive integer and n − 1 < α < n.

Definition 2.2. ( [20]) Let f (x) denote a function which vanishes for negative values of x. Its
Laplace’s transform Lα{ f (x)} of order α (or α-th fractional Laplace transform) is defined by the
following expression when it is finite:

Lα{ f (x)} :=: Fα(s) =
∫ ∞

0
Eα(−sαxα) f (x)(dx)α,
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:= lim
M↑∞

∫ M

0
Eα(−sαxα) f (x)(dx)α,

where s ∈ C and Eα(u) is the Mittag-Leffler function
∑

uk(kα)!. The following operational formulae
can be easily obtained:

Lα{xα f (x)} = −Dαs L{ f (x)},
Lα{ f (ax)}s = (1/a)αLα{ f (x)}x/a,
Lα{ f (x − b)} = Eα(−sαbα)Lα{ f (x)},
Lα{Eα(−cαxα) f (x)}s = Lα{ f (x)}s+c,

Lα{−xα f (x)}=Dαs Lα{ f (x)},

Lα

{∫ x

0
f (u)(du)α

}
= Γ−1(1 + α)s−αLα{ f (x)}.

Furthermore, using the properties of the Mittag-Leffler function and integration by parts, we find
that

Lα{ f (α)(x)} = sαLα{ f (x)} − Γ(1 + α) f (0).

According to the relevant conclusions of [15], the system (1.1) is extended to a more general linear
system, System (2.1)

dq1 x1(t)
dq1t

= a11x1(t − τ11) + b11x1(t) + a12x2(t − τ12) + b12x2(t) · · · + a1nxn(t − τ1n) + b1nxn(t),

dq2 x2(t)
dq2t

= a21x1(t − τ21) + b21x1(t) + a22x2(t − τ22) + b22x2(t) · · · + a2nxn(t − τ2n) + b2nxn(t),

· · · · · ·

dqn xn(t)
dqnt

= an1x1(t − τn1) + bn1x1(t) + an2x2(t − τn2) + bn2x2(t) · · · + annxn(t − τnn) + bnnxn(t);

(2.1)

the characteristic matrix of System (2.1) is as follows:

∆(s) =


sq1 − a11e−sτ11 − b11 −a12e−sτ12 − b12 · · · −a1ne−sτ1n − b1n

−a21e−sτ21 − b21 sq2 − a22e−sτ22 − b22 · · · −a2ne−sτ2n − b2n
...

...
. . .

...

−an1e−sτn1 − bn1 −an2e−sτn2 − bn2 · · · sqn − anne−sτnn − bnn



=


sq1 0 · · · 0
0 sq2 · · · 0
...
...
. . .

...

0 0 · · · sqn

 −


a11e−sτ11 a12e−sτ12 · · · a1ne−sτ1n

a21e−sτ21 a22e−sτ22 · · · a2ne−sτ2n

...
...

. . .
...

an1e−sτn1 an2e−sτn2 · · · anne−sτnn

 −


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn

 ;

then the following conclusion can be established.
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Theorem 2.1. If all roots of the characteristic equation det(∆(s)) = 0 have negative real parts, then
the zero solution of System (2.1) is locally asymptotically stable.

According to the solution method for the equilibrium point and the relevant definitions of the
stability of the equilibrium point, we calculated that the positive equilibrium E∗(S ∗, I∗,Y∗) of
System (1.3) is shown as

S ∗ =
am2ε

m1 + m2ε
, X∗ =

d
m2
, Y∗ =

(
am1ε

m1 + m2ε
−

d
m2

)
η,

if am1m2ε − d(m1 + m2ε) > 0; then, the system (1.3) has a positive equilibrium E∗(S ∗, I∗,Y∗).
The linearized system of System (1.3) at the positive equilibrium E∗(S ∗, I∗,Y∗) is

Dα1
t S (t) =

(
−d −

m1X∗
ε

)
S (t) −

m1S ∗
ε

X(t),

Dα2
t X(t) = (m1X∗)S (t) +

(
m1S ∗ − d −

m2Y∗
η
+ h

)
X(t) − hX(t − v) −

m2X∗
η

Y(t),

Dα3
t Y(t) = m2Y∗X(t − τ) + m2X∗Y(t − τ) − dY(t).

