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Abstract: In this article, we study the degree-based topological indices in a random polyomino chain.
The key purpose of this manuscript is to obtain the asymptotic distribution, expected value and variance
for the degree-based topological indices in a random polyomino chain by using a martingale approach.
Consequently, we compute the degree-based topological indices in a polyomino chain, hence some
known results from the existing literature about polyomino chains are obtained as corollaries. Also,
in order to apply the results, we obtain the expected value of several degree-based topological indices
such as Sombor, Forgotten, Zagreb, atom-bond-connectivity, Randić and geometric-arithmetic index
of a random polyomino chain.
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1. Introduction

A numerical quantity T I associated with a graph G satisfying the equation T I(G) = T I(G
′

) for
every graph G

′

isomorphic to G is called a graph invariant. In chemical graph theory, graph invariants
that are applied in chemical investigations are known as topological indices. The goal of defining a
topological index is to associate each chemical structure with a numerical value and thus investigate
its properties. In fact, topological indices have found applications in Chemistry [1, 2], Computational
Linguistics [3], Ecology [4]. Nowadays, a vast number of topological indices exist in the literature [5].
In this paper, we pay our attention to only degree-based topological indices; whose general form is:

T I(G) =
∑

vu∈E(G)

f (dv, du), (1.1)

where f is some real valued function with the property f (x, y) = f (y, x) for x, y ∈ {1, 2 . . . } and
dv is the degree of a node v ∈ V(G). In the development of applications, degree-based topological
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indices have become a powerful tool, for instance, Forgotten index ( f (x, y) = x2 + y2) reflects the
structure-dependency of total π-electron energy Eπ and measures the physical-chemical properties of
molecular structures [6,7], the GA index ( f (x, y) = 2

√
xy

x+y ) can be used as predictive tool in QSPR/QSAR

researches [8] and the atom-bond connectivity index ( f (x, y) =

√
x+y−2

xy ) has proven to be a valuable
predictive index in study of heat of formation in alkanes [9].

On the other hand, a polyomino system is a finite 2-connected plane graph such that each interior
face (say a cell) is surrounded by a regular square of length one. In a polyomino system, two squares
are said to be adjacent if they share a side. A polyomino chain is a polyomino system in which the
joining of the centres of its adjacent cells forms a path c1c2 . . . cn, where ci is the centre of the ith cell.
Hence, in a polyomino chain every square is adjacent with at most two other squares. If a square has
only one adjacent square, it is called terminal, if it has two adjacent squares having no vertex of degree
2, it is called medial, and if it has two adjacent squares such that it has a vertex of degree 2, it is called
kink. A polyomino chain without kinks is called linear chain Lin. A polyomino chain consisting of
only kinks and terminal squares is known as zigzag chain Zn (see Figure 1). A maximal linear chain
(containing the terminal squares and kinks at its end) in the polyomino chains is called a segment of
the polyomino chain.

Figure 1. The linear chain and the zigzag chain.

The name polyomino was introduced in 1953 in analogy to dominoes by Solomon W. Golomb [10]
and since then polyomino systems have been widely studied, as a matter of fact, in organic chemistry,
especially in polycyclic aromatic compounds. At the present time, recent works on the polyomino
chains include perfect matchings [11, 12], finding formulas for calculating several topological
indices [13–16] and extremal problems [17–22]. Specifically, random polyomino chains have attracted
substantial attention from researchers in recent years [23–27].

A random polyomino chain (RPCn = RPC(n, p1, p2)) could be constructed by the following way:
for n = 1 and n = 2, RPCn are shown in Figure 2. For n ≥ 3, a new square can be attached in two
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ways, which results in RPC1
n and RPC2

n with probability p1 and p2 respectively, where 0 < p1, p2 < 1
and p1 + p2 = 1, see Figure 3. For a random polyomino chain at time n, the value of a topological
index is a random variable. Considering the arguments put forward in the previous paragraphs and by
using a martingale approach, in this paper, we establish an asymptotic distribution for degree-based
topological indices in a random polyomino chain. Moreover, their explicit analytical expressions of
the expected value and variance are obtained. As a result, we show a general expression for calculating
the degree-based topological indices for a polyomino chain. Finally, we compute the expected value
of several degree-based topological indices, such as, Sombor, Forgotten, Zagreb index of a random
polyomino chain.

