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Abstract: We propose stage-structured single-species population models with psychological effects
and partial tolerance in polluted environments in this paper. First, the conditions of extinction and
the time for extinction are investigated respectively. Especially, the time for extinction takes longer
as the value of the psychological effects increases. Then the weak persistence in the mean around
the pollution-free equilibrium and the stochastic permanence have been derived under some moderate
conditions. Further, the existence of a periodic solution for the periodic single-species population has been
determined. The corresponding numerical simulations verify the efficiency of the main theoretical results.
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1. Model formulation

Pollution in ecological environments has always been a widespread concern of the public. With
the rapid development of the modern industrial society, the environmental pollution caused by human
activities has become an issue and it has series impacts on the survival of single-species populations
in the environment. Under the assumption that the growth rate of a local population was linearly
dependent on the absorbed toxicant concentration, Hallam et al. [1] studied the ecological impact of
toxicant concentration on single-species populations for the first time. Later, single-species population
models gradually attracted the attentions of researchers around the world. For example, Ma et al. [2]
considered the survival threshold of small populations when the capacity of the environment was lim-
ited, and they observed the changes in the environment by uptake and egestion of organisms. Wang et
al. [3] later generalized the results in [2] into periodic toxicant inputs and discussed the permanence
of single-species populations. After two decades, motivated by Hallam’s model in [1], Liu et al. [4]
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investigated a single-species model in a polluted closed environment with pulsed toxicant inputs; they
found that impulsive toxicant inputs led to periodic behaviors and oscillations for their solution. Then
He and Wang [5] followed Hallam’s model and assumed that newborns carried some amount of toxi-
cant within each living organism that is diffused into the environment after death, they further analyzed
the sufficient conditions for uniform persistence, weak persistence in the mean and the extinction of a
single-species population. By simplifying Hallam’s model, Liu and Wang [6] investigated the thresh-
olds for local extinction and weak persistence in the mean for single species by using a deterministic
model and stochastic model respectively. In [7], they continued to study the survival threshold for
a stochastic generalized logistic model, stochastic Leslie model and stochastic Gallopin model; they
obtained that the intensity of white noise made sense. Further, survival thresholds were extensively
discussed in [8—10] for a single-species model with Markov switching and pulsed toxicant inputs in a
polluted environment with two types of noises, for an n-species stochastic Lotka-Volterra cooperative
model and for a stochastic cooperative species model in a polluted environment, respectively. More-
over, single-species population models with partial pollution tolerance and psychological effects in a
polluted environment were respectively paid more attention in [11-15]. Especially, Wei and Chen [12]
proposed a single-species population model with psychological effects in a polluted environment:

AxC, oxC
_ 2 e e
dx(r) = |x(b—-d) — cx* — axC, — T+ 3C dr - 1+ 3C dB(1),

dC,(f) = [kC, — (g + m + b)C,]dt, (1.1)
dCe(t) = [”e - hCe]dta

where x(f) is the density of a single-species population in a polluted environment at time ¢; C,(f)
and C,(¢) are the concentration of toxicants in the organism, and the concentration of toxicants in the
environment at time ¢ respectively. They derived the sufficient conditions for local extinction, weak
persistence in the mean and stochastic permanence; they also found that psychological effects had an
impact on the density of populations.

In this paper we consider stage-structured single-species population models because there exist dif-
ferences between juveniles and adults at the distinct stages in their lifetimes . Usually, in a population,
adults produce juveniles, hunt for juveniles and protect juveniles against attacks from their predators;
juveniles cannot produce newborns and have less experience for hunting untill they turn into adults.
Motivated by the previous contributions in [16—18] and the assumptions proposed in [12, 16], we es-
tablish a stage-structured population model with pollution and psychological effects as follows:

dJ(t) = [aA — e;J — r;C,J — aJ — c;J*]dt,

dA(f) = [a] — esA — r4CoA — c,A% — Ag(A, C)]dt — og(A, C.)dB(?),
dC,(¢) = [kC, — gC, — mC, — bC,]dt,

dC.(1) = [u. — hC.]dt,

where J(t) and A(?) respectively indicate the densities of juveniles and adults in a population at time #;
g(A, C,) describes the assumptions that adults are directly affected by a heavily polluted environment
in a nonlinear form, and by a lightly polluted environment in a linear form as follows:

(1.2)

AC, .
, C. h llution),
oA, C) =1 T+pC > ¢ (heavy pollution) (1.3)
AC,, C., <c (light pollution).
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In other words, the nonlinear form in Eq (1.3) means that adults produce the psychological effects with
a rate 8 to avoid being harmed by pollution because adults with good vertebrate organs and highly
differentiated nervous systems can transmit the information on their surroundings to their nervous sys-
tems well; the single-species population is in a heavily polluted environment when C, > c is valid, and
the population is in a lightly polluted environment when C, < ¢ holds; here, c is a threshold value for
a polluted environment. We further assume that juveniles are indirectly affected by the environmental
pollution, and that juveniles are produced by adults at a constant rate a; e, and e, are the natural mortal-
ity rates of juveniles and adults respectively; r; and r, refer to the loss rates for the juveniles and adults
respectively; « indicates the conversion rate from juveniles to adults; ¢, and ¢, are the intra-specific
competition rates for juveniles and adults; A denotes the contact rate between adults and toxicants in
the environment. Because the contact rate is always affected by weather conditions, temperature and
other types of noise, the constant contact rate A is replaced by a random variable 1 = A + o&(f) with
white noise &(¢) satisfying &(¢)d¢ = dB(¢), where B() is a scalar standard Brownian motion process. 8
represents the inhibition rate or psychological effects of adults when they are surrounded by the pol-
luted environment; it also describes the sensitivity of adults to the polluted environment; & is the uptake
rate from the polluted environment; g, m and b express the loss rates due to egestion, metabolic process
and reproduction, respectively; u.(?) is regarded as the external toxicant input into the environment; A
represents the natural purification rate of the environment itself.