(2.2)

By a Laplace transform, we have

sα1 L[S (t)] − sα1−1ϕ1(0) =
(
−d −

m1X∗
ε

)
L[S (t)] −

m1S ∗
ε

L[X(t)],

sα2 L[X(t)] − sα2−1ϕ2(0) = (m1X∗)L[S (t)] +
(
m1S ∗ − d −

m2Y∗
η
+ h

)
L[X(t)]

− he−sν

(
L[X(t)] +

∫ 0

−ν

e−stϕ2(t)dt
)
−

m2X∗
η

L[Y(t)],

sα3 L[Y(t)] − sα3−1ϕ3(0) = m2Y∗e−sτ

(
L[X(t)] +

∫ 0

−τ

e−stϕ2(t)dt
)

+ m2X∗e−sτ

(
L[Y(t)] +

∫ 0

−τ

e−stϕ3(t)dt
)
− dL[Y(t)],

(2.3)

where L[F(t)] represents the Laplace transform of F(t). Let ∆(s) represents the characteristic matrix
of System (2.3); then, System (2.3) can be rewritten as follows:

∆(s) ·


L[S (t)]
L[X(t)]
L[Y(t)]

 =

b1(s)
b2(s)
b3(s)

 (2.4)


b1(s) = sα1−1ϕ1(0),

b2(s) = sα2−1ϕ2(0) − hesv
∫ 0

−v
e−stϕ2(t)dt,

b3(s) = sα3−1ϕ3(0) + m2Y∗e−sτ
∫ 0

−τ
e−stϕ2(t)dt + m2X∗e−sτ

∫ 0

−τ
e−stϕ3(t)dt,

(2.5)

and

∆(s) =


sα1 − a11 a12 0
−a21 sα2 − a22 − h + he−sν a23

0 −a32e−sτ sα3 − a33e−sτ + d

 , (2.6)
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where 
a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

−d − m1X∗

ε
m1S ∗

ε
0

m1X∗ m1S ∗ − d − m2Y∗

η
m2X∗

η

0 m2Y∗ m2X∗

 . (2.7)

3. Main results

3.1. Bifurcation analysis without the effects of control

In this subsection, the stability and bifurcation of the positive equilibrium E∗ are discussed with
µ(t) ≡ 0.

Theorem 3.1. Suppose that µ(t) = 0, τ = 0 and αi ∈ (0, 1](i = 1, 2, 3), and the following condition
holds:
(T1) : am1m2ε − d(m1 + m2ε) > 0.
Then, the positive equilibrium E∗ of System (1.3) is locally asymptotically stable.

Proof. When µ(t) = 0,

∆(s) =


sα1 − a11 a12 0
−a21 sα2 − a22 a23

0 −a32e−sτ sα3 − a33e−sτ + d

 ; (3.1)

the characteristic polynomial is written as

a1(s) + a2(s)e−sτ = 0, (3.2)

where

a1(s) =sα1+α2+α3 + dsα1+α2 − a22sα1+α3 − a11sα2+α3 − a22dsα1

− a11dsα2 + (a11a22 + a12a21)sα3 + a11a22d + a12a21d,

a2(s) = − a33sα1+α2 + (a22a33 + a23a32)sα1 + a11a33sα2 − a11a22a33

− a11a23a32 − a12a21a33;

(3.3)

assuming that τ = 0 and α1 = α2 = α3 = α, (3.2) becomes

λ3 + H1λ
2 + H2λ + H3 = 0, (3.4)

where

λ =sα,

H1 =d − a22 − a11 − a33,

H2 =a22a33 + a23a32 + a11a33 + a11a22 + a12a21 − a22d − a11d,

H3 =a11a22d + a12a21d − a11a22a33 − a11a23a32 − a12a21a33.

(3.5)

When τ = 0 and α1 = α2 = α3 = α, (3.4) can be written as

(λ − z1)(λ − z2)(λ − z3) = 0,
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where z1, z2 and z3 are the roots of (3.4). If (T1) is satisfied, all roots of (3.2) have negative real parts,
i.e., all eigenvalues λi of the Jacobian matrix evaluated at the equilibrium points satisfy |arg(λi)| >
απ
2 (i = 1, 2, 3); then, the positive equilibrium E∗ is locally asymptotically stable.

