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Abstract: The problem of minimizing makespan (maximum completion time) on uniform machines
with restricted assignment is considered. The machines differ in their speeds and functionalities. Each
job has a set of machines to which it can be assigned, called its processing set. The goal is to finish
the jobs as soon as possible. There exist 4/3-approximation algorithms for the cases of inclusive and
tree-hierarchical assignment restrictions, under an assumption that machines with higher capabilities
also run at higher speeds. We eliminate the assumption and present algorithms with approximation
ratios 2 and 4/3 for both cases.
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1. Introduction

Scheduling jobs on (identical, uniform, or unrelated) parallel machines is one of the fundamental
problems in deterministic scheduling theory [1-3]. In this paper, the problem of scheduling uniform
machines with restricted assignment is studied, which generalizes the problem of scheduling jobs with
unrestricted assignment on parallel machines.

Formally, there is a set of jobs J = {1,2,...,n}, and there is a set of uniform machines M =
{M\,M,,...,M,}. Job j € g has alength p; > 0 and a subset of machines M; € M to which it can
be assigned, called its processing set. Machine M; € M has a speed s;. Without loss of generality, we
assume that all s; > 1. If job j is processed on machine M;, then its processing time is p;/s;. A (non-
preemptive) schedule is an m-tuple (S, S, ..., Su), where S; denotes the set of the jobs processed on
machine M;, i = 1,2,...,m. The sets S§;,S,,...,S,, are disjoint, and |J}"; S; = 7, i.e., each job in
J appears in exactly one S;. The completion time C(S;) of machine M, in this schedule is given by
Yjes; Pjlsi- The goal is to find a schedule to minimize the makespan, Cpa = max;C(S;). Using the
notations proposed in [4, 5], the problem is denoted as Q| M;|Cpnax.
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As stated in the survey paper by Leung and Li [6], there are five types of assignment restrictions
studied by the researchers: inclusive, nested, interval, tree-hierarchical and arbitrary. In this paper,
we focus on the inclusive and tree-hierarchical restrictions, i.e., we study Q| M (inclusive)|Cpax and
Q|M(tree)|Crax. The assignment restriction is inclusive, if for any job j, M; = {M,;, My 41, . .., My},
where a; (1 < a; < m) is called the machine index associated with job j . The assignment restriction
is tree-hierarchical, if there is a tree whose nodes represent the machines, and each job j is associated
with a tree node M,,, such that M; consists of the machines on the path from M,; to the root of the
tree. Clearly, the inclusive restriction is a special case of the tree-hierarchical restriction.

Leung and Ng [7] studied the problems Q|M(inclusive)|Cpax and Q| M;(tree)|Cpax under a
reasonable assumption that machines with higher capabilities also run at higher speeds. (It is called
the speed hierarchical model in [8]). Precisely, for the case of inclusive restriction, they assumed that
s1 < s, < --- < s,. For the case of tree-hierarchical restriction, they assumed that the speed of each
node is not less than that of its predecessor. Under the assumption, they presented 4/3-approximation
algorithms running in time O(mn - log(¥';. p;)) for both cases. They remarked that the algorithms
may not work if the assumption is not valid. For clarity, we denote their problems as
QUnc)|M(inclusive)|Crmax and Q(Inc)|M(tree)|Cmax, respectively, where “Inc” means “increasing
order of the speeds”.

In this paper, we generalize the results in [7] by eliminating the speed hierarchical assumption.
We present fast algorithms with approximation ratios 2 and 4/3 for both Q| M (inclusive)|Cyn,x and
Qle(tree)lcmax~