2. Fitness

Theorem 2.1. Model (1.2) with heavy pollution has a unique solution (J(t), A(t), C,(t), C.(t)) for any
(J(0),A(0), C,(0), C.(0)) and t > O, the solution will remain in Rﬁ with a probability of 1.

Proof. Since the coeflicients of System (1.2) satisfy the local Lipschitz condition [19], there is a unique
local solution (J(2), A(f), C,(1), C.(t)) € R:,t € [0,7,) (where 7, is the explosion time) for any initial
value (J(0),A(0), C,(0),C.(0)) € Ri‘r. In order to prove that this solution is global, we only need to
prove that 7, = co. We assume that /; is a sufficiently large integer such that (J(0), A(0), C,(0), C.(0))
is in the interval [%, ly]; for each integer [ > [y, we define a stopping time [19]:

7; = 1Inf {t € [0,7,) : min{J(2), A(7), C,(2), C.(1)} < % or max{J(t), A(?), C,(1), C.(1)} = l}. (2.1

Throughout this paper, we set inf @ = co. It is apparent that 7; increases with respect to /. We set
Teo = llim 7;; therefore, 7, < 7. holds almost surely. We claim that 7., = oo is valid almost surely. The

proof goes by contradiction from now on. If the statement is false, then there exists a pair of constants
T > 0and € € (0, 1) such that P{r, < T} > €. Hence there exists an integer /; > [, such that

P{r;,<T} >¢, foralll > I,. (2.2)
We define a Lyapunov-function V; : R — R as follows:
Vi=J-1-InJ+A-1-nA+C,—-1-InC,+C,—1-1InC.. (2.3)

The generalized It6’s formula gives

oC,

1 +BC2

dV, = LVidt — (A= 1) dB(?); (2.4)
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together with0 < C, < 1 and 0 < C, < 1, we have
LV, < —(ey +CJ)J_C]J2 —(eqa +ca —a)A —CAA2 + (ry +ry)C,
o*C?
2(1 + BC2)? (2.5)

2
o
<C1+r,+rA+eJ+eA+a+ue+h+/l+g+m+b+k+7::M,

+A+kC,+e;+eps+a+g+m+b+u,+h+

where C; is the maximum for the quadratic forms of A and J with negative signs for their highest-order
terms; we therefore have

oC,

dVy < Mdr-(A-1 dB(1). 2.6
1 ( TS C? Q) (2.6)

Integrating both sides of Inequality (2.6) from O to 7; A T implies that

TAT TIAT TIANT C 1
f dv; < Mdt - f A - =250 _ap . 2.7
0 0 0 1+ BC10)
and then taking expectations yields

EVi(r; AT) < Vi(0) + MT. (28)

We set Q, = {1; < T} for [ > [;; then, Expression (2.2) turns into P{€);} > &. Note that for every w € €,
each component J(t; A T),A(t; AT),Co(t; AT) or C.(1; A T) equals either [ or 1 hence, Inequality
(2.8) could be rewritten as

1
Vi(0) + MT > EV,(t; AT) > 8min{l —l-lnl - -1+ 1n1}. (2.9)
This, as [ — oo, leads to a contradiction
oo > Vi(0) + MT > co. (2.10)

Therefore the assertion 7., = oo is valid almost surely. The proof is complete.
Corollary 2.2. Model (1.2) with light pollution has a unique solution (J(t), A(t), C,(1), C.(1)) for any
(J(0), A(0), C,(0), C.(0)) and t > O; the solution will remain in R* with a probability of 1.

3. Survival analysis

3.1. Extinction

Lemma 3.1. [12] The upper boundaries of toxicant concentrations in organisms and in a polluted

environment are given as

SR’ T T h(g+m+b) '

Lemma 3.2. For any given constant T, the lower boundaries of toxicant concentrations in organisms
and in a polluted environment are obtained as

(€. 5 e g (1 - ey,
(% e, (3.2)

4 e tem T (] _ (Co)- )
g+m+b

Co)s >
) g+m+b
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Proof. From the fourth equation of Model (1.2), we have
Ce(t) 2 (ue)* - hCe-

By a method of constant variation, we get

(u,). - (u,).
Ct) > ==+ (1= =),

therefore the first assertion is valid. Similarly, by the third equation of Model (1.2), we obtain
Co(t) 2 k(C.). — (g + m + b)C,.
The method of constant variation gives that