When τ = 0, for all αi ∈ (0, 1] (i = 1, 2, 3), let sα1 = λ1, sα2 = λ2 and sα3 = λ3. Without loss of
generality, (3.2) can be written as

(λ1 − z1)(λ2 − z2)(λ3 − z3) = 0. (3.6)

According to relevant calculations, the characteristic equation satisfies the Hurwitz criterion, and if
(T1) is satisfied, all roots of (3.6) have negative real parts, i.e., all eigenvalues λi of the Jacobian matrix
evaluated at the equilibrium points satisfy |arg(λi)| > απ2 (i = 1, 2, 3); then, the positive equilibrium E∗
is locally asymptotically stable. This completes the proof. □

Theorem 3.2. Assume µ(t) = 0, τ > 0 and the condition (T1) holds. If the following condition holds:
(T3) : ϖ1ϑ1 +ϖ2ϑ2 > 0, where

ϖ1 =
(
Re[a1

′(iφ0)] + Re[a2
′(iφ0)]

)
cosφ0τ0 −

(
Im[a1

′(iφ0)] + Im[a2
′(iφ0)]

)
sinφ0τ0,

ϖ2 =
(
Re[a1

′(iφ0)] + Re[a2
′(iφ0)]

)
sinφ0τ0 +

(
Im[a1

′(iφ0)] + Im[a2
′(iφ0)]

)
cosφ0τ0,

ϑ1 = −φ0Im[a2(iφ0)], ϑ2 = φ0Re[a2(iφ0)];

then

1) The positive equilibrium of System (1.3) is locally asymptotically stable for τ ∈ [0, τ0).
2) There exists a constant τ0 > 0 such that System (1.3) has a Hopf bifurcation.

Proof. Let s = iφ = φe
πi
2 and substituting it into (3.2), it can be obtained that

(cosφτ − i sinφτ) = −
a1(iφ)
a2(iφ)

, a2(iφ) , 0; (3.7)

separating the real and imaginary parts, one gets
cosφτ = −

Re[a1(iφ)]Re[a2(iφ)] + Im[a1(iφ)]Im[a2(iφ)]
Re2[a2(iφ)] + Im2[a2(iφ)]

,

sinφτ =
Im[a1(iφ)]Re[a2(iφ)] − Re[a1(iφ)]Im[a2(iφ)]

Re2[a2(iφ)] + Im2[a2(iφ)]
,

where

Re[a1(iφ)] =φα1+α2+α3 cos
(α1 + α2 + α3)π

2
+ dφα1+α2 cos

(α1 + α2)π
2

− a22φ
α1+α3 cos

(α1 + α3)π
2

− a11φ
α2+α3 cos

(α2 + α3)π
2

− a22dφα1 cos
α1π

2
− a11dφα2 cos

α2π

2
+ (a11a22 + a12a21)φα3 cos

α3π

2
+ a11a22d + a12a21d,

Im[a1(iφ)] =φα1+α2+α3 sin
(α1 + α2 + α3)π

2
+ dφα1+α2 sin

(α1 + α2)π
2

− a22φ
α1+α3 sin

(α1 + α3)π
2

− a11φ
α2+α3 sin

(α2 + α3)π
2

− a22dφα1 sin
α1π

2
− a11dφα2 sin

α2π

2
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+ (a11a22 + a12a21)φα3 sin
α3π

2
,

Re[a2(iφ)] = − a33φ
α1+α2 cos

(α1 + α2)π
2

+ (a22a33 + a23a32)φα1 cos
α1π

2
+ a11a33φ

α2 cos
α2π

2
− a12a21a33 − a11a22a33 − a11a23a32,

Im[a2(iφ)] = − a33φ
α1+α2 sin

(α1 + α2)π
2

+ (a22a33 + a23a32)φα1 sin
α1π

2
+ a11a33φ

α2 sin
α2π

2
.

