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Abstract: Microarray and RNA-sequencing (RNA-seq) techniques each produce gene expression data
that can be expressed as a matrix that often contains missing values. Thus, a process of missing-value
imputation that uses coherence information of the dataset is necessary. Existing imputation methods,
such as iterative bicluster-based least squares (bi-iLS), use biclustering to estimate the missing values
because genes are only similar under correlative experimental conditions. Also, they use the row
average to obtain a temporary complete matrix, but the use of the row average is considered to be a
flaw. The row average cannot reflect the real structure of the dataset because the row average only uses
the information of an individual row. Therefore, we propose the use of Bayesian principal component
analysis (BPCA) to obtain the temporary complete matrix instead of using the row average in bi-
iLS. This alteration produces new missing values imputation method called iterative bicluster-based
Bayesian principal component analysis and least squares (bi-BPCA-iLS). Several experiments have
been conducted on two-dimension independent gene expression datasets, which are microarray (e.g.,
cell-cycle expression dataset of yeast saccharomyces cerevisiae) and RNA-seq (gene expression data
from schizosaccharomyces pombe) datasets. In the case of the microarray dataset, our proposed bi-
BPCA-iLS method showed a significant overall improvement in the normalized root mean square error
(NRMSE) values of 10.6% from the local least squares (LLS) and 0.6% from the bi-iLS. In the case
of the RNA-seq dataset, our proposed bi-BPCA-iLS method showed an overall improvement in the
NRMSE values of 8.2% from the LLS and 3.1% from the bi-iLS. The additional computational time
of bi-BPCA-iLS is not significant compared to bi-iLS.
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1. Introduction

Molecular biology research on the molecular basis of biological activity requires data. Biologists
acquire these data by using approaches and technologies such as microarray and RNA-sequencing
(RNA-seq) techniques. Microarray technology is used to detect the sequences of nucleic acids and si-
multaneously thousands of gene transcripts from samples [1]. RNA-seq is a sequencing technique that
can show the existence and amount of RNA in a biological sample by using next generation sequenc-
ing. Both techniques produce a high-dimensioanal gene expression data matrix with rows that indicate
genes, columns that indicate experimental conditions, and cells that indicate the expression of that gene
under those conditions. Gene expression data are very important for acquiring knowledge about cells,
but there are frequently missing values. These missing values are often caused by experimental errors
such as hybridization failures in microarray datasets and missing read counts in RNA-seq datasets.
However, further analysis of these datasets requires a complete data matrix. Therefore, missing-value
imputation approaches that use coherence the data are needed.

Two well-known missing-value imputation methods are LLS and BPCA. BPCA estimates missing
values in the target gene (gene that contains missing values) by using a linear combination of principal
components with parameters estimated using a Bayesian method. LLS uses a linear combination of the
target gene and its similar genes to estimate the missing values in the target gene, and it uses clustering
to measure gene similarities. In reality, genes are similar only under certain experimental conditions, so
this similarity should only be measured by considering the related experimental conditions instead of
all of the conditions. This is why clustering should be performed in rows and columns simultaneously,
which is called biclustering [2]. Biclustering aims to identify local patterns in genes and conditions
at the same time. The output of the biclutering technique is biclusters [3]. The use of this technique
in LLS gives a better estimation of the missing values. Biclustering collates genes and conditions
based on a weighted distance and correlation, respectively. Then, a regression model is used for least
square-based missing-value estimation. An iterative framework is applied to improve the selection of
coherent genes and correlated conditions. This method is called iterative bicluster-based least squares
or bi-iLS [4].

Bi-iLS uses the row average to fill in all of the missing values in the target gene to obtain a temporary
complete matrix. However, the row average is viewed as being flawed. The row average cannot reflect
the real structure of the dataset because it only uses the information from an individual row. Thus,
BPCA is considered better than the row average due to it reflecting the global covariance structure in
all genes [5]. In this study, BPCA was used to obtain the temporary complete matrix in bi-iLS instead
of the row average. This modification resulted in a new imputation method called bi-BPCA-iLS.

In this paper, the framework and implementation of our proposed bi-BPCA-iLS algorithm for
missing-value imputation has been presented. The proposed missing-value imputation method will
be implemented on a microarray dataset of Saccharomyces cerevisiae and an RNA-seq dataset of
Schizosaccharomyces pombe.