Scheduling with restricted assignment has been extensively studied in the literature [6]. Here, we
review the results which are related to inclusive or tree-hierarchical restrictions. Ou et al. [9] gave a
PTAS (polynomial time approximation scheme) for P|M;(inclusive)|Cmax (the special case of
OIM(inclusive)|Cyax Where all s; = 1). Li and Wang [10] extended their work to include job release
times (any job cannot be scheduled before its release time). There are also fast approximation
algorithms for this problem: a (2 — 1/(m — 1)) -approximation algorithm [11,12], a 3/2-approximation
algorithm [13], and a 4/3-approximation algorithm [9]. Bar-Noy et al. [14] presented an online (over
list) algorithm for P|M(inclusive)|Cyn.x Whose competitive ratio is e + 1. They also gave an online
algorithm for P|M(tree)|Cnax (the special case of Q|M;(tree)|Crax Where all s; = 1) whose
competitive ratio is 5. Huo and Leung [15] gave a 4/3-approximation algorithm for PIM(tree)|Cnax.
Later, Epstein and Levin [8] presented PTASs for P|M(tree)|Crax and Q(Inc)IM(inclusive)|Cpax.
However, the running times of their PTASs are rather high. Leung and Ng [7] presented fast
4/3-approximation algorithms for Q(/nc)IM;(inclusive)|Cpnax and Q(Inc)|M;(tree)|Cpax. There are
also several papers which studied the problems of scheduling jobs with equal lengths and restricted
assignment on uniform machines [16-20].

The rest of the paper is organized as follows. In Section 2, we present 2-approximation algorithms
for QIM(inclusive)|Crmax and Q| M (tree)|Cpax. In Section 3, we present 4/3-approximation algorithms
for QIM(inclusive)|Cmax and Q| M (tree)|Cpax. In Section 4, we conclude this paper and discuss future
research directions.
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2. 2-approximation algorithms

In this section we will get a 2-approximation algorithm for Q| M(inclusive)|Cray and then extend
it to solve Q|M(tree)|Cpax. Note that Leung and Ng [7] only presented algorithms for
QUUnc)M(inclusive)|Cmax and Q(Inc)IM;(tree)|Cmax.

For solving Q| M(inclusive)|Cpax, We set up some notations. Let J; denote the set of the jobs
whose processing set is {M;, M;,y,...,M,},i = 1,2,...,m. The jobs in J; are eligible for machines
M;,M;y, ..., M,, and vice versa. It is possible that J; = @ for some i. We have: | JI., J; = J. Sort
all the jobs in J; in non-increasing order of their lengths, and let J; denote the obtained ordered set,
i=1,2,....m

Let OPT denote the makespan of an optimal schedule for Q|M;(inclusive)|Cma. — Let

AL, = w denote the average load on machines M;, M;y,...,M,,, i = 1,2,...,m. Let
LB = max ALZ, where “LB” means “lower bound”. Since all jobs in J; U ;11 U --- U 9, must be
processed on machines M;, M;.,..., M, (z = 1,2,...,m) in any feasible schedule, we get:
LB < OPT. On the other hand, let UB = # , where “UB” means “upper bound”. Since a feasible

schedule can be obtained easily by scheduhng all the jobs on machine M,,, we get OPT < UB.

To determine OPT, we do a binary search in time interval [LB, U B]. For each value C selected, the
following procedure, AssignAl, tells us whether it is possible to assign the jobs in J to the machines in
M such that the total length of the jobs assigned to machine M; is no more than 2s;-C,i=1,2,...,m
If AssignAl fails, we search the upper half of the interval; otherwise, we search the lower half.

If job j is eligible for machine M; and p; < s; - C, then job j is feasible for machine M;, and vice
versa. In AssignAl, U, represents the set of unassigned jobs which are eligible for machine M; and
sorted in non-increasing order of their lengths, and L; denotes the total length of the jobs assigned
to machine M;, i = 1,2,...,m. Informally speaking, AssignAl tries to put as many as possible of
the largest, not yet assigned feasible jobs on the smaller-indexed machines such that each machine
completes no later than 2C.

AssignAl (C):
Stepl. LetUy=92,L;=0,i=1,2,...,m
Step 2. Fori=1,2,...,m (this ordering is used crucially), do:

(i) Merge U,_; into J; to get U;. (U;_; and J; are ordered sets, and thus U; is also an ordered set.)

(i) Find the first job j € U, such that p; < s; - C. Assign job j and the jobs after it in U; to
machine M; until L; > s; - C or the jobs after j in U; are used up (i.e., each unassigned job in U;
has length larger than s; - C). Delete the newly assigned jobs from U;.

