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Abstract: This paper is devoted to event-triggered non-fragile cost-guaranteed synchronization
control for time-delay neural networks. The switched event-triggered mechanism, which combines
periodic sampling and continuous event triggering, is used in the feedback channel. A piecewise
functional is first applied to fully utilize the information of the state and activation function. By
employing the functional, various integral inequalities, and the free-weight matrix technique, a
sufficient condition is established for exponential synchronization and cost-related performance. Then,
a joint design of the needed non-fragile feedback gain and trigger matrix is derived by decoupling
several nonlinear coupling terms. On the foundation of the joint design, an optimization scheme is
given to acquire the minimum cost value while ensuring exponential stability of the synchronization-
error system. Finally, a numerical example is used to illustrate the applicability of the present design
scheme.
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1. Introduction

Neural networks (NNs) are a kind of intricate nonlinear information processing systems with
functional features such as self-learning, self-organizing, noise-resistance and distortion resistance,
and thus can be utilized to solve problems that are difficult to handle by using traditional information
processing approaches. Not surprisingly, NNs have been successfully applied across a variety of fields
including speech synthesis [1], grammar learning [2], pattern classification [3] and time series
prediction [4]. It is well known that time delays are almost unavoidable in the circuit implementation
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of NNs, and that are capable of causing oscillation of the NNs and even generating more complicated
chaotic attractors. In view of this, the study of time-delay NNs (TDNNs) has drawn a great deal of
attention from the academic communities of automation, mathematics and physics [5–13].
Particularly, chaos synchronization of TDNNs has become one of the research hotspots due to its
importance in nonlinear theory and strong application potential in many fields, including parameter
identification, image encryption and secure communication [14–16]. The objective of chaos
synchronization is to ensure that the state trajectories of the drive and response system tend to be
consistent [17]. In order to achieve this objective, various control methodologies, including nonlinear
feedback control [18], observer-based control [19], adaptive control [20] and sampled-data
control [21, 22], have been proposed in the literature.

In the automation community, event-triggered control (ETC) has been increasingly recognized as
an ideal control strategy as it can not only ensure the desired control performance but it can also
mitigate the over-occupancy of communication channels in digital communication networks [23–26].
Within such a control strategy, the measurement signal is transmitted to the input of the controller
only when pre-specified events occur. In this way, ETC can successfully reduce the update frequency
of the controller, thereby saving computational and network resources. At present, there are several
meaningful ETC mechanisms that have been put forward, including the continuous ETC
mechanism [27], discrete ETC mechanism [28], self-triggered ETC mechanism [29], dynamic ETC
mechanism [30], switched event-triggered control (SETC) mechanism [31] and so on. As shown
in [31–35], the SETC mechanism ensures a positive minimum inter-event interval between any two
adjacent events, thus avoiding the so-called Zeno phenomenon. In addition, it can markedly reduce
the data transmission frequency while maintaining performance.

Very recently, the chaos synchronization of TDNNs based on the SETC mechanism has been
investigated by many researchers, and a few meaningful results have been proposed [36–38]. An
implicit assumption in these reports is that there are no uncertainties of the controller gain. However,
fluctuations of control gains may occur inevitably owing to component aging, round-off errors in
calculations, and conversion between digital and analog [39–42]. Such fluctuations can result in
performance degradation or even instability of the closed-loop system [43]. In addition, the control
cost has not been considered in the above literature. However, while achieving the purpose of control,
there may be certain requirements for the cost to be paid. Based on the above discussion, the
non-fragile cost-guaranteed synchronization control (CGSC) for TDNNs under the SETC mechanism
is a significant issue that deserves thorough investigation. However, to our knowledge, there are no
relevant results so far and the topic remains open and challenging.

Motivated by the above observations, the study was designed to explore the SETC mechanism-based
non-fragile CGSC for TDNNs. The following are the main contributions of our work:

1) A piecewise functional was developed by fully utilizing the information of the state and
activation function of the switched synchronization-error system;

2) A joint design of the needed non-fragile feedback gain and trigger matrix has been derived by
eliminating nonlinear coupling terms;

3) An optimization method was developed to acquire the minimum cost value while ensuring
exponential stability by using the properties of matrix trace operations.

The rest of this paper is organized as follows. The models of drive and response TDNNs and
some necessary preliminaries are provided in Section 2. In Section 3, the non-fragile exponential
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synchronization and cost-related performance analysis under the SETC mechanism is discussed and
the results of the joint design and its optimization are presented. In Section 4, a numerical simulation
is described to verify the validity of the developed results. In the last section, we give the conclusion.

Notations: Rl×n represents l×n-dimensional real matrices, Rl stands for the l-dimensional Euclidean
space and ∥ · ∥ represents the corresponding vector norm. For a square matrix W, W > 0 means that
W is positive semi-definite; I and 0 represent the identity matrix and the zero matrix with the proper
dimensions, respectively; λmin(W) is used to represent the smallest eigenvalue of W. Furthermore, we
use ∗ to denote a symmetry term in a matrix, and we denote a diagonal matrix by diag{·}.

2. Preliminaries

Consider a TDNN described by:

ẋ(t) = −Ax(t) + B f (x(t)) + Bτ f (x(t − τ(t))) + I, (2.1a)
y(t) = Cx(t), (2.1b)

in which x(t) = [x1(t), · · ·, xp(t)]T ∈ Rp denotes the neuron state, y(t) = [y1(t), · · ·, yq(t)]T ∈ Rq

represents the output vector, A ∈ Rp×p stands for the self-feedback matrix, B ∈ Rp×p and Bτ ∈ Rp×p

are the connection weight matrices, C ∈ Rq×p is a constant real matrix, I ∈ Rp represents a constant
input and τ(t) refers to the time-varying delays satisfying 0 ≤ τ(t) ≤ τ and τ̇(t) ≤ µ < 1.
f (x(t)) = [ f1(t), · · ·, fp(t)]T ∈ Rp denotes the neuron activation function, satisfying the following
hypothesis:

Assumption 1. For any s1, s2 ∈ R, s1 , s2, there exists a positive matrix L = diag{L1, · · · , Lp} such
that

0 ≤
fi (s2) − fi (s1)

s2 − s1
≤ Li, i = 1, · · · , p. (2.2)

Remark 1. A number of assumptions about the activation function have been proposed over the last
several decades. Among these, Assumption 1 has been widely used in existing studies [22, 44, 45].
Many common functions satisfy such an assumption, such as the sigmoid function g(s) = (1 + e−s)−1,
the piecewise linear function g(s) = 0.5(|s + 1| − |s − 1|), and tanh function g(s) = tanh(s).