2. Missing values

In theory, every data point has a probability of being missing. The process of setting this probability
is called the missing-data mechanism or response mechanism, while the models of these processes are
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called missing-data or response models [6–9]. Missing values can be categorized into three groups [10].
If the probability of a data point becoming missing is the same for all, then the missing values are
called missing completely at random (MCAR). If the probability of a data point becoming missing is
the same only for certain groups based on observational data, then the missing values are called missing
at random (MAR). If missing values are neither MCAR nor MAR, then they are called missing not at
random (MNAR) or not missing at random (NMAR). In other words, missing values in NMAR are
independent of unobserved data [11].

3. Clustering and biclustering

Clustering is a technique that groups data points into several groups or clusters. In gene expression
data, the purpose of clustering is to group genes into clusters where each cluster consists of genes that
are similar to each other and dissimilar to genes from other clusters [12]. Biclustering in gene expres-
sion data is the simultaneous clustering of rows and columns [13]. The aim of biclustering is to find
groups of similar genes based only on correlated experimental conditions. The output of biclustering
is a bicluster. Genes are similar under certain experimental conditions, so biclustering is preferable
to clustering. A comparison of biclustering and clustering in two-dimensional gene expression data
matrices can be seen in Figure 1 [14]. Figure 1(a) indicates a clustering technique of genes based on
all conditions, while Figure 1(b) shows a biclustering technique of genes based only on correlative
experimental conditions.

Figure 1. Comparisons of biclustering and clustering. Source: Tanay et al. [15].

4. Imputation method

4.1. LLS

LLS is a missing-value imputation method that identifies tne coherent information in gene expres-
sion data. There are two steps to the LLS method. The first step is to select k similar genes using
Euclidean distance. The second step is to estimate the missing values [16, 17]. This neighbor-based
imputation method suits datasets that have a structure with dominant local similarities and high com-
plexity [18].

Let a matrix E be the expression matrix consisting of m genes and n conditions. Assuming that the

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8741–8759.



8744

gene g1 has k similar genes (gs1, gs2, . . . , gsk) given the Euclidean distance and p missing values in the
first p conditions, then the target gene y can be defined.

gs

gs1

gs2

.

.

.

gsk


=

(
α w
B A

)
=



α1 α2 ... αp w1 w2 ... wn−p

B1,1 B1,2 ... B1,p A1,1 A1,2 ... A1,n−p

B2,1 B2,2 ... B2,p A2,1 A2,2 ... A2,n−p

. . . . . . . .

. . . . . . . .

. . . . . . . .

Bk1 Bk2 ... Bkp Ak1 Ak2 ... Ak,n−p


,

where α is a vector of 1× p consisting of p missing values, w is a vector of 1× (n− p) consisting of the
non-missing values in the target gene and the matrices B and A are the k similar genes’ corresponding
columns with α and w, respectively. Vector X can be defined as the solution to the least squares problem
with AT and w.

||AT x − wT ||.

The solution of this least squares problem is

x̂ = (AAT )−1AwT = (AT )+wT ,

where A+ is the pseudoinverse of the matrix A. Hence, the missing values in the target gene g1 can be
estimated using

â = BT x̂ = BT (AT )+w.

To choose the proper value of k, LLS uses a heuristic algorithm by applying artificial missing values
to genes. These artificial missing values will be estimated using different values of k, then the value of
k that produces the lowest estimation error will be chosen as the proper value of k [16].

4.2. bi-iLS

Bi-iLS is updated from the imputation method called LLS [16] in two aspects, i.e., the use of
biclustering and an iterative framework. Bi-iLS can recognize gene similarities only under certain
correlative conditions (biclustering), while LLS takes account all of the conditions in a data matrix.
This makes bi-iLS preferable to LLS for gene expression data [4]. This imputation method suits data
that have a dominant local similarity structure [18]. There are two parameters that need to be defined
in the early stage of this process, namely k (for k similar genes) and T0.