Lemma 2.1. If OPT < C, then AssignAl will generate a feasible schedule for Q| M (inclusive)|Cnax
with makespan at most 2C in O(mn) time.

Proof. LetIT" be an optimal schedule. Let IT be the schedule generated by AssignAl. Since OPT < C,

any job of length larger than s; - C cannot be assigned on machine M; in IT", i = 1,2, ..., m. Therefore,
in I1, we let M; process only the jobs whose lengths are no more than s; - C. We have L; < 2s; - C, and
thus C; < 2C, where C; denotes the completion time of machine M; inIl,i=1,2,...,m.

We prove the following claim by contradiction: If OPT < C, then U, = @ when AssignAl
terminates. Suppose that when AssignA1 terminates, some job j cannot be assigned and has to be left
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over. Let a; = i denote the machine index associated with job j . Let FM; C {M;, M;,,,...,M,)}
denote the set of the feasible machines for job j, i.e., for any machine M; € FM;, p; < s;- C. It must
be true that L; > s; - C for any machine M; € FM;. Let D denote the set of the jobs processed on the
machines in FM;. In II, all the jobs in D have lengths not less than p; and hence cannot be assigned
to the machines in {M;, M., ..., M,,}\FFM;. We consider the following two different cases:

Case 1. The machine indices associated with the jobs in D are not less than a; = i.

In this case, in any optimal schedule and particularly in IT", all the jobs in D have to be processed
on the machines in FM; . However, since L; > s, - C for any machine M; € FM;, II" cannot complete
all the jobs in D by time C > OPT, a contradiction.

Case 2. Some jobs in D have machine indices less than a; = i.

Some jobs in D may be associated with machine indices less than i, but they may be not feasible for
machines My, M5, ..., M;_;, or their feasible machines among M, M,, ..., M;_ have not enough space
left to accommodate them when they are assigned. Since AssignAl assigns the largest feasible jobs
on the smaller-indexed machines greedily such that each machine completes later than C whenever
possible (i.e., unless there is no unassigned feasible job for the machine), an optimal schedule cannot
schedule the jobs any better than this on the smaller-indexed machines. Therefore, the total length
of the jobs processed on the machines in FM; in II is a lower bound on the total length of the jobs
processed on the machines in FM; in IT". As in Case 1, since L; > s; - C for any machine M; € FM s
IT"° cannot complete all the jobs in D by time C > OPT, a contradiction.

Step 1 can be executed in O(m) time. Step 2 will be executed m iterations, and each iteration can be
done in O(n) time. Hence, the running time of AssignA1l is O(mn).

O

To obtain a faster algorithm, we can use the following AssignA2 procedure instead of AssignAl.
AssignA?2 handles the machines in increasing order of their indices. When M; is handled, the
unassigned jobs eligible for M; are stored in a balanced binary search tree 7' [21], using their lengths
as the keys. The technique is similar to that used in [20].

AssignA2 (C):

Step 1. Let T be a balanced binary search tree and 7 be the length of the smallest job in 7. Initially, T’
is empty, and T = oco. Let L; denote the total length of the jobs assigned to machine M;. Initially,
L,‘ :O,i: 1,2,...,m.

Step 2. Fori =1,2,...,m (this ordering is used crucially), do:
(1). Insert the jobs in J; into 7. Update 7 accordingly.

(i) IfL; < s;-Cand 7 < s; - C, then find the largest job j in T such that p; < s; - C. Assign job
J on machine M; and then delete it from 7. Let L; = L; + p;. If p; = 7, then check 7 and update
it if necessary.

(ii1) Repeat Step 2(ii) until L; > s; - C or T > s; - C (the latter case indicates that each job in T
has length larger than s; - C).

Lemma 2.2. If OPT < C, then AssignA2 will generate a feasible schedule for Q| M (inclusive)|Cnax
with makespan at most 2C in O(m + nlog n) time.
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Proof. The correctness of AssignA2 follows that of AssignAl, and its proof is omitted. Step 1 can
be executed in O(m) time. In Step 2, each job will be inserted into and deleted from 7" at most once.
Inserting or deleting a job can be done in O(log n) time. Thus, it takes O(n log n) time to construct and
maintain 7" and 7. In Step 2(i1), it takes O(log n) time to find the largest job jin T such that p; < ;- C.
Hence, the running time of AssignA?2 is O(m + nlogn).