Figure 2. The graphs of RPC1 and RPC2.

Figure 3. The two link ways for RPCn(n ≥ 3).

2. Random polyomino chain

In this section, we state and prove our main results. First, let Ln denote the link selected at time
n ≥ 3, i.e., Ln denotes a random variable with range {1, 2} where pi = P(Ln = i). For i, j ∈ {1, 2}, T In =

T I(RPCn), RPCi
n denotes a random polyomino chain at time n ≥ 3 such that Ln = i, T In,i = T I(RPCi

n),
RPC j,i

n denotes a random polyomino chain at time n ≥ 4 such that Ln−1 = j and Ln = i, T In, j,i =

T I(RPC j,i
n ), α j,i = T I4, j,i − T I3, j, αi = T I3,i − T I2, α =

∑2
j=1

∑2
i=1 α j,i p j pi and β =

∑2
j=1

∑2
i=1 α

2
j,i p j pi.

Remark 1. Note that, by definition:

1. α1,1 = α1 = 3 f (3, 3),
2. α1,2 = 3 f (3, 4) + f (2, 4) + f (2, 3) − 2 f (3, 3),
3. α2,1 = f (3, 4) − f (2, 4) + f (2, 3) + 2 f (3, 3),
4. α2,2 = f (4, 4) + 2 f (2, 4),
5. α2 = 2 f (3, 4) + 2 f (2, 4) − f (3, 3).
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Then, α2,1 − α1,2 = α1,1 − α2. In particular, when f (x, y) = xa + ya with a ∈ R and x, y ∈ {1, 2, . . . } the
following conditions are satisfied:

1. α1,1 = α2,1,

2. α2,2 = α1,2 = α2.

Besides, in this case, T In =
∑

v∈V(RPCn)

(dv)a+1, due to the following identity

∑
vu∈E(G)

(dv)a + (du)a =
∑

v∈V(G)

(dv)a+1,

the validity of the previous expression can be consulted, for instance in [28].

Theorem 1. Let RPCn = RPC (n, p1, p2) be a random polyomino chain, then for n ≥ 3

E(T In) = E(T I3) + α(n − 3),

V(T In) = V(T I3) + (β − α2)(n − 3),

where

E(T I3) = T I2 +

2∑
i=1

αi pi,

V(T I3) =

2∑
i=1

α2
i pi −

 2∑
i=1

αi pi

2

.

Proof. For n ≥ 4, it follows from the definition of a random polyomino chain and by the definition of
T I(G) in Equation (1.1) the following almost-sure recursive relation of T In conditional on Fn−1 and the
random vector (Ln−1, Ln)

T In,Ln−1,Ln − T In−1 = T I4,Ln−1,Ln − T I3,Ln−1 ,

where Fn−1 denotes the σ-field generated by the history of the growth of the random polyomino chain
in the first n − 1 stages. Now for n ≥ 4, we take the expectation with respect to (Ln−1, Ln) to get

E(T In | Fn−1) =

2∑
j=1

2∑
i=1

(T In−1 + α j,i)p j pi

= T In−1 +

2∑
j=1

2∑
i=1

α j,i p j pi,
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where, α j,i = T I4, j,i − T I3, j. Then, taking expectation, we obtain a recurrence relationship for E(T In)
with n ≥ 4,

E(T In) = E(T In−1) +

2∑
j=1

2∑
i=1

α j,i p j pi. (2.1)

We solve Equation (2.1) with the initial value E(T I3) and we obtain the result stated in the theorem,