Then, it can be obtained that
Ψ1

2(φ) + Ψ2
2(φ) = 1, (3.8)

where 
Ψ1(φ) = cosφτ = −

Re[a1(iφ)]Re[a2(iφ)] + Im[a1(iφ)]Im[a2(iφ)]
Re2[a2(iφ)] + Im2[a2(iφ)]

,

Ψ2(φ) = sinφτ =
Im[a1(iφ)]Re[a2(iφ)] − Re[a1(iφ)]Im[a2(iφ)]

Re2[a2(iφ)] + Im2[a2(iφ)]
;

suppose that (3.8) has at least a positive real root φ0. Then, it is obtained that
τ(k)

0 =
1
φ0

[arccosΨ1(φ0) + 2kπ], k = 0, 1, 2 . . .

τ(k)
0 =

1
φ0

[arcsinΨ2(φ0) + 2kπ], k = 0, 1, 2 . . .
(3.9)

here, the bifurcation point is defined as τ0 = min{τ(k)
0 }. Then, we get the positive equilibrium of system

(1.3) is locally asymptotically stable.
Next, differentiating (3.2) with respect to τ, we obtain(

a1
′(s) + a2

′(s) − τa2(s)e−sτ
)ds
dτ
− sa2(s)e−sτ = 0;

then, (
ds
dτ

)−1

=
a1
′(s)esτ + a2

′(s)
sa2(s)

−
τ

s
; (3.10)

substituting s = iφ0 and τ = τ0 into (3.10), it gives(
ds
dτ

)−1
∣∣∣∣∣∣∣
s=iφ0

=
ϖ1 + iϖ2

ϑ1 + iϑ2
−
τ0

iφ0
;

thus, one obtains

Re
(ds

dτ

)−1 = ϖ1ϑ1 +ϖ2ϑ2

ϑ1
2 + ϑ2

2 .

If ϖ1ϑ1 + ϖ2ϑ2 > 0, we have that Re
[(

ds
dτ

)−1
]
τ=τ0

> 0. According to Theorem 2.1, this section

demonstrates completion. □
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3.2. Effects of the control on the bifurcation

In this subsection, consider the case with the controller below. First, under the influence of µ(t),
the bifurcation and stability of E∗ with respect to time delay are studied. Given the controller, the
characteristic equation is written as follows

Λ1(s) + Λ2(s)e−sτ = 0, (3.11)

where

Λ1(s) =a1(s) + he−svsα1+α3 + hde−svsα1 − a11he−svsα3 − a11hde−sv

− hsα1+α3 − dhsα1 + a11hsα3 + a1hd,

Λ2(s) =a2(s) − ha33e−svsα1 + a11a33hesv + ha33sα1 − a11a33h.

(3.12)

Theorem 3.3. Assume τ > 0 and the condition (T1) hold. If the following condition holds:
(T4) : κ1ι1 + κ2ι2 > 0, where

κ1 =
(
Re[Λ1

′(iφ1)] + Re[Λ2
′(iφ1)]

)
cosφ1τ1 −

(
Im[Λ1

′(iφ1)] + Im[Λ2
′(iφ1)]

)
sinφ1τ1,

κ2 =
(
Re[Λ1

′(iφ1)] + Re[Λ2
′(iφ1)]

)
sinφ1τ1 +

(
Im[Λ1

′(iφ1)] + Im[Λ2
′(iφ1)]

)
cosφ1τ1,

ι1 = −φ1Im[Λ2(iφ1)], ι2 = φ1Re[Λ2(iφ1)];

then

1) The positive equilibrium of System (1.3) is locally asymptotically stable for τ ∈ [0, τ0
1).

2) There exists a constant τ0
1 > 0 such that System (1.3) has a Hopf bifurcation.