]

AssignAl or AssignA2 will be called at most log UB times in the binary search. Since UB =

Zia P X1 pj (we assumed that all s; > 1), we get the following:

Theorem 2.3. There is a 2-approximation algorithm for Q|M;(inclusive)|Cpnax that runs in
O(min{mn, m + nlogn} - log(¥._, p;)) time.

Next, we extend the algorithm to solve Q| M (tree)|Cpax. For the rooted tree RT whose nodes are
the m machines, we define the depths of the nodes as follows. If the node is the root, then its depth is
zero; otherwise, its depth is equal to the depth of its parent plus 1. Index the nodes (machines) of the
tree in non-increasing order of their depths, ties broken in favor of the leftmost node. The root of the
tree is M,,,.

Let J; denote the set of the jobs associated with machine M;, i = 1,2,...,m. The jobs in J;
are eligible for the machines on the path from M; to the root of the tree, and vice versa. We have:
UL, J: = J. Sort all the jobs in J; in non-increasing order of their lengths, and let J; denote the
obtained ordered set, i = 1,2,...,m.

Let OPT denote the makespan of an optimal schedule for Q| M (tree)|Cynax. For machine M; (which
represents a node of RT), let I; denote the set of the indices of the machines on the path from M; to the

root of the tree. Let AL; = W denote the average load on the machines whose indices are in /;,
i=1,2,...,m. Let LB=max;AL;. We have: LB < OPT. Let UB = Zibi We have: OPT < UB.

To determine OPT, we do a binary search in interval [LB, UB]. Iégr each value C selected, the
following procedure, AssignB, tells us whether it is possible to assign the n jobs to the m machines
such that the total length of the jobs assigned to machine M; is no more than 2s; - C,i =1,2,...,m. If
AssignB fails, we search the upper half of the interval; otherwise, we search the lower half.

If job j is eligible for machine M; and p; < s; - C, then job j is feasible for machine M;, and vice
versa. In AssignB, U; represents the set of unassigned jobs which are eligible for machine M; and
sorted in non-increasing order of their lengths, and L; denotes the total length of the jobs assigned to
machine M;, i = 1,2,...,m. Informally speaking, AssignB tries to put as many as possible of the
largest, not yet assigned feasible jobs on the deeper machines such that each machine completes no
later than 2C.

AssignB (C):

Stepl. LetL; =0,U; = J;,i = 1,2,...,m. Let h be equal to the maximum depth of the machines in
tree RT.

Step 2. While (h > 0), do:
(i) For each machine M; whose depth is 4, do:

Find the first job j € U; such that p; < s; - C. Assign job j and the jobs after it in U; to machine
M; until L; > s; - C or the jobs after j in U; are used up. Delete the newly assigned jobs from U,.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9697-9708.



9702

Merge U; into Uy, where M, is the parent of M;. (U; and U, are ordered sets before merging,
and thus after merging Uy is still an ordered set.)

(i) Leth=h— L.

Step 3. If the total length of the jobs in U, is no more than 2s,, - C, then process all the jobs in U,
on machine M,, (whose depth is zero), and the procedure succeeds and terminates. Otherwise,
the procedure fails and terminates.

Lemma 2.4. If OPT < C, then AssignB will generate a feasible schedule for Q|M(tree)|Cmax with
makespan at most 2C in O(mn) time.

Proof. Let IT" and IT denote an optimal schedule and the schedule generated by AssignB, respectively.
Since OPT < C, in IT", machine M; cannot process any job of length larger than s; - C. Hence, in II,
we let M; process only the jobs whose lengths are no more than s; - C. We have L; < 2s; - C, and thus
C; <2C,i=12,...,m.

If OPT < C, when AssignB terminates, it must be true that U,, = @. We prove this claim by
contradiction. Suppose that some job j cannot be assigned when AssignB terminates. Let j be
associated with the tree node M,;, such that its processing set M; consists of the machines on the path
from M, to the root of the tree. Let FM; C M; denote the set of the feasible machines for job j, i.e.,
for any machine M; € FM;, p; < s;- C. We have L; > s; - C for any machine M; € FM;. Let D denote
the set of the jobs processed on the machines in FM; in II. All the jobs in D have lengths at least p;
and hence cannot be assigned to the machines in M;\FM;. We consider the following two different
cases:

Case 1. There are no eligible machines outside M; for the jobs in D.

