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1. Introduction

We study the Gompertz difference equation

y∆(t) = (	r) (t)y(t)
(
K(t) + a +

∫ t

0

y∆(τ)
y(τ)

∆τ

)
, y(0) = y0, (1.1)

as well as periodic functions that arise from it. This is to say when ω ∈ {1, 2, . . .}, f : N0 → R is

ω-periodic if f (t + ω) = f (t) for all t ∈ N0. Here, (	r)(t) =
−r(t)

1 + r(t)
is the time scales analogue of the

growth rate while K(t) is the analogue of the carrying capacity at time t from the traditional continuous
Gompertz model. Throughout, we will use notation inspired from time scales calculus for the time
scale T = N0, including σ(t) = t + 1, y∆(t) = y(σ(t)) − y(t), and the integration symbol representing

summation, i.e.
∫ b

a
f (t)∆t =

b−1∑
k=a

f (k). See the monograph [1] for the usual introduction to dynamic

equations on time scales and see the recent texts on first and second order boundary value problems on
time scales [2] and its companion book on third, fourth, and higher-order boundary value problems on
time scales [3] for more recent books.

In [4], the model (1.1) as well as a second model without the 	 was introduced, solved, and bounds
of its solutions were established. Three discrete fractional analogues of (1.1) were explored in [5] by
changing the difference to a fractional difference and exploring defining the logarithm with a fractional
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integral. These three models were compared to another existing fractional Gompertz difference equa-
tion [6], which was built around using the classical logarithm instead of a time scales logarithm. The
solution of (1.1) can be normalized to create a probability distribution which was studied in [7] where
bounds on the expected value were derived and a connection between the classical continuous Gom-
pertz distribution with the q-geometric distribution of the second kind was established. An alternative
approach to Gompertz equations on time scales appears in [8] which uses the � operation to define a
Gompertz dynamic equation.

Gompertz models have been used to study a number of applications in both discrete and continuous
settings. This includes studying the growth rate of tumors [9,10], modeling growth of prey in predator-
prey dynamics [11], as well as study the change in cost in adopting new technologies [12,13], effect of
seasonality for Gompertz models using time series [14], and the spread of COVID-19 [15, 16].

2. Preliminaries and definitions

Before introducing our main results, some preliminary definitions and results are in order. Equation
(1.1) has the unique solution y(t) = y0ep(t, 0), where

p(t) = (	r)(t)
(
ae	r(t, 0) −

∫ t

0
(	r)(s)e	r(t, σ(s))K(s)∆s − K(t)

)
. (2.1)

Here, e f : N0 × N0 → R, called the discrete exponential, is the unique solution of the initial value
problem y∆ = f y, y(0) = 1. We often make use of the so-called “simple useful formula,”

ep(σ(t), 0) = (1 + p(t))ep(t, 0). (2.2)

when rewriting exponentials.
Time scales integration by parts is given by∫ b

a
f (τ)g∆(τ)∆τ = f (t)g(t)

∣∣∣∣∣∣b
a

−

∫ b

a
f ∆(τ)g(σ(τ))∆τ. (2.3)

A function f : N0 → C is said to be of exponential order α [17, Definition 4.1] if there is an α ∈ R
with 1 + α > 0 and a M > 0 such that | f (t)| ≤ Meα(t, s) for all t ∈ N0. In particular, [17, Lemma 4.4]
shows that if f is of exponential order α and |z + 1| > 1 + α, then lim

t→∞
f (t)e	z(t, 0) = 0.