E(T In) = E(T I3) + α(n − 3),

where α =

2∑
j=1

2∑
i=1

α j,i p j pi. For n ≥ 4, the expression for E(T I2
n) follows in a similar manner,

E(T I2
n | Fn−1) =

2∑
j=1

2∑
i=1

(T In−1 + α j,i)2 p j pi

=

2∑
j=1

2∑
i=1

T I2
n−1 p j pi + 2T In−1α j,i p j pi + α2

j,i p j pi

= T I2
n−1 + 2αT In−1 + β,

where β =

2∑
j=1

2∑
i=1

α2
j,i p j pi, thus

E(T I2
n) = E(T I2

n−1) + 2αE(T In−1) + β

= E(T I2
n−1) + 2αE(T I3) + 2α2(n − 4) + β,

then iterating, for n ≥ 3 it is obtained that

E(T I2
n) = E(T I2

3) + (2αE(T I3) + β)(n − 3) + α2(n − 3)(n − 4).

For n ≥ 3, the variance of T In is obtained immediately by taking the difference between E(T I2
n) and

E(T In)2,

V(T In) = V(T I3) + β(n − 3) +
(
(n − 3)(n − 4) − (n − 3)2

)
α2

= V(T I3) + (β − α2)(n − 3).

Finally, note that

E(T I3) = E(E(T I3 | L3))

=

2∑
i=1

(T I2 + αi)pi

= T I2 +

2∑
i=1

αi pi,

where αi = T I3,i − T I2. In the same manner, we have
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V(T I3) =

2∑
i=1

α2
i pi −

 2∑
i=1

αi pi

2

,

proving the theorem.

Observe that the following statements are equivalent

1. β − α2 = 0.
2. α1,1 = α1,2 = α2,2 = α2,1.
3. For n ≥ 2, T In = T I2 + α(n − 2) almost surely.
4. f (3, 4) = (2 f (4, 4) + f (2, 4))/3, f (3, 3) = ( f (4, 4) + 2 f (2, 4))/3 and f (2, 3) = (− f (4, 4) +

4 f (2, 4))/3.

Consequently, when β − α2 = 0, T In
n converges almost surely to α as n→ ∞. It is worth noting that

by using the equivalences stated above we can conclude that, T In is a deterministic sequence almost
surely if and only if α1,1 = α1,2 = α2,2 = α2,1. Hence, by Remark 1 if f (x, y) = xa + ya with a ∈ R
we have that T In is a deterministic sequence almost surely if and only if 2 · 3a+1 = 4a+1 + 2a+1, a ∈ R.
The last equation has two unique solutions a = 0,−1, since for a ∈ (−1, 0), xa+1 is a strictly concave
function on R+ hence ( 4+2

2 )a+1 > 4a+1+2a+1

2 and for a > 0 or a < −1, xa+1 is a strictly convex function on
R+ hence ( 4+2

2 )a+1 < 4a+1+2a+1

2 . Therefore, T In is a deterministic sequence almost surely if and only if
a ∈ {0,−1}. This fact makes sense since∑

vu∈E(RPCn)

(dv)0 + (du)0 =
∑

v∈V(RPCn)

(dv)1 = 2|E(RPCn)| = 2 + 6n,

and ∑
vu∈E(RPCn)

(dv)−1 + (du)−1 =
∑

v∈V(RPCn)

(dv)0 = |V(RPCn)| = 2 + 2n.

Now, we exploit a martingale formulation to investigate the asymptotic behavior of T In when β −
α2 > 0.

Proposition 2. For n ≥ 3, {Mn = T In − α(n − 3)}n is a martingale with respect to Fn.

Proof. Observe that E(|Mn|) < +∞. For n ≥ 4, by Theorem 1,

E (Mn | Fn−1) = E (T In − α(n − 3) | Fn−1)

= E (T In | Fn−1) − α(n − 3)
= T In−1 + α − α(n − 3)
= T In−1 − α(n − 4)
= Mn−1.