Let the matrix E be the expression matrix consisting of m genes and n conditions. A gene that has p
missing values is called the target gene. Assuming that all p missing values are in the first p conditions
without a loss of generality, the target gene is defined as

gT
t =

(
α w

)
,

where α is a vector of 1 × p comprising p missing values and w is a vector of 1 × (n − p) consisting
of the non-missing values in the target gene. Similar to LLS, the first step of bi-iLS is to select k
similar genes of target genes by using the Euclidean distance. The measurement of Euclidean distance
requires a complete matrix, so bi-iLS uses the row average to fill n all of the missing values and obtain
the temporary complete matrix. After selecting k similar genes, they are defined as
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gT

s1
...

gT
sk

 = (
B A

)
,

where g(s1)T denotes k similar genes, while the matrices B and A denote, respectively, the expression
values for the first p conditions and remaining (n − p) conditions of the selected similar genes. Every
condition has a different correlation with the other conditions. So, to account for the correlation or
weight of each condition in the identification of the missing values, matrix R is defined as

R = BT A.

Matrix R, with the size of p × (n − p), represents the weighted correlations between other conditions
and the condition where the missing values in the target gene are found. The ( j, v)th element of R is
denoted by r j(v). The larger the value of r j(v), the larger are the weights and stronger are the correla-
tions between the conditions with the missing values. Then, using R, k similar genes are reselected.
Reselection of the k similar genes uses the weighted Euclidean distance of the target gene gt and other
genes gs based on the location of the jth missing values. The equation is

d j(gt, gs) =
√∑n

v=p+1 r j(v−p)2[gt(v)−gs(v)]2

√∑n
v=p+1 r j(v)2

,

where g(v) denotes the vth element of gt or gs. Then, upon estimating the jth missing values for the
target gene, conditions that are uncorrelated are removed from the least squares framework. Let

r j,max = maxv∈1,...,n−p |r j(v)|;

then the conditions are said to be related if

|r j(v)| ≥ T0 · r j,max.

where T0 is a pre-defined parameter using the same heuristic algorithm to find the proper value of k.
The removal of uncorrelated conditions redefines matrices A and B and w. Hence, we have

gT
t =

(
α j w j

)
,

where α j denotes the jth missing values and w j denotes the non-missing values of correlated conditions.
Also, we have 

gT
s1
...

gT
sk

 = (
B j A j

)
,

where B j represents the jth columns of the data and A j denotes a matrix consisting of the correlated
columns of the k similar genes. Similar to LLS, a regression model α j = BT

j x j is needed to estimate the
jth missing value where x j contains the regression coefficient for k similar genes. x j can be obtained
by minimizing the least squares error, as follows:

||AT x − wT ||.

Thus, the jth missing value in the target gene can be estimated by using
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α j = BT
j x̂ j = BT

j (AT )+j wT
j ,

where (AT )+j is the pseudoinverse of AT
j .

An iterative framework is applied to improve the selection of similar genes. A complete matrix
output from the ith iteration will be the temporary complete matrix in the (i + 1)th iteration. This
iteration process will be repeated until it reaches the maximum iteration or a specific criterion. The
complete framework of bi-iLS can be seen in Figure 2.

Figure 2. Complete framework of bi-iLS algorithm.

4.3. BPCA

There are three main steps of the BPCA based imputation method: principal component (PC) re-
gression, Bayesian estimation and application of an expectation-maximization (EM) repetitive algo-
rithm [19]. In PC regression, Principal Component Analysis (PCA) represents the D-dimensional
vector y as a linear combination of K principal axis vectors wl (1 ≤ l ≤ K and K < D), as follows:

y =
∑K

l=1 xlwl + ϵ,

where D is the quantity of columns in data, xl is a factor score and ∈ is the residual error. Assuming
that there are no missing values, PCA can find wl =

√
λlul where λl and ul respectively denote the

eigenvalues and eigenvectors of the corresponding covariance matrix of y. If missing values are present,
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then the principal axis vectors are split into two parts, i.e., W = (Wobs,Wmiss) where Wobs and Wmiss

denote a matrix that has column vectors wobs
1 , . . . ,w

obs
K and wmiss

1 , . . . ,wmiss
K , respectively. Factor scores

x = (x1, . . . , xK) are obtained by minimizing the residual error of the observed part as follows:

||yobs −Wobsx||2.