C,(2) > & + e—(g+m+b)T(1 3 &)’
grm+b g+m+b

which further implies the second assertion.
Theorem 3.1. If the coefficients of Model (1.2) with heavy pollution satisfy

ACe)-

+ + C() * + s 3'3
a<ey+cy+rsC,) —1+,8(Cj)2 (3.3)
then the densities of juveniles and adults in a local population will go to extinction.
Proof. Let us define V, = In(J + A) according to It&’s formula
gAC,
dV, = LV,dt - dB(1). .
=LV, ey (1) (3.4)
We claim that
AAC
— 2 2 e
LV = — A(aA =] =1sCod = c1J — eaA = 1aCoA = A’ = < +ﬁcg)
A? oC? (3-5)
T 2(J+ AP (1+BC2)?
given J > 1 and A > 1; it is thus estimated by
1 A(Ce)s
LV, < i A[(—ej —cy—ri(Cp))J + (Cl —ep—ca—ra(Co). — T(CZ)Z)A] < 41, (3.6)
and together with Lemma 3.1
AC,).
1= max{ = ey = rACa—ex = e = 1i(Cy). ~ T 0]
Integrating both sides of Eq (3.4) and dividing by ¢ gives
1 1 1 (" A(85)oC,(s)
—In(J(#) + A(t)) < = In(J(0) + A0)) + g1 — — dB(s). 3.7
; n(J() + A() . n(J(0) + A(0)) + g1 { ), UG+ A + BCG) (s) (3.7)
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According to the strong law of large numbers of the local martingale [19]

1 aA(s)C.(s) _
lim — fo TG+ A+ ,Bcg(s))dB(s) =0 almost surely (3.8)

Taking the upper limit on both sides of Inequality (3.7), we get

1
lim sup " In(J(r) + A(?)) < g1 <O. 3.9
>0
Hence
tlim J(t)=0 and tlim A() =0. (3.10)

Corollary 3.1. If the coefficients of Model (1.2) with light pollution satisfy
a<estcyt rA(C())* + /I(Ce)*’ (311)

then the densities of juveniles and adults in a local population will go to extinction.

3.2. Stochastic permanence

Considering the following n-dimensional stochastic differential equation:
dx(r) = f(x(2)dt + g(x(1)dB(), x(1) € RY, (3.12)

we introduce the following useful definitions and lemmas.
Definition 3.1. [20] The solution x(¢) of Eq (3.12) is called stochastically ultimately bounded if, for any
g € (0, 1), there is a positive constant y(= x(&)) such that for any initial value x(0) € R’}, the solution
has the property that

lim sup P{|x(?)] > x} < €. (3.13)

—o0
Definition 3.2. [21] The solution x() of Eq (3.12) is said to be stochastically permanent if, for any
g > 0, there are constants 6; > 0 and §, > 0O such that

liminf P{|x(#)| > 6;} > 1 —¢, limsupP{lx(?)| <} >1-e. (3.14)
—00

1—00

Lemma 3.3. The densities of juveniles and adults in Model (1.2) with heavy pollution are stochastically
ultimately bounded.
Proof. We define V; = €'(J + A); applying 1t6’s formula gives

LVi=e(J+A+ L]+ LA) ='F(J,A) < Cye, (3.15)

where F(J, A) yields a positive boundary C, as follows:

F(LA) = —e;—riC)J —ciJ* + (1 +a—ey —raC,)A — c,A® - AC. .
B - J J&o J A ALo A 1+ﬁC§ 2.
We further derive
- _ _ (" TA(s)C.(5)
J) + A@) < e'JO0) + AO)] + Co(1 - ™) —e fo T2 40 ) SBO (3.16)
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Let |X| = VJ? + A2; given that
" oA(s)C,
Ee-’f TASIC) ypisy =0, VETA <+ A,
o 1+BC(s)
and taking expectations on both sides of Inequlity (3.16), we obtain that

lim sup E|X(?)| < C».

1—00

The Chebyshev’s inequality and Definition 3.1 gives
lim sup P{|X(?)| > x} < €.

—00

Lemma 3.4. Model (1.2) with heavy pollution has the following property:

1
limsupE——— < H
100 P 1X(1)**?

provided that 6 is a positive number and satisfies the following condition:

(@Aha@)—(e;+r)V(es+rs+)—053+60)0c” >0.

(3.17)

(3.18)

(3.19)

(3.20)

Proof. Motivated by the approaches in Theorem 4.5 of [6] and Lemma 3.5 of [20], we define V, =

(J + A)7!; the generalized 1t6’s formula gives that

gAC,
dV, = LV,dt + V? “dB(1),
4 =LV, T B0 ()
where
LV. :—Vz[aA—(e +rC)J+a/J—a/J—(e + r,C +&)A—c J—c Az]
4 4 7 +1,C A+ 740, 1+8C J A

, 0PC2A?
(1 +pC2y?
<=V@ana)=(e;+r)V(es+r14+ D]J +A)

+ Vf(a/J +cpJ? + caAD) + Vj’O'ZA2
<-[ana)—(ej+r)V(es+rs+ ) —?Vi+(@+cy)Vecy.