The proof is completed.
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We use the notation
D
−→ to denote convergence in distribution and

P
−→ to denote convergence in

probability. Here, N
(
µ, σ2

)
denotes a random variable with normal distribution with mean µ and

variance σ2.

Theorem 3. As n→ ∞,

T In − (n − 3)α
√

n
D
−→ N(0, β − α2).

Proof. For k ≥ 4 and j, i ∈ {1, 2}, we have

|∇Mk| = |∇T Ik − α| ≤ 2 max
( j,i)
{|α j,i|},

where ∇Mk = Mk − Mk−1 and ∇T Ik = T Ik − T Ik−1. That is, given ε > 0, there exists an N0(ε) > 0 such
that, the sets

{
|∇Mk| > ε

√
n
}

are empty for all n > N0(ε). Then, we conclude that

Un :=
1
n

n∑
k=4

E
(
(∇Mk)2 I{|∇Mk |>ε

√
n} | Fk−1

)
,

converges to 0 almost surely, hence, Un
P
−→ 0. Then, the Lindeberg’s condition is verified. Next, the

conditional variance condition is given by

Vn :=
1
n

n∑
k=4

E
(
(∇Mk)2

| Fk−1

) P
−→ β − α2.

Since,

1
n

n∑
k=4

E
(
(∇Mk)2

| Fk−1

)
=

1
n

n∑
k=4

E
(
(∇T Ik − α)2 | Fk−1

)
=

1
n

n∑
k=4

2∑
j=1

2∑
i=1

(α j,i − α)2 p j pi

=
n − 3

n

2∑
j=1

2∑
i=1

(α j,i − α)2 p j pi.

Therefore, by the Martingale Central Limit Theorem [29], we thus obtain the stated result.

Finally, in order to apply the results obtained in this section, we compute the expected value of
several important topological indices for a random polyomino chain (see Table 1).
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Table 1. The information of interest associated with each topological index: E(T In) = (Ap2
1

+ Bp1 + C)n − 3Ap2
1 + (D − 3B)p1 + E.

TI A B C D E
first Zagreb index 0 -2 20 -2 -6

second Zagreb index -1 -4 32 -4 -24
first hyper-Zagreb index -2 -26 136 -26 -106

second hyper-Zagreb index -21 -120 384 -92 -560
modified first Zagreb index 0 -13/144 5/16 -13/144 43/72

Albertson index -2 -2 4 -6 -2
extended index 1/6 -2/3 7/2 -7/12 5/12

sigma index 2 -10 8 -10 -10
Sombor index 395/3349 -225/113 2599/178 -2102/1065 -2108/441
Randić index -34/2413 184/3229 1138/1189 224/4583 1338/1279

reciprocal Randić index -255/2588 -426/763 985/102 -509/870 -665/257
sum-connectivity index -33/2872 449/6784 461/394 382/6307 1092/1283

reciprocal sum-connectivity index 302/14565 -731/1829 5216/675 -42/107 -59/1243
harmonic index -11/420 23/210 11/12 2/21 457/420

atom-bond-connectivity (ABC) index 183/6023 -432/7583 991/489 -130/3373 691/796
augmented Zagreb index -1636/757 2399/1751 944/27 515/269 -1814/137

forgotten index 0 -18 72 -18 -58
geometric-arithmetic index -307/9318 353/2396 883/306 380/2817 637/565
arithmetic-geometric index 413/10692 -365/2282 3499/1121 -976/6871 969/1126

inverse sum indeg index -19/210 -8/105 14/3 -2/21 -116/105

3. Polyomino chain

In this section, the goal is to obtain explicit analytical expressions to calculate T I(PCn) where PCn

is a polyomino chain with n squares. Let m ≥ 1 and i ∈ {1, 2, . . . ,m} note that a polyomino chain
PCn consists of a sequence of segments s1, s2, . . . , sm (see Figure 4) with lengths l (si) = li such that∑m

i=1 li = n + m − 1, where li is calculated by the number of squares in si.