Remark 2. The TDNN in (2.1) covers many famous NN models, such as cellular NNs, BAM NNs
and Hopfield NNs, as special cases. In addition, as shown in [46], the network model is capable
of generating complex chaotic attractors, thus affording it with strong application potential in secure
communication and image encryption.

TDNN (2.1) is considered a drive system. We set the response system as

˙̂x(t) = −Ax̂(t) + B f (x̂(t)) + Bτ f (x̂(t − τ(t))) + u(t) + I, (2.3a)
ŷ(t) = Cx̂(t), (2.3b)

in which x̂(t) = [x̂1(t), · · ·, x̂p(t)]T ∈ Rp and ŷ(t) = [ŷ1(t), · · ·, ŷq(t)]T ∈ Rq are the state and the output of
the response system, respectively. u(t) ∈ Rp denotes the system control input, which has the form

u(t) = −K̄(ŷ(t) − y(t)),
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where K̄ = K+ ∆K .K ∈ Rp×q refers to the non-fragile controller gain to be designed and ∆K denotes
the possible gain perturbation which is assumed to be of the form

∆K = GT (t)M, (2.4)

where G and M are known constant matrices and T (t) is an uncertain parameter matrix satisfying
T T (t)T (t) ≤ I. Here, the gain perturbation is assumed to have the additive norm-bounded nonlinearity
form. For multiplicative norm-bounded nonlinearity, one may refer to [11].

Then, by defining synchronization errors ε(t) = x̂(t) − x(t) and ȳ(t) = ŷ(t) − y(t), we can establish
the error system as follows:

ε̇(t) = −Aε(t) + B f̄ (ε(t)) + Bτ f̄ (ε(t − τ(t)) + u(t), (2.5a)
ȳ(t) = Cε(t), (2.5b)

in which f̄ (ε(t)) = f (x̂(t)) − f (x(t)).
In recent years, sampled-data control methods have been widely used in the literature [47–51].

Compared with sampled-data control methods, ETC methods can significantly reduce the update
frequency of the controller, thereby saving computational and network resources. In the paper, the
synchronization problem between drive-response TDNNs (2.1) and (2.3) is considered in the frame of
SETC. The SETC mechanism adopted takes the form of

αk+1 = min
{
t ≥ αk + β | (ȳ(t) − ȳ(αk))TΓ(ȳ(t) − ȳ(αk)) ≥ ϵȳT (t)Γȳ(t)

}
, (2.6)

where αk represents the kth triggering instant, Γ ≥ 0 is called the trigger matrix and ϵ ≥ 0 and β > 0 are
given scalars with β denoting the sensor waiting interval. That is, β means the shortest time between
two adjacent event-triggering instances. According to the SETC mechanism (2.6) a controller can
be recast as a control input subject to sampling for t ∈ [αk, αk + β) and as a control input subject to
continuous event triggering for t ∈ [αk + β, αk+1). Then, the control input takes the form of

u(t) =
{
−K̄Cε(t − ϱ(t)), t ∈ [αk, αk + β),
−K̄[e(t) + Cε(t)], t ∈ [αk + β, αk+1),

(2.7)

where

ϱ(t) = t − αk ≤ β, t ∈ [αk, αk + β), (2.8)
e(t) = ȳ(αk) − ȳ(t), t ∈ [αk + β, αk+1). (2.9)

Remark 3. The working mechanism of SETC is as follows. The sensor will wait β seconds after the
k-th event is triggered at the instant αk. When the time comes to the instant αk + β, it will begin to
monitor the event-trigger condition continuously to determine the next triggering instant. Namely,
once the judgment condition is true, the new measurement will be sent to update the controller at the
instant αk+1. Note that, in the case of ϵ = 0, the SETC mechanism in (2.6) degenerates to the periodic
sampled-data control mechanism.

Hence, the error system can be constructed by using the system (2.5) and controller (2.7) as follows:

ε̇(t) = −Aε(t) + B f̄ (ε(t)) + Bτ f̄ (ε(t − τ(t)) − K̄Cε(t − ϱ(t)), t ∈ [αk, αk + β), (2.10a)
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ε̇(t) = (−A − K̄C)ε(t) − K̄e(t) + B f̄ (ε(t)) + Bτ f̄ (ε(t − τ(t)), t ∈ [αk + β, αk+1). (2.10b)

To discuss the issue regarding the guaranteed cost index of the system in this paper, let us define

J(t) =
∫ t

0

[
εT (s)Qε(s) + uT (s)Ru(s)

]
ds, (2.11)

as a quadratic cost function, where Q > 0 and R > 0.
Next, we give a definition and some lemmas, which are required to gain our main results.

Definition 1. Consider the error system (2.10); if there exist a positive number J◦ and an event-
triggered control law u(t) such that the error system is exponentially stable and the quadratic cost
function (2.11) meets J(∞) ≤ J◦, then the control law u(t) is called the cost-guaranteed controller
and the upper-bound value J◦ refers to the cost-related performance index.

Lemma 1. [52] Let M > 0 be an appropriate dimension matrix. Then, the inequality

1
µ2 − µ1

[∫ µ2

µ1

ϑ(s)ds
]T

M
[∫ µ2

µ1

ϑ(s)ds
]
≤

∫ µ2

µ1

ϑT (s)Mϑ(s)ds

holds, where the scalars µ1 and µ2 satisfy µ2 > µ1, and a vector function ϑ : [µ1, µ2]→ Rn.