We define Vs = V2*%; the generalized 1t6’s formula again yields that

AC
dVs = LVsdt + 2 + V3222 4B,
s =LVsdt + (2 +0)V; T+ 5C2 (®)
where
2 42,2
_ 1+6 4rg OAC
LVs = 2+ 0)V4+ LV, + 05(2 +6)(1 + 9)V4+ m

<Q+OV = [@ha)=(es+r)V(ea+ra+d) =0 Va+(@+cs)Vea)
+0.52 +6)(1 + ) Vi*

1+6 2+6
< C3V4+ - C4V4+ s

(3.21)

(3.22)

(3.23)

(3.24)
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with
C3=Q2+0)[(a+cy)Vecal,

Ca=Q+0[(ana)—(ey+1))V(eq+r4+2)—053+06)c?].
We differentiate Eq (3.23) with factor €X', so

gAC,
d(eX'Vs) = L(eX'Vs)dt — (KeX'Vs + eK’V5£V5)TﬁC§dB(t).

We choose a moderate constant K such that C4, — K > 0 and obtain
L(5Vs) = X' [KVs + LVs] < CseX'.

Therefore, Eq (3.26) gives
C
E[eX'VZ(n)] < VZ(0) + ?Se’“,

which leads to C
lim sup EV2*(r) < ?5 = H.

t—o0
The Cauchy inequality implies
240
(J+ AP < V2 IXP

thus
1 2 2+ C
lim sup EW < lim sup E[ V2 +0Vf+9(X(t))] <V2 v, Ej = H.
t [—0o0

—o0 |

(3.25)

(3.26)

(3.27)

(3.28)

Theorem 3.2. If Condition (3.20) is valid, then the densities of juveniles and adults in Model (1.2)

with heavy pollution are stochastically permanent.
Proof. Given Inequality (3.28) in Lemma 3.4, we have

Iiminf E——— < H
oo X ()20

For any given £ > 0, we set
P>

E.
The Chebyshev’s inequality and Expression (3.30) gives that

6%+9 —

(R TN | _
ARl <o =l > 571 < 0 By <=

therefore,
P{X(®)| =61} =21 —e.

(3.29)

(3.30)

(3.31)

(3.32)

According to Definition 3.2, the left side of the definition is valid. For the above £ > 0, we define

C
62:—2.
&

The Chebyshev’s inequality and Inequality (3.17) yields that

EIX(@)

PIIX(0] > 65} < 5
2

<€

b

(3.33)
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therefore,
P{X()| < 8} =21 —e. (3.34)

That is to say, by Definition 3.2, the densities of juveniles and adults in a local population are stochas-
tically permanent.

Corollary 3.2. [If Condition (3.20) is valid, then the densities of juveniles and adults in Model (1.2)
with light pollution are stochastically permanent.

3.3. Weak persistence in the mean

Theorem 3.3. If the coefficients of Model (1.2) with heavy pollution satisfy
a<cy+2cf+05a+ey, 207 <2ch + 4caA +2e4 —a - 2a, k <min{2(g + m + b),2h — 1}, (3.35)

then the densities of juveniles and adults are weakly persistent in the mean under the expectation
around the pollution-free equilibrium (f A0, 0) in the long run, that is,

lim sup %E f (gl (J(s) = ) + LH(A(s) — A + (3CA(s) + g4c§(s))ds < 0, (3.36)
0

—o0
where J and A simultaneously satisfy af = e A + c,A? and dA = e;J + aJ + ¢;J%, as well as

4| :2c1+4c1f+a+2e1—2a, {2:2cA+4cAA+2eA—a—2a—20'2,

. 3.37
G=2g+m+b)—k, &y =2h—k—-1, s =u’ + (a+20H)A* + aJ”. (3:37)

Proof. New variables are governed as follows:
wi=J-J, wa=A-A, wy=C,, wi=C.. (3.38)
Hence, Model (1.2) is rewritten as given by the following equations:

dw, = [a(wy + A) = (e; + ryws + @)Wy + J) = c;(wy + J)*]d1,
/1W4
1+ Bw;

oWy A (3.39)
7 ,BWi (wy + A)dB(2),

dws = [kwy — (g + m + D)w;]dt,
dwy = [u, — hwy]dt.

dw, = [a(wl + f) - (rAW3 +ey + )(wz +A) - calwy + A)z]dt

We define a C?-function
Ve = Wi + w3 + w3 + wj.

Applying 1t6’s formula implies that

2
dV6 =.£V6dt _ 10'W2W4

(wy + A)dB(), (3.40)

+ Bw;

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9590-9611.
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where

LV = 2w1[a(w2 + A) —(ej+rws +a)(w; + f) —cy(wy + f)z]

/1W4
1+ ,Ei’wf1

+ 2w2[a(w1 + f) - (rAw3 +ey + )(Wz + A) —ca(wy + A)Z]

2,2

4 N2
+ 2wslkwy — (g + m + b)ws] + 2wylu, — hwy] + W(Wz +A)

= 2aww, + 2aAw, — 2(e; + a/)w% - 2r,w3wf — 2fw1(ej +ryws + @)
/1W4

1+ pw;

- ZC]Wl(W% +2Jw; + (f)z) + 2awws + 2adw, — ZeAwg — 2w§(rAW3 +

)

/1W4

= ﬁWE) = 2cawa (W3 + 2Aw; + (A)?) + 2kwswy

- ZWZA(FAW3 + e, +

2,22 24 2 20 AN200 2
(o T U 20°Awwy oS (A)Twy

(1 +pw?)? " (1 +pw?)? " (1 +pw2)?’