Proof. Let s = iφ = φe
πi
2 and substituting it into (3.2), it can be obtained that

(cosφτ − i sinφτ) = −
Λ1(iφ)
Λ2(iφ)

, Λ2(iφ) , 0; (3.13)

separating the real and imaginary parts, one gets
cosφτ = −

Re[Λ1(iφ)]Re[Λ2(iφ)] + Im[Λ1(iφ)]Im[Λ2(iφ)]
Re2[Λ2(iφ)] + Im2[Λ2(iφ)]

,

sinφτ =
Im[Λ1(iφ)]Re[Λ2(iφ)] − Re[Λ1(iφ)]Im[Λ2(iφ)]

Re2[Λ2(iφ)] + Im2[Λ2(iφ)]
,

where

Re[Λ1(iφ)] =Re[a1(iφ)] + hφ(α1+α3)
(

cosφv cos
(α1 + α3)π

2
+ sinφv sin

(α1 + α3)π
2

− cos
(α1 + α3)π

2

)
+ dhφα1

(
cosφvcos

α1π

2
+ sinφv sin

α1π

2
− cos

α1π

2

)
− a11hφα3

(
cosφv cos

α3π

2
+ sinφv sin

α3π

2
− cos

α3π

2

)
− a11hd cosφv + a11hd,

Im[Λ1(iφ)] =Im[a1(iφ)] + hφ(α1+α3)
(

cosφv sin
(α1 + α3)π

2
+ sinφv cos

(α1 + α3)π
2
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− sin
(α1 + α3)π

2

)
+ dhφα1

(
cosφv sin

α1π

2
+ sinφv cos

α1π

2
− sin

α1π

2

)
− a11hφα3

(
cosφv sin

α3π

2
+ sinφv cos

α3π

2
− sin

α3π

2

)
− a11hd sinφv,

Re[Λ2(iφ)] =Re[a2(iφ)] − a33hφα1 cosφv cos
α1π

2
− a33hφα1 sinφv sin

α1π

2
+ a11a33h cosφv + a33hφα1 cos

α1π

2
− a11a33h,

Im[Λ2(iφ)] =Im[a2(iφ)] − a33hφα1 cosφvsin
α1π

2
+ a33hφα1 sinφv cos

α1π

2
+ a11a33h sinφv + a33hφα1 sin

α1π

2
.

Then, it can be obtained that
j1

2(φ) + j2
2(φ) = 1, (3.14)

where 
j1(φ) = cosφτ = −

Re[Λ1(iφ)]Re[Λ2(iφ)] + Im[Λ1(iφ)]Im[Λ2(iφ)]
Re2[Λ2(iφ)] + Im2[Λ2(iφ)]

,

j2(φ) = sinφτ =
Im[Λ1(iφ)]Re[Λ2(iφ)] − Re[Λ1(iφ)]Im[Λ2(iφ)]

Re2[Λ2(iφ)] + Im2[Λ2(iφ)]
;

suppose that (3.14) has at least a positive real root φ1. Then, it is obtained that
τ(k)

1 =
1
φ1

[arccos j1(φ1) + 2kπ], k = 0, 1, 2 . . .

τ(k)
1 =

1
φ1

[arcsin j2(φ1) + 2kπ], k = 0, 1, 2 . . .
(3.15)

the bifurcation point is defined as τ1 = min{τ(k)
1 }.

Next, differentiating (3.11) with respect to τ gives(
Λ1
′(s) + Λ2

′(s) − τΛ2(s)e−sτ
)ds
dτ
− sΛ2(s)e−sτ = 0;

then, (
ds
dτ

)−1

=
Λ1
′(s)esτ + Λ2

′(s)
sΛ2(s)

−
τ

s
; (3.16)

substituting s = iφ1 and τ = τ1 into (3.16), it gives(
ds
dτ

)−1
∣∣∣∣∣∣∣
s=iφ1

=
κ1 + iκ2
ι1 + iι2

−
τ1

iφ1
;

thus, one obtains

Re
(ds

dτ

)−1 = κ1ι1 + κ2ι2
ι12 + ι22 .

If κ1ι1 + κ2ι2 > 0, we have that Re
[(

ds
dτ

)−1
]
τ=τ1

> 0. According to Theorem 2.1, this section

demonstrates completion. □
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Theorem 3.4 mainly provides a method to find a given µ(t) bifurcation point. However, the most
important point should be to find the appropriate control parameters for the time delay. And the
characteristic equation is written as follows

W1(s) +W2(s)e−sυ = 0, (3.17)

where

W1(s) =a1(s) +A2(s)e−sτ −W2(s),
W2(s) =h[(a11a33 − a33sα1)e−sτ + dsα1 + sα1+α3 − a11d − a11sα3].