This is a simple least squares problem that can be solved easily. Hence, the missing part of y can be
estimated as

ymiss = Wmissx.

However, these parameters are still unknown. BPCA uses a probabilistic PCA model under the
assumption that the residual error ∈ and xl (1 ≤ l ≤ K) obey normal distributions. The parameters W, µ
and τ form a parameter set θ ≡ {W, µ, τ}. BPCA uses Bayesian estimation to estimate these parameters.
It is used here because it can locate the best dimensions for latent space. This estimation is done by
applying the EM algorithm until convergence is reached. This imputation method is appropriate for
data with lower complexity structures [20].

5. Proposed imputation method

The proposed bi-BPCA-iLS algorithm updates the bi-iLS algorithm during the process of obtaining
the temporary complete matrix. Other than the process of obtaining the temporary complete matrix, bi-
BPCA-iLS and bi-iLS are the same. In bi-ILS, the row average is used to fill in all of the missing values
for the target genes to obtain a temporary complete matrix. However, the use of the row average to
fill in the missing values is considered unsatisfactory. Row averages cannot reflect the structure of the
data because they only use the information of a single row or gene [21]. Also, use of the row average
is not an effective approach when there is an outlier in the target gene. Hence, the use of BPCA to get
a temporary complete matrix is thought to be better than the use of the row average. BPCA can reflect
the global covariance structure of all genes [5]. The main idea behind the proposed bi-BPCA-iLS
method is to use BPCA instead of the row average to get a temporary complete matrix in the bi-
iLS framework. This alteration means that bi-BPCA-iLS becomes an updated and improved missing-
value imputation method. As mentioned before, bi-iLS matched to data that have a dominant local
similarity structure and high complexity, while BPCA suits data with a structure of lower complexity.
The idea of combining BPCA with bi-iLS makes bi-BPCA-iLS become more robust for data with a
lower complexity structure. The complete framework of bi-BPCA-iLS can be seen in Figure 3. The
differences table for the LLS, bi-iLS and bi-BPCA-iLS methods is given as Table 1.

Table 1. Differences between LLS, bi-iLS and bi-BPCA-iLS.

LLS Bi-iLS Bi-BPCA-iLS

Gene similarity Clustering Biclustering Biclustering
Temporary complete matrix Row-average Row-average BPCA
Parameters k k and T0 k and T0

Process of iteration No Yes Yes
Authors Kim et al. [16] Cheng et al. [4] Newly Proposed
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Figure 3. Complete framework of proposed algorithm, bi-BPCA-iLS.

Table 1 shows the differences between the three least squares-based imputation algorithms. LLS
uses clustering to measure gene similarity, while bi-iLS and bi-BPCA-iLS use biclustering, which, as
mentioned before, is considered to have higher efficacy. The row average is used in LLS and bi-iLS to
obtain the temporary complete matrix, while bi-BPCA-iLS uses BPCA. Only bi-iLS and bi-BPCA-iLS
iterates the imputation process. Our proposed imputation algorithm is the newest among these.

6. Experiments

The proposed method has been implemented and evaluated on two-dimensional gene expressions: a
microarray dataset and an RNA-seq dataset [22]. Bi-iLS was proven to perform well on the microarray
datasets of Spellman 1998 for Saccharomyces cerevisiae [4], so bi-BPCA-iLS was also implemented on
this dataset to make a performance comparison. Also, both bi-BPCA-iLS and bi-iLS were implemented
on RNA-seq to analyze their performances on different gene expression datasets.

6.1. Microarray Data

The microarray dataset is a cell cycle expression dataset for the yeast Saccharomyces cerevisiae; it
has been synchronized using a CDC15 temperature-sensitive mutant [23]. According to Spellman et
al., the samples of mRNA were taken every 10 minutes for 300 minutes. However, there were several
missing time points in the published data. In fact, samples were taken every 20 minutes from 10 min to
70 min, and then every 10 minutes from 70 min to 250 min and every 20 minutes from 250 min to 290

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8741–8759.



8749

min. Therefore, the CDC15 dataset contains the expression level of 6178 genes at 24 different time
points which gives a matrix size of 6178 × 24. An example of the CDC15 dataset is shown in Table 2.