Lemma 2. [53] For any matrices M1 ∈ R
n×m,M2 ∈ R

n×m,M3 = MT
3 > 0,M3 ∈ R

n×n, one can write

MT
1 M2 + MT

2 M1 ≤ MT
1 M3M1 + MT

2 M−1
3 M2.

Lemma 3. [54] For any real matrices M1, M2, M3 with appropriate dimensions,[
M1 M2

∗ M3

]
< 0

holds if and only if

M3 < 0 and M1 − M2M−1
3 MT

2 < 0.

Before ending this section, let us clarify the purpose of this work, which was to design a SETC
mechanism-based non-fragile cost-guaranteed controller to make sure that the error system in (2.10) is
exponentially stable and the cost function in (2.11) satisfies J(∞) ≤ J◦.

3. Main results

3.1. Performance analysis

In the following, a criterion for the non-fragile exponential stability and cost-related performance
under the conditions of the SETC mechanism is given.

Theorem 1. For the given scalars γ > 0, β > 0, ϵ ≥ 0, assume that there exist p × p matrices P > 0,
N > 0, S > 0,W, W1, F1, F2, E1, E2, E3, Y, p × p diagonal matrices U > 0, Λ1 > 0, Λ2 > 0, and a
q × q matrix Γ ≥ 0 such that
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𭟋 > 0,Θ0 < 0,Θ1 < 0,Φ < 0, (3.1)

in which

𭟋 =

[
P + βW+WT

2 −βW + βW1

∗ −βW1 − βWT
1 + β

W+WT

2

]
, (3.2)

Θ0 =



Θ11 −Wγ Θ12 + β
W+WT

2 Θ13 + Ŵ1γ Ψ1 0 FT
1Bτ

∗ Θ22 + βN Θ23 − β(W −W1) Ψ2 0 FT
2Bτ

∗ ∗ Θ33 − Ŵ2γ 0 0 0
∗ ∗ ∗ −2Λ1 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2

∗ ∗ ∗ ∗ ∗ −2Λ2


, (3.3)

Θ1 =



Θ11 −
W+WT

2 Θ12 Θ13 + W̌1γ βET
1 Ψ1 0 FT

1Bτ

∗ Θ22 Θ23 βET
2 Ψ2 0 FT

2Bτ

∗ ∗ Θ33 − W̌2γ βET
3 0 0 0

∗ ∗ ∗ −βe−2γβN 0 0 0
∗ ∗ ∗ ∗ −2Λ1 0 0
∗ ∗ ∗ ∗ ∗ Ψ3 LΛ2

∗ ∗ ∗ ∗ ∗ ∗ −2Λ2


, (3.4)

Φ =



Φ11 Φ12 −FT
1 K̄ + C

T K̄TRK̄ Ψ1 0 FT
1Bτ

∗ −FT
2 − F2 −FT

2 K̄ Ψ2 0 FT
2Bτ

∗ ∗ −Γ + K̄TRK̄ 0 0 0
∗ ∗ ∗ −2Λ1 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2

∗ ∗ ∗ ∗ ∗ −2Λ2


, (3.5)

with

Θ11 = −FT
1A−A

T F1 − ET
1 − E1 + 2γP + 2γUL + S + Q,

Θ12 = P − FT
1 −A

T F2 − E2,

Θ13 = −E3 − FT
1 KC + ET

1 ,

Θ22 = −F2 − FT
2 ,

Θ23 = −FT
2 K̄C + ET

2 ,

Θ33 = E3 + ET
3 + C

T K̄TRK̄C,

Ψ1 = FT
1B + LΛ1, Ψ2 = FT

2B+ U, Ψ3 = (µ − 1)e−2γτS ,

U = diag{u1, u2, · · ·, up},

Wγ = (1/2 − γβ)(W +WT ),
Ŵ1γ = (1 − 2γβ)(W −W1),
W̌1γ = W −W1,

Ŵ2γ = (1/2 − γβ)(W +WT − 2W1 − 2WT
1 ),

W̌2γ = (1/2)(W +WT − 2W1 − 2WT
1 ),
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Φ11 = FT
1 (−A − K̄C) + (−A − K̄C)T F1 + ϵC

TΓC + 2γP

+CT K̄TRK̄C + 2γUL + S + Q,

Φ12 = P + (−A − K̄C)T F2 − FT
1 .

Then, the system (2.10) remains exponentially stable and the cost function in (2.11) satisfies J(∞) ≤
εT (0)(P + UL)ε(0) +

∫ 0

−τ
εT (s)S ε(s)ds.

Proof. Let us choose a time-dependent Lyapunov functional as

V (t) =
{

V1(t), t ∈ [αk, αk + β),
V2(t), t ∈ [αk + β, αk+1),

(3.6)

in which V1(t) = VP(t) + VU(t) + VS (t) + VN(t) + VW(t), V2(t) = VP(t) + VU(t) +VS (t) with

VP(t) = εT (t)Pε(t),

VU(t) = 2
n∑

i=1

ui

∫ εi(t)

0
f̄i(s)ds,

VS (t) =
∫ t

t−τ(t)
e2γ(s−t)εT (s)S ε(s)ds,

VN(t) = (β − ϱ(t))
∫ t

t−ϱ(t)
e2γ(s−t)ε̇T (s)Nε̇(s)ds,

VW(t) = (β − ϱ(t))ψT (t)
[ W+WT

2 −W +W1

∗ −W1 −WT
1 +

W+WT

2

]
ψ(t),

where ψ(t) = col{ε(t), ε(t − ϱ(t))}. Clearly, V (t) is continuous on [0,+∞).
Note that the linear matrix inequality (LMI) (3.2) can ensure that VP(t) + VW(t) is positive definite,

as follows:

VP(t) + VW(t)

= εT (t)Pε(t) + (β − ϱ(t))ψT (t)
[ W+WT

2 −W +W1

∗ −W1 −WT
1 +

W+WT

2

]
ψ(t)

= ψT (t)
[

P + (β − ϱ(t))W+WT

2 (β − ϱ(t))(−W +W1)
∗ (β − ϱ(t))(−W1 −WT

1 +
W+WT

2 )

]
ψ(t)

= (
β − ϱ(t)