In this case, all the jobs in D have to be processed on the machines in /M in any optimal schedule.
However, since L; > s; - C for any machine M; € FM;, IT" cannot complete all the jobs in D by time
C > OPT, a contradiction.

Case 2. Some jobs in D have eligible machines in M\ M.

Some jobs in D may have eligible machines in M\ M;, but they may be not feasible for these
machines, or their feasible machines in M\ M; have not enough space left to accommodate them when
they are assigned. Since AssignB assigns the largest feasible jobs on the machines in M\ M; greedily
such that each machine completes later than C whenever possible, an optimal schedule cannot schedule
the jobs any better than this on the machines in M\ M. Therefore, the total length of the jobs processed
on the machines in FM; in Il is a lower bound on the total length of the jobs processed on the machines
in FM; in IT". Asin Case 1, since L; > s; - C for any machine M; € FM i IT" cannot complete all the
jobs in D by time C > OPT, a contradiction.

m]

We use the binary search together with AssignB to solve Q|M(tree)|Crax. Then, we get the
following:

Theorem 2.5. There is a 2-approximation algorithm for Q|M;(tree)|Cmax that runs in
O(mn -log(3_, p;)) time.
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3. 4/3-approximation algorithms

In this section we will get a 4/3-approximation algorithm for Q| M;(inclusive)|Cpax, and then extend
it to solve Q| M(tree)|Crax. We continue to use the notations introduced in the previous section.

Let OPT denote the makespan of an optimal schedule for Q| M (inclusive)|Cpax. We perform a
binary search in [LB, UB] to determine OPT, where LB = max;AL;, AL; = w, and UB =

=i ”1
M. For each value C selected, we use the following procedure, AssignCl, to test whether it is

posgsible to schedule the jobs such that the total length of the jobs processed on machine M; is no more
than 4s;-C/3,i=1,2,...,m.

If job j is eligible for machine M; and p; < s; - C, then job j is feasible for machine M;, and vice
versa.

For each value C selected, we classify feasible jobs as long, median, and short with respect to the
machine speeds. For a particular machine M; (i = 1,2,...,m), job jis long if 2s; - C/3 < p; < ;- C,
or median if s;- C/3 < p; < 2s;- C/3, or short if p; < s; - C/3.

In AssignCl1, U; represents the set of unassigned jobs which are eligible for machine M; and sorted
in non-increasing order of their lengths, i = 1,2,...,m. In Step 2(ii) of AssignC1, we first compare
the total length of the two largest median jobs in U; with the length of the largest long job in U,. If the
former is larger, then we schedule the two largest median jobs in U; on machine M;. Otherwise, we
schedule the largest long job in U; on machine M.

AssignC1 (C):

Step 1. Let Uy =@ and i = 1.

Step 2. While i < m, do:
(1) Merge U;_; into J; to get U;.

(11) If there is no long job in U;, then add a “dummy” long job of length zero into U;. Similarly,
if there is no median job (or only one median job) in U;, then add two (or one) “dummy” median
job(s) of length zero into U;. Let j;, j, and j; denote the largest long job and the two largest
median jobs in Uj;, respectively. If p;, + p;, > p;,, then let j, and j; be processed on M; and
remove them from U;; else, let j; be processed on M; and remove it from U,.

(iii) If the total length of the jobs on M, is less than or equal to s; - C, then we repeatedly assign

the largest unassigned short jobs in U; to M; until the first time that the total length of the jobs
on M; is larger than s; - C. Remove the newly assigned jobs from Ui,.

@v) Leti =i+ 1.

Lemma 3.1. If OPT < C, then AssignCI will generate a feasible schedule for Q| M (inclusive)|Ciax
with makespan at most 4C/3 in O(mn) time.

Proof. Let IT" be an optimal schedule. Let IT be the schedule generated by AssignC1. We will prove
the lemma by modifying IT" into I1.