Table 2. Example of CDC15 dataset.

10 min 30 min 50 min 70 min . . . 290 min

Gene 1 −0.16 0.09 −0.23 0.03 . . . −0.26
Gene 2 NaN NaN NaN −0.58 . . . NaN
Gene 3 −0.37 −0.22 -0.16 0.04 . . . −0.41
Gene 4 NaN NaN NaN −1.5 . . . NaN
Gene 5 −0.43 −1.33 −1.53 −1.53 . . . 1.18

The CDC15 dataset had missing values, so genes that contained missing values were removed
to get the ground truth. The ground truth was used to calculate the estimation error or NRMSE of
each imputation methods. After removing genes that contained missing values, the size of the matrix
became 4381 × 24. In the experiments for this dataset, r% of the observation values was set to be
missing randomly where r = 1, 5, 10, 15, 20, 25 and 30. The estimation was repeated five times for
each missing rate to generate the average result.

6.2. RNA-seq data

The RNA-seq dataset was gene expression data from the Schizosaccharomyces pombe or
GSE150544 [24]. The technique of RNA sequencing was used to identify the differences between
the gene expression levels of four different INO80 mutant strains, each with two replicates; this re-
sulted in eight samples for each gene. The four strains were wt (control), Nht1, Iec1 and Iec5. The
length for each gene, which indicates how many nucleotides are in that gene, was also included. In this
experiment, only coding genes were observed. This dataset contained the expression of 5137 genes
under nine different conditions , i.e., the length, wt rep1, wt rep2, nht1 rep1, nht1 rep2, Iec1 rep1,
Iec2 rep2, Iec5 rep1 and Iec5 rep2, resulting in a matrix size of 5137 × 9. The data were not nor-
malized to ensure the real expression of each gene and positive gene expression. An example of the
GSE150544 dataset is shown in Table 3.

Table 3. Example of GSE150544 dataset.

Length wt rep1 wt rep2 nht1 rep1 nht1 rep2 Iec1 rep1 Iec1 rep2 Iec5 rep1 Iec5 rep2

Gene 1 669 18 16 8 2 4 15 17 19
Gene 2 993 46 50 45 25 33 34 25 29
Gene 3 3227 1623 1474 1655 1268 994 1870 1476 1849
Gene 4 868 258 322 215 200 138 284 278 286
Gene 5 2250 87 79 119 121 87 209 88 102
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gene 5137 546 0 0 0 0 0 0 0 0

A value of zero indicates that a gene was not detected because the gene was not expressed , or was
minimally expressed; therefore the value of zero is not a missing value. Then, r% of the observation
values was set to be missing randomly where r = 1, 5, 10, 15, 20, 25 and 30. The estimation was
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repeated five times for each missing rate to generate the average result.

6.3. Imputation results

Our proposed imputation method was implemented in MATLAB. The parameters k and T0 were
estimated automatically using the integrated function in our algorithm. The estimation process was
iterated five times for each test. We carried out five tests for each missing rate to obtain the most ac-
curate and convergent results. The imputation results applying our proposed method to the microarray
dataset can be seen in Table 4 and Figure 4 below, where mr denotes the missing rate in Tables 4 and
5.

Table 4. Imputation results of applying bi-BPCA-iLS to the CDC15 dataset.

NRMSE Bi-BPCA-iLS mr 1% mr 5% mr 10% mr 15% mr 20% mr 25% mr 30%

Test 1 0.1851 0.3934 0.4766 0.5485 0.5681 0.6102 0.6369
Test 2 0.1685 0.4610 0.5101 0.5634 0.5717 0.6093 0.6269
Test 3 0.2065 0.3882 0.4888 0.5359 0.5887 0.6044 0.6206
Test 4 0.2170 0.3741 0.4892 0.5476 0.5839 0.6034 0.6300
Test 5 0.2371 0.3934 0.4811 0.5458 0.5801 0.6000 0.6203
Average 0.20284 0.40202 0.48916 0.54824 0.5785 0.60546 0.62694

Figure 4. Imputation performance of bi-BPCA-iLS on CDC15 dataset.