β
)ψT (t)𭟋ψ(t) + (

ϱ(t)
β

)ψT (t)
[

P 0
∗ 0

]
ψ(t). (3.7)

Owing to 𭟋 > 0 and P > 0, it follows from (3.6) and (3.7) that

min
{
λmin(P), λmin(𭟋)

}
∥ ε(t) ∥2≤ V (t). (3.8)

Taking the time derivative of the above functions along the trajectories of the system (2.10), it is not
hard to derive that

V̇P(t) = 2εT (t)Pε̇(t), (3.9)
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V̇U(t) = 2 f̄ T (ε(t))Uε̇(t), (3.10)
V̇S (t) = −2γVS (t) + εT (t)S ε(t) − (1 − τ̇(t)) × e−2γτ(t)εT (t − τ(t))S ε(t − τ(t))

≤ −2γVS (t) + εT (t)S ε(t) − (1 − µ) × e−2γτεT (t − τ(t))S ε(t − τ(t)) (3.11)

V̇N(t) = −
∫ t

t−ϱ(t)
e2γ(s−t)ε̇T (s)Nε̇(s)ds − 2γ(β − ϱ(t))

∫ t

t−ϱ(t)
e2γ(s−t)ε̇T (s)Nε̇(s)ds

+(β − ϱ(t))ε̇T (t)Nε̇(t)

≤ −

∫ t

t−ϱ(t)
e−2γβε̇T (s)Nε̇(s)ds − 2γ(β − ϱ(t))

∫ t

t−ϱ(t)
e2γ(s−t)ε̇T (s)Nε̇(s)ds

+(β − ϱ(t))ε̇T (t)Nε̇(t), (3.12)

V̇W(t) = −ψT (t)
[ W+WT

2 −W +W1

∗ −W1 −WT
1 +

W+WT

2

]
ψ(t)

+(β − ϱ(t))[ε̇T (t)(W +WT )ε(t) + 2ε̇T (t)(−W +W1)ε(t − ϱ(t))]. (3.13)

The proof can be divided into two cases in the light of the segmented time periods as follows.
Case 1: With respect to t ∈ [αk, αk+β), the Lyapunov functional V1(t) can be adopted for the system

(2.10a).
Denote

z1 =
1
ϱ(t)

∫ t

t−ϱ(t)
ε̇(s)ds.

Applying Lemma 1 to the first term of (3.12), it can be acquired that

−e−2γβ
∫ t

t−ϱ(t)
ε̇T (s)Nε̇(s)ds ≤ −ϱ(t)e−2γβzT

1 Nz1. (3.14)

For free-weighting matrices E1, E2, E3, F1 and F2 with proper dimensions, the following expressions
hold:

0 = 2
[
εT (t)ET

1 + ε̇
T (t)ET

2 + ε
T (t − ϱ(t))ET

3

] [
ϱ(t)z1 + ε(t − ϱ(t)) − ε(t)

]
, (3.15)

0 = 2
[
εT (t)FT

1 + ε̇
T (t)FT

2

]
[−Aε(t) − K̄Cε(t − ϱ(t)) + B f̄ (ε(t)) + Bτ f̄ (ε(t − τ(t)) − ε̇(t)]. (3.16)

In view of Assumption 1, for any diagonal matrix Λ1 > 0 and Λ2 > 0, it follows that

0 ≤ −2 f̄ T (ε(t))Λ1 f̄ (ε(t)) + 2εT (t)LΛ1 f̄ (ε(t)), (3.17)
0 ≤ −2 f̄ T (ε(t − τ(t)))Λ2 f̄ (ε(t − τ(t))) + 2εT (t − τ(t))LΛ2 f̄ (ε(t − τ(t))). (3.18)

According to Assumption 1, we can also obtain

0 ≤
∫ εi(t)

0
f̄i(s)ds ≤

1
2
ε2

i (t)Li.

Then, we have

2
n∑

i=1

ωi

∫ εi(t)

0
f̄i(s)ds
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≤ 2(ω1
1
2
ε2

1(t)L1 + · · · + ωn
1
2
ε2

n(t)Ln)

= εT (t)ULε(t). (3.19)

By summing up (3.9)–(3.12) and (3.15)–(3.19) and using (3.14), we find that

V̇1(t) + 2γV1(t) + εT (t)Qε(t) + εT (t − ϱ(t))CT K̄TRK̄Cε(t − ϱ(t))
≤ 2εT (t)Pε̇(t) + 2γεT (t)Pε(t) + 2 f̄ T (ε(t))Uε̇(t) + 2γεT (t)ULε(t)
+εT (t)S ε(t) − (1 − µ) × e−2γτεT (t − τ(t))S ε(t − τ(t))

−ϱ(t)e−2γβzT
1 Nz1 + (β − ϱ(t))ε̇T (t)Nε̇(t) − εT (t)(

W +WT

2
)ε(t)

−εT (t − ϱ(t))(−W +W1)Tε(t) − εT (t)(−W +W1)ε(t − ϱ(t))

−εT (t − ϱ(t))(−W1 −WT
1 +

W +WT

2
)ε(t − ϱ(t))

+ε̇T (t)(β − ϱ(t))(W +WT )ε(t) + 2ε̇T (t)(β − ϱ(t))(−W +W1)ε(t − ϱ(t))

+2γ(β − ϱ(t))ψT (t)
[ W+WT

2 −W +W1

∗ −W1 −WT
1 +

W+WT

2

]
ψ(t) + 2(εT (t)ET

1 ϱ(t)z1

+ε̇T (t)ET
2 ϱ(t)z1 + ε

T (t − ϱ(t))ET
3 ϱ(t)z1 + ε

T (t)ET
1 ε(t − ϱ(t)) + ε̇T (t)ET

2 ε(t − ϱ(t))
+εT (t − ϱ(t))ET

3 ε(t − ϱ(t)) − εT (t)ET
1 ε(t) − ε̇T (t)ET

2 ε(t) − εT (t − ϱ(t))ET
3 ε(t))