The time scales Laplace transform is given by [1, Section 3.10]

L { f }(z) =

∫ ∞

0
f (τ)e	z(σ(τ), 0)∆τ.

which for T = N0 is a scaled and shifted Z-transform. It’s known [18, Theorem 3.2] that if w is a
regressive constant and T = N0, then

L { f eσw(·, s)}(z) = L { f }(z 	 w), (2.4)

and if X(t) =

∫ t

0
x(τ)∆τ, then [18, Theorem 6.4]

L {X}(z) =
1
z
L {x}(z). (2.5)
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A well-known identity for the T = N0 delta derivative operator is

f (k + ω) =

ω∑
j=0

(
ω

j

)
f ∆ j

(k). (2.6)

The Laplace transform for differences of f is given by

L { f ∆ j
}(z) = z jL {x}(z) −

j−1∑
`=0

z` f ∆ j−`−1
(0). (2.7)

The Laplace transform of the shifted argument is useful for the sequel.

Lemma 1. If f is of exponential order α, then

L { f (· + ω)}(z) = (z + 1)ωL { f }(z) −
ω∑

j=0

(
ω

j

) j−1∑
`=0

z` f ∆ j−`−1
(0). (2.8)

Proof. Applying the Laplace transform to (2.6) and using (2.7), we have

L { f (· + ω)}(z) =

ω∑
j=0

(
ω

j

)
L

{
f ∆ j}

(z)

=

ω∑
j=0

(
ω

j

) z jL { f }(z) −
j−1∑
`=0

z` f ∆ j−`−1
(0)


= L { f }(z)

 ω∑
j=0

(
ω

j

)
z j

 − ω∑
j=0

(
ω

j

) j−1∑
`=0

z` f ∆ j−`−1
(0).

An application of the binomial theorem to the first summation completes the proof. �

Now we calculate the discrete Laplace transform of a certain time-dependent delta integral.

Lemma 2. If f is of exponential order α and X(t) =

∫ t+ω

t
f (τ)∆τ, then for all z ∈ C with |1+z| > 1+α,

L {X}(z) =
1
z

ω−1∑
k=0

f (k) +
(z + 1)ω − 1

z
L { f }(z) −

1
z

ω∑
j=0

(
ω

j

) j−1∑
`=0

z` f ∆ j−`−1
(0). (2.9)

Proof. First use (2.2) to see

e	z(k + 1, 0) = (1 + (	z)) e	z(k, 0) =
1

1 + z
e	z(k, 0).

Calculate, where k is understood to be the variable,k+ω−1∑
`=k

f (`)

∆

=

k+ω∑
`=k+1

f (`) −
k+ω−1∑
`=k

f (`) = f (k + ω) − f (k).
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Now since X(t) =

t+ω−1∑
`=t

f (`), (2.2) reveals

L {X} (z) =

∫ ∞

0

τ+ω−1∑
`=τ

f (`)

 e	z(σ(τ), 0)∆τ =
1

1 + z

∫ ∞

0

τ+ω−1∑
`=τ

f (`)

 e	z(τ, 0)∆τ.

Since (	z) is constant and e∆
	z = (	z)e	z, we observe

L {X}(z) =
1

1 + z
1

(	z)

∫ ∞

0

τ+ω−1∑
`=τ

f (`)

 e∆
	z(τ, 0)∆τ = −

1
z

∫ ∞

0

τ+ω−1∑
`=τ

f (`)

 e∆
	z(τ, 0)∆τ.

Apply (2.3) to obtain

L {X}(z) = −
1
z

τ+ω−1∑
`=τ

f (`)

 e	z(τ, 0)

∣∣∣∣∣∣τ=∞
τ=0

+
1
z

∫ ∞

0

(
f (τ + ω) − f (τ)

)
e	z(σ(τ), 0)∆τ.

Thus we have

L {X}(z) =
1
z

ω−1∑
k=0

f (k) +
1
z
L { f (· + ω)} (z) −

1
z
L { f }(z).

Applying (2.8) to the middle term of the right-hand side completes the proof. �

3. Periodicity of p

First we establish which functions r yield e	r to be ω-periodic.

Lemma 3. The discrete exponential is periodic, meaning

e	r(t + ω, 0) = e	r(t, 0) (3.1)

if and only if

r(t + ω − 1) = −1 +

t+ω−2∏
k=t

1
1 + r(k)

. (3.2)

Proof. First calculate

1 + (	r)(t) = 1 −
r(t)

1 + r(t)
=

1
1 + r(t)

.