The imputation results of applying our proposed method to the RNA-seq dataset can be seen in
Table 5 and Figure 5 below.

Based on Table 5 and Figure 5, the average value of the NRMSE for a missing rate of 1% was
0.29626, for a missing rate of 5% was 0.23798 and for a missing rate of 10% was 0.24662. The lowest
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estimation error was achieved when the missing rate was 5%; it was highest when the missing rate
was 1%. The NRMSE values were predominantly below 0.3 at every missing rate, indicating that our
proposed imputation method, bi-BPCA-iLS, performed well on the GSE150544 dataset.

Table 5. Imputation results of applying bi-BPCA-iLS to the GSE150544 dataset.

NRMSE Bi-BPCA-iLS mr 1% mr 5% mr 10% mr 15% mr 20% mr 25% mr 30%

Test 1 0.3020 0.2593 0.2226 0.2351 0.2470 0.2595 0.2612
Test 2 0.1317 0.1737 0.2684 0.2527 0.2518 0.2515 0.2493
Test 3 0.3011 0.2814 0.2577 0.2378 0.2364 0.2234 0.2641
Test 4 0.3976 0.2838 0.2273 0.2791 0.2872 0.2357 0.2457
Test 5 0.4162 0.1917 0.2571 0.2595 0.2589 0.2485 0.3046
Average 0.30972 0.23798 0.24662 0.25284 0.25626 0.24372 0.26498

Figure 5. Imputation performance of bi-BPCA-iLS on GSE150544 dataset.

7. Evaluation and analysis

Two existing methods, LLS and bi-iLS, were compared to our proposed imputation method. This
comparison entailed the use of the the average value of NRMSE and computational time generated
from five trials for every missing rate. The difference between the NRMSE values of Method A and
Method B divided by the NRMSE value of Method A shows the improvement of Method B relative
to Method A. If the improvement value is positive, then Method B results in a higher imputation
accuracy compared to Method A. If the improvement value is negative, then method B has a decrease
in imputation accuracy compared to Method A.
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7.1. CDC15 dataset

The averages of the improvement values across all missing rates for the CDC15 dataset are shown in
Table 6 below. Based on these figures, the bi-iLS algorithm showed a significant overall improvement
in NRMSE value (10.07%) relative to the LLS algorithm. Our proposed method, bi-BPCA-iLS, also
showed a significant overall improvement in NRMSE value: 10.612% relative to LLS and 0.582%
relative to bi-iLS.

Table 6. Performance of LLS, bi-iLS and bi-BPCA-iLS on CDC15 dataset.

Average
value of
NRMSE

NRMSE
from
LLS

NRMSE
from Bi-
iLS

NRMSE
from Bi-
BPCA-iLS

Improvement of
bi-iLS relative to
LLS

Improvement of
bi-BPCA-iLS
relative to LLS

Improvement of
bi-BPCA-iLS
relative to bi-iLS

Missing rate 1% 0.20938 0.20792 0.20284 0.697296781% 3.123507498% 2.443247403%

Missing rate 5% 0.51722 0.40444 0.40202 21.80503461% 22.27292061% 0.598358224%

Missing rate 10% 0.57694 0.49252 0.48916 14.63237078% 15.2147537% 0.682205799%

Missing rate 15% 0.61448 0.5499 0.54824 10.50969926% 10.77984637% 0.301873068%

Missing rate 20% 0.63408 0.5799 0.5785 8.544663134% 8.765455463% 0.241420935%

Missing rate 25% 0.65518 0.60512 0.60546 7.640648371% 7.588754235% −0.05618720%

Missing rate 30% 0.6708 0.62610 0.62694 6.663685152% 6.538461538% −0.13416387%

Average improvement 10.070% 10.612% 0.582%

Figure 6. Imputation performance of bi-BPCA-iLS on GSE150544 dataset.

As shown in Table 6 and Figure 6, the imputation method that produced the lowest overall NRMSE
across all missing rates for the CDC15 dataset was our proposed method, bi-BPCA-iLS.

After comparing the values of NRMSE, the computational times of the imputation methods were
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also compared in MATLAB. Based on Table 7, bi-iLS is shown to add an overall average of 320.134
seconds of computational time compared to LLS. bi-BPCA-iLS is shown to add an overall average of
343.850 seconds of computational time relative to LLS and only 23.716 seconds relative to bi-iLS.