+2(−εT (t)FT
1Aε(t) − ε̇T (t)FT

2Aε(t) − εT (t)FT
1 K̄Cε(t − ϱ(t)) − ε̇T (t)FT

2 K̄Cε(t − ϱ(t))
+εT (t)FT

1B f̄ (ε(t)) + ε̇T (t)FT
2B f̄ (ε(t)) + εT (t)FT

1Bτ f̄ (ε(t − τ(t))
+ε̇T (t)FT

2Bτ f̄ (ε(t − τ(t)) − εT (t)FT
1 ε̇(t) − ε̇T (t)FT

2 ε̇(t))
−2 f̄ T (ε(t))Λ1 f̄ (ε(t)) + 2εT (t)LΛ1 f̄ (ε(t))
−2 f̄ T (ε(t − τ(t)))Λ2 f̄ (ε(t − τ(t))) + 2εT (t − τ(t))LΛ2 f̄ (ε(t − τ(t)))
+εT (t)Qε(t) + εT (t − ϱ(t))CT K̄TRK̄Cε(t − ϱ(t))

=
β − ϱ(t)

β
ηT

1 (t)Θ0η1(t) +
ϱ(t)
β
ηT

2 (t)Θ1η2(t),

where ηT
1 (t) = {εT (t), ε̇T (t), εT (t − ϱ(t)), f̄ T (ε(t)), εT (t − τ(t)), f̄ T (ε(t − τ(t)))} and

ηT
2 (t) = {εT (t), ε̇T (t), εT (t − ϱ(t)), zT

1 , f̄ T (ε(t)), εT (t − τ(t)), f̄ T (ε(t − τ(t)))}. Then, the conditions Θ0 < 0
and Θ1 < 0 can ensure that

V̇1(t) + 2γV1(t) ≤ −εT (t)Qε(t) − εT (t − ϱ(t))CT K̄TRK̄Cε(t − ϱ(t)) ≤ 0, t ∈ [αk, αk + β). (3.20)

Case 2: With respect to t ∈ [αk + β, αk+1), we employ the Lyapunov functional V2(t) for the system
(2.10b). Similar to (3.16), applying the free-weighting matrix approach, one can gain

0 = 2
[
εT (t)FT

1 + ε̇
T (t)FT

2

]
[(−A − K̄C)ε(t) − K̄e(t) + B f̄ (ε(t)) + Bτ f̄ (ε(t − τ(t)) − ε̇(t)]. (3.21)

In view of the event-triggering condition (2.6), one easily obtains that

0 ≤ −eT (t)Γe(t) + ϵ [Cε(t)]T Γ [Cε(t)] . (3.22)
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In view of Assumption 1, for any diagonal matrix Λ1 > 0 and Λ2 > 0, it follows that

0 ≤ −2 f̄ T (ε(t))Λ1 f̄ (ε(t)) + 2εT (t)LΛ1 f̄ (ε(t)) (3.23)
0 ≤ −2 f̄ T (ε(t − τ(t)))Λ2 f̄ (ε(t − τ(t))) + 2εT (t − τ(t))LΛ2 f̄ (ε(t − τ(t))) (3.24)

By summing up (3.9), (3.10), (3.19) and (3.21)–(3.24), we find that

V̇2(t) + 2γV2(t) + εT (t)Qε(t) + [K̄(e(t) + Cε(t))]TR[K̄(e(t) + Cε(t))]
≤ 2εT (t)Pε̇(t) + 2γεT (t)Pε(t) + 2 f̄ T (ε(t))Uε̇(t) + 2γεT (t)ULε(t)
+εT (t)S ε(t) − (1 − µ) × e−2γτεT (t − τ(t))S ε(t − τ(t))
+2(εT (t)FT

1 (−A − K̄C)ε(t) + ε̇T (t)FT
2 (−A − K̄C)ε(t) − εT (t)FT

1 K̄e(t) − ε̇T (t)FT
2 K̄e(t)

+εT (t)FT
1B f̄ (ε(t)) + ε̇T (t)FT

2B f̄ (ε(t)) + εT (t)FT
1Bτ f̄ (ε(t − τ(t)) + ε̇T (t)FT

2Bτ f̄ (ε(t − τ(t))
−εT (t)FT

1 ε̇(t) − ε̇T (t)FT
2 ε̇(t))

+ϵεT (t)CTΓCε(t) − eT (t)Γe(t) − 2 f̄ T (ε(t))Λ1 f̄ (ε(t)) + 2εT (t)LΛ1 f̄ (ε(t))
−2 f̄ T (ε(t − τ(t)))Λ2 f̄ (ε(t − τ(t))) + 2εT (t − τ(t))LΛ2 f̄ (ε(t − τ(t)))
+εT (t)Qε(t) + [K̄(e(t) + Cε(t))]TR[K̄(e(t) + Cε(t))]

= ηT
3 (t)Φη3(t),

where ηT
3 (t) = {εT (t), ε̇T (t), eT (t), f̄ T (ε(t)), εT (t − τ(t)), f̄ T (ε(t − τ(t)))}. Similarly, the condition Φ < 0

implies

V̇2(t) + 2γV2(t) ≤ −εT (t)Qε(t) − [K̄(e(t) + Cε(t))]TR[K̄(e(t) + Cε(t))] ≤ 0, t ∈ [αk + β, αk+1). (3.25)

From (3.20) and (3.25), it can be concluded that

V̇ (t) + 2γV (t) ≤ 0

for any t ∈ [αk, αk+1). Especially, for t ∈ [αk + β, αk+1), integrating over (3.25) with respect to t, one
can get

V (t) ≤ V (αk + β)e−2γ(t−αk−β) ≤ V (αk)e−2γ(t−αk)

≤ V (αk−1 + β)e−2γ(t−αk−1−β) ≤ V (αk−1)e−2γ(t−αk−1)

≤ · · · ≤ V (0)e−2γt.

For t ∈ [αk, αk + β), by a similar procedure as above, we can derive the same result from the
inequality (3.20). Therefore, we have

V (t) ≤ V (0)e−2γt. (3.26)

From (3.8) and (3.26) we get

∥ ε(t) ∥≤

√
V (0)

min
{
λmin(P), λmin(𭟋)

}e−γt.
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Thus, the system in Eq (2.10) is exponentially stable. In addition, since V (t) ≥ 0 and γ > 0, combining
(3.20) with (3.25), we can write

V̇ (t) ≤ −εT (t)Qε(t) − uT (t)Ru(t).