-2(g+m+ b)w% + 2u,wy — 2hwi +

Given w; > 1 and w; > 1, it is thus estimated by
LVs < aw? + aw3 + aw? + a(A)* — 2(ey + a)w? — 2c,w? — dc Jw?
+awl + awi + aws + a(J)? — 2eawi — 2cuw3 — de Aw?
+ kw3 + kwj — 2(g + m + b)w3 + 1 + wj — 2hwg + 20 w3 + 202 (A)?
=Qa-2e;—a—2c;— 4c]f)w% +(a+2a—2e4 —2cy — 4c,A + 20'2)w§

+(k=2(g +m+ bW+ (k+ 1 =2w2 + u> + (a + 20°)A* + aJ>.

Therefore, by Expression (3.37), one gets that
LV < =L ywh — Lows — Gws — Lws + Es. (3.41)

Integrating from O to 7 on both sides of Eq (3.40) and taking the expectation, we derive the required
Expression (3.36) as time ¢ tends to infinity. The proof is complete.

Corollary 3.3. If coefficients of Model (1.2) with light pollution satisfy Condition (3.35), then the
densities of juveniles and adults are weakly persistent in the mean under the expectation around the
pollution-free equilibrium (J, A, 0, 0) in the long run.

4. Existence of periodic solution

We assume that a(?), r;(t), c,(1), ra(t), ca(t), a(t), A(t) and o () are both positive and continuous func-
tions with a period T. We further investigate the periodic model given by Model (4.1) due to the
existence of periodic phenomena in the real world.

dJ(1) = [a()A = e,(1)] = r/()C,J — a(D)] — ¢,(H)J]dr,

dA®) = (1)) — ea(DA = ra(1C,A — ca(DA? — ADY(A, Co)|dr — o(1)g(A., C.)dB(),
dC, (1) = [k(NC, = g(NC, — m()C, — b(DC,]dt,

dC.(1) = [u.(1) — H(NC.]dr.

4.1)
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Lemma 4.1. [22,23] Consider the following periodic stochastic differential equation:
dx(t) = f(t, x(2))dt + g(t, x(¢))dB(t), xe€R", 4.2)

where both f(t,x(t)) and g(t, x(t)) are T-periodic functions with respect to t. If System (4.2) has a
global positive solution, suppose that there exists a T-periodic Lyapunov function V(t, x) with respect
to t; the following conditions are satisfied outside of a certain compact set:

(i) infV(t,x) > o0, r — o0, 4.3)

|x|>r

(i) LV(t, x) < -1. 4.4)

Then, System (4.2) has a T-periodic solution.
Theorem 4.1. If the coefficients of Model (4.1) satisfy

m — Q" —M; >2, 4.5)

then Model (4.1) has a positive periodic solution, where

T
m; = %L (2 a(l)a(l) + (6/(1‘) A eA(t))Al - %O'Z(I))dl,
s * *\2 (C:
My = max <, %} 0'(1) = €)(1) + €31 + (D) + FA(O)C; + ' () + 7 +(ZC_§*’

and N\, represents the minimum of the densities of juveniles and adults in a local population.
Proof. The existence and uniqueness of the global positive solution of Model (4.1) is derived by a
similar way as shown in Theorem 2.1, so we will omit the details. Next, we define the C?-function
V4(t, J, A) as follows:

Vi=J-1-InJ+A-1-1nA+ w(?), (4.6)

where w(?) is a function defined in [0, co) with w(0) = O that satisfies the following equation:
1
w(t) =2+ a®)a(t) + (e (1) N ea(t)A; — 50'2(1) —my. 4.7

Integrating @w(¢) from z to t + T yields that

t+T
wt+T)—w(t) = f w(s)ds = 0, (4.8)
t
so w(?) is a periodic function defined in [0, co) with a period T'. It is easy to check that

liminf V;(t,J,A) — oo 4.9)

(J,A)eRZ\D

in the set 1 1
D = (4| A) € [e. -] x [ -]}
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where ¢ is a sufficiently small positive number that satisfies

\ @+c)?
206 < ——— - Q" +my, (4.10)
dcy

2(a*+cj;)s<—cz—Q*+m1, (4.11)

(cr)-
- Sa tGi<-l, (4.12)

(CA)*
-5 tGi<-L (4.13)

The generalized 1t6’s formula yields that

LVy = a)A — e; ()T — ri(t)CoJ — a(t)J — c;(0)J* - a(t)% + 0(1)

ADAC,
+Q@IHWN—Q@A—M@QA_%MM_Tg%&z

J O'z(t)cz .
- a(t)Z +ca(HA + 20+ BOC2? + @) (4.14)

< =) (DT* + ;)T = ca(DA? + (a(t) + ca(D))A = 2 \Ja(D)a(?)
— (es(t) N ea(A; + %az(t) + o) + Q"

= —c;()J? + c;(0)J — ca(DA? + (a(t) + cA(D)A —my + O

<C;—-m +Q°,

with

A0)C,

1 +pBC%

where —(c;).J* +¢5J = (ca).A? +(a* + ¢} )A yields a maximum C;. To show LV;(z, J,A) < =1 inR2\ D,
we separate R? \ D into four parts:

Q1) = e,(t) + ex(r) + (1r,() + ra(0))C, + (1) +

D, ={(J,JA)eR}|0<J<¢g}, D,={(J,A)eR}0<A <&,
1 1
Dy={UMeR|>-).  Di={UA)eRa> -}

Case 1. When (J,A) € D,, we get

LVy < c (DT — ()T = ca(DA? + (a(t) + ca()A — my + O

a+c )2 (@ +c)?