As shown in Figure 7, LLS displayed a consistent computational time for every missing rate, while
bi-iLS and bi-BPCA-iLS had additional computational time following the increase in missing rates.
In conclusion, the fastest imputation method was LLS; this is related to the high NRMSE it generated
compared to the other methods. Regarding bi-iLS and bi-BPCA-iLS, there was no significant compu-
tational time difference between these two methods. If the goal is achieving a lower NRMSE, then one
can use bi-BPCA-iLS instead of bi-iLS.

7.2. RNA-Seq

The average improvement values across all missing rates for the RNA-seq dataset (GSE150544) are
shown in Table 8. We can see that the bi-iLS algorithm showed an overall improvement in NRMSE
value of 5.12% relative to the LLS algorithm. Our proposed method, bi-BPCA-iLS, had an overall
improvement in NRMSE value of 8.20% relative to LLS and 3.09% relative to bi-iLS.

The performances of LLS, bi-iLS, and bi-BPCA-iLS on the GSE1505544 data can be seen in Table
8. Bi-BPCA-iLS and bi-iLS had negative performances when the missing rate was 1% and 5%, so LLS
performed well when the missing rate was below 5% in this dataset. But when the missing rate moved
above 5%, the performance of bi-BPCA-iLS was superior to the other methods. As shown in Figure 8,
the average NRMSE from bi-BPCA-iLS tended to be lower than those of the other methods.

After comparing the values of NRMSE, the computational times of the imputation methods were
compared in MATLAB. Based on Table 9 and Figure 9, bi-iLS is shown to add an overall 117.200
seconds of computational time relative to LLS. While bi-BPCA-iLS is shown to add an overall 126.549
seconds of computational time relative to LLS and only 9.349 seconds relative to bi-iLS. There is no
significant computational time difference between bi-BPCA-iLS and bi-iLS, only 9.349 seconds.

8. Conclusions

Early approaches toward missing-value imputation tended to consider all experimental conditions
in measuring gene similarity. However, genes are only similar under certain experimental conditions.
This meant that an bi-iLS algorithm for imputing missing values has to be developed. This algorithm
uses the row average to obtain a temporary complete matrix, which has become to be considered as a
flawed approach. The row average cannot reflect the real structure of the dataset because it only lever-
ages the information of an individual row. Thus, in this study, we used BPCA to obtain a temporary
complete matrix instead of using row average. The proposed algorithm is called bi-BPCA-iLS. After
finding the temporary complete matrix using BPCA, the required parameters can be found. Our pro-
posed algorithm performs clustering on genes and conditions alternately to find biclusters that consist
of a subset of genes that are similar under a subset of conditions. After the biclusters related to the
target genes are found, least squares estimation of the missing values can be performed while consider-
ing only related genes and conditions. This estimation process can be iterated to improve the selection
of similar genes and conditions in every iteration, which improves the accuracy of the missing-value
imputation.
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Table 7. Computational times of LLS, bi-iLS and bi-BPCA-iLS on CDC15 dataset.

Average
computational
time

Computational
time of
LLS

Computational
time of
Bi-iLS

Computational
time of
Bi-BPCA-iLS

Additional
time of
bi-iLS
relative to
LLS

Additional
time of
bi-BPCA-iLS
relative to
LLS

Additional
time of
bi-BPCA-iLS
relative to
bi-iLS

Missing

rate 1%
60.402 120.439 126.396 60.037 65.994 5.957

Missing

rate 5%
76.419 255.455 275.087 179.036 198.668 19.632

Missing

rate 10%
71.727 388.521 455.319 316.794 383.592 66.798

Missing

rate 15%
59.123 378.844 444.281 319.721 385.158 65.437

Missing

rate 20%
52.033 472.843 434.815 420.81 382.782 −38.028

Missing

rate 25%
45.539 457.156 467.654 411.617 422.115 10.498

Missing

rate 30%
61.047 593.972 629.689 532.925 568.642 35.717

Average additional computational time in seconds 320.134 343.850 23.716

Figure 7. Computational time comparison for LLS, bi-iLS and bi-BPCA-iLS on CDC15
dataset.
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Table 8. Performance of LLS, bi-iLS, and bi-BPCA-iLS on GSE150544 dataset.