It follows immediately that

J(∞) ≤
∫ ∞

0
−V̇ (t)dt ≤ V (0) ≤ εT (0)(P + UL)ε(0) +

∫ 0

−τ

εT (s)S ε(s)ds. (3.27)

This finishes the proof. □

Remark 4. The synchronization-error system composed of (2.10) and (2.7) is actually a switched
system over the sampling interval under SETC mechanism (2.6). To match the switched system, a
piecewise functional V (t) is constructed; it switches between the functions V1(t) and V2(t). Specifically,
for the waiting time interval, the time-dependent functional V1(t) is applied, while for the continuous
event detection interval, the time-independent functional V2(t) is employed. The function constructed
not only fully utilizes the available state information, but also the activation function information on
the interval [αk, αk+1].

3.2. Design method

This subsection gives a joint design of the event-trigger matrix Γ in (2.6) and the desired non-fragile
controller gain K for the system (2.10).

Theorem 2. For the given scalars κ, γ > 0, β > 0, ϵ ≥ 0, suppose that there exist p× p matrices P > 0,
N > 0, S > 0, W, W1, F1, E1, E2, E3, Y, p × p diagonal matrices U > 0, Λ1 > 0, Λ2 > 0, a q× q matrix
Γ ≥ 0, and scalars α0 > 0 and α1 > 0 such that

𭟋 > 0,Θ∗0 < 0,Θ∗1 < 0,Φ∗ < 0, (3.28)

where 𭟋 is given in Theorem 1, and

Θ∗0 =



Ξ11 Ξ12 Ξ13 Ψ1 0 FT
1Bτ 0 −FT

1G

∗ Ξ22 Ξ23 Ψ̃2 0 κFT
1Bτ 0 −κFT

1G

∗ ∗ Ξ33 0 0 0 CT YT 0
∗ ∗ ∗ −2Λ1 0 0 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2 0 0
∗ ∗ ∗ ∗ ∗ −2Λ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ4 G

∗ ∗ ∗ ∗ ∗ ∗ ∗ −α0I


, (3.29)

Θ∗1 =



Π11 Π12 Π13 βET
1 Ψ1 0 FT

1Bτ 0 −FT
1G

∗ Π22 Π23 βET
2 Ψ̃2 0 κFT

1Bτ 0 −κFT
1G

∗ ∗ Π33 βET
3 0 0 0 CT YT 0

∗ ∗ ∗ −βe−2γβN 0 0 0 0 0
∗ ∗ ∗ ∗ −2Λ1 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ψ3 LΛ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −2Λ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ4 G

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −α0I


, (3.30)
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Φ∗ =



Σ11 Σ12 Σ13 Ψ1 0 FT
1Bτ CT YT −FT

1G

∗ Σ22 −κY Ψ̃2 0 κFT
1Bτ 0 −κFT

1G

∗ ∗ Σ33 0 0 0 YT 0
∗ ∗ ∗ −2Λ1 0 0 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2 0 0
∗ ∗ ∗ ∗ ∗ −2Λ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ4 G

∗ ∗ ∗ ∗ ∗ ∗ ∗ −α1I


, (3.31)

with

Ξ11 = −(1/2 − γβ)(W +WT ) − FT
1A−A

T F1

−ET
1 − E1 + 2γP + 2γUL + S + Q,

Ξ12 = β
W +WT

2
+ P − FT

1 − κA
T F1 − E2,

Ξ13 = (1 − 2γβ)(W −W1) + ET
1 − YC − E3,

Ξ22 = −κFT
1 − κF1 + βN,

Ξ23 = ET
2 − κYC − β(W −W1),

Ξ33 = E3 + ET
3 + α0C

TMTMC− (1/2 − γβ)(W +WT − 2W1 − 2WT
1 ),

Π11 = −
W +WT

2
− FT

1A−A
T F1 + 2γUL + S + Q

−ET
1 − E1 + 2γP,

Π12 = P − FT
1 − κA

T F1 − E2,

Π13 = ET
1 − YC − E3 +W −W1,

Π22 = −κFT
1 − κF1,

Π23 = ET
2 − κYC,

Π33 = E3 + ET
3 + α0C

TMTMC−(1/2)(W +WT − 2W1 − 2WT
1 ),

Σ11 = −FT
1A−A

T F1 − YC − CT YT + ϵCTΓC

+2γP + 2γUL + S + Q + α1C
TMTMC,

Σ12 = P − κAT F1 − κC
T YT − FT

1 ,

Σ13 = −Y + α1C
TMTM,

Σ22 = −κFT
1 − κF1,

Σ33 = −Γ + α1M
TM,

Ψ̃2 = κFT
1B+ U,

Ψ4 = −ϑF1 − ϑFT
1 + ϑ

2R,

and the other notations are the same as those in Theorem 1. Then, the proposed controller (2.7) with
the gain matrix

K = (FT
1 )−1Y (3.32)

exponentially stabilizes the error system (2.10) under the conditions of the SETC mechanism, and the
cost function in (2.11) satisfies J(∞) ≤ εT (0)(P + UL)ε(0) +

∫ 0

−τ
εT (s)S ε(s)ds.
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Proof. According to (2.4) and Lemma 3, (3.5) is equivalent to

Φ = Φ̆ + He(Υ1T (t)Υ2)

where

Φ̆ =



Σ̆11 Σ̆12 −FT
1K Ψ1 0 FT

1Bτ C
TKT

∗ −FT
2 − F2 −FT

2K Ψ2 0 FT
2Bτ 0

∗ ∗ −Γ 0 0 0 KT

∗ ∗ ∗ −2Λ1 0 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2 0
∗ ∗ ∗ ∗ ∗ −2Λ2 0
∗ ∗ ∗ ∗ ∗ ∗ −R−1


,

with

Σ̆11 = FT
1 (−A −KC) + (−A −KC)T F1 + ϵC

TΓC

+2γP + 2γUL + S + Q,

Σ̆12 = P + (−A −KC)T F2 − FT
1 ,

Υ1 =
[
−GT F1 −G

T F2 0 0 0 0 GT
]T
,

Υ2 =
[
MC 0 M 0 0 0 0

]
.