Theorem 4. Let PCn be a polyomino chain having n ≥ 3 squares and m ≥ 1 segment(s) si with
i = 1, 2, . . . ,m. Then

T I(PCn) = 3 f (3, 3)n + (4 f (3, 4) + 2 f (2, 3) − 6 f (3, 3))m
+ ( f (2, 4) − f (2, 3) + f (3, 3) − f (3, 4))(I1 + Im)
+ ( f (4, 4) + 2 f (2, 4) − 4 f (3, 4) − 2 f (2, 3) + 3 f (3, 3))γ
+ 2 f (2, 2) + 2 f (2, 3) + f (3, 3) − 4 f (3, 4),

where, Ii =


1 i f li = 2

0 i f li , 2
and γ =

m−1∑
i=2

Ii.

Proof. Note that PCn is a realization of RPCn, then we know the value of Lk for k = 3, 4, . . . , n.
Therefore, by using the ideas presented in Section 2 we have,
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Figure 4. Segments of a polyomino chain.

T I(PCn) = T I2 + α2I1 + α1,1(1 − I1) +

n∑
k=4

αLk−1,Lk

= T I2 + (α2 − α1,1)I1 + α1,1 +

2∑
j=1

2∑
i=1

X j,iα j,i,

where X j,i = |{k ∈ {4, 5, . . . , n} | Lk−1 = j and Lk = i in PCn}| and I1 = I{l1=2}. Now, if at time k (3 ≤ k ≤
n), Lk = 2 then the last segment in PCk−1 is finished (so, a new segment is initiated in PCk) and if at time
k, Lk = 1 then a square is added to the last segment in PCk−1. Hence, X2 = |{k ∈ {3, 4, . . . , n} | Lk = 2 in
PCn}| = m − 1 and X1 = |{k ∈ {3, 4, . . . , n} | Lk = 1 in PCn}| = n − 2 − (m − 1) = n − m − 1. Moreover,
X1,2 = |{i ∈ {1, 2, . . . ,m − 1} | li , 2 in PCn}| and X2,1 = |{i ∈ {2, 3, . . . ,m} | li , 2 in PCn}|. We may
write this as: X1,2 = m − γ − 1 − I1 and X2,1 = m − γ − 1 − Im, where,

Ii =


1 i f li = 2

0 i f li , 2
and γ =

m−1∑
i=2

Ii.

Consequently, X1,1 = n − 2m + γ − 1 + I1 + Im and X2,2 = γ, because of the following identities

X1,1 + X2,1 = X1 − 1 + I1,

X2,2 + X1,2 = X2 − I1.

Finally, we arrive at the desired result by replacing the values of X j,i, α j,i and α2.
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Remark 2. 1. By using that
m∑

i=1

li = n + m − 1, it is verified that, X1,1 =
∑
li,2

(li − 3).

2. On the other hand, by definition if f (x, y) = xa + ya with a ∈ R then the coefficients of γ and
I1 + Im in Theorem 4 are zero and the coefficient of m is zero, i.e., the general expression showed
in Theorem 4 is independent of m if and only if 2 · 3a+1 = 4a+1 + 2a+1 if and only if a ∈ {0,−1}.

3. Finally, by the way, in [30] the authors established a general expression for calculating the bond
incident degree (BID) indices of a polyomino chain; which follows from Theorem 4. BID indices
form a subclass of the class all degree-based topological indices.

By definition if PCn = Lin, we deduce that m = 1 and l1 = n and if PCn = Zn, then m = n− 1 and li = 2
for i = 1, 2, . . . ,m. Therefore, the following corollary may be obtained directly by Theorem 4.