* 2 *
<= (cp.J” - (CA)*(A - 2(c). (4cn). —m;+ Q (4.15)
L @) .
+ —m +
= oE 4(CA)* ] Q
Inequality (4.10) gives
1/(a" +c})?
Vi< z|l———— - ) =Gy < 1.
<3Gy mr ) =6

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9590-9611.



9602

Case 2. When (J,A) € D,, we obtain

LV5 < (at) + eat)A — cs)(J - %)2 + Dt
* (4.16)

c
<(a*+c;“)8+zj—m1+Q*.

Inequality (4.11) yields

LV; < %(CZ; —-m + Q*) =Gy < —1.

Case 3. When (J,A) € D3, we have

LV, < —%c,(t)]z - %c,(l)]z + ¢ )(DJ — ca(DA? + (a(t) + ca(D)A —my + O

| ) | 4.17)
< —E(cj),,J2 - %(] ~ 1%+ €= (cA)AY + (@ + A —my + O
Inequality (4.12) shows that
CJ)«
LV; < —(2;)2 +G3 < -1,
with
1 .
G :C7+§c;—m1 +Q*.
Case 4. When (J,A) € D4, we derive
1 , 1 2 2 R
LV, < —ECA(Z‘)A - ECA(Z‘)A + (a(t) + ca()A — c;()J” + c; () —my + Q
o £, # (4.18)
1 (Ca)s a+ci 2 (@ +cy)’
<—=(c *Az—( - ) — (NP + T —m + O
2( A) > NI 3. (¢r) 7 1+ 0
Inequality (4.13) implies that
(ca)-
LVr< =S5 +Gy< -,
where
(a + cj‘)2
Gy=Cq+ ———— — .
SO S, Ml

So, LV;(t,J,A) < —1 is checked when (J,A) € R? \ D.
5. Examples and simulations

In this section, we present the numerical simulations to verify the aforementioned main results.
Due to the linear dependence of the diffusion coefficients in [24,25], we govern the data from [12] and
the Milstein’s method in [26]; we let the threshold value for the polluted environment in Expression

(1.3) be ¢ = 0.30 and take £k = 0.20,g = 0.08,m = 0.04,h = 0.40,b6 = 0.20,0 = 0.10 and the

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9590-9611.



9603

initial values (J(0), A(0), C,(0), C.(0)) = (0.40,0.20,0.05, 0.10). Then, the the discretization equations
corresponding to Model (1.2) are written as

Jo = Juo + (@A — Juoi(ey + 15Co oy + @ + 5 J,-1) AL,
Ay =Ap +ad, = [Ani(ea + 1aCopit + caAusr) + Agn1 | AL
—0gu1E VAL — 0502 (E2At — AD), (5.1)
Con = Cop-1 + [kCopoy — (g + m+ D)C, 1 |At,
Con = Cep1 + [Ue = hCop1]At,

where
An—l Ce,n—l
gn—l(An—l» Ce,n—l) = 1 +ﬁC2

en—1

An—l Ce,n—l s Ce,n—l <c,

” Ce,n—l > C,
(5.2)

and £ is a Gaussian random variable with a standard normal distribution N (0, 1).

Example 5.1. The parameters of extinction in Model (1.2) are presented in Table 1. We choose (1)—(III)
as the parameters of Model (1.2) in a heavily polluted environment; and choose (IV) as the parameters
of Model (1.2) in a lightly polluted environment. It is easy to verify that Condition (3.3) of Theorem
3.1 and Condition (3.11) of Corollary 3.1 are satisfied.

ACe)-
a—eq—Cqp— T'A(C())* - T(C:)Z = —-0.0359 < 0, (53)
a—ey —cy —1a(Cp)y — ACe). = —0.0406 < 0, 5.4)

where (C,). = 0.05,C; = 0.10, (C,). = 0.75.

The results of numerical simulations indicate that the densities of juveniles and adults tend to ex-
tinction as shown in Figures 1 and 2. We conclude that the densities of juveniles and adults are slightly
different between Figures 1 and 2, and that the time for extinction was extended as a result of increasing
the psychological effects g from 0.10 to 10.0. By the same arguments, the simulations for extinction of
juveniles and adults with external toxicant periodic inputs to Model (1.2) are demonstrated in Figure
2, and the time for extinction behaves in the similar way as shown in Figure 1.

Table 1. Parameters for extinction for Model (1.2).