Now, (3.1) becomes
t+ω−1∏

k=0

1
1 + r(k)

=

t−1∏
k=0

1
1 + r(k)

,

hence 1 =

t+ω−1∏
k=t

1
1 + r(k)

, which is equivalent to r(t + ω − 1) = −1 +

t+ω−2∏
k=t

1
1 + r(k)

. Since all steps are

reversible, the proof is complete. �
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Since the ω-periodicity of e	r is equivalent to r satisfying the difference equation (3.2), solving it is
of importance.

Lemma 4. If r(0), . . . , r(ω − 2) are known, then the unique solution of (3.2) is ω-periodic.

Proof. Use (3.2) with t = 0 to generate the ωth value

r(ω − 1) = −1 +
1

(1 + r(0))(1 + r(1)) . . . (1 + r(ω − 2))
.

We claim that the function r is ω-periodic. From (3.2), we obtain

r(t + ω) = −1 +

t+ω−1∏
k=t+1

1
1 + r(k)

= −1 +
1

(1 + r(t + 1))(1 + r(t + 2)) . . . (1 + r(t + ω − 1))
.

But also by (3.2),

1 + r(t + ω − 1) =

t+ω−2∏
k=t

1
1 + r(k)

=
1

(1 + r(t))(1 + r(t + 1)) . . . (1 + r(t + ω − 2))
.

Therefore,

r(t + ω) = −1 +
1

(1 + r(t + 1))(1 + r(t + 2)) . . . (1 + r(t + ω − 2))
[

1
(1 + r(t)) . . . (1 + r(t + ω − 2))

]
= −1 +

1
1

1 + r(t)

= r(t),

completing the proof. �

By (2.1), when p is ω-periodic, p(t + ω) = p(t) expands to

(	r)(t + ω)
(
ae	r(t + ω, 0) −

∫ t+ω

0
(	r)(s)e	r(t + ω,σ(s))K(s)∆s − K(t + ω)

)
= (	r)(t)

(
ae	r(t, 0) −

∫ t

0
(	r)(s)e	r(t, σ(s))K(s)∆s − K(t)

)
. (3.3)

Theorem 5. If r solves (3.2), then p(t + ω) = p(t) if and only if

K(t + ω) = K(t) −
∫ t+ω

t
(	r)(s)e	r(t + ω,σ(s))K(s)∆s.

Proof. By Lemma 3, e	r(·, 0) isω-periodic. By Lemma 4, r isω-periodic, hence (	r) is alsoω-periodic.
Using (3.3), we divide by (	r)(t + ω) and subtract ae	r(t + ω, 0) to obtain

−

∫ t+ω

0
(	r)(s)e	r(t + ω,σ(s))K(s)∆s − K(t + ω) = −

∫ t

0
(	r)(s)e	r(t, σ(s))K(s)∆s − K(t).
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Hence

0 = K(t + ω) − K(t) +

∫ t

0
(	r)(s)

[
e	r(t + ω,σ(s)) − e	r(t, σ(s))

]
K(s)∆s

+

∫ t+ω

t
(	r)(s)e	r(t + ω,σ(s))∆s. (3.4)

By the semigroup property and the periodicity of e	r(·, 0),

e	r(t + ω,σ(s)) − e	r(t, σ(s)) =
[
e	r(t + ω, 0) − e	r(t, 0)

]
e	r(0, σ(s)) = 0, (3.5)

and applying (3.5) to (3.4) completes the proof. �

Theorem 6. If r(t) = r is constant and K is ω-periodic, then p(t + ω) = p(t) if and only if

K(t + ω − 1) =
a

r(1 + r)t

[
1 −

1
(1 + r)ω

]
+

1
1 + r

∫ t

0

K(s)
(1 + r)t−s−1 ∆s −

1
1 + r

∫ t+ω−1

0

K(s)
(1 + r)t+ω−s−1 ∆s.