Corollary 1. Let Lin and Zn be linear and zigzag chains respectively with n ≥ 3 squares. Then

T I (Lin) = 3 f (3, 3)n + 4 f (2, 3) + 2 f (2, 2) − 5 f (3, 3),

T I (Zn) = (2 f (2, 4) + f (4, 4))n + 4 f (2, 3) − 3 f (4, 4) + 2 f (3, 4) − 4 f (2, 4) + 2 f (2, 2).

It is worth noting that in 2020, Buragohain et al. [31] introduced a novel generalized topological
index for some chemical structures defined as

IS I(α,β)(G) =
∑

uv∈E(G)

(d(u)d(v))α(d(u) + d(v))β.

In [13] the authors studied the generalized IS I(α,β)-index and (α, β)-Zagreb index of a linear chain. By
using Corollary 1 the results showed in [13] can be obtained. In addition, taking f (x, y) = x2 + y2

in Equation (1.1), we obtain the Forgotten index. Recently, in [15] the computation of the Forgotten
index in a polyomino chain was given as follows:

Corollary 2. Let n ≥ 2 and PCn be a polyomino chain with m ≥ 1 segment(s). Then F (PCn) =

54n + 18m − 40.

Note that, the general expression obtained in Corollary 2 is independent of γ, I1 and Im; which
makes sense because of Remark 2. In a similar manner, we can obtain the above result from Theorem
4. Finally, in the following results by using Theorem 4 we will compute T I(PCn) of several kinds of
polyomino chains.

Corollary 3. For the polyomino chain with n ≥ 3 squares and 2 segments s1 and s2 satisfy l1 = 2 and
l2 = n − 1, PC1

n, we have the following:

T I(PC1
3) = 2 f (3, 4) + 4 f (2, 3) + 2 f (2, 4) + 2 f (2, 2),

and for n ≥ 4

T I(PC1
n) = 3 f (3, 3)n + 3 f (3, 4) + 5 f (2, 3) − 10 f (3, 3) + f (2, 4) + 2 f (2, 2).

Corollary 4. For the polyomino chain with n ≥ 5 squares and m ≥ 3 segments s1, s2, . . . , sm satisfy
l1 = lm = 2 and l2, l3, . . . , lm−1 ≥ 3, PC2

n, we have the following:

T I(PC2
n) = 3 f (3, 3)n + (4 f (3, 4) + 2 f (2, 3) − 6 f (3, 3))m + 3 f (3, 3) − 6 f (3, 4) + 2 f (2, 4) + 2 f (2, 2).
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Corollary 5. For the polyomino chain with n ≥ 6 squares and m ≥ 3 segments s1, s2, . . . , sm satisfy
l1 = 2 and l2, l3, . . . , lm ≥ 3 or lm = 2 and l1, l2, . . . , lm−1 ≥ 3, PC3

n, we have the following:

T I(PC3
n) = 3 f (3, 3)n+(4 f (3, 4)+2 f (2, 3)−6 f (3, 3))m+2 f (2, 2)+ f (2, 3)+2 f (3, 3)−5 f (3, 4)+ f (2, 4).

Corollary 6. For the polyomino chain with n ≥ 7 squares and m ≥ 3 segments s1, s2, . . . , sm satisfy
l1, l2, . . . , lm ≥ 3, PC4

n, we have the following:

T I(PC4
n) = 3 f (3, 3)n + (4 f (3, 4) + 2 f (2, 3) − 6 f (3, 3))m + 2 f (2, 2) + 2 f (2, 3) + f (3, 3) − 4 f (3, 4).

Actually, the authors in [32–34] calculated several topological indices, such as, redefined Zagreb
index, harmonic index and inverse sum index for Ln, Zn and PCi

n with i = 1, 2; which are deduced from
Corollaries 1, 3 and 4. Besides, in [7, 35, 36] the authors computed Forgotten, Randić and generalized
Zagreb index for Ln, Zn and PCi

n with i = 1, 2, 3, 4; hence we can deduce the results above mentioned
by using Corollaries 1, 3, 4, 5 and 6. In fact the results showed in [7] can be verified directly by
Corollary 2.