By using Lemma 2 and (2.4), we have

He(Υ1T (t)Υ2) ≤
1
α1
Υ1Υ

T
1 + α1Υ

T
2Υ2.

Hence, Φ < 0 if the following inequality holds:

Φ̆ +
1
α1
Υ1Υ

T
1 + α1Υ

T
2Υ2 < 0.

Then, by premultiplying and postmultiplying diag{I, I, I, I, I, I, FT
1 } and its transpose on both sides of

Φ̆, and using Lemma 3 again, it follows that

Φ̄ =



Σ̄11 Σ̆12 Σ̄13 Ψ1 0 FT
1Bτ CTKT F1 −FT

1G

∗ −FT
2 − F2 −FT

2K Ψ2 0 FT
2Bτ 0 −FT

2G

∗ ∗ Σ33 0 0 0 KT F1 0
∗ ∗ ∗ −2Λ1 0 0 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2 0 0
∗ ∗ ∗ ∗ ∗ −2Λ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −FT

1R
−1F1 G

∗ ∗ ∗ ∗ ∗ ∗ ∗ −α1I


< 0, (3.33)

where

Σ̄11 = FT
1 (−A −KC) + (−A −KC)T F1 + ϵC

TΓC
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+2γP + 2γUL + S + Q + α1C
TMTMC,

Σ̄13 = −FT
1K + α1C

TMTM.

For the item −FT
1R
−1F1 of the matrix Φ̄, according to Lemma 2, the following inequality holds true:

ϑF1 + ϑFT
1 ≤ ϑ

2R + FT
1R
−1F1.

Note that
−FT

1R
−1F1 ≤ −ϑF1 − ϑFT

1 + ϑ
2R,

so we can re-express (3.33) as (3.31) by setting

FT
1K = Y, F2 = κF1.

Then, along similar lines as those for the above proof, (3.3) and (3.4) can be guaranteed by (3.29) and
(3.30), respectively. The proof is completed. □

Remark 5. Through the use of matrix congruence transformation and a few inequality techniques, a
method for the design of the non-fragile controller is developed in Theorem 2. It is shown that the
needed gain matrix can be obtained by solving multiple LMIs that can be readily verified by utilizing
the MATLAB software.

When there is no gain perturbation, we can get the following corollary:

Corollary 1. For the given scalars κ, γ > 0, β > 0, ϵ ≥ 0, suppose that there exist p × p matrices
P > 0, N > 0, S > 0, W, W1, F1, E1, E2, E3, Y, p × p diagonal matrices U > 0, Λ1 > 0 and Λ2 > 0,
and a q × q matrix Γ ≥ 0 such that

𭟋 > 0, Θ̃
∗

0 < 0, Θ̃∗1 < 0, Φ̃∗ < 0, (3.34)

where 𭟋 is given in Theorem 1, and

Θ̃∗0 =



Ξ11 Ξ12 Ξ13 Ψ1 0 FT
1Bτ 0

∗ Ξ22 Ξ23 Ψ̃2 0 κFT
1Bτ 0

∗ ∗ Ξ̃33 0 0 0 CT YT

∗ ∗ ∗ −2Λ1 0 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2 0
∗ ∗ ∗ ∗ ∗ −2Λ2 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ4


,

Θ̃∗1 =



Π11 Π12 Π13 βET
1 Ψ1 0 FT

1Bτ 0
∗ Π22 Π23 βET

2 Ψ̃2 0 κFT
1Bτ 0

∗ ∗ Π̃33 βET
3 0 0 0 CT YT

∗ ∗ ∗ −βe−2γβN 0 0 0 0
∗ ∗ ∗ ∗ −2Λ1 0 0 0
∗ ∗ ∗ ∗ ∗ Ψ3 LΛ2 0
∗ ∗ ∗ ∗ ∗ ∗ −2Λ2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ4


,
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Φ̃∗ =



Σ̃11 Σ12 −Y Ψ1 0 FT
1Bτ CT YT

∗ Σ22 −κY Ψ̃2 0 κFT
1Bτ 0

∗ ∗ −Γ 0 0 0 YT

∗ ∗ ∗ −2Λ1 0 0 0
∗ ∗ ∗ ∗ Ψ3 LΛ2 0
∗ ∗ ∗ ∗ ∗ −2Λ2 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ4


,

with

Ξ̃33 = E3 + ET
3 − (1/2 − γβ)(W +WT − 2W1 − 2WT

1 ),
Π̃33 = E3 + ET

3 − (1/2)(W +WT − 2W1 − 2WT
1 ),

Σ̃11 = −FT
1A−A

T F1 − YC − CT YT + ϵCTΓC

+2γP + 2γUL + S + Q,

and the other notations are the same as those in Theorem 2. Then, the proposed controller (2.7) with
the gain matrix

K = (FT
1 )−1Y

exponentially stabilizes the error system (2.10) under the conditions of the SETC mechanism, and the
cost function in (2.11) satisfies J(∞) ≤ εT (0)(P + UL)ε(0) +

∫ 0

−τ
εT (s)S ε(s)ds.

3.3. Optimization scheme

Theorem 2 presents an approach to design the non-fragile cost-guaranteed controller and the event-
trigger matrix. Based on Theorem 2, we can give an optimization scheme to estimate the minimum
cost value of J◦. That is to say, the following theorem will present an approach to select a controller
that can ensure the minimum upper bound of the guaranteed cost control performance index.