To do so, we handle the machines in increasing order of their indices. Suppose that machines
M, M,, ..., M;_, have been handled. We illustrate how to handle machine M;. At this point, the
jobs on machines M|, M,, ..., M;_; in IT" (after machines M;, M,, ..., M;_; have been handled) are

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9697-9708.



9704

processed in the same manner as they are processed on machines M, M, ..., M;_; in II. We treat
these jobs as assigned jobs. All the other jobs are treated as unassigned jobs. The unassigned jobs
which are eligible for machine M; form the set U,.

As described in Step 2(ii) of AssignCl, if p;, + p;, > pj,, then we let j, and j; be processed on M;
in modified IT". To achieve this, if at least one part of j, is on machine M, (I > i ) other than M;, we
move this part from M, to M;, and move a corresponding part of the same length (consisting of parts of
the jobs which are on M; in IT" but not on M; in I1, cutting some job if necessary) from M; to M,. If the
total length of the jobs which are on M; in IT" but not on M; in I1 is less than the length of this part of
j2, then we exchange this part of j, and all the jobs which are on M; in IT" but not on M; in I1. Repeat
this process until the entire j, appears on M, in modified IT". Perform a similar exchange process until
the entire j; appears on M; in modified IT". Note that p;, + p;, < 4s;-C/3. If p;, + pj, < p;,, then we let
j1 be processed on M; in modified IT", by performing a similar exchange process. Note that p;, < s;-C.

Next, we assign some short jobs in U; on machine M; as described in Step 2(iii) of AssignCl, by
performing a similar exchange process. When we finish handling of M;, the jobs processed on M; in
modified IT" are those processed on M; in I1. Moreover, the total length of the jobs on M; is no more
than 4s; - C/3. Hence, M; completes no later than 4C/3.

Although some jobs have to be cut during the modification, when we finish handling of M,,, no cut
job exists in modified IT" (i.e., IT). It is easy to check that the total length of the jobs processed on
machines My, M,, ..., M; in Il is an upper bound on the total length of the jobs processed on machines
M, M,, ..., M;in unmodified IT", i = 1,2, ..., m.

O

We can give an alternative implementation of AssignCl, called AssignC2, which runs in O((m +
n)logn) time. The idea is to store the jobs in U; in a balanced binary search tree 7', using their lengths
as the keys. Before we perform Step 2(ii) of AssignC1, we do the following. First, find the largest job
of length no more than s; - C in T. If the job does not exist, then let i = i + 1 and move on to the next
iteration. If the job is a long job, then let it be j;. Otherwise, let j; denote a “dummy” long job of
length zero. Next, find the largest job of length no more than 2s; - C/3 in T'. If the job does not exist or
is a short job, then let j, and j; denote two “dummy” median jobs of length zero. Otherwise (i.e., the
job is a median job), let it be j,, and continue to find another largest job of length no more than this
job in T'. If the job does not exist or is a short job, then let j; denote a “dummy” median job of length
zero. Otherwise, let it be j;. After j;, j, and j; are determined, we perform Step 2(ii) of AssignCl.
To perform Step 2(iii) of AssignC1, we need to find the currently largest job of length no more than
s; - C/3 (i.e., the largest short job) in 7. Note that each job will be inserted into 7" or deleted from T
at most once. The balanced binary search tree 7' can be constructed and maintained in O(n log ) time.
Moreover, determining j;, j, and j; for each machine can be done in O(log n) time. Determining the
currently largest short job in T can also be done in O(log n) time. Therefore, the overall running time
of AssignC2 is O((m + n) logn).

Lemma 3.2. If OPT < C, then AssignC2 will generate a feasible schedule for QM (inclusive)|Cyax
with makespan at most 4C/3 in O((m + n) log n) time.

Theorem 3.3. There is a 4/3-approximation algorithm for QIM;(inclusive)|Cnax that runs in
O(min{mn, (m + n)logn} - log(¥'_; p)) time.
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Next, we extend the algorithm to solve Q| M (tree)|Crax. Given the rooted tree RT whose nodes are
the m machines, we index the nodes of RT in non-increasing order of their depths, ties broken in favor
of the leftmost node. The root of RT is M,,.