No. a ey e, ry r'A a Cy CaA A U, o B

@D 035 0.10 0.15 0.10 0.15 025 0.05 020 0.30 030 030 0.10
a 035 0.10 0.15 0.10 0.15 0.25 0.05 020 0.30 030 030 1.00
dan 0.35 0.10 0.15 0.10 0.15 0.25 0.05 020 0.05 030 030 10.0
av) 032 0.10 0.15 0.10 0.15 025 0.05 020 0.05 0.10 030 nul

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9590-9611.



9604

°
©
T

Ce

o
IS

_beta=0.10

J-Co-Ce population dynamics
=]
o

| ¥ _beta=1.00
_peta=10.0
Z

°
N
—

o

400 500
Days

300

(a) heavy pollution

0.8

0.4

J-Co-Ce population dynamics
o
o

0.2

400 600

Days

(c) light pollution

Figure 1. Extinction derived from Model (1.2), with constant input for heavy pollution,
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u,(t) = 0.30 + 0.105in(0.357), and for light pollution, u.(¢) = 0.10 + 0.10 sin(0.357).
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Example 5.2. Main parameters for the stochastic permanence of Model (1.2) are given in Table 2. We
next investigate the impacts of the psychological effects 5 and external toxicant input u, for juveniles
and adults in a local population. We take (V)—(VII) as the parameters of Model (1.2) in a heavily pol-

Table 2. Parameters for stochastic permanence in Model (1.2).

No. a ey e ry r'a a cy Ca A U, o B

V) 035 005 0.10 0.10 0.05 0.32 0.05 0.10 0.10 0.30 0.10 0.10
(VD 035 0.05 0.10 0.10 0.05 0.32 0.05 0.10 0.10 0.30 0.10 1.00
(VI) 0.35 0.05 0.10 0.10 0.05 032 0.05 0.10 0.10 0.30 0.10 10.0
(vil) 0.35 0.05 0.10 0.10 0.05 0.32 0.05 0.10 0.10 0.10 0.10 null

luted environment, and take (VIII) as the parameters of Model (1.2) in a lightly polluted environment.
It is easy to verify that Condition (3.20) of Theorem 3.2 is satisfied, and that

(@ha)—(e;+r)V(es+rs+2)—053+60)0c*=0.0345 > 0.

Thus, juveniles and adults in a lightly polluted environment and in a heavily polluted environment are
stochastically permanent as shown in Figures 3 and 4.

The simulations shown in (a)—(c) of Figures 3 and 4 reveal that the densities for juveniles and adults
in a heavily polluted environment grow as the value of the psychological effects 5 increases from 0.10
to 10.0. Further, the densities for juveniles and adults in a lightly polluted environment, as shown in
(d), present higher levels than that in the heavily polluted environment shown in (c) of Figure 3. We
take the parameters in Table 2 and external toxicant periodic inputs u.(¢) = 0.30 + 0.10sin(0.35¢) for
heavy pollution and u,(t) = 0.10 + 0.10 sin(0.357) for light pollution; then, the stochastic permanence
of the juveniles and adults in Model (1.2) in Figure 4 are similar to those in Figure 3.

00>

- hMbdo oD
T

J-A-Go-Ce population dynamics
J-A-Co-Ce population dynamics

200 400 600 800 1000 o 200 400 600 800 1000
Days Days

(a) heavy pollution with 8 = 0.10 (b) heavy pollution with 8 = 1.00

Q0>

- N MO D
T

J-A-Co-Ce population dynarmics
} L
00
PR B P S T
J-A-Co-Ce population dynamics

M o d DD
o

200 400 600 800 1000 o 200 400 600 800 1000
Days Days

(c) heavy pollution with 8 = 10.0 (d) light pollution
Figure 3. Stochastic permanence of Model (1.2), with constant input for heavy pollution,
u.(t) = 0.30, and for light pollution, u.(¢) = 0.10, in Table 2.
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Figure 4. Stochastic permanence of Model (1.2), with periodic input for heavy pollution,
u,(t) = 0.30 + 0.10sin(0.357), and for light pollution u,(f) = 0.10 + 0.10 sin(0.35¢).

Example 5.3. We take the parameters in Table 3, and verify that Conditions (3.35) of Theorem 3.3 are
satisfied. That is

c;+2c;J+05a+e;,—a=0.05>0, 2cu+4ciA+2es—a-2a—-20%=0.05>0,

2g+m+b)—k=049>0, 2h—1-k=0.05>0. (5:5)
The pollution-free equilibrium of Model (1.2) is (f LA, 0, 0) = (0.50,0.50, 0, 0); then, the weak persis-
tence in the mean of Model (1.2) is demonstrated in Figures 5 and 6. Taking (IX)—(XI) as the parameters
of Model (1.2) for a heavily polluted environment, we find that the densities for weak persistence in the
means for juveniles and adults in a heavily polluted environment arise when the value of the psychological
effects Bis increasing from 0.10 to 10.0 as shown in (a)—(c) of Figure 5. Again, taking (XII) as the param-
eters of Model (1.2) for a lightly polluted environment, the corresponding numerical simulations reveal
that the survival levels of juveniles and adults, as shown in (d), are higher those shown in (c) of Figure 5.
The external toxicant periodic inputs u.(¢) = 0.30 + 0.10 sin(0.35¢) and u.(¢) = 0.10 + 0.10 sin(0.35¢)
were taken into account for heavy pollution and light pollution respectively; then, the stochastic perma-
nence of juveniles and adults, as according to Model (1.2) in Figure 6, the same as those in Figure 5.