Proof. From (3.3), since r is constant, so is (	r), hence both (	r)(t +ω) and (	r)(t) can be divided off.
Similarly, since K(t + ω) = K(t), those terms also vanish in (3.3). What remains is

ae	r(t + ω, 0) − (	r)
∫ t+ω

0
e	r(t + ω,σ(s))K(s)∆s = ae	r(t, 0) − (	r)

∫ t

0
e	r(t, σ(s))K(s)∆s

Thus,
a

(1 + r)t+ω +
r

1 + r

∫ t+ω

0

K(s)
(1 + r)t+ω−s−1 ∆s =

a
(1 + r)t +

r
1 + r

∫ t

0

K(s)
(1 + r)t−σ(s) ∆s

Now

a
(1 + r)t+ω +

r
1 + r

∫ t+ω−1

0

K(s)
(1 + r)t+ω−s−1 ∆s + rK(t + ω − 1) =

a
(1 + r)t +

r
1 + r

∫ t

0

K(s)
(1 + r)t−s−1 ∆s,

and solving for K(t + ω − 1) completes the proof. �

4. Periodicity of ep

Define α(t, s) := (	r)(s)e	r(t, σ(s))K(s) and

β(t) :=
1

(	r)(t + ω − 1)

[
1 −

1
ep(t + ω − 1, t)

]
+ ae	r(t + ω − 1, 0).

Theorem 7. If r : N0 → R, then the function t 7→ ep(t, 0) is ω-periodic if and only if

K(t + ω − 1) = β(t) −
∫ t+ω−1

0
α(t + ω − 1, s)∆s. (4.1)
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Proof. If ep is ω-periodic, then using the semigroup property of ep, we obtain

p(t + ω − 1) = −1 +
1

ep(t + ω − 1, t)
.

By (2.1), this becomes

(	r)(t + ω − 1)
[
ae	r(t + ω − 1, 0) −

∫ t+ω−1

0
α(t + ω − 1, s)∆s

− K(t + ω − 1)
]

= −1 +
1

ep(t + ω − 1, t)
, (4.2)

which we rearrange to obtain (4.1). All steps are reversible so the converse is also true, completing the
proof. �

We provide a numerical example of Theorem 7 in Figure 1. It is difficult in general to solve (4.1) in
closed form, but if r is a constant function, then it may be solved with Laplace transform techniques.

Theorem 8. If r ∈ Rc(N0,R) and K is of exponential order α, then for all |z + 1| > 1 + α, the Laplace
transform of (4.1) is

L {K}(z) =
1

(z + 1)ω−1 −
r
(
(z ⊕ r) + 1

)ω−1

(1 + r)ω−1(z ⊕ r)

×

L {β}(z) +
r

(1 + r)ω−1(z ⊕ r)

ω−2∑
k=0

er(σ(k), 0)K(k)

+

ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`
[
K∆k−`−1

(0) −
r

(1 + r)ω−1(z ⊕ r)
[er(σ(·), 0)K(·)]∆k−`−1

(0)
] .

Proof. By the semigroup and reciprocal properties for the discrete exponential, (4.1) becomes

K(t + ω − 1) = β(t) − (	r)e	r(t + ω − 1, 0)
∫ t+ω−1

0
er(σ(s), 0)K(s)∆s.