Let OPT denote the optimal makespan for Q| M(tree)|Ciax. For machine M; (which represents
a node of RT), let I; denote the set of the indices of the machines on the path from M; to the root

of the tree. Let AL; = W denote the average load on the machines whose indices are in /;,
1P

i=1,2,...,m. Let LB =max;AL; . We have: LB < OPT. Let UB = ZS— We have: OPT < UB.

We perform a binary search in [LB, U B] to determine OPT. For eacﬁ value C selected, we use the
following procedure, AssignD, to test whether it is possible to schedule the jobs such that the total
length of the jobs processed on machine M; is no more than 4s; - C/3,i = 1,2,...,m. We continue to
use the related definitions for Q| M (inclusive)|Cpax, such as feasible, long, median and short jobs.

In AssignD, U; represents the set of unassigned jobs which are eligible for machine M; and sorted
in non-increasing order of their lengths, i = 1,2,...,m. In Step 2(1)(1) of AssignD, we first compare
the total length of the two largest median jobs in U; with the length of the largest long job in U,. If the
former is larger, then we schedule the two largest median jobs in U; on machine M;. Otherwise, we
schedule the largest long job in U; on machine M;, i =1,2,...,m.

AssignD (C):

Step1. Let U; = J;, i = 1,2,...,m. Let h be equal to the maximum depth of the machines in tree
RT.

Step 2. While (4 > 0), do:

(1) For each machine M; whose depth is A, do:

(1) If there is no long job in U;, then add a “dummy” long job of length zero into U;. Similarly,
if there is no median job (or only one median job) in U;, then add two (or one) “dummy” median
job(s) of length zero into U;. Let j;, j» and j; denote the largest long job and the two largest
median jobs in U;, respectively. If p;, + p;; > p;,, then let j, and j; be processed on M; and
remove them from U;; else, let j; be processed on M; and remove it from U,.
(2) If the total length of the jobs on M; is less than or equal to s; - C, then we repeatedly assign
the largest unassigned short jobs in U; to M; until the first time that the total length of the jobs
on M, is larger than s; - C. Remove the newly assigned jobs from U,.
(3) Merge U, into Uy, where M, is the parent of M,.
(i) Leth=h - 1.

Step 3. If the total length of the jobs in U,, is no more than 4s,, - C/3, then process all the jobs in U,,

on machine M,,, and the procedure succeeds and terminates. Otherwise, the procedure fails and
terminates.

Similarly to the proof of Lemma 3.1, we can prove the following lemma.

Lemma 3.4. If OPT < C, then AssignD will generate a feasible schedule for Q|M(tree)|Cmax With
makespan at most 4C/3 in O(mn) time.

Theorem 3.5. There is a 4/3-approximation algorithm for Q|M;(tree)|Cmax that runs in
O(mn -log(¥_, p;)) time.
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4. Conclusions

In this paper we investigated the problem of minimizing makespan on uniform machines with
restricted assignment. We presented algorithms with approximation ratios 2 and 4/3 for the cases of
inclusive and tree-hierarchical restrictions. Since the algorithms do not rely on the speed hierarchical
assumption, they generalize the results presented in [7]. The running times of the algorithms contain a
factor of log(¥;_, p;), and in consequence they are not strongly polynomial time. To get strongly
polynomial time algorithms, we use the technique described in [9] to modify the above algorithms
slightly. The approximation ratios then become 2 + £ and 4/3 + &, where € > 0 can be made arbitrarily
small. In addition, as pointed out in [7], since the algorithms are based on the binary search, they
produce schedules with makespans 2[OPT] or 4[OPT1/3, where OPT denotes the optimal
makespan.

It would be interesting to study the problem of minimizing makespan on uniform machines with
other objective functions, or with other special types of assignment restrictions, such as nested, or
interval restrictions. For further research, some learning strategies may be introduced, such as
Probably Approximately Correct (PAC) learning with importance reweighting [22], dynamic feature
weight selection [23], robust learning, granular-ball learning [24] or Complete Random Forest (CRF)
based class noise filtering learning [25].
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