(3.18)

Theorem 3.4. Assume the condition (T1) holds. If the following condition holds:
(T5) : P1Q1 + P2Q2 > 0, where

P1 =
(
Re[W1

′(iφ2)] + Re[W2
′(iφ2)]

)
cosφ2υ0 −

(
Im[W1

′(iφ2)] + Im[W2
′(iφ2)]

)
sinφ2υ0,

P2 =
(
Re[W1

′(iφ2)] + Re[W2
′(iφ2)]

)
sinφ2υ0 +

(
Im[W1

′(iφ2)] + Im[W2
′(iφ2)]

)
cosφ2υ0,

Q1 = −φ2Im[W2(iφ2)], Q2 = φ2Re[W2(iφ2)];

then

(1) The positive equilibrium of System (1.3) is locally asymptotically stable for υ ∈ [0, υ0).
(2) There exists a constant υ = υ0 > 0 such that System (1.3) has a Hopf bifurcation.

Proof. Let s = iφ = φe
πi
2 and substituting it into (3.17), it can be obtained that

(cosφυ − i sinφυ) = −
W1(iφ)
W2(iφ)

, W2(iφ) , 0; (3.19)

separating the real and imaginary parts, one gets
cosφυ = −

Re[W1(iφ)]Re[W2(iφ)] + Im[W1(iφ)]Im[W2(iφ)]
Re2[W2(iφ)] + Im2[W2(iφ)]

,

sinφυ =
Im[W1(iφ)]Re[W2(iφ)] − Re[W1(iφ)]Im[W2(iφ)]

Re2[W2(iφ)] + Im2[W2(iφ)]
,

where

Re[W1(iφ)] =Re[a1(iφ)] + Re[a2(iφ)] cosφτ + Im[a2(iφ)] sinφτ − Re[W2(iφ)],
Im[W1(iφ)] =Im[a1(iφ)] + Im[a2(iφ)] cosφτ − Re[a2(iφ)] sinφτ − Im[W2(iφ)],

Re[W2(iφ)] =ha11a33 cosφv − ha33φ
α1

(
cosφv cos

α1π

2
+ sin

α1π

2
sinφv

)
+ hdφα1 cos

α1π

2
,

+ hφα1+α3 cos
(α1 + α3)π

2
− a11dh − a11hφα3 cos

α3π

2

Im[W2(iφ)] = − ha11a33 sinφv − ha33φ
α1

(
− cosφv sin

α1π

2
+ sin

α1π

2
cosφv

)
+ hdφα1 sin

α1π

2

+ hφα1+α3 sin
(α1 + α3)π

2
− a11dh − a11hφα3 sin

α3π

2
.
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Then, it can be obtained that
r1

2(φ) + r2
2(φ) = 1, (3.20)

where 
r1(φ) = cosφυ = −

Re[W1(iφ)]Re[W2(iφ)] + Im[W1(iφ)]Im[W2(iφ)]
Re2[W2(iφ)] + Im2[W2(iφ)]

,

r2(φ) = sinφυ =
Im[W1(iφ)]Re[W2(iφ)] − Re[W1(iφ)]Im[W2(iφ)]

Re2[W2(iφ)] + Im2[W2(iφ)]
;

suppose that (3.20) has at least a positive real root φ2. Then, it is obtained that
υ(k)

0 =
1
φ2

[arccos r1(φ1) + 2kπ], k = 0, 1, 2 . . .

υ(k)
0 =

1
φ2

[arcsin r2(φ1) + 2kπ], k = 0, 1, 2 . . .
(3.21)

the bifurcation point is defined as υ0 = min{υ(k)
0 }.

Next, differentiating (3.17) with respect to υ gives(
W1
′(s) +W2

′(s) − τW2(s)e−sυ
)ds
dυ
− sW2(s)e−sυ = 0;

then, we have (
ds
dυ

)−1

=
W1
′(s)esυ +W2

′(s)
sW2(s)

−
υ

s
; (3.22)

substituting s = iφ2 and υ = υ0 into (3.22), it gives(
ds
dυ

)−1
∣∣∣∣∣∣∣
s=iφ2

=
P1 + iP2

Q1 + iQ2
−
υ0

iφ2
;

thus, one obtains

Re
(ds

dυ

)−1 = P1Q1 + P2Q2

Q1
2 + Q2

2 .