By (2.8), we know that

L {K(· + ω − 1)}(z) = (z + 1)ω−1L {K}(z) −
ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`K∆ j−`−1
(0)

Using (2.2), compute

e	r(t + ω − 1, 0) = e	r(σω−1(t), 0) = (1 + (	r))ω−2 e	r(t + 1, 0) =
e	r(t + 1, 0)
(1 + r)ω−2 . (4.3)

Let

g(t) = (	r)e	r(t + ω − 1, 0)
∫ t

0
er(σ(s), 0)K(s)∆s

=
−r

1 + r
e	r(t + ω − 1, 0)

∫ t

0
er(σ(s), 0)K(s)∆s

=
−r

(1 + r)ω−1 e	r(t + 1, 0)
∫ t

0
er(σ(s), 0)K(s)∆s
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Using (2.4), (2.5), and (4.3), we compute

L {g}(z) =
−r

(1 + r)ω−1 L

{∫ ·

0
er(σ(s), 0)K(s)∆s

}
(z ⊕ r)

=
−r

(1 + r)ω−1(z ⊕ r)
L {er(σ(·), 0)K(·)} (z ⊕ r)

=
−r

(1 + r)ω−1(z ⊕ r)
L {K} (z).

Now let h(t) =

∫ t+ω−1

t
(	r)(s)e	r(t + ω − 1, σ(s))K(s)∆s. Using (2.9),

L {h}(z) =
−r

1 + r
L

{∫ ·+ω−1

·

e	r(· + ω − 1, σ(s))K(s)∆s
}

(z)

=
−r

(1 + r)ω−1 L

{
e	r(σ(·), 0)

∫ ·+ω−1

·

er(σ(s), 0)K(s)∆s
}

(z)

=
−r

(1 + r)ω−1 L

{∫ ·+ω−1

·

er(σ(s), 0)K(s)∆s
}

(z ⊕ r)

=
−r

(1 + r)ω−1

 1
z ⊕ r

ω−2∑
k=0

er(σ(k), 0)K(k) +

(
(z ⊕ r) + 1

)ω−1
− 1

z ⊕ r
L {er(σ(·), 0)K(·)} (z ⊕ r)

−
1

z ⊕ r

ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`
[
er(σ(·), 0)K(·)

]∆ j−`−1

(0)


=

−r
(1 + r)ω−1(z ⊕ r)

ω−2∑
k=0

er(k + 1, 0)K(k) +
(
(z ⊕ r) + 1

)ω−1
− 1

)
L {er(σ(·), 0)K(·)} (z ⊕ r)

−

ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`
[
er(σ(·), 0)K(·)

]∆ j−`−1

(0)

 .
One further step applying (2.8) on the second term yields

L {h}(z) =
−r

(1 + r)ω−1(z ⊕ r)

ω−2∑
k=0

er(σ(k), 0)K(k) +

((
(z ⊕ r) + 1

)ω−1
− 1

)
L {K} (z)

−

ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`
[
er(σ(·), 0)K(·)

]∆ j−`−1

(0)

 .
Therefore we have shown that the Laplace transform of (4.1) is

(z + 1)ω−1L {K}(z) −
ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`∆ j−`−1K(0) = L {β}(z)

+
r

(1 + r)ω−1(z ⊕ r)

ω−2∑
k=0

er(k + 1, 0)K(k) +
(
(z ⊕ r) + 1

)ω−1
L {K} (z)
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−

ω−1∑
j=0

(
ω − 1

j

) j−1∑
`=0

z`
[
er(σ(·), 0)K(·)

]∆ j−`−1

(0)

 .
Solving for L {K}(z) completes the proof. �

Now we consider the reverse case of Theorem 7 where K is given and r must be solved for.

Theorem 9. If K : N0 → R is known, then the function t 7→ ep(t, 0) is ω-periodic if and only if

r(t + ω − 1) = 	


−1 +

1
ep(t + ω − 1, t)

ae	r(t + ω − 1, 0) −
∫ t+ω−1

0
α(t + ω − 1, s)∆s − K(t + ω − 1)

 .

Proof. By solving (4.2) for (	r)(t + ω − 1), we obtain

(	r)(t + ω − 1) =

−1 +
1

ep(t + ω − 1, t)

ae	r(t + ω − 1, 0) −
∫ t+ω−1

0
α(t + ω − 1, s)∆s − K(t + ω − 1)

,

and so taking 	 of both sides completes the proof, since all steps are algebraically reversible. �

We provide a numerical example of Theorem 9 in Figure 2.