On the other hand, here a polyomino chain of dimension n ≥ 1 with k = k1 + k2 + k3 where k1 is the
number of kinks, k2 is the number of medials and k3 is the number of terminals in a unit of polyomino
chain will be denoted by PCn,k. In Figure 5, a general representation of a polyomino chain PCn,k is
depicted. Let k ≥ 3, by definition of PCn,k, we have: m = 2n, γ = n − 1, Im = 1 and I1 = I{k=3}. Hence,
in the following corollary, we will compute T I(PCn,k) for k ≥ 3 by using Theorem 4.

Figure 5. General representation of PCn,k.

Remark 3. Note that, by definition PCn,1 = Lin and PCn,2 = Z2n.

Corollary 7. Let k ≥ 3, n ≥ 1, then we have

T I(PCn,k) = (3(k − 3) f (3, 3) + 4 f (3, 4) + 2 f (2, 3) + f (4, 4) + 2 f (2, 4))n
+ ( f (2, 4) − f (2, 3) + f (3, 3) − f (3, 4))I{k=3}

+ 2 f (2, 2) + 3 f (2, 3) − f (3, 3) − f (3, 4) − f (2, 4) − f (4, 4).

In fact, in [37] Hayat et al. computed the exact analytical expressions of the ABC, GA, ABC4 and
GA5 index for PCn,k with k = 3, 4, 5. These results can be obtained as a consequence of Corollary 7.
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4. Conclusion

In this paper, we proposed a martingale approach to the study of topological indices in random
polyomino chains. The expected value and variance have been determined and we formulated a mar-
tingale to characterize the asymptotic behavior of the topological indices. Moreover, we considered
some particular topological indices, such as, the first Zagreb, Sombor, harmonic, geometric-arithmetic
and second Zagreb index for a random polyomino chain. In fact, from the derived results, several
known results about polyomino chains were obtained as corollaries. We believe the results obtained in
this paper can provide theoretical support for the chemical research. By the way, the extremal random
polyomino chains with respect to several well-known degree-based topological indices have been dis-
cussed in our next paper. Finally, it would be interesting to extend the work of this paper to k-polygonal
chains. We expect to develop it in the future.
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28. T. Došlić, T. Réti, D. Vukičević, On the vertex degree indices of connected graphs, Chem. Phys.
Lett., 512 (2011), 283–286. https://doi.org/10.1016/j.cplett.2011.07.040

29. P. Hall, C. C. Heyde, Martingale limit theory and its Application, Academic press, New York,
2014.

30. A. Ali, Z. Raza, A. A. Bhatti, Bond incident degree (BID) indices of polyomino chains: A unified
approach, Appl. Math. Comput., 287 (2016), 28–37. https://doi.org/10.1016/j.amc.2016.04.012

31. J. Buragohain, B. Deka, A. Bharali, A generalized ISI index of some chemical structures, J. Mol.
Struct., 1208 (2020), 28–37. https://doi.org/10.1016/j.molstruc.2020.127843

32. Y. C. Kwun, A. Farooq, W. Nazeer, Z. Zahid, S. Noreen, S. M. Kang, Computations of the M-
polynomials and degree-based topological indices for dendrimers and Polyomino Chains, Int. J.
Anal. Chem., 2018 (2018). https://doi.org/10.1155/2018/1709073

33. A. Farooq, M. Habib, A. Mahboob, W. Nazeer, S. M. Kang, Zagreb polynomials and rede-
fined Zagreb indices of dendrimers and Polyomino Chains, Open Chem., 17 (2019), 1374–1381.
https://doi.org/10.1515/chem-2019-0144

34. J. Yang, F. Xia, S. Chen, On sum-connectivity index of polyomino chains, Appl. Math. Sci, 5
(2011), 267–271.
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