Table 3. Parameters for weak persistence in the means according to Model (1.2).

No. a ey e ry r'a 1% cy Ca A k U, h o B

(IX) 035 0.05 0.10 0.10 0.05 0.20 0.10 0.20 0.30 0.15 030 0.60 0.20 0.10
(X) 035 005 0.10 0.10 0.05 0.20 0.10 0.20 0.30 0.15 030 0.60 0.20 1.00
(XI) 035 0.05 0.10 0.10 0.05 020 0.10 0.20 0.30 0.15 0.30 0.60 0.20 10.0
(X@mm 0.35 0.05 0.10 0.10 0.05 0.20 0.10 020 0.35 0.15 0.10 0.60 0.20 null
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Figure 5. Weak persistence in the means of Model (1.2), with constant input for heavy

pollution, u.(¢) = 0.30, and for light pollution u.(t) = 0.10, in Table 3.
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Figure 6. Weak persistence in the means of Model (1.2), with periodic input for heavy
pollution, u,(¢) = 0.30+0.10 sin(0.35¢), and for light pollution, u.(#) = 0.10+0.10 sin(0.357).
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Example 5.4. Let all parameters be periodic functions of ¢ as follows:

a(t)

ry(t) = 0.10 + 0.01 sin(0.17),
c;(#) = 0.05 + 0.01 sin(0.17),

k(1)
h(t)

It is obvious that Condition (4.5) of Theorem 4.1 is satisfied.

= 0.35 + 0.01 sin(0.17),

= 0.20 + 0.01 sin(0.17),
= 0.40 + 0.01 sin(0.17),

e;(t) = 0.05 + 0.01 sin(0.17),
r4(t) = 0.05 + 0.01 sin(0.17),
ca(t) = 0.10 + 0.01 sin(0.12),
g(®) = 0.08 + 0.01 sin(0.17),
b(t) = 0.20 + 0.01 sin(0.17),

ea(t) = 0.10 + 0.01 sin(0.17),
a(t) = 0.32 + 0.01 sin(0.17),
A() = 0.10 + 0.01 sin(0.17),
m(t) = 0.04 + 0.01 sin(0.12),
o(t) = 0.15 + 0.01 sin(0.1¢).

(5.6)

When the psychological effect were

varied from 0.10 to 10.0, as shown in (a)—(c) of Figure 7, the corresponding simulations showed that
the periodicity of Model (1.2) becomes apparent in a heavily polluted environment, and also that the
survival levels for juveniles and adults in a lightly polluted environment , as shown in (d), are higher
than those in a heavily polluted environment , as shown in (c) of Figure 7.

J-A-Co-Ce population dynamics

J-A-Co-Ce population dynamics

2.5

Days

(a) heavy pollution with  S(r) = 0.10 +

0.01sin(0.1¢)

o 200 400 600 800 1000

(¢) heavy pollution with  3(r) = 10.0 +

0.01 sin(0.17)

J-A-Co-Ce population dynamics

J-A-Co-Ce population dynamics

N
«

N
T

o
T

o
o

o
T

(b)

heavy pollution with B(@) =

1.00 + 0.01 sin(0.1¢)

(d) light pollution

Figure 7. Periodic solution of Model (1.2) with heavy pollution, u.(¢) = 0.30+0.01 sin(0.1¢),

and light pollution, u.(¢) = 0.10 + 0.01 sin(0.1¢).

6. Conclusions

We investigate the survival levels and periodicities of single-species population models with stage
structure and psychological effects within a polluted environment in this study. We always assumed
that within a local population, adults produced juveniles at a constant rate, juveniles matured and turned
into adults at a constant rate and that juveniles were not involved in the hunting. Adults frequently hunt
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in polluted environments for survival and reproduction, inevitably taking losses because of the polluted
environment. Both juveniles and adults experienced losses due to toxicants within organisms.

The main results demonstrate that the extinction of juveniles and adults in heavily polluted envi-
ronments depends on the psychological effects, and the time to extinction of the juveniles and adults
becomes shorter in Model (1.2) as the value of the psychological effects varies from 0.10 to 10.0; also,
the time to extinction in a lightly polluted environment is around 1000 days longer than that in a heavily
polluted environment as presented in Figures 1 and 2.

Further, the research results also show that under the conditions of constant toxicant inputs and a pe-
riodic toxicant input, the survival levels including the stochastic permanence in Theorem 3.2 and weak
persistence in the mean in Theorem 3.3 in a heavily polluted environment, decrease when the value
of the psychological effects increases as presented in (a)—(c) of Figures 3—6. Meanwhile, the densities
for juveniles and adults , as according to Model (1.2) are higher in a lightly polluted environment than
that in a heavily polluted environment; the corresponding numerical simulations are shown in (d) of
Figures 3—6. Finally, the existence of the periodic solution to Model (1.2) has been derived in Theorem
4.1 for both heavily and lightly polluted environments. The corresponding numerical simulations were
carried out by employing Milstein’s method as presented in Figure 7.
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