(a) r(t) = 3 (b) r(t) = t(2 + sin(t))

Figure 1. As an application of Theorem 7, three 4-periodic solutions of (1.1) with initial
condition y(0) = 1 are plotted for given r and randomly selected initial values for K(0), K(1),
and K(2) chosen from the interval (0, 2).

5. Conclusion

We have explored periodicity of functions related to the Gompertz difference equation (1.1). In
Theorem 5, we found a difference equation that K must satisfy in order for p to be ω-periodic whenever
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(a) K(t) = 3 (b) K(t) = t

Figure 2. As an application of Theorem 9, three 4-periodic solutions of (1.1) with initial
condition y(0) = 1 for given K and randomly selected initial values for r(0), r(1), and r(2)
chosen from the interval (0, 0.1).

r is itself ω-periodic. Theorem 6 does the same thing, but when r is constant. In Theorem 7, we
considered ω-periodicity of solutions of (1.1) and arrived at difference equations that K must solve in
order to guarantee it. In Theorem 8 we solved that difference equation in the special case of a constant
r using Laplace transform techniques. Finally, in Theorem 9, we instead found a difference equation
that r must solve if K is known.

Future work in this area includes the extension of the results toω-periodic functions on more general
time scales as studied in [19,20]. Throughout, we have showcased the basic framework for these results
on a more general time scale to aid in such a generalization. The connections between Volterra integral
equations and generalizations of (1.1) are of interest, as well as interpreting the function K as a periodic
control for population models.
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Nonlinear Dyn., 2021. https://doi.org/10.1007/s11071-021-06471-7

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8774–8785.

http://dx.doi.org/https://doi.org/10.1201/9781003175827
http://dx.doi.org/https://doi.org/10.18576/amis/140102
http://dx.doi.org/https://doi.org/10.2140/involve.2020.13.705
http://dx.doi.org/https://doi.org/10.3233/FI-2017-1494
http://dx.doi.org/https://doi.org/10.3233/FI-2017-1494
http://dx.doi.org/https://doi.org/10.3906/mat-2003-101
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0230582
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2020.108428
http://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1007178
http://dx.doi.org/https://doi.org/10.1002/mma.3806
http://dx.doi.org/https://doi.org/10.1080/09720510.2014.1001601
http://dx.doi.org/https://doi.org/10.1287/mksc.1120.0739
http://dx.doi.org/https://doi.org/10.1016/0040-1625(94)90051-5
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111699
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06471-7


8785

17. M. Bohner, G. S. Guseinov, B. Karpuz, Properties of the Laplace transform on time
scales with arbitrary graininess, Integral Transforms Spec. Funct., 22 (2011), 785–800.
https://doi.org/10.1080/10652469.2010.548335

18. M. Bohner, G. S. Guseinov, B. Karpuz, Further properties of the Laplace transform on
time scales with arbitrary graininess, Integral Transforms Spec. Funct., 24 (2013), 289–301.
https://doi.org/10.1080/10652469.2012.689300

19. M. Bohner, T. Cuchta, S. Streipert, Delay dynamic equations on isolated time scales and
the relevance of one-periodic coefficients, Math. Meth. Appl. Sci., 45 (2022), 5821–5838.
https://doi.org/10.1002/mma.8141

20. M. Bohner, J. Mesquita, S. Streipert, Periodicity on isolated time scales, Math. Nachr., 295 (2022),
259–280. https://doi.org/10.1002/mana.201900360

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8774–8785.

http://dx.doi.org/https://doi.org/10.1080/10652469.2010.548335
http://dx.doi.org/https://doi.org/10.1080/10652469.2012.689300
http://dx.doi.org/https://doi.org/10.1002/mma.8141
http://dx.doi.org/https://doi.org/10.1002/mana.201900360
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and definitions
	Periodicity of p
	Periodicity of ep
	Conclusion