If P1Q1 + P2Q2 > 0, we have that Re
[(

ds
dυ

)−1
]
υ=υ0

> 0. According to Theorem 2.1, this section

demonstrates completion. □

4. Numerical simulations

In this section, some concrete examples are given to illustrate the theory presented in the previous
section. First, the system unaffected by the controller is considered; the system is shown as

Example 4.1. 

Dα1
t S (t) =

7
20

(3
2
− S

)
−

15S X
7
, S (0) = 0.7,

Dα2
t X(t) =

3
2

S X −
7

20
X −

75XY
8
, X(0) = 0.1,

Dα3
t Y(t) = 3X(t − τ)Y(t − τ) −

7
20

Y,Y(0) = 0.08.

(4.1)
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According to the above system, the equilibrium point can be calculated as
E∗ = (0.8750, 0.1167, 0.1027), and all of the conditions in Theorem 3.1 can be satisfied. Thus, if
τ = 0, the positive equilibrium of System (4.1) is locally asymptotically stable, in which α1 = 0.98,
α2 = 0.96 and α3 = 0.97, as shown in Figure 1.
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Figure 1. Local asymptotic stability of the positive equilibrium E∗ when τ = 0.

Then, according to Theorem 3.2, when α1 = 0.8, α2 = 0.95 and α3 = 0.97, it can be calculated that
τ0 = 3.7286. As a consequence, Hopf bifurcation occurs at τ0 = 3.7286. As shown in Figure 2, when
τ = 3 < τ0, the positive equilibrium point is locally asymptotically stable.
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Figure 2. Effects of τ on E∗ when τ = 3.
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When τ = 3.8 > τ0, it becomes unstable, as shown in Figure 3.
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Figure 3. Effects of τ on E∗ when τ = 3.8.

In order to show the effects of incommensurate orders on Hopf bifurcation, let α1 = 0.8, α2 = 0.95
and τ = 3.8; when α3 = 0.92, we obtain τ0 = 4.236 > 3.8; when α3 = 0.97, we obtain τ0 = 3.6285 <
3.8. As Figure 4 shows, when α3 changes from 0.92 to 0.97, the equilibrium point becomes stable. It
can be seen that the change of fractional-order will also affect the change of system stability.
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Figure 4. Effects on E∗ when τ = 3.8, α3 = 0.92.

Next, consider a system that adds an extended feedback controller:
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Example 4.2.



Dα1
t S (t) =

7
20

(3
2
− S

)
−

15S X
7
, S (0) = 0.7,

Dα2
t X(t) =

3
2

S X −
7

20
X −

75XY
8
+ h[X(t) − X(t − v)], X(0) = 0.1,

Dα3
t Y(t) = 3X(t − τ)Y(t − τ) −

7
20

Y,Y(0) = 0.08.

(4.2)

According to Theorem 3.4, when h = 0.5, it is calculated that ν0 = 3.3769. As can be seen
from Figures 5 and 6, when ν = 3 < ν0, the positive equilibrium point of System (4.2) is locally
asymptotically stable; when ν = 4 > ν0, the system is unstable.

0 200 400 600

t

0.7

0.8

0.9

1

X

0 200 400 600

t

0.05

0.1

0.15

0.2

0.25

Y

0 200 400 600

t

0.06

0.08

0.1

0.12

Z

0.05

0.4

0.1

1

Z

Y

0.2

X

0.15

0.8
0 0.6

Figure 5. Effects of υ on E∗ when υ = 3.
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Figure 6. Effects of υ on E∗ when υ = 4.

5. Conclusions

In this work, a controller was added to a fractional-order chemostat model with incommensurate
delay to study its effect on system stability and bifurcation. We first considered some basic results for
the positive equilibrium E∗ in the absence of a controller. Then the influence of the controller on the
bifurcation and stability of the system was analyzed in detail. Considering the case of
incommensurate order, given certain conditions, the corresponding control bifurcation parameters
were obtained accurately. Finally, in order to support the theoretical analysis results, numerical
simulations were carried out. The results show that the stability and bifurcation of the system were
effectively controlled.
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