Before stating the Theorem 3, we define

HH
T
=

∫ 0

−τ

ε(s)εT (s)ds. (3.35)

Theorem 3. Consider the error system (2.10) with the quadratic cost function in (2.11) if the
optimization issue

min λ1ε
T (0)ε(0) + tr(Π)

sub ject to (i) LMIs in (3.28),
(ii) P + UL < λ1I, (3.36)

(iii)
[
−Π HT

H −D

]
< 0 (3.37)

is solvable, where tr(Π) denotes the trace of Π and D = S −1. Then the proposed control law u(t) in
(2.7) with the gain matrix (3.32) is an optimal event-triggered cost-guaranteed control law, and the
quadratic cost function in (2.11) satisfies J(∞) < λ1ε

T (0)ε(0) + tr(Π).
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Proof. By (3.36), it is not difficult to see that there exists λ1 > 0, such that

εT (0)(P + UL)ε(0) ≤ λ1ε
T (0)ε(0).

In addition, from (3.35) and (3.37), we can write∫ 0

−τ

εT (s)S ε(s)ds =
∫ 0

−τ

tr(εT (s)S ε(s))ds = tr
(
HH

T S
)
= tr
(
HTD−1H

)
< tr (Π) .

Therefore, it follows from (3.27) that J(∞) < λ1ε
T (0)ε(0) + tr(Π). Thus, the minimization of

λ1ε
T (0)ε(0) + tr(Π) implies the minimization of the cost-related performance index in Eq (3.27). The

proof is complete. □

When there is no gain perturbation, we can readily write the following result:

Corollary 2. Consider the error system (2.10) with the quadratic cost function in (2.11) if the
optimization issue

min λ2ε
T (0)ε(0) + tr(Π)

sub ject to (i) LMIs in (3.34),
(ii) P + UL < λ2I,

(iii)
[
−Π HT

H −D

]
< 0

is solvable, where tr(Π) denotes the trace of Π and D = S −1. Then the proposed control law u(t)
in (2.7) with gain matrix (3.32) is an optimal event-triggered cost-guaranteed control law, and the
quadratic cost function in (2.11) satisfies J(∞) < λ2ε

T (0)ε(0) + tr(Π).

4. Numerical simulation

Consider TDNNs (2.1) and (2.3) with

A =

[
1 0
0 1

]
, B =

[
2 −0.1
−5 3

]
,

Bτ =

[
−1.5 −0.1
−0.2 −2.5

]
, C =

[
1 −1
0 0.5

]
.

The activation function is chosen as f (x(t)) = [tanh(x1(t), tanh(x2(t)]T . Note that f (x(t)) satisfies
Assumption 1 with L = diag{1, 1}. And the time delay is taken as τ(t) = 1 + 0.2 sin(2t), which implies
µ = 0.4 and τ = 1.2.

In the simulation, the initial conditions of the drive and response systems were set to be x(s) =
[−0.27 −0.24]T and x̂(s) = [0.42 −0.24]T , respectively, where s ∈ [−τ, 0]. The chaotic attractor of the
drive TDNN is depicted in Figure 1. Simultaneously, from (3.35), we have

H =

[
0.76 0

0 0

]
.
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Figure 1. Chaotic behaviors of the drive TDNN.
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Figure 2. Triggering moments and sampling intervals.

The two parameter matrices in the quadratic cost function (2.11) were chosen as

Q =

[
1 0
0 1

]
, R =

[
0.1 0
0 0.1

]
.

Given β = 0.02 and ϵ = 0.2, the following SETC mechanism can be obtained:

αk+1 = min
{
t ≥ αk + 0.02 | (ȳ(t) − ȳ(αk))TΓ(ȳ(t) − ȳ(αk)) ≥ 0.2ȳT (t)Γȳ(t)

}
.
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Figure 3. State response of the error system.
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Figure 4. Control input signals.

Next, let us show the applicability of the present non-fragile control approaches. The parameter
matrices for the gain perturbation ∆K in (2.4) were set to be

G = g

 0.5 0

0 0.5

 , M =
 1 0

0 1

 , T (t) = 0.8 |sin(t)| .
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Table 1. Optimal cost-related performance J◦ for different values of g.

Conditions Theorem 3 Corollary 2

g 0.5 0.3 0.1 0

K

 12.0928 20.3418

−2.9653 20.7362


 11.9176 20.1074

−2.9347 20.5661


 11.7517 19.8843

−2.9067 20.3973


 11.672119.7769

−2.893620.3135


Γ

48.1832 49.9208

49.9208 224.3081


45.4914 47.5788

47.5788 216.3803


43.0504 45.4469

45.4469 208.9249


 41.914344.4511

44.4511205.3583


J◦ 1.7812 1.6990 1.6237 1.5883
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Figure 5. J(t) along the system (2.10).

We choose γ = 0.01, ϑ = 19.2, and κ = 0.1. Then, for different values of the parameter g, by
using Theorem 3 and Corollary 2, the controller gain K , triggered matrix Γ, and optimal cost-related
performance index J◦ were obtained as shown Table 1. From the table we can find that J◦ will
increase as g increases. Based on the above parameters, by utilizing MATLAB, the triggered moments
and the corresponding sampled intervals were obtained as shown in Figure 2. The trajectories of
the error system (2.10) and input signals are shown in Figures 3 and 4, respectively. Obviously, the
trajectories of the state and input quickly converged to 0. Figure 5 shows the trajectory ofJ(t). It was
found that J(t) converged to 0.5497 (i.e., J(∞) = 0.5497), which is less than J◦ = 1.6237. Thus, the
simulations verify the present theoretical results.
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5. Conclusions

The non-fragile event-triggered CGSC of TDNNs has been investigated. From the point of view of
saving computational and network resources, a SETC mechanism has been introduced to determine the
event-trigging moments. A piecewise functional V (t) has been constructed to make efficient use of the
sampling intervals [αk, αk+1) and activation function f̄ (ε(t)). With the help of the constructed functional
and several inequalities, a criterion (see Theorem 1) has been derived to ensure the exponential stability
and the cost-related performance of the synchronization-error system. Based on the criterion, a novel
joint design of the designed control gain and trigger matrix has been developed (i.e., Theorem 2), and an
optimization scheme for the minimum cost-related performance index has been given (i.e., Theorem
3). The validity and practicability of the obtained results have been illustrated through a numerical
example. Future research will be focused on the event-triggered synchronization control of TDNNs
under cyber attack.
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