Average
value of
NRMSE

NRMSE
from
LLS

NRMSE
from
Bi-iLS

NRMSE
from Bi-
BPCA-iLS

Improvement of
bi-iLS
relative to LLS

Improvement of
bi-BPCA-iLS
relative to LLS

Improvement of
bi-BPCA-iLS
relative to bi-iLS

Missing rate 1% 0.29318 0.32288 0.30972 −10.1303% −5.64159% 4.075818%

Missing rate 5% 0.23604 0.25204 0.23798 −6.77851% −0.82189% 5.57848%

Missing rate 10% 0.26032 0.25436 0.24662 2.28949% 5.262754% 3.042931%

Missing rate 15% 0.27980 0.26908 0.25284 3.831308% 9.635454% 6.03538%

Missing rate 20% 0.28308 0.25652 0.25626 9.382507% 9.474354% 0.101357%

Missing rate 25% 0.29156 0.24558 0.24372 15.77034% 16.40829% 0.757391%

Missing rate 30% 0.34442 0.27056 0.26498 21.44475% 23.06486% 2.062389%

Average improvement 5.12% 8.20% 3.09%

Figure 8. Imputation performances of LLS, bi-iLS and bi-BPCA-iLS on GSE150544 dataset.
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Table 9. Computational time of LLS, bi-iLS, and bi-BPCA-iLS on GSE150544 dataset.

Average
computational

time

Computational
time of LLS

Computational
time of Bi-iLS

Computational
time of
Bi-BPCA-iLS

Additional time
of bi-iLS
relative to LLS

Additional time
of bi-BPCA-iLS
relative to LLS

Additional time
of bi-BPCA-iLS
relative to bi-iLS

Missing

rate 1%
28.418 79.678 82.420 51.26 54.002 2.742

Missing

rate 5%
22.080 107.653 109.090 85.573 87.01 1.437

Missing

rate 10%
18.678 130.136 142.0635 111.458 123.3855 11.9275

Missing

rate 15%
25.831 155.458 158.179 129.627 132.348 2.721

Missing

rate 20%
22.429 160.494 165.366 138.065 142.937 4.872

Missing

rate 25%
20.513 152.178 189.796 131.665 169.283 37.618

Missing

rate 30%
25.018 197.769 201.895 172.751 176.877 4.126

Average additional computational time in seconds 117.200 126.549 9.349

Figure 9. Computational time comparison for LLS, bi-iLS, and bi-BPCA-iLS on
GSE150544 dataset.
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Experiments were conducted on two gene expression datasets: a microarray dataset for Saccha-
romyces cerevisiae (CDC15) and an RNA-seq dataset for Schizosaccharomyces pombe (GSE150544).
The results show that our proposed method is best suited to impute missing values in microarray
datasets and RNA-seq datasets based on the NRMSE, compared to preceding imputation methods
such as LLS and bi-iLS. Significant NRMSE improvements of 10.612% for CDC15 and 8.20% for
GSE150544 were observed when using bi-BPCA-iLS instead of LLS, indicating the importance of
using biclustering and iterative frameworks. Also, bi-BPCA-iLS showed NRMSE improvements of
0.582% for CDC15 and 3.09% for GSE150544 relative to bi-iLS, indicating that the temporary com-
plete matrix is better obtained with BPCA rather than via the row average. The additional compu-
tational time of bi-BPCA-iLS compared to bi-iLS was only 23.716 seconds for CDC15 and 9.349
seconds for GSE150544, which can be concluded as not significant. These experimental results show
that our proposed method outperforms the other two existing methods. Thus, our proposed method is
applicable to other datasets that fit our assumption.

The missing-value imputation method bi-BPCA-iLS outperformed other methods such as LLS and
bi-iLS in selected microarray and RNA-seq datasets in terms of the NRMSE. The improvement relative
to LLS indicates the importance of using biclustering and iterative framework in the imputation, while
the improvement relative to bi-iLS indicates that the temporary complete matrix is better obtained with
BPCA rather than via the